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The different dynamical features underlying soliton interactions in coupled nonlineard8ujeo equations,
which model multimode wave propagation under varied physical situations in nonlinear optics, are studied. In
this paper, by explicitly constructing multisoliton solutiofug to four-soliton solutionsfor two-coupled and
arbitrary N-coupled nonlinear Schdinger equations using the Hirota bilinearization method, we bring out
clearly the various features underlying the fascinating shape chaligtegsity redistributioh collisions of
solitons, including changes in amplitudes, phases and relative separation distances, and the very many possi-
bilities of energy redistributions among the modes of solitons. However, in this multisoliton collision process
the pairwise collision nature is shown to be preserved in spite of the changes in the amplitudes and phases of
the solitons. Detailed asymptotic analysis also shows that when solitons undergo multiple collisions, there
exists the exciting possibility of shape restoration of at least one soliton during interactions of more than two
solitons represented by three- and higher-order soliton solutions. From an application point of view, we have
shown from the asymptotic expressions how the amplitid&ensity redistribution can be written as a
generalized linear fractional transformation for tiecomponent case. Also we indicate how the multisolitons
can be reinterpreted as various logic gates for suitable choices of the soliton parameters, leading to possible
multistate logic. In addition, we point out that the various recently studied partially coherent solitons are just
special cases of the bright soliton solutions exhibiting shape-changing collisions, thereby explaining their
variable profile and shape variation in collision process.
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[. INTRODUCTION whereq; is the envelope in th¢th mode,z andt represent
the normalized distance along the fiber and the retarded time,
The study of coupled nonlinear Schinger (CNLS)  respectively, in the context of soliton propagation in multi-
equations is receiving a great deal of attention in recent yeaigiode fibers. In the case of fiber arrayscorresponds to the
due to their appearance as modeling equations in diversgh core. Here 2 gives the strength of the nonlinearity. In
areas of physics such as nonlinear opfitk including opti-  the framework ofN self-trapped mutually incoherent wave
cal communications[2], biophysics[3], multicomponent packets propagation in Kerr-like photorefractive media
Bose-Einstein condensates at zero tempergtiretc. To be [11,17, q; is thejth component of the beara,andt repre-
specific, soliton type pulse propagation in multimode fibersget the coordinates along the direction of propagation and

[1] anld in “be.f arr ay$s] js governet_j by a set di-CNLS .the transverse coordinate, respectively. The interesting prop-
equations which is not integrable in general. However, it

becomes integrable for a specific choice of paramé¢&s. erty of the N'CN.LS equations of fornﬂ) IS tha_t they are

On the other hand, the recent studies on the coh¢géiaind mteg_rable gquaﬂons and possess sol|tor_1 solutions,
incoherent[9] beam propagation in photorefractive media, Itis obvious from Eq.(l)_that forN:]: I corrgsponds to
which can exhibit high nonlinearity with extremely low op- the standard envelope soliton possessing the integrable non-
tical power, necessitate intense study of CNLS equationinear Schrdinger equation, governing intense optical pulse
both integrable and nonintegrable. The first experimental obProPagation through a single mode optical fiberl4]. For
servation of the so-called partially incoherent solitons withth€ N=2 case, it reduces to the celebrated Manakov model
the excitation of a light bulb in a photorefractive medium [13] describing intense electromagnetic pulse propagation in
[10] has made this study even more interesting. In this conbirefringent fiber. Manakov himself has made a detailed
text of beam propagation in a Kerr-like photorefractive me-asymptotic analysis of the inverse scattering problem associ-
dium, the governing equations are a setNeCNLS equa- ated with systen{l) for N=2 and identified changes in the

tions[11,12. polarization vecto{13]. However, no explicit two-soliton
We consider the followingN-CNLS equations of the expression was given there. Very recently, Radhakrishnan,
Manakov typg13] for our study: Lakshmanan, and Hietarinta have obtained the bright one-

and two-soliton solutions for this cagé&5], and have re-

N vealed certain different shape changiimgensity redistribu-

. , 24 — - tion) collision properties. These Manakov solitons have been
Iq'Z+tht+2M;1 Gl =0, J=1.2.... N, (1) observed recently in AGa_,As planar waveguide§16]
and precisely this kind of energy exchangifgape chang-
ing) collisions has been experimentally demonstrated in Ref.
*Electronic address: cnld123@eth.net [17]. The results of Refl15] have led Jakubowski, Steiglitz,
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and Squief18] to express the energy redistributions as linearized to the arbitrary soliton case, 2-CNLS and then for arbi-
fractional transformations so as to construct logic gatestrary N-CNLS equations. To start with, we will briefly con-
Later, Steiglitz[19] explicitly constructed such logic gates sider the two-soliton solution to bring out the shape-
including the universalNAND gate, based on the shape- changing nature of soliton collisions, which can be quantified
changing collision property, and hence pointed out the posin terms of generalized linear fractional transformations
sibility of designing an all optical computer equivalent to a (LFTs), and identify the changes in amplitudes, phases, and
Turing machine, at least in a mathematical sense. Howeverelative separation distances among the solitons by carrying
results are scarce fdf=2 case of Eq(1) though they are of out appropriate asymptotic analysis. However, the standard
considerable physical importance as mentioned earlier.  (shape preservingelastic collisions can occur for specific
The shape-changing collision property exhibited by thechoice of soliton parametefitial conditions. More inter-
2-CNLS equations, which has not been observed, in generadstingly, we also point out that when more than two solitons
in any other simpler (¥ 1)-dimensional integrable system, collide successively, say three solitons, there exists the excit-
requires a detailed analysis to identify the various possibiliing possibility of restoration of the shape of one of the three
ties and the underlying potential technological applicationssolitons leaving the other two undergoing shape changes and
In a very recent lettef20], the present authors have studiedye prove that the underlying soliton interaction is pairwise.
the multicomponentN-CNLS equations and shown that we give explicit conditions for the shape restoring property.
shape-changing collisions occur here also with more possgxtending this analysis, one can easily check that in an
bilities of energy redistribution. It has also been briefly M-soliton collision, it is possible to restore the states Mf (
pointed out that the much discussed partially coherent soli--2) solitons after collisions. Such possibilities lead to the
tons (PCS3 [11,12, which are of variable shape, namely, construction of optical logic gates of different types and gen-
2-PCS, 3-PCS.., N-PCS, are special cases of the gralized linear fractional transformations, as we will show in
two-soliton, three-soliton .., N-soliton solutions of the this paper.
2-CNLS, 3-CNLS..., N-CNLS equations, respectively.  Thjs paper is organized as follows. In Sec. Il we briefly
The understanding of variable shapédd,12 of these re-  present the bilinearization procedure for tieCNLS equa-
cently experimentally observed partially coherent solitongjons, Explicit multisoliton solutions(up to foup of the
[21] in photorefractive medium and their interesting collision 2_cNLS equations are obtained in Sec. Ill. Then the gener-
behavior will be facilitated by Obtaining the highel’-ordel’ a”zation of these mu'tiso"ton So|uti0ns td-CNLS equa_
soliton solutions of the 2-CNLS and tHé-CNLS (N=2) tions is given in Sec. IV. The two-soliton collision properties
equations. of 2-CNLS and their generalization d-CNLS equations are
In this paper, we wish to undertake a detailed analysis o§tydied in Sec. V. In Sec. VI, we present a systematic proce-
the dynamical features associated with soliton interactions igyre to identify the intensity redistribution amohgmodes
multicomponentN-CNLS equations. There exist numerousin terms of a generalized linear fractional transformation
interesting phenomena which one has to pay attention to ihich is the precursor to the development of logic gates
order to realize the full potentialities of these equations angyithout interconnecting discrete componefitg]. The inter-
the underlying different soliton dynamics. Some of the im-esting features of the higher-order soliton solutions, namely,
portant aspects include the following among others. the pairwise nature of collision of solitons, and the shape
(1) Explicit expressions for multisoliton solutions in mul- restoration property of the state of one soliton only in a
ticomponent CNLS equations useful for analysis of interacthree-soliton collision process are presented in Sec. VII. In
tions (as against formal expressions Sec. VIII we introduce the possibility of looking at the bright
(2) Different soliton interactions involving shape- soliton solutions as logic gates, as an alternate point of view.
changing collisions. Then in Sec. IX we demonstrate explicitly that for specific
(3) Dependence of shape changes and relative separati@foices of the parameters of the bright soliton solutions,
distances on amplitudes of the colliding solitons. various PCSs reported in the literature result. The collision
(4) Identification of different possibilities of energy redis- properties of PCSs and the salient features of multisoliton
tributions among the different modes of the soliton duringcomplexes are also discussed. Section X is allotted for a
collision and obtaining generalized linear fractional transfor-conclusion. Also in the Appendix we present the explicit

mations. _ o o _ form of the four-soliton solution.
(5) State restoring properties in multisoliton solutions.

(6) Existence of partially coherent solitons, stationary and
moving, as special cases of the above multisoliton solutions.
(7) Identification of multisoliton solutions as logic gates

in multicomponent CNLS equations. The set ofN-CNLS equationg1) has been found to be
The present paper will be essentially devoted to the uneompletely integrablé6,7] and admits exact bright soliton
derstanding of multisoliton interactions IN-CNLS equa- solutions. Their explicit forms can be obtained by using Hi-
tions, and its application in constructing logic gates and inrota’s bilinearization methof22], which is straightforward.
identifying partially coherent solitons as special cases ofAny of the other soliton producing methodologies in prin-
multisoliton solutions. In particular, in the present paper, weciple is equally applicable; however, this paper is not con-
will deduce explicit expressions for multisoliton solutions cerned with the relative merits of the various methodologies.
(up to four-soliton solutions which can be easily general- To start with, we make the bilinearizing transformation

II. BILINEARIZATION
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(which can be identified systematically from the Laurent ex- 0, a(ll) e A, Kqoel 71
pansion[6]) ( ) = | ——— = )L,
G2/ \ofP)1+emtui R Az R
g(J) cosh n1r+ E
q9%="5" j=12,...N 2 (6)
to Eq.(1). This results in the following set of bilinear equa- where
tions: (i
Ke(t+ikqz),A o j=1,2
. =k, (t+ik,z), A= . =1,
(iD,+DAgNf=0, j=12,...N, @& T (aDR PR ]
N and
DIff=2u> gMg™*, (3b)
= r_ (P +] o))
where * denotes the complex conjugag®)’s are complex (ki +K7)?

functions, whilef (z,t) is a real function and Hirota’s bilinear

operatorsD, andD, are defined by Note that this one-soliton solution is characterized by three

arbitrary complex parametezs(ll), a(lz)’ andk;. Here the
D"D™(ab) amplitudes of_ the soliton in the first and secqnd components
(modes are given byk;gA; andk;grA,, respectively, subject
g o\"a o\" to the conditionA,|%+ |A,|2=1/u, while the soliton veloc-
:<E_ 5) (5_ E) a(z,H)b(z',t")] (=2 t=t) - ity in both the modes is given bykg,. Herekyr andky
represent the real and imaginary parts of the complex param-
(30 eterk,. The quantity

The above set of equations can be solved by introducing the R 1 M(|a(11)|2+|01(12)|2)
following power series expansions fgf)'s andf: 2Kin = 2Kin n (ky+KE )2
17Ky
g(j):XQ(ll)+X39(3])+“‘, i=12,...N, (4a)

denotes the position of the soliton.

