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Soliton propagation in a medium with Kerr nonlinearity and resonant impurities:
A variational approach
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Using a variational approach we have studied the shape preserving coherent propagation of light pulses in a
resonant dispersive medium in the presence of the Kerr nonlinearity. Within the framework of a combined
nonintegrable system composed of one nonlinear Siohger and a pair of Bloch equations, we show the
existence of a solitary wave. We have tested our analytical solution through numerical simulations confirming
its solitary wave nature.
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I. INTRODUCTION Based on the above discussion, we apply the variational
method to investigate the existence of solitary wave solu-
Investigation on coherent pulse propagation in a fibettions in media with combined Kerr nonlinearity and SIT

waveguide with resonant impurities is a recurrent subject irresonance under conditions that do not necessarily satisfy the
the physical literatur¢l—3]. It combines two quite different integrability requirement. Using an ansatz based on the exact
regimes of soliton propagation: resonant propagation relatetesult we have found a solitary wave solution whose new
to the self-induced transparent$IT) phenomenon and non- features are described by an extra term. This solution is
resonant propagation under the influence of weak dispersioshown to converge to the exact result obtained previously by
and Kerr-like nonlinearity described by a mean field nonlin-the inverse scattering method. We show further that the ana-
ear Schrdinger equationNLS). Recently,[4] periodic and lytical result is confirmed by numerical simulations of the
soliton solutions describing the propagation of an opticalNLS-Bloch equations describing the system evolution.
field through a nonlinear dispersive medium embedded with
two level atoms, were obtained within the inverse scattering || RESONANT AND NONRESONANT LAGRANGIAN
transform(IST) method. However, the family of mixed soli- . . ) .
ton solutions presented in these studies is only possible for a We begin by writing the equations for a system with com-
particular choice of pulse power satisfying both the NLSbPined Kerr and SIT terms in a standard form
condition for the fundamental soliton as well as the area .
theorem for the SIT soliton. More specifically, the power Ez+Err+ 2g|E[E+d=0,
required to launch a fundamental fiber soliton should be
equal to the power of a2-SIT pulse, i.e.P,,=Py-1. This
condition on the interdependence of SIT and Kerr parameters Py —
. . iy ; nr=if(d*E—dE*).
is a physical consequence of the condition of complete inte-
grability of the equations. Unfortunately this fact limits se- jereT=t—2z. Z andt are the dimensionless spatial and time
verely the usefulness of the SIT-Kerr soliton for practical coordinates, respectivelig(Z, T) is the slowly varying elec-
applications[5]. Hence it is important to develop some ap- romagnetic field envelopa(Z,T) and n(Z,T) denote the
proximate alternative approach to the IST to deal with & nonyrmalized electric dipole moment of the transition and the
integrable system so that this limitation is weakened o, jation difference of the two-level atoms, respectivaly.
eliminated at all. This is a perfect scenario for a variationalig e detuning parameter between the atomic transition and

method used successfully in perturbation theory of solitongpe central frequency of the electromagnetic wave. The vari-
[6], propagation in the presence of nonlinear dissipalidn  gpjesd andn satisfy the normalization condition
nonintegrable systems such as cascag&d nonlinearity

[8,9], etc. In these references, an approximate variational |d|2+ n¢=1, 2)
family of solitons was obtained, convergent to the known

exact solutions for particular values of the physical paramwhich reflects the conservation of probability in the sense
eters. Usually, the variational result reproduces interpolatioithat the total probability for an atom to be found either in the
formulas for solitonlike pulses in a wide region of param- upper or lower levels is equal to unity.

eters between limiting regions of values that admit exact Because of the condition set by E@), the Lagrangian
solutions. for the system cannot be written directly in terms of the

dr+2iAd=—2ifEn, 1)
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}[/r?riabk?sE, dbr|1 ;o cIiErcun;vent this g_iffiCLtJIty we introduce T2 2y a—A+iytan2y(T+2Z/V)]
real vari rdin =—
e real variableg,, E,, 0, ¢ according to (T,2) (A2t cosi29(T+ ZIV)]

E=E,—iE,, d=singe ', n=cosé,
xexpg —2iaT—i| 4(a’—?)
so that Eq.(2) is satisfied automatically and the system of
Egs. (1) takes the form f(a—A)
+——|Z], (7)
. o (a—A)*+5°
Ei1z—Exr1—29(E{+E5)E,—sinésing=0,
T,2)= 272 ! 1
Eoz+Eirrt+29(ES+ESE; +sin6 cosg=0, n(T. )_(a—A)2+ 2 cosR2y(T+2ZIV)]
()
sinf(¢pr—2A)—2f cosO(Eqsing+E,sing)=0, where the soliton’s velocity is given by
1 4 f ®
- i = _——= a— — s
01+ 2f(—E;sing+E,cos¢)=0. v A(a—A)2+ 2]