— + 2 + 4 + e
F=1rx Tt Xt ’ (4b) B. Two-soliton solution
wherey is the formal expansion parameter. The resulting set The two-soliton solution of the integrable 2-CNLS system
of equations, after collecting the terms with the same powehas been obtained in R¢{L5] after terminating power series
in x, can be solved recursively to obtain the formsg8f’s (4) as
andf. Though a formal closed form solution of tiNesoliton

expression of Eq(1) as a ratio of two KX N) determinants gW=xo{+x%Y, =12 (7
can be giver[23], it becomes necessary to deduce the ex- 5 .
plicit expressiongwhich is nontrivia) in order to understand f=1+xf2+x"f4, (7b)

the interaction properties at least for the lower-order solitons. . . , . . .
In the following section we will only present the minimum and again solving the resultant linear partial differential
details. equations recursively . Then the explicit form of the two-

soliton solution can be written as

lll. MULTISOLITON SOLUTIONS FOR  N=2 CASE aemy afema t et it oy 4 gt ot S+ o

As a prelude to understanding the nature of soliton solu- 4~ D '
tions for arbitraryN-CNLS equations, we first present the
bright one- and two- soliton solutions of E(l) with N=2 =12, (8a)

(Manakoy case as given in Refl5] and then extend the
analysis to obtain the explicit higher-order soliton solutions.where

* * * ok *
. . — m+n; +R n1t+ n, + 0 n7 +mot+ 6, 7o+ 1, +R
A. One-soliton solution D=1+en" R4 g™ 72 %4 g T727 % 4 @727 72 TR2

After restricting the power series expansi@h as LMttty +Ry, (8b)
D= 1vql) i = - 2 .
gW=xg{",j=12, f=1+x°f, ) In Egs.(8), we have defined
and solving the resulting set of linear partial differential K1
equations recursively, one can write down the explicit one- n=ki(t+ik;z), e’= a—
soliton solution as kitk;
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anday’, j=1,2, and it corresponds to the collision of two

K K
efi= ll* , efe= 22* , bright solitons. Note that in Ref15], 811, 812, 821, andd,,
Ky +ky Ko +ka are called as,, 81, J,, andd,, respectively. The redefined
B ) quantitiesg;;’s, i,j=1,2, are now used for notational sim-
ed1j= (ky — ko) (@} w1 a3 k1) plicity.
(kg +K7) (KT +kz)
0 0 C. Three-soliton solution
_ i)l
e = (ko — ko) (a3 k1o~ a1 KZZ), The two-soliton solution itself is very difficult to derive
(ko+k3)(ky+Kk3) and complicated to analyzgl5]. So obtaining the three-
soliton solution is a more laborious and tedious task. How-
" [ky—ksy|? ever, we have successfully obtained the explicit form of the
ems= e k) (Kot K ke K 2(K11K22— K12K21), bright three-soliton solution also. In order to obtain the three-
(ky K1) (koK) kg + K | 8 soliton solution of Eq(1) for the N=2 case we terminate
(89 power serieg4a) and(4b) as
and . . . :
gD =xg?+x%g¥+ x°9f, (9a)
2
n2, afVaf” =142t b x®ls, j=12. (o)
j=—, i,1=12. (8d)

Substitution of Eq(9) into bilinear Eqs(3a and(3b) yields

a set of linear partial differential equations at various powers
The above most general bright two-soliton solution is char-of y. The three-soliton solution consistent with these equa-
acterized by six arbitrary complex parametkys ks, a(lJ), tions is

(ki+ ki)

a(lj)e’71+ a(zj)eﬂz_q_ ag)e%-i- @Mt Wit Mot 81 @mit wY M3t 6o 4 @Mt my + Mt O

D

q;=

* * * * *
@72t My T n3t daj 4 @3t mz T Mt Ssj 4 @3t M3t M2t Sgj 4 @71 T W2t M3 T 7)1 @M1t M, + U3 O

D

+

* * * * * * *
emtmtnztoojy amtnytmtmy t gty @mtuytast gt upt . @mtmy Tzt uz gyt

+ 5 + D , j=1,2, (103

where
* * * * * * * * 3 *
D=1+em*t 7 tRiqp gmtm *Ray @3t 3 TR3 @mt 7y + 8104 @71 + 72+ 8104 @1t 3+ 204 @71 T 13T S04 @72t M3+ I30
+e7 t 3t Soq @Mt wi tmat my +Ray @mat 7 + st 3 +Rs L gmat mp + w3t my +Re L @mit ) + Mot g 04 @it Uy + st s + T

* * * * * * * * * * * * *
+ e772+ 7, +yt+ 73 +7'20+ e772+ 7, + 77 +7]3+7'20+ e773+ 73 +yt+ 75 +T30+ e773+ 73 + 77 + 7ot T30+ e771+ 71 + 7ot 75 + 73t 73 +R7‘

(10b)

e @93 = (ki —ka) (@ ko~ af k1)
ky+Kk3)(ko+ k3
m=ki(t+ikiz), =123, (100 (ki kg ) (ko)
s (ky—ko) (a1~ af k1) e%j= (ko—kg) (@ k3= a Kpy)
ed1j= , =
T kDK k) a1 (K 7
0% — (ky—ks) (ai kg~ aP k1) oo (ky— k) (@} a5~ aPk19)
(kt k(G He) (ko K5 ) (K5 ky)
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5oy — (ko= k) (@Y K33~ af rz)
(K3 +k2) (k3 +ks)

5, _ (Ko~ ka)(a¥ 31— af i)

1=
(KT + ko) (KT +k3)

PHYSICAL REVIEW B7, 046617 (2003

(ki —ks) (@ kap— o k1)
(kg +K3) (K3 +ks)

e%j=

(ky— kz)(a(lj)Kzs_ “(2j)’<13)
(kg +k3)(kat+k3)

| =

(kp—kq) (k3—kq)(kz—kz) (k5 —KT)

e’lj=

(KT +Kq) (KT +ka) (KT +k3) (K3 +Kq) (K3 +ka) (K3 +K3)

X [a(ll)(Kle32_ KooKz t+a

(ka— k) (kg—kq)(kg—ky) (k3 —k7)

(K1pK31— K3pK11) T+ @

(3J)(K11K22_ K12K21) ],

eTZj =

(KT ko) (KT ko) (KT +ka) (K3 +kq) (K3 +Ko) (K3 +Ks)

X [a(ll)(Ksusl— K31K23) T a(ZJ)(K31K13_ K11K33) ag)(Kzskn_ K13k21) ],

(ka—kq)(K3—ki)(kz—kz) (k3 —K3)

e”3j=

(K5 + k) (K5 + ko) (K5 + ) (K + k) (KS ko) (KE +ks)

X[ @D (kopkaz— Koarar) + aP (Kkyakar— Kkaar1o) + P (Kkiokoa— Kook13)], (100

L m=123, edo= 12
Kt K5, ki+k5
@%20= K13 . e%o= K23 ,

ki +k3 ko +k3

R (ko—kq) (k3 —KT)

(KT +kp) (KT ko) (kg + k3 ) (K3 +kp)
X[ K11k 20— K12K21],
" (ks ky) (K5 — )

(K k) (KF + kg) (KE k) (kS +ks)

X[ K3zr11— K13K31],

eR7—

|k =Kol *|ko— ksl *ks—kq|?

(k3—kp) (K3 —K3)

Re—
(k3 +ko) (K5 +ks) (K3 +ky)(kg+k3)
X[ Kook33— Ko3K30],s

. (koK) (K5 —KE)
(KT +kq) (KT +ko) (k3 +kp) (K3 +kp)
X[ K11K23— K21K13],

. (Ky—k) (K5 —K§)
(k3 +kq) (K5 +ko) (k3 +kp) (K3 +kp)
X[ Kook13— K12K 23],

. (k3—kp) (k3 —k3)

(K3 +kq) (K5 +k3) (K3 +Kq) (KS +k3)

X[ K3zk1o— K13K32],

X [(K11K20K33~ K11K23K32) + (K12K 23K 31— K12K21K33) T ( K21K13K30— KoK 13K31) |,

(kg KD ) (ko kS ) (kg K5 ) Ky + K5 2 kot K [2]kg + K |2

(109
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and A. One-soliton solution

2 The one-soliton solution of Ed1) is obtained as
w3 afaf"

. R
Ki| = , 1,1=1,2,3. (10f) (91,92, - - - An) " =Kige€ n1|seC|{ MRt 5
(ki+k")
. . . . X(Al!AZI e 1AN)T! (11)
The above three-soliton solution represents three-soliton in-
teraction in the 2-CNLS equations and is characterized byyhere 1=Ky (t+ik,2), Ajza(l”/A, A
nine arbitrary complex parametess’)’s andk;’s, i=1,2,3, (SN 0D eR= A% (ky+kE)? af) andk,, |

j=1,2. One can also check that the above general three=1 3 ' N, are (N+ 1) arbitrary complex parameters. Fur-
soliton solution of the 2-CNLS equations reduces to that ofper kirA; gives the amplitude of thejth mode
the solution given in Ref[24] for the particular case of —1 5 ' N) and %, is the soliton velocity in all theN
a{P=1. Further, the form in which we have presented themodes.
solution eases the complexity in generalizing the solution to
multicomponent case as well as to higher-order soliton solu-

. B. Two-soliton solution
tions.

The two-soliton solution of Eq(l) can be obtained by
D. Four-soliton solution following the procedure given for the two-component case. It

. : L .. can be written as
The expression is quite lengthy, but it is written explicitly

in terms of exponential functions so as to check the pairwise a(li)e”1+ a(zj)e’72+ @Mt MY Mot S1j 4 gmit myt iy + 6
nature of collisions. We indicate the form in the Appendix. ;= 5 ,
One can generalize these expressions for the arbiNagyse
also. However, it is too complicated to present the explicit .
form and so we desist from doing so. j=12,... N, (12)

; i Ri aR> aR3
IV. MULTISOLITON SOLUTIONS FOR THE  N-CNLS where the denominatdd and the coefficiente™, e"~2, €73,

EQUATIONS e%, e%, e, ande®, bear the same form as given in Egs.
(8c) and (8d), except thaj now runs from 1 toN and that
As mentioned in the Introduction, results are scarce for, 's are redefined as
Eq. (1) with N>2 and there exists a large class of physical
systems in which theN-CNLS equations occur naturally. N
Further, in the context of spatial solitons in photorefractive wY, aMa(m*
media, each fundamental soliton can be “spread out” into _ =t
several incoherent componef5], as defined by the polar-
ization vectors. Obtaining one-, two-, and higher-order soli-

ton solutions ofN-CNLS equations will be of considerable One may also note that the above two-soliton solution de-

significance in these topics. In order to study the solutiomhends on 2+ 1) arbitrary complex parmeteis(’, a{’,
properties of such systems we consider integr&blENLS ky, andk,, j=1,2, ... N.

equationg1). Following the procedure mentioned in the pre-
ceding section we obtain the one-, two-, and thrgs-well
as fourj soliton solutions ofN-CNLS equations as given
below. Particularly the so-called partially coherent solitons Following the procedure given in the preceding section
will turn out to be special cases of these soliton solutionsve obtain the three-soliton solution to tNeCNLS equations
(see Sec. IX as

Kij = (kl+kl*) , |,|:1,2. (13)

C. Three-soliton solution

aem+ aem2+ a{emst @Mt 7Lt nat S @t my t st Sy @nat My Tt Oy
aj= D

* * * * *
e772+772+7]3+54j+e7]3+ 7]3+771+55j+e773+ 773+7]2+56]~+e7]l+772+ 773+57j+e7]1+ 772+7]3+58j

D

+

* * * * * * *
emtmetngtooj @mtny oty tuzt Ty @mt g tustugtmat g @ty F gtz tmtg

+ D + D , j=1,2,...N.

(149
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Here also the denominat@ and all the other quantities are (a) Soliton 1(7;r~0,7,r— —*):
the same as those given under EL)) except for the redefi-

nition of «;'s as a1 AT : R1
N q2 — A%7 klRe Tisec 7]1R+ 7 y (153)
1S aVa
A=l _ where
Kj=————————, 1,1=123. (14b)
(ki +ki") (Ai_) (a(ll) e Ri/2 150
It can be observed from the above expression that as the AL af? (ky+K)

number of solitons increases, the complexity also increases
and the present three-soliton solution is characterize¢ne quantitye® is defined in Eq(80).
by 3(N+1) complex parametersx{’, a¥, o), | (b) Soliton 2(7,5~0,71r—*):
:1,2, P N, kl! k2, andkg.

The above procedure can be generalized to obtain the ol AT
four-soliton solution and higher-order soliton solutions as ( )—> A2~
discussed in the case of 2-CNLS equations straightforwardly, 92 2
and one can predict that tié-soliton solution ofN-CNLS
will be dependent orN(N+1) arbitrary complex param-
eters.

: R;—R
) k2Rel WISeCI{ o+ —( 32 l)), (166)

where
27
Al

16b
nZ- (16b)

V. SHAPE-CHANGING NATURE OF SOLITON
INTERACTIONS AND INTENSITY REDISTRIBUTIONS

( 8511) e (R1+Rg3)/2

€2} (kp+kj) |

, . The quantities in the above expression are again defined in
The remarkable fact about the above bright soliton squEq_ 80).

tions of the integrable CNLS system is that they exhibit fas- (ii) After collision (limit z— ). Similarly, for z—, we
cinating shape-changin@ntensity redistribution or energy have the following forms for solitons, andS,.
exchangg collisions as we will see below. This interesting (a) Soliton 1(71r~0,7r—):

behavior has been reported in REE5] for the two-soliton '

solution of the 2-CNLS equations. In a very recent letter q ALY
2

[20], the present authors have constructed the two-soliton .
solution of the 3-CNLS and generalized it ®CNLS, for Az

arbitraryN, and briefly indicated similar shape-changing col-
lision dynamics of two interacting bright solitons. As these

N-CNLS equations arise in diverse areas of physics as men-

. R;—R
klRel "71|SeCI{ 7]1R+ ( 32 2)); (173)

where

) - ) - X 1+ s —(Ry+R3)2
tioned in the Introduction, it is of interest to analyze the A _ € Zl)e 2 (17h)
interaction properties of the soliton solutions of 2-, 3-, and A%+ e%22 (ky+K7) '
N-CNLS equations. The collision dynamics can be well un-
derstood by making an appropriate asymptotic analysis ofb) Soliton 2(7,g~0,71g— —®):
the soliton solutions given in the previous sections. Such an -
analysis will then be used to identify suitable generalized d; Al i R,
linear fractional transformations in the following section, to U | a2zt kore' 72 sech nop+ TRk (183
obtain possible multistate logic. 2
. . . _ where
A. Asymptotic analysis of two-soliton solution
of 2-CNLS equations Ai* ( a(zl) e Rol2 18D
To start with we shall briefly review the collision proper- A%* a(zz) (ot KE) .

ties associated with the two-soliton solutid8) of the
2-CNLS equations discussed in REI5] in order to extend
the ideas of th&\N-CNLS case. Without loss of generality, we
assume thakjg>0 and ky; >k, kKj=kjrt+ikj, j=1,2,
which corresponds to a head-on collision of the solitGos
the caseky =k, , see Sec. IX For the above parametric
choice, the variablesyr’s (real part of 5;) for the two-
solitons behave asymptotically & 7,gr~0, 7or— £ as We require the asymptotic forms of the two-soliton solu-
z—*o and(ii) 7,r~0, pr— F % asz— *oo. This leads tions for arbitraryN case in the following section in order to
to the following asymptotic forms for the two-soliton solu- identify a generalized linear fractional transformation for the

In the above expressions f@&; and S, after collision the
quantitieseR2,eRs, %1 ande®2 are defined in Eq(8c).

B. Asymptotic analysis of the two-soliton solution
of N-CNLS equations

tion. (For other choices df;r andk;, , i=1,2, similar analy- amplitude redistribution among the components. To get the
sis as given below can be performed straightforwaydly. asymptotic forms of two-soliton solution of thE-CNLS
(i) Before collision (limit z» —o0). case, as may be checked by a careful asymptotic analysis
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along the lines of theN=2 case, we simply increase the 0, A?
number of components in thA&* vectors above up to ot : R,
N[A*=(A,A;, ..., AN)T] by adding two more complex Gz | ~| Az | koge'"2sech mopt —-|, (223
parametersi{), o) i=3,4,... N, to each of the compo- O3 AZ*
nents so that the forms of the quantitie$t,eRz,eRs e,
e%12,e%21,e%22 in Eq. (8¢) remain the same as above except forwhere
the replacement of the range of the summationcjn[Eq. A2t 1)
(8d)] fromn=1,2ton=1,2,... N. As an example, in the 1 @2 o Ral2
following we give the asymptotic forms of two-soliton solu- A%* = a(zz) _— (22b)
tion of the N-CNLS equations wittN=3, for the casek g AZ* @) ] (kat+k3)
>0l=1,2, andk;; >k, . For other possibilities similar 3 @2
ana_IyS|s can be _”?ade-_ . In the above expressions, the forms of the quanti€@s
(1) Before collision (limit 2 —z). e%,i=1,2, j=1,2,3, can be identified from Eqél2) and
(a.) Soliton 1(771R%0,7]2R—>_°°): (13) with N=3.
1—
a1 Ar R 1. Intensity redistribution
U | ~| AF | ko€ ”llsecré TRt — (199 ; -
2] The above analysis clearly shows that due to the interac-
ds Az~ tion between two copropagating solitos and S, in an
N-CNLS system, their amplitudes change fraé\rff kig and
where A kar to Al kig andAT kor,j=1,2, . .. N, respectively.
However, during the interaction process the total energy of
AL~ aft each of the solitons is conserved, that is,
Al* a(2) e_Rllz (19b) N 1
2 - 1 PN
k,+ kI 1*12- 2r12-
AL o) (ke kD) ;1 AP =2, 1A= (23
(b) Soliton 2(7,r~0,7,r—*): Note that this is a consequence of the conservatioh %of
norm. Another noticeable observation of this interaction pro-
A2- cess is that one can observe from the equation of mafipn
A L _ (Rs—R;) itself, that the intensity of each of the modes is separately
qz | =~ Agf kor€' ”ﬂsecl{ Mor+ T) (209 conserved, that is,
ds AS "
J lgj|?dz=const, j=1,2,...N. (24)
where o
B The above two equatior3) and(24) ensure that in a two-
A7 e’nn soliton collision procesgas well as in multisoliton collision
e (Ri+Rg)/2 p . . :
A3 | =| e . (20p  Processes as will be seen laten) otie total intensity of in-
o 53] (Kot k3) dividual solitons in all théN modes are conserved along with
A3 € conservation of intensity of individual modd&sven while
allowing an intensity redistributionThis is a striking feature
(i) After collision (limit z— o). of the integrable nature of multicomponent CNLS equations
(a) Soliton 1(nr~0,755—): (1). The change in the amplitude of each of the solitons in
the jth mode can be obtained by introducing the transition
qy AL* matrix Tj, j=1,2,... N, 1=1,2, such that
AL+ i (Rs—Ry) a
Q2 | ~| Az | kige' "sech 7ir+ % | (213 A}+=T}A} . (253
ds A | , .
The form oij 's can be obtained from the above asymptotic
where analysis as
()
1+ 521 _ a2
AL ea e (RerRa)P2 ay K21 ' )\2( a'(lj))
A=) e | ——. (21b) Ti= —*)\/— —— |, 1=12,...N,
AL+ e%23 (ki +kT) a, Kiz[ J1—N3\,
3 (25b)
(b) Soliton 2(7,r~0,7,g— —): where
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TABLE |. Possible combinations of intensity redistribution tribution for the casédN=2 andN=3.

among the modes of solitd®; in the two-soliton collision process. For each of the above choices 8f, the form of S, is
determined by the conserved quantigg) for the intensities

(@ N=2 case of the individual modes. For illustrative purposes, we have
Case dx a2 shown in Figs. 1 ath 2 a few of such possibilities of intensity
1 E s switching for theN=2 andN=3 cases, respectively.
2 S E 2. Phase shifts

(b) N=3 case Further, from the asymptotic forms of the solitdBsand
Case N N Us S,, it can be observed that the phases of solitSpsnd S,

also change during a collision process and that the phase

1 E S S shifts are now not only functions of the parameteyandk,
2 S E S but also dependent om{’s, i=1,2,j=1,2,... N. The
3 S S E phase shift suffered by the solit@® during collision is
4 S E E
5 E S E R-—R.—R
5 E £ s <I>1=( 3 21 2)
1 K1 — Ko|?(k11K09— K 10K
N 12 :<§)|n | 1 |k2|—:ki]|.222 12 21) , (27)
K11K
8= (ko k})| (ki—kp) 2, afal™*| , (250 Lo e
n=1
wherek;’s are defined in Eq(13). Similarly the solitonS,
and suffers a phase shift
a K21l VI=NgA; . R;—R,—R
Tf:_(_*) — ——r | i=l2...N, pr= - BeTRTR) (28)
aj K12 ay 2
N
2 (250) Then the absolute value of phase shift suffered by the two-
solitons is
in which
) @] =@ = |2, (29

a;=(ky+k3)

— (M=, (n)
(kg k2)n§=:l ar *2 (250 | ot us consider the cadé=2. For a better understanding,

let us consider the pure elastic collision casé{:a'"
In the above expressions;=r,i/k1y and \y=k1o/k,  =a{?:af?) corresponding to parallel modes. Here the ab-

wherex;’s, i,1=1,2, are defined in Eq13). Then the inten-  solute phase shiftsee Eq(29)] can be obtained as
sity exchange in solitonS; and S, due to collision can be

obtained by taking the absolute square of E@&b) and Iky — o2 Iky — Ko
(250d), respectively. |®|=|In ——— || =2|In| ——||. (30
The above expressions for the components of the transi- [k +K3 | [k +K3 |

tion matrix implies that in general there is a redistribution of

the intensities in thé&\ modes of both the solitons after col- Similarly for the case corresponding to orthogonal modes

lision. Only for the special case (aV:alP=0,a?:al?=0) the absolute phase shift is
found from Eqs(27)—(29) to be

a(l)_ a(lZ)_ - a,(lN) 6
@ TN ki —k
ki +K3 |

does the standard elastic collision occur. For all other choices
of the parameters, shape-changiigtensity redistributio , ) )
coIIisior? OCCUIS. P iy y n The absolute value of the phase shift takes intermediate val-
The two conservation relation@3) and (24) allow the ues for other choices of the parameters’s, 'I=l,_2,’J
intensity redistribution to take place in definite ways. In gen-=1,2, - . . N. Thus phase shifts do vary depending«f’s
eral, for N-CNLS equations the intensity redistribution in a (amplitudes for fixed k;'s. In Fig. 3, we plot the change of
two-soliton collision can occur in'®-2 ways. Denotingg  |®| as a function ofa{!, when it is real, ata{’)=a%
and S as enhancement and suppression, respectively, eitherl, a$=(39+80i)/89, k;=1+i, andk,=2—i. Similar
complete or partial, of the intensity of corresponding modesanalysis can be done for ti=3 case and for the arbitrary
we table below(Table |) the possibilities of intensity redis- N case.

046617-9



T. KANNA AND M. LAKSHMANAN PHYSICAL REVIEW E 67, 046617 (2003
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e
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FIG. 1. Two distinct possibilities of the shape-changing two-soliton collision in the integrable 2-CNLS system. The parameters are
chosen aga) k;=1+1i, k,=2—1i, a{V=0aP=0a{?=1, af=(39+80)/89; (b) k;=1+1i, k,=2—1i, a{V=0.02+0.1i, a{?=a{M=al?
=1.

3. Relative separation distance generalize the procedure to thecomponent case leading to

Ultimately, the above phase shifts make the relative sepa2 9eneralized LFT for the amplitude change during soliton
ration distance, between the solitonghat is, the position collision thereby leading to a multistate logic.
of S, (atz— *0) minus position ofS; (atz— *+«)] also to

vary during collision, depending upon the amplitudes of the A. N=2 case

modes. The change in the relative separation distance is gor the N=2 case, the amplitude change in the two

found to be modes of soliton 1 after interaction given by E5) can be
(KirtKar) reexpressed by the following transformation, which can be

Aty=ti—ti= L. (32 deduced from comparison of expressigfhsh) and (17b):

A1t =TCy Al +TCpAY

kle2R

Thus as a whole the intensity profiles of the two-solitons in
dlﬁ‘erenF modes as well as the_ phases, and henc_e,the relative ALT=TCpuAl " +TC, AL, (333
separation distance are nontrivially dependenwﬁs and
vary as a result of soliton interaction.

Here
— 1- - 2— 2—
VI. GENERALIZED LINEAR FRACTIONAL I=T(A; A AT LA2)
TRANSFORMATIONS AND MULTISTATE LOGIC a 1
2
The intensity redistribution was characterized by the tran- % (1) (1)* (2) (2)%\/ (1) (L)% (2) (2)*
. i i ) . i i a + +

sition matrix as given in Eq(25) in the preceding section. 2 ) [(ay ez ™ +ay” ey ) (ay oy " + oy ey
Interestingly, this redistribution can also be viewed as a lin- 1 1 172
ear fractional transformatiofi.FT) as already pointed out by X >~ (33b
Jakubowskeet al.[18]. However, no systematic derivation of |k1g®  K1ik22

such a connection was made. In this section, we point out
that in fact a reformulation of Eq25) allows one to deduce in which a, is given in Eq.(25¢. The forms ofC;j;’s, i,j
such an LFT in a systematic way. This in turn allows us to=1,2, read as

046617-10
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FIG. 2. Intensity profiles of the
three modes of the two-soliton so-
lution in a waveguide described
by the 3-CNLS[Eq. (1) with N
=3] showing different dramatic
scenarios of the shape-changing
collision for various choices of
parameters.

|ag

(a) (b) (©)

Cii=aPalP* (k;—ky) + ot al®* (ky+k3), (330  profitably used in Ref{19] to construct logic gates, associ-
ated with the binary logip=[0,1]. Similar analysis can be
done for the soliton 2 also.

Cio=—afalP* (ky+Kk3), (330
B. N=3 case
Cor=— ot aV* (k,+ k%), (330 Extending the above analysis, straightforwardly one can
relate theAl-li’s, j=1,2,3, for soliton 1, from Eqg19b) and
(21b), as
Coo= o (ky+K5) + af?af?* (ki — ko). (33 . . ) )
- Al :FC]_]_A]_ +FC12A2 +FC13A3 y (358)
Note that the coefficientS;;’s are independent af{)’s and 1+ _ 1- 1- -
A =I'C,A; +I'C +I'C , 35b
so of A]~ andA} ™, that is thea parameters of soliton 1. 2 2 2 23 (350
Then from Eqs(333 the ratios of theA! “’s, i,j=1,2, can be AL"=TCyA] +TCy AL +TCyAL, (350
connected through an LFT. For example, for soliton 1, from
Eq. (333, where
_ 0.75
14 AT" Cupir+Coy (34)
P12~ 77~ ~ 1-  ~
A3" Coupip+Co 0| 07
. . _ 0.65
Wherepi;:A%’/Az’, in which the superscripts represent
the underlying soliton and the subscripts represent the corre- 0.6
sponding modes. The quantitigg s, pi5,Ci1,C1a,Cor,
C,,, in Eq. (34) are same as the quantitigs,p;, [(1 A5 105 0y 51015
—h*)pl +p.], h*pLlpt ,h* and[(1—-h*)p +1lp{], re- “1

_Sl_ﬂecnt\;]ely’ tgivegsbﬁ l?q(g) md R?tf' [18,[] n etl.n thOEway.t FIG. 3. Plot of the magnitude of phase shift as a function of the
us the state o5, before and after interaction 1S character- parametera(ll), when it is real(for illustrative purposés see Egs.

ized by p;, and plz, respectively. It is to be noticed that (29—(31). The other parameters are chosenkas1-+i, ky=2
during collisionk;’s, i=1,2, are unaltered. The LFT has been _j (=, =1 andai"=(39+80i)/89.
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I=T(A] A} A} A7 A3 A%)

4

1 1 1 |
|

(aPa®* + aPa@* + o0l (aPal* + aPa@* + P al®*) || |14 K11k

in which a,’s are redefined as spond to enhancemefihcluding no change which can be
. (1) (W o (2) (2 used to perform logical operations, whereas inile2 case
a= (ko +Ki)[(ky—kz)(ay a3 ™ + o a we have only the two state logip=[0,1]. This shows that

for N>2, we will get multistate logic and we believe that
such states can be of a distinct advantage in computation.
This kind of study is in progress.

+ 0[&3)(1(23)*)]1/2, (359

and k;,'s can be written from Eq(13) with N=3. Note that
the form of I' is a straightforward extension of thHé=2
case. In the above equations the coefficie@s's, i,]
=1,2,3, for the 3-CNLS case can be written down straight-
forwardly by generalizing expressiof33) corresponding to Now it is of interest to study the nature of multisoliton
the two-soliton solution of the two-component case. collisions making use of the explicit forms of multisoliton
Thus in the two-soliton collision process of thé=3  solutions given in Secs. Il and IV. Due to the complicated
case, for soliton 1 we obtain the generalizedbils trans-  nature of the above bright soliton expressions, it becomes
formation, nontrivial to identify the nature of the collision process. In
his paper[13], Manakov pointed out that in general an
. ALt Cllpi,_ngClgp%,SJrClg N-soliton collision does not reduce to a pair collision due to
PLSZAT: Cool =t Caol= 1 Cad (363 the nontrivial dependence of the amplitude of a particular
3 31P137T ~32P237T 33 soliton before interaction on the other soliton parameters. In
14 1- 1- this section by a careful asymptotic analysis of the three-
_A2"_ Capizt CoprstCog (36p  soliton solution(10) of the 2-CNLS equations, which can be
A%* C31p15+C32p§§+C33’ deduced to théN-CNLS case without any difficulty, we ex-
' ' plicitly demonstrate that the collision process indeed can be
where p13=A1"/A}" and p33=A; /A;". Similar rela- considered to occur pairwise, thereby putting Manakov's

VIl. HIGHER-ORDER SOLITON SOLUTIONS
AND THEIR INTERACTIONS

1+
P23

tions can be obtained for the soliton 2 also. statement into proper perspective and making it clearer. One
can carry out a similar analysis for the four-soliton solution
C. Arbitrary N case given in the Appendix, generalizing which one can show that

- o ] in the higher-order solitons of CNLS equations also the col-
Proceeding in a similar fashion one can construct for thejsjgn is pairwise. Such an analysis also reveals the many
soliton S; a generalized linear fractional transformation for possibilities for energy exchange among the modes of the
the N-component case also which relates gheectors before  splitons, including the exciting possibility of state restoration
and after collision, in higher-order soliton solutions, a precursor to the construc-
tion of logic gates.

N
1+ 2 CiijlKl ; ; ; ;
- A =1 ' A. Asymptotic analysis of three-soliton solution
Pi,N:AT =~ (373 of 2-CNLS equations

N Zl CNijl,N Considering the explicit three-soliton expressi¢in),

= without loss of generality, we assume that the quantkigs
with the condition Kor, andksg are positive andky; >ky >kg, (for the equal
sign case&, =k, =k, see Sec. IX beloy One can carry

pmz 1. (37b out a similar analysis for other possibilities &f’s, i

=1,2,3, also as discussed below. Then for the above condi-

Here p{y=A!"/Ay" . Similar expression can be obtained tion the variablespg’s, i=1,2,3, for the three-solitons
for soliton 2 also. (S;1,S,, andS;y) take the following values asymptotically:

The above generalization paves the way not only for writ- .
ing down the bilinear transformation but also for identifying (0 71rR=0,7r— £,
multistate logic. For example, in tHé=3 case, the follow-
ing states are possiblen=[p¢,p>] =[(0,0),(0,1),(1,0),
(1,1)], where the logical “0” state can stand for the complex as z— -+,
valuedp state corresponding to a suppression of the ampli-
tude in that mode, while the logical “1” state may corre-  (iii) 73r~0,71g—F®, 7or—F®, as z—=*w,

N3r— £°, as z— koo,

(i) 7r=0, mp—F®, 7Pr—*®,
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Defining the various quantitieB;’s, i=1,2,...,7,§’s, |

=12,...,9=12my's, and 7¢’s, m=1,2,3, as in Eq.
(100 we have the following limiting forms of the three-

soliton solution, Eq(10).
(i) Before collision (limit z— —).
(a) Soliton 1(7,r~0,7,r— — %, Pzr— —*):

(Q1) A k secké +R1 gl
~ _ 7’ — s
q2 A% 1R 1R 2
Ai* ( a'(ll) gc—Ri/2

-7 @) e
Az ) e (kg kD)

(b) Soliton 2(7,r~0,7:r— %, 73r— —*):

27

q A Rs—R| .

(é)”(A;) kZRseCI{ MRt 42 1)8'”2',
2

AZ-
A%~

( e511) e (R1+Ry)/2

e’ (kpt+kj)

(c) Soliton 3(73r~0,71r—%, Por—*):

37
a1 A1 I{ R7_R4) i
~ ksrsec + e'7sl,
(Q2) Agf 3R 73R 2
Af* (eﬁl e (Ry+Rp)I2
AL Tem] (ki)

(i) After collision (limit z— + ).
(a) Soliton 1(7,r~0,7,r— %, 73— *):

1+
q A R;—Rs\ .
( l) ~ ( Ai+> kleec’f 771R+ ! 2 6) eI nlll

az 2
Ai+ e™1) g~ (Re+Ry)/2
AT e (kg kY

(b) Soliton 2(7,r~0,7;r— — %, P3r—*):

2+
0z Al Rs—R3
( Q2) ~ ( A?) kZRsec?f MRt 5

)ei 21,

2+
Al

2+
A2

( 6561) e (R3+Rg)/2

e%2) (k,+k%)

(c) Soliton 3(73r~0,71r— —*, 72r— —*):

(q§+ AiJr k SECVE + Rs el 73l
3+ || A3 3R 73RT &5 )
a5 A" 2
(Ai+) ( agl) e Ral2

A e (kg kS

(38a

(38b

(393

(39b

(403

(40b)

(413

(41b

(423

(42b

(433

(43b
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B. Transition elements

The above analysis clearly shows that during the three-
soliton interaction process, there is a redistribution of inten-
sities among these solitons in the two modes along with am-
plitude dependent phase shifts as in the case of the two-
soliton interaction. The amplitude changes can be expressed
in terms of a transition matrii'} as

AT=TIAT, j=12, 1=1,23. (44)
Explicit forms of the entries of the transition matrix quanti-
fying the amount of intensity redistribution for the three-
solitons are as follows.

Soliton 1
e’31
1 1
T at? —(Rg+R,—Ry)/2
e eTaze CRRAUAIRE Y (453
2
o
Soliton 2
2 S5~ 0
T _ e e~ (Ra+Rg—R;—Ry)/2
T2 @92 912 '
2
(45b)
Soliton 3
T3 afPe o
= e~ (Ra=Ry—Rp)/2.
13 | afPe
(450

The various quantities found in the above equations are de-
fined in Eq.(10).

C. Phase shifts

Now let us look into the phase shifts suffered by each of
the solitons during collision. These can be written as

R,—R¢—R
sl:cpl=%, (469
Rg— Rs—R;+R
Sy = (46D)
Rs—R,+R
sg:q>3:¥. (460

Here the quantitie®;,R,, ... ,R; are as given in Eq.10).
Note that each of the phase shif$,®?, and®? contains a
part which depends purely dq's, i =1,2,3, and another part
which depends on the amplitudeolarization parameters
a's along withk;’s.
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Time - follow from the basic two-soliton interaction process dis-
cussed in Sec. V, Ed25b). This can be expressed in math-
ematical form as

Sl SZ
AT\ [TT O\/Al”
g =1+ F1/\ Al ) (493
é‘ A3 0 T5 2
5, where
5
Y e“
1 [ o
FIG. 4. A schematic three-soliton collision procedsr the ~1 = . e (RatRy—Ry)/2. (49b)
choicek;r,kor  Kag>0,ky >k >Kz,). The effects of phase shifts T% e%2
are not included in the figure. o
1

D. Relative separation distances Again the above expressions can be obtained straightfor-

As a consequence of the above amplitude dependenmtardly from Eq.(25b) with N=2.
phase shifts, the relative separation distances between the Now the resulting soliton®,), after the first collision, is
solitonst;; [position ofS; (at z— ) — position ofS; (at  allowed to collide with the third soliton%) (see Fig. 4
z— ), i#], i<j,i,j=1,2,3] also varies as a function of From asymptotic expression88)—(45) and using above
amplitude parameters. The change in the relative separatiargs. (49), it can be shown that

distances Atij=ti}—tﬁ) can be obtained from the

asymptotic expressior88)—(43). They are found to be ATt - T o)\ (A 0
By Dy At "lo w2/l (503
Atpy=—— —— (479
IRT2R where
q)lkgR_(I)3k1R :|\_l 731~ 031
Atg=——2n = IR (47b 1| (e . n
13 kle3R ) ( -’I\—l) — ( . 632) e (RgtR7—Ry Rz)/2_ (50b)
2
D?kzr— Pkor H ing Eq(49) in Eq. (50 i
At23ZW' (479 owever, using Eq(49) in Eq. (503, we can write
| - A (T2 0 (T 0| /Al
where®!’s, j=1,2,3, are defined in Eq46) andkjr’s rep- AL+ ] T a1 21| a1 (51a
resent the real parts ¢¢’s. 2 0 T3/\0 T3/\A2
151 1-
E. Nature of collision _ ( TiTy 0 (Al ) (51b)
Now it is of interest to look into the nature of the colli- 0 T3/ VA

sions in the three-soliton interaction process, that is, whether o ) ) )
it is pairwise or not. This can be answered from thelf this is the collision scenario, then the right hand sides of

asymptotic expressions presented in E88)—(46). For ex-  E0s.(48) and(51b) should be the same, that is,
ample, let us consider soliton B{). The net change in the

amplitudes of the two modes of solitd® is given by the T%:T%Tl' (519
transition amplituded}, i=1,2, that is, s
T3=T5T3. (510
Ai*) (T} 0\[A>"
14| = 1 1, (48  This can be easily verified to be true directly from expres-
Az 0 T3/ \A; sions(45) and (49)—(50). In a similar fashion, for the other

1 1 ) ) two-solitons also the transition matrix can be shown as a
whereT; andT; are defined in Eq453. The above form of  roquct of two matrices corresponding to two collisions, re-
transition relations is obtained by expanding E4). spectively.

Let us presume first that the collision process is a pairwise  Now let us look at the phase shifts. It is also necessary to
one and then verify this assertion. According to our assumppgentify whether the total phase shift acquired by each soli-
tion ky >kz>kg, and so the first collision occurs between ton during the three-soliton collision process is a result of
S; and S, as shown schematically in Fig. 4. Then during two consecutive pairwise collisions or not. In this regard, we
collision with S,, the two modes o8, change their ampli- again focus our attention on soliton $y) first. Let us as-
tudes (intensities by T} and Té, respectively. Their forms sume the collision to be pairwise. Then one can write the
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FIG. 5. Intensity profile$q;|? and|q,|? of the two modes of the

. . ) )
three-soliton solution of the 2-CNLS equations, representing elastic F1G- 6. Intensity profilegq,|* and|q,|* of the two modes of the
collision, with the parameters chosen ds=1+i, k,=1.5 three-soliton solution of the 2-CNLS equations, representing the

—0.5, kg=2—1i, a(ll):a(zl): agl):a(f): a(zz):agz): 1. shape-changingintensity redistributioh collision process. for Ihe
choice of the parameterk;=1+i, k,=1.5-0.5, ky=2—1i, a{V
=(39-801)/89, M= (39+801)/89, a§'=0.3+0.2, «{?=0.39,

phase shift suffered b$, during the collision based on the 7™ ) 1
a2 :(13 =.1.

analysis of the two-soliton collision process. Following Eg.

(27) (with appropriately changed notationsie can write the | . ) . .
expression for the phase shift suffered Byon its collision in the amplitudes and phase shifts during the three-soliton
with S, as collision process establishes the fact that the collisions in-

deed occur pairwise.
R,—R.,—R It may be noted that the above results also imply that the
~ 4 2 1 . .. . . . .
= (520  three-soliton collision process is associative and independent
of the sequence in which collisions occur, that is whether the
collision occurs in the ordeg;—S,—S; or S;—S;—S,.

Now the outcoming form of, (which is S,) is allowed 10 g property has been anticipated in the numerical study of
interact with S; (see Fig. 4. The phase shift during this | o\\is et al. [26], which is now rigorously proved here.
second collision can again be found from the asymptotic
expression$38)—(43) as ) o i
F. Intensity redistributions and shape restoration

~ R7=Rs—R4tR; The asymptotic analysis not only explains the nature of

2 ' the collision process, but also characterizes the collision pro-
cess. It is clear from the above analysis of the three-soliton
On the other hand, from asymptotic expressi¢fg), the  solution that in general there is an intensity redistribution

total phase shift suffered bg, in a three-soliton collision among the three solitons due to pairwise interaction in all the

(53

process can be written as two modes along with amplitude dependent phase shifts as in
the two-soliton interaction, subject to conservation laws. We
R;—Rg—R; have analyzed the various three-soliton collision scenarios
0= ——%H — (54 pelow.

~ 1. Elastic collision
=6+96. (55 ] o ]
The standard elastic collision property of solitons results
Thus the total phase shift suffered by the soliton 1 is the surfor the special caser{":af):a{P=a{®:al?:af). The
of the phase shifts suffered by it during pairwise collisionsmagnitude of the transition eIementé.“H,j =1,2, andl
with soliton 2 and soliton 3, respectively. Similar conclusions=1,2,3, becomes one for this choice of parameters and there
can also be drawn on the phase shifts suffered by the otheccurs no intensity redistribution among the modes except
two-solitons as well. Thus the above analysis on the changder phase shifts. This is shown in Fig. 5 for the parametric
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choiceaV=1,1=1,2,3,j=1,2, k;=1+1i, k,=1.5-0.5, 3. Shape restoration of any one of the three-solitons
andk;=2.0—1i.
The asymptotic analysis also shows that there is a possi-
2. Shape-changing (intensity redistribution) collision bility for any one of the three-solitons to restore its shape
(amplitude or intensityduring collision. In this connection,

shape-changing collisions among the three solitons, howeveIF,t us IQOK |nto_ r_]ow the shape restoring prppert)Spbccurs
leaving the total intensity of each of the solitons conservedduring its collision with the other two-solitorisay S, and
that is,|A'f|2+|A'2t|2=1/,u, |=1,2,3. This intensity redis- S3) We have already shown that Fhe collls_lc_)n process is a
tribution is accompanied by amplitude dependent phas@&wise one. Then the three-soliton collision process is
shifts and changes in the relative separation distances of tfRAuivalent to two pairwise collisions. Let the first collision
solitons as discussed above. They can be calculated froRf parametrized by the parameters
expressiong38)—(47). One such shape-changing interaction@i” . a{”, a8, o), k;, andk,. Now we exploit the ar-

is depicted in Fig. 6 for illustrative purposes. The para-bitrariness involved in choosing the parametefs) anda(32)
meters chosen afe,=1+1i, k,=1.5-0.5, ky=2-1, a(ll) in the second collision process in order to make the net tran-
=(39-80i)/89, af!)=(39+80)/89, o{M=0.3+0.2, a{?  sition amplitude ofS,; be unity, leaving the other two transi-
=0.39,aP=0aP=1. In this figure we have shown the sce- tion amplitudes ofS, andS; to vary, that is,

nario in which the three solitons in the two modes have

different amplitudegintensitie$ after interaction when com-

pared to the case before interaction. H&eis allowed to Ti=1, Ti#1, T'#1, j=1.2 (56)
interact withS, first and then withS;. Due to this collision,

in the gq; mode the intensity 08, is suppressed while that of

S, is enhanced along with suppression of intensit$inOn  This condition will make the solitof$; only be unaffected at
the other hand, the reverse scenario occurs ingthenode  the end of the three-soliton collision process. Then the equa-
for the three soliton§,, S,, andS;. tions corresponding to this condition are

For general values of the parameterd)’s, there occurs

Arrt AgrX— Agy + Agr(X2—y?) — 2A3 XY+ AgrX+Ag Y + Asp(X?+y2) + Agr(X3+XYy?) — Ag (XPy +¥3)

+AZR(X2=Y?) + 2A7 XY+ Agr(X3+ XY?) + Ag (X2Y +Y3) + Agr(x? +y?)?=0, (57a

A+ AgRY + Ag X+ 2AgrXY + Ag (X2 = y2) + Ag X — AgrY + Ag (P +Y?) + Ag (X3 +XY?) + Agr(Xy +Y°)

— 2A7RXY+ A7 (X2 = y?) = Agr(X2y +¥3) + Ag (X34 Xy?) + Ag (X2 +y?)2=0, (57b)

Bir+ BorX— By y + Bar(X?—y?) = 2B3Xy+ BygX+ By y + Bsr(X2+y?) + Ber(X3+Xy?) — Bgi (X2y +y?)

+B7r(X2—y?) + 2B Xy + Bgr(X3+ Xy?) + Bg (XY +y?) + Bor(X?+y?)?=0, (570

Byi+BarYy + By X+ 2BarXy+ Ba (X2 —y?) + By X— Byry + By (X +y?) + B (X3 +Xy?) + Bgr(X?y +y?)

—2B7rXy+ B7y(X*—y?) = Bgr(X?y +y®) + By (X*+ xy?) + Bg  (X*+y?)*=0, (579
|
where we have takenaf!/a{?))=x+iy, the subscripts ~ Though we have not investigated the problem of the ex-
{IR} and{ll}, I=1,2, ... 9represent the real and imaginary istence of solutions of Eq$57), one can make a numerical

parts, respectively. The expressions for s andB;’s are  search and identify suitable values>ofindy to demonstrate
lengthy but can be obtained straightforwardlyy making the shape restoration property. For example, in Fig. 7 with
use of Eq.(56) and expression$45g], and so we do not the parameters fixed & =1+i, k,=1.5-0.5, k=21,
present them here. Solving these overdetermined systems af"=a{?=aP=1, o{=(39+80i)/89, a{"=1.19,a

equations fox andy will give the suitable ratio ¢§"/a$?), ~ =(39+80i)/89, we have demonstrated the shape restoration
for which the shape restoring property of one of the solitongproperty. We find that while the amplitudes of the two of the
S, only arises in a three-soliton collision process. solitons &, andS3) change after interaction, the amplitude
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G. Three-soliton solution of multicomponent CNLS equations
and shape-changing collisions

The above analysis on the three-soliton collision in
2-CNLS equations can be extended straightforwardly to
three-soliton solutior{14) of N-CNLS equations, with arbi-
trary N, includingN=3. One can identify that shape chang-
ing collision occurs here also but with a lot more possibilities
for redistribution of intensities in contrast to the 2-CNLS
case. The quantities characterizing the collision process here
also are the intensity redistribution, amplitude dependent
phase shifts, and relative separation distances between the
solitons, as explained in the 2-CNLS case.

We also note that as the number of components increases
from two to some arbitrarid (N>2), the different possibili-
ties for redistribution of intensity among them also increase
in a manifold way. The corresponding transition matrix, mea-
suring this redistribution, is found to be similar to E¢45)
with the redefinition ofk;;’'s as given in Eq(14b) along with
the indexj running from 1 toN instead of 1 to 2. The other
factors, amplitude dependent phase shifts and change in rela-
tive separation distances, also bear the same form given by
Eqgs.(46) and (47), respectively, with this redefinition.

As to the shape restoration property one has to again solve

FIG. 7. Shape restoring property of soliton $;) during its ~ he equations
collision with the other two-solitons, soliton 25{) and soliton 3

(S;), for the choice of parameters;=1+i, k,=1.5-0.5, kj T-l—l, T]-2¢0, TJ-3¢O, i=1,23....N. (59

=2-1, aP=aP=aP=1, afV=(39+80)/89, af! !
=1.19, a{?)=(39+80i)/89. _ _ . . .
Alternatively for intensity restoration the conditions are
of the solitonS; remains unchanged during the interaction
process.
In the above analysis we have required the complete res-

toration property of solitors;. However, it is also possible

to require that the intensity alone be restored. In this casé;Xt€nding the above analysis, itis clear that, carrying out an
condition (56) can be modified as asymptotic analysis of four-soliton solution given in the Ap-

pendix, it is possible to restore the shape of two of the soli-
tons at the maximum, which can be further generalized to the

ITi=1, |Til#1, [Tjl#1, i=12, (58 arbitraryN soliton case, in which it is possible to restore the

shape ofN—2 of the solitons. We have checked in this case

leading to a set of two complicated equations foandy  also from the asymptotic analysis that the soliton interaction

(which are too lengthy to be presented he®@olving them s pairwise, and we conjecture that this should be true for the
we can findx andy. Note that the quantities andy corre-  arhjtrary N-soliton case as well.

spond to the real and imaginary parts of the ratio of the
parameters:s anda$?, so that for every choice ofandy
there exists a large set af") and o$?) values for which
shape restoration property holds good. The state vectors and LFTs introduced in Sec. VI and the
One might also go a step further and demand that thehape-changing pairwise collision nature of bright solitons
phase shiftb! or the changes in the relative separation dis-mentioned in Sec. VII can be profitably used to look at the
tancesAt;, andAt, ;3 vanish. These will give additional con- multisoliton solutions of CNLS equations as various logic
straints on the choice of parameterg) and ag?). These gates. We believe that such an approach provides an alterna-
considerations require separate study and we have not puive point of view of shape-changing soliton collisions to
sued them here. It is obvious that such shape-changing armbnstruct logic gates as discussed in R&f]. The present
shape restoring collision properties of the optical solitons irpoint of view may have its own advantage as system initial
integrable CNLS equations, exhibiting a redistribution of in-conditions are chosen suitably to generate specific forms of
tensity among the three-solitons in the two modes, will havemultisolitons to represent logic gates may be much easier
considerable technological applications both in optical comfrom a practical point of view, including replication, com-
munications including wavelength division multiplexing, op- pared to constructing them through predetermined indepen-
tical switching devices, etc., and optical computation, fordent soliton collisions. In the following we will demonstrate
example, in constructing logic gatg$8,19. this idea for the case of the 2-CNLS as an example.

ITH=1, |T?+0, [T§|#0, j=123...N. (60

VIIl. MULTISOLITON SOLUTIONS AS LOGIC GATES
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A. Three-soliton solution and state restoration property In the above equation choosing the parameters satisfying

The shape restoration of a particular soliton in arbitraryconditions(61) and (62) one can fix (5"/a%?) suitably in
state associated with the three-soliton solution has been digrder to restore the state of solit@. Thus the three-soliton
cussed in Sec. VIIF. Particularly, this can be well appreci-Solution given by Eq(10) having the specific choice of pa-
ated with respect to binary logic states. For example, if wgameters specified by Eq&1)—(63) corresponds to the state

consider the solitorg; is in “1” state with the state value
p1,=1, it implies

(61)

To obtain this we choose{"=a{?=1. For simplicity we
require S, to be in the “0” state before interaction. From
asymptotic expression89), this can be achieved by choos-
ing the ratioa$?/af?) as

atV ky+ k2

—_—= (62
a? 2kt k¥ —ky

Now in order to restore the state 8f after two collisions,
we have to allow the outcome &, resulting after the first
collision, which may be called solito8;, to interact with

soliton S; having a state inverse to the above O state. This
state forS; can be identified from its asymptotic form before

interaction given in Eq40). The resulting condition can be
shown to be

a(31) n
5= (63a
o) d

n=—(a$?+ a?) af* A+ Ky ky— ki —2ks)B

+2a2aP*C— aP(aP* + aP*)D + | alP + of?)|?E,

(63b)
d=(af+af?) af* A= ko ky kD) B
20D C (o +aP")afD, (630
where

A=(ky+KT)(ks+k7)(kp+k3), (630
B=(ka+Kk7)(ks+k3)(ki+Kk3), (63¢
C=(ko+KI)(ks+ky) (ki +k3), (63f)

D= (ko+Kk7)(Kg+K3)(ky+KTD), (639
E=(ks+k3)(ky+Kk})(kg+Kk}). (63h)

restoration of solitors;.

B. Four-soliton solution and copy gate

Extending the above procedure, we can now consider the
four-soliton solution given in the Appendix, and identify it as
(i) a copy gate or(ii) a ONE gate or(iii) a NOT gate studied
in Ref.[19] for suitable choices of the arbitrary parameters.
As an example, let us consider copying 1 stateSpto the
output state of solitors,. This requires the following steps.

(1) We consider the four-soliton collision process in
which the solitonS; collides with the solitonS, first and
then with the solitor; and finally with the solitors,. This
sequence of collision follows from the conditidq,>k,,
>kg >Ky .

(2) Consider for convenienc8; to be in the 0 state, the
so-called actuator statfl9]. This requiresa{"/a{?=0,
which can be obtained by choosind"=0 anda!? as ar-
bitrary.

(3) Assign 1 state to solitors, before interaction, for
which we need

af?)

k,—k
5= (64)
ay”’  Kytk]

(4) After its collision with S, as a result of shape-
changing collision the outcoming state ®f (sayS;) will be
altered.

(5) Now let us allow the third soliton in the four-soliton
solution to interact witt8; which changes the sta to S; .

(6) Finally, S, is allowed to interact withS;. From the
asymptotic analysis, we identify the state of soli®nafter
interaction as

(65

We impose the condition on this state that this should be in
the state ofS, before interaction. Thus the parameter§’
and aﬁf) of soliton S, get fixed depending upon the input
state ofS,.

(7) The asymptotic analysis of the four-soliton solution
given in the Appendix results in the following condition for
S, to be in one state after interaction:

TIAS™

— = =1, 66
T5AS” (66)
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where T{ and T; are the transition elements &, in the _
modesq; andq,, respectively. Herd] k,g andAj k. are q,=| en+ / D, (683
the amplitudes of solitors, before interaction in the two

modes, respectively.

w(kig—kog)e?t " 72t 7

4kSp(Kir+ kor)

(8) If we flip the input state ofS, from 1 to O state by w(kig—kop)e™* R -
suitably choosing thg?,'s parameters then the condition on 0x=| —e”+ A2 (Kt o) D,
i , il 1R\VKIRT K2R
soliton S,’s output will become 68
TiAS™ _ 7 where
ToAS~

emtm  @met 77’5]
2 + 2
(9) In the above two Eqg66) and (67) only free param- kg 4kig
eters arex§") anda?). In principle, we can solve these two
complex equations to obtain the free complex parameters ,uz(klR—sz)ze”ﬁ”’f“?ZJr 7
oV anda{? . Then for the given choice of parameters the + 2 2 2 (680
: : : : 16kirkor(Kirt Kar)
state of the incoming solitois, can be copied on to the
outgoing solitonS,.
Thus a four-soliton collision process with the aboveand
premise is equivalent to@oPY gate. A similar procedure can
be extended to other gates mentioned above as well. One can 7= Kr(t+ikjrz) + 750, J=1,2. (680
extend this idea further to identify saNouT gate from a
five-soliton solution. It appears that one can pursue the ide&his stationary solution can be easily identified as the 2-PCS
ultimately to identify theNAND gate itself as a multisoliton expression(13)—(15) given in Ref.[12] with the identifica-
solution following the construction of Steiglitz in Rdfl9].  tion of;j’s ast_j’s, i=1,2,
Fuller details will be reported elsewhere.

_ 1 [ wkir—kop) |
t—ty=t+ 24—~ n Mz( wkeR) | gy
Kir * 2kir | 4kig(kiptKor) |

IX. BRIGHT SOLITON SOLUTIONS AND PARTIALLY
COHERENT SOLITONS

As mentioned in the Introduction, the recent observations — __ 7o 1 w(Kig—KoR)
by several author§11,12,25 have shown thatN-CNLS te=t—tp=t+{—+5 —In|—~ . (69D
equationg1) can supporN-PCSs solutions. In general, these 2R 2R | Akor(Kipt ko) |
PCSs are said to be special cases of the so-called multisoli-
ton complexe$2] which are nonlinear superposition of fun- As the 2-PCS is a special case of the bright two-soliton so-
damental bright solitons. It has also been demonstrated th@ition of 2-CNLS equations, it is also characterizedddy’s
these PCSs are formed only if the number of components ifthrough nj0's) and kig's resulting in amplitude dependent
Eq. (1) is equal to the number of solitons. Then it is quite phases, and hence amplitude dependent relative separation
natural to look for the 2-PCS, 3-PCS, 4-PCS, etc., as specigjistances. To be specific, in the PCSs the change in the rela-
cases of the two-soliton solution of the 2-CNLS, three-tiye separation distance plays a predominant role in deter-
soliton solution of the 3-CNLS, four-soliton solution of the mining their shape as pointed out in Refd¢1,17. These
4-CNLS equations, efc., respectively, deduced in Secs. llbcss can be classified into two types as symmetric and
and IV. In the following, we indeed show that the PCSsasymmetric depending on the relative separation distances.
reported in Refs[11,12,23 result as special cases, that is, pefining the relative separation distartgg=t,—t,, one can
specific choices of some of the arbitrary complex parametergneck that, fot;,= 0, the PCS bears a symmetric form with
from the bright soliton solutions of CNLS equations dis- respect to its propagation direction and is known as symmet-
cussed in Secs. Il and IV, thereby showing the origin of thes PCS[11]. It takes an asymmetric form fdg,#0 and is
various interesting properties of the PCS solutions. known as asymmetric PQ31]. From Egs.(69), the relative

separation distances for the stationary 2-PCS can be obtained
A. 2-PCS : A special case of the bright two-soliton solution as
of 2-CNLS equations

Let us consider the stationary limit of the two-soliton so- o=t —t _ Mo _ 720 1 n p(Kir—Kar)
lution of the 2-CNLS equation@lanakov systemgiven by 12772 1R kor  2Kgg Ak o(kig+ ko)
Eq. (8), that is,k,, =0, for the special choice of the param-
eters, -Ci(ll): emo, o= — ez, aP=—-aP=0, where 1 (K yr— o)
7jo'S, j=1,2, are now restricted as real constants. Then Eq. - n — . (70
(8) becomes 2kar | 4K3g(Kip+KoR)
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Typical forms of symmetric and asymmetric stationarysolution. Thus considering the stationary limi, =0,
2-PCS are shown in Fig. 8, which similar to those in Ref.n=1,2,3, of the three-soliton solution of 3-CNLS equations
[12]. given by Eg.(14) with N=3, and making the following
parametric choice:
B. 3-PCS: A special case of the bright three-soliton solution

(1)_ @_ _ (3)_
of 3-CNLS equations aj’=e"o,  ay’=-—e70, ay’=e’,

Since it has been observed that the PCS solutions exist @ @) D (3 (1) (2)_
when the number of components is equal to the number of ai’=ay’=ay =y =ay’=ay”=0, (71)
solitons propagating in the system, we consider next the
three-soliton solution of the 3-CNLS equations in order towhere 7;¢'s, j=1,2,3, are restricted to real parameters, we
show that the 3-PCS is a special case of the three-solitoabtain

p(Kip—Kop)€71 72 1y (Kyp—kgg)e?at 73t 73

qp=|e"+
AK3r(KgtKoR) 4k§R( KirtKsr)
w2 (Kor—Kir) (Kar—Kir) (Kar— |(2R)ze773+1]§+772+ i /'5' (729
16k3pk35(Kor+ K1r) (Kar+ Kig) (Kag+ ko) Y
M(klR_kZR)e”1+”I+n2 M(kBR_kZR)en3+”§+7]2
Op=| —e”2+ 2 2
4kir(KirtKaR) 4k3r(ksrtKor)
2(Kor— K1) (Kar— Kor) (Kar— Kyg) 2€73" 73 ¥ 71t 71 72 /F (72b)
1
16k%Rk§R( kor+Kig) (Kar+ Kor) (Ksp+kip)?
plkar—Kig)e” 7 p(kap—kop)e?2t 72 s
q3: e773+ > 5
4kir(kigtKsr) 4k3r(ksrtKar)

w2 (ksp—Kkir) (Kar—Kar) (Kor—kqr)?€72" Tty

16kIgk3R(kar+ Kir) (Kapt Kor) (Kor+ Kig)?

/ D,. (720

Here,

em+nl  @metm  @mtny 2(Kyo— Koo) 2071t T+ 12t 75 2(Kio— Kag) 271t 71 + 13+ 73
M (KR K2R M (K1IR™ K3Rr

+ +
4K3g 4K3g 4K3g | 16kZRkr(Kir+kar)? 16kik3r(k1p+Kar)?

(72d)

* * r * * *
MZ(k?:R_ kZR)Zen2+ (RN ,U«g(sz_ klR)Z(k3R_ klR)Z(k3R_ sz)zemJr nmn e 1

+
16k3rK3r(Kor+ Kar)? L 64k rkork3R(Kir T Kor) 2(K1r+ Kar) (Kot Kar)?

The above solution can be easily rewritten as Efj6)—(18) L Koo — Kao) (Kao— Kk
for the 3-PCS case given in Rfl2]. As in the case of t;=t—t;=t+ %ﬂ S n 'uz( 2R~ ki) (kar— kar)

2-PCS, here also we identify’s given in Ref.[12] ast;’s, IR 1R | 4kir(Kirtkor) (kirtKar)
j=1,2,3, which are defined below as (739
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for z=0 with k;=1.0,k,=0.5, andk;=0.2, see Eqs(72). (a

metric as in the case of 2-PCSs. The stationary 3-PCS is
symmetric whent;,=t;3=0 and asymmetric otherwise. In ¢,
Fig. 9 we have shown the symmetric and asymmetric 3-PCS
solutions.

C. 4-PCS: A special case of the four-soliton solution
of 4-CNLS equations

In a similar fashion as in the above two cases, the four-
soliton solution of the 4-CNLS equations given in the Ap-

pendix with N=4 can also be shown to reduce to 4-PCS ts=

given by EQgs.(19)—(23) in Ref.[12] by choosingk,,,=0,
a(11)=e’710, a(22)= —en20, a'(33)=e’730, a514)= — @740, ai(J)
=0,,j=1,2,3,4,i#]. Since it is straightforward but lengthy
to write down the form, we desist from presenting the solu-
tion here. Here they's, j=1,2,3,4, are defined as

7
tlz i)

1 0 m(kor—Kkir) (kKagr—Kkir) (Kar—Kigr)
2kir 4kiR(k2R+klR)(k3R+klR)(k4R+klR),

(743
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klR

. . Symmetric case t(,=t,3=0), (b) asymmetric caset{,=1,t
These 3-PCSs can also be classified as symmetric and asyn_Jyz)_ (2=1:3=0). (b) asy =1t

(74b)

(740

7
Kor
1 0 m(Kor—Kir) (Ksr—Kor) (Kar—K2Rr)
2kar 4k§R( Kort Kir) (Kart Kor) (Kart Kog)
70
Ksr
1 0 m(k3r—Kir) (Kgr—Kor) (Kar—K3r)
2ksr | 4K3g(kar+ Kir) (Kar+Kar) (Kar+ Kar)
o
Kar
1 0 m(Kar—Kir) (Kar—Kor) (Kar—KzRr)
2kar | 4KGr(Kart Kir) (KartKor) (KartKar)

(740
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FIG. 10. Intensity profiles showing the collision scenario of two
1-PCSs, with equal velocities, &) z= —5 and(b) z=5, given by
special choice of parametefas given in textin the two-soliton
solution of the Manakov system.

FIG. 11. Intensity profiles showing the collision scenario of two
1-PCSs, moving with equal but opposite velocities(atz=—5
and (b) z=5, given by special choice of parametées given in
text) in the two-soliton solution of the Manakov system.

Here also the symmetric PCS results fgr=0, j>i, i,]

:1,2,3=4a_and ﬁsy'rgmetrlc PES foy+#0, j>i ar that 1 collision is shown in Fig. 11 for the parametric choieg"

sending (i idea fo s 1 1 RTINS —10, off =k, of =~ (20808 alP= 20
k,=1.0+i, andk,=2.0—i. This can also be viewed as the

equationg1). It has been noticed in Refgl1,17 that these T i )
PCSs are of variable shape. The reason for the variable shaFgmsmn of wo 1-PCS which are spread among the two

can be traced naturally to the nontrivial dependence o Gmponents, which are traveling with equal but opposite ve-
- ocities.
phases on the complex parametef$’s as shown above. . i .
Thus it is clear that any change in the amplitude will affect Now let us consider the collision of 2-PCS and 1-PCS in
the phase part of the solitons and vice versa. Since we havPR media. This is equ!valent t(_)_the th_ree—sollton collision in
explicitly shown thatN-PCSs are special cases of bright € 3-CNLS system with specific choice of parameters. We
N-soliton solutions oN-CNLS equations, they possess vari- cog&dgg th(el) caﬁse)‘, |r21)wh|(czf)1 the complex parameters
able shape as a consequence of the shape dependence onﬂﬂg]e’al @y, ay’, a3’, az’ are nonvanishing and as

o) parameters. functions ofk,,’s, n=1,2,3. Then the resulting asymptotic
forms of the 3-PCS propagation is shown in Fig. 12 for the
- : 1 2 3 1
D. Propagation of partially coherent solitons and their parametric cf;mce a(l )= 1-031 a(l )= a(l )= k1|1, a(z )=
collision properties —0.5,, a?)=025 = a¥=00%y,, afP=-[(22

1 (2) [(C)— — i —
The intriguing collision properties of the partially coher- +_80')/89]k3" ag”=2kg, a3'=—2, k;=1.0+i, k;=1.5

ent solitons reported in Reffl1,17 can be well understood ~1» @ndks=2.0-i. In the above figures it can be verified
ko's, that is nonstationary special cases of multicomponenthe PCS is conserved. .

higher-order bright soliton solutions discussed in Secs. Il The above analysis on PCS propagation clearly shows
and IV. For the nonstationary PCSs we can choose as a sp@at, there will be a variation in the shape of the PCS during
cial case the complex paramet&pg)’s (i#j) to be func- its collision with other PCSs. The explanation for this result
tions ofk,’s such that they vanish ds,=0. As we make follows from the shape-changingntensity redistributiop
thesek, #0, thenal’’s (i#]) also vary, thereby making nature of fundamental bright soliton collision of the inte-

the collision scenario interesting. We can consider both th@rable CNLS equations, explained in Sec. V. Further, we
cases of equal and unequal velocities, which exhibit similahave also observed that the collision of two PCSs each com-

behaviors. prising m and n soliton complexes, respectively, such that

As a first example, we consider the propagation of them+n=N studied in Refs[11,12,25, is equivalent to the
2-PCS comprising two solitons with equal velocitigs;(  interaction ofN fundamental bright solitondor suitable spe-
=kjy;) in PR media. Its propagation can be studied by chooseific choice of parametersepresented by the special case of
ing (for illustrative purposes a{®=k;, and a{Y=(0.25 N-soliton solution of theN-CNLS system. It should also be
+1.02)k,, as functions of velocitiesk(, ,j=1,2) such that noted that in the collision process the total intensity of indi-
they vanish wherk£-| =0, j=1,2. This is shown in Fig. 10 for vidual solitons comprising th&-PCS is conserved. This is
the parametersy{!’=2.0+i, o{?=1, k;=1.0+i, andk,  due to the complete integrable nature of M&€NLS equa-
=2.0+i. For the unequal velocity cas&,(#k,,), the PCS tions (1).
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FIG. 13. Intensity profiles of a multisoliton complex comprising
o os three solitons spread up in two components propagating in photo-
' ' refractive media: a special case of three-soliton solutid of the
integrable 2-CNLS system for the parameters chosen as in the text,
0
t

(@ (b) solitons in the two components. As a consequence of this,
multisoliton complexes will possess a rich variety of struc-

FIG. 12. Intensity profiles showing the collision scenario of tures in comparison with the PCSs.

2-PCS with 1-PCS afa) z=—4 and(b) z=4 given by special
choice of parameter@s given in textin the three-soliton solution

of Eq. (1) with N=3. X. CONCLUSION

E. Multisoliton complexes We conclude this paper by stating that the collision pro-

In the above we have considered the CNLS equationgesses of solitons in coupled nonlinear Sclimger equa-
with number of component&ay p) is equal to the number tions lead to very many exciting different properties and po-
of fundamental solitongsay q). This is only a special case tential applications. The different properties include shape-
of the multisoliton complexes and has been much discussseghanging intensity redistributions, amplitude dependent
recently. However, the results are scarce for the @856,  phase shifts, and relative separation distances, within the
except for the work of Sukhorukov and Akhmedif®5],  pajrwise collision mechanism of solitons. Interestingly, it is
where the incoherent soliton collision is demonstrated Nuigentified that the intensity redistribution characterizing the
merically. To equdate the und_erstan_dmg we presgnt a fo”%hape-changing collision processNACNLS equations can
of the three-soliton complex in which three solitons arepe \ritten as a generalized linear fraction transformation.
spread among the two components, by suitably choosing thenis will give further impetus in constructing multistate
parameters in the explicit expression, ELQ). This has been logic, multi-input logic gates, memory storage devices, and
shown in Fig. 13 with the parameters chosenad8=a{®’  sq on, by using soliton interactions. The implication of these
=1.0, afP=05a=0.25, af)=(22+80))/89, o=  properties requires further deep investigations. Further, view-
—2, ky=1.0+i, andk,=1.5+i. From the figure and the ing the recently much discussed objects, multisoliton com-
analysis of the soliton interaction, it is clear that the shapegplexes, partially coherent solitons as special cases of the
of these complexes strongly depend on zhﬁi@’s along with  bright soliton solution enhances the understanding of their
kj’s which determine how the solitons are spread up amongarious properties. We expect the interaction study presented
the components. For the same case there exist various forrhere will shine more light on spatial soliton propagation in
of multisoliton complexes depending on the spreading up of 1+ 1)D photorefractive planar waveguides.
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APPENDIX: FOUR-SOLITON SOLUTION NG
In this appendix for completeness, we present the form of A=) ST 1.2, (A23)
the four-soliton solution of the 2-CNLS equations by gener-

alizing the two- and three-soliton solutions of it, which canwhere

! (kl_ki)(al(s)Kij _ai(S)Klj)

i’(ji;'&T)l (ki + k) (K +k)

*
enitny tm

4 1
NS = 2 ai(S)eﬂi + ( >

i=1

N

(Kn— ki) (ki— ki) (kj— k) (K, —K[")
(Kj" + ki) (K + k) (K] + k) (K + ki) (K + k) (K5 + k)

1
o &
m,n
(i#

+

SH Il

1
. n;
j#m)

g *
X{ @O kimknj— Kij Knml + @O0 K1) kim— Kij kim] + @] knmii; = Kimkn; 117777 7m0

,

1 4 1
—(m> i;m D—l[(kp—ki)(kp—k|)(kp—kn)(kn—ku)(kn—ki)(ku—ki)(k3—k*m)(ké—k?)(kﬁq—kf)]

)
n,o,p

1
(i#l#n#p;
j#m+0)
ai(S) aI(S) OZE]S) ags)
Kij  K|j Kpj Kpj
| ! I nl PL @it ot it g + (A2b)

Kim  Kim Knm Kpm

Kio  Kilo Kno Kpo

where
ni=k(t+ikjz), i=1,2,3,4, (A2c)
D= (K} + k) (K + k) (K +kp) (K +kp)
X (K ki) (K k) (ki + k) (KR +Kp)
X (kg +ki) (kg +kp) (k3 +ky) (kg +kp) (A2d)
and
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L (k= k) (KE—KE) (ki Kim— Kimk})

* *
7ty ot gy

4 Kii 1
D=1+ >, 'J*e”i+’?T+(—

171 k+k A Tm=1 (K + k) (K ko) (K + ki) (K k)
(i#1;j#m)
+(i) é (kn—ky) (ko= ki) (ki — ki) (k& — ki) (k& — k) (ki —k¥)
36/ 71, D,
m,n,o—l
(i#l#n;
j #m+0)
Kij  Kim Kio v l2 L2 L2 b 12 L 121 L 12
x| Ky K Kio| €T M T T 4 |k1—Ka|*|ka—Ka|*| kg —Kq|*[ka—Kq|*[ka—Ka|*[k3— K4
Knj Knm Kno TT (ki +K*) ko KE 2Ky + K |2 ke + K2 Ko+ KE 2] Ko+ K22 kg + KL |2
=1

K11 Ki2 K13 Kig

Ko1 K22 K23 K4 % * * *

X e(771+771+772+772+773+773+”4+774)_ (Aze)
K31 K32 K33 Kazg

K41 Ka2 Ka3 Kag

In the above
D2=(kj?* +ki)(kj* +k|)(kj* +Kp) (K + ki) (ki k) (kG A+ k) (K 4 ki) (K + k) (kS +k,) (A2f)
and

p(a@al 1 @a@%)
Ki| = , 1L,1=123,4. (A29)
(ki +k)
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