The Lagrangian form of these last two equations was indiwith « andy being free parameters that determine the shape
cated in Ref[10]. Using this result we obtain the full La- of the soliton and its velocity. Our aim is to generalize sys-

grangian of the system in the form tem (7) for arbitrary values ofy andf.
1 1 g lIl. VARIATIONAL APPROACH TO SOLITON
L= (E1zE,—EiEpp) +§(EiT+ E37) —E(E§+ E2) PROPAGATION

1 Following the variational approacksee Refs[6-9]) we
—E(ng—ZA)cose—sin O(E,COSp+ E,singh). choose a realistic and ‘)‘/et S|mple" set of trial functionsTof
and then calculate the “averaged” Lagrangian

4 .
L= f LdT 9
It is easy to check that the Lagrange equations corresponding o
to the field Lagrangian Ed4) can be reduced to the system
of equationg3). In original complex variables this Lagrang-
ian becomes

to determine the dependence of the parameters entering into
the trial function on the evolution variablg. It is well
known that the success of this approach depends crucially on
a proper choice of trial functions. For example, frequently
used Gaussian pulses simplify the calculation of integrals in
Eq. (9), but they cannot reproduce exact solutions such as
those in Egs(7). A natural choice here for the trial functions,

is to use the exact solution with varying parameters such as
(5)  the following:

i
L= 5 (EoE* ~EE}) +[Erf?glE[* - Ed ~E*d

1]i(dd* —ddx
__[(T—T)_ZA N

fl 2dP?

2C? 1 .
B2+ C2 cosH[x(T+)]

It is known that the combined system composed of the NLS n(T,2)=
equation together with the SIT equations under the condition

2C .
g=f2 (6) d(T,Z)=——BZ+C2{B+|CtanF[K(T+§)]}
has an exact simultaneous soliton solution which can be writ- exp(i @)
ten as[4] ><COSf[ k(T+]’ 10
9 3 Aexpio)
E(T,2)= Tyexr{ —2iaT—i(4(a2— ) ET2)= Costin(T+ 0]
Fla—A) 1 where
(a—A)2+ 2] | costi2y(T+ZIV)] d=w(T+{)+ 7,
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andA(Z2),B(2),C(2),¢(Z2),n(Z2),x(Z),w(Z) are all consid- and this relation together with E¢L7) show thatA, «, and
ered as functions df. The form ofd andn is chosen so that o are constants as expected. Then Hdd) and (16) give

Eq. (2) is satisfied automatically. 77,= K>+ w?, that is
Substituting these trial functions in the Lagrangian, one
easily finds the exact soliton solution of the bare NLS equa- {=—20Z,7=(K*+ %), ol+n=(*—0’)Z.

tion (without SIT term$. However, a more extensive calcu- . ] )

lation shows that the SIT soliton solution is not reproduced hus, we can write the trial function E(LO) as

exactly by this choice of trial functions. Fortunately, the _ .

same calculation indicates that this deficiency may be fixed E(T.Z)= Kk exfli(oT+ (k"= w)Z] (19
easily by a simple change of a constant factor in one of the ' Jg coslik(T-20Z)] '

terms in the averaged Lagrangian. As a result we obtain our

Lagrangian final form or after introducing new parameters

2A? 2 A%w? 4 gAt -2 -2

= < A2 T k=2vy, w=—2«, (20

L - (a)é’z+7]z)+3KA +2 3 «
we arrive at the following expression:
8ABC 4 w+2A C?
B Tk Blrc? ct.2)- 2 ex] —2iaT—4i(a?—»))Z] o1
' Jg cosh2y(T+4aZ)] '
4 BC 4 C

 f B2+2 + ?arctang. 1D which coincides exactly with the corresponding limit of Eq.

(@).
To show that this Lagrangian is a correct starting point for
the derivation of interpolation formulas for soliton solutions, V. SIT LIMIT
we have to prove that it leads to exact soliton solutions in the
special cases when such solutions exist. For the sake of clar-
ity, let us consider them separately.

In this limit Lagrangian(11) takes the form

8ABC 4 w+2A C?

= +
IV. NLS LIMIT k(B2+c? f « B24+c?
In this limit the Lagrangian described in E@1) reduces 4 BC 4 C -
to —?m—i-?arctaﬁB—. (22
2A2 2, Ao’ 4gA _
L= T(wngr n7)+ §KA +2 3 (12 Now, Lagrange equations
Lagrange equations ﬂzﬂzﬁzﬁzﬂzo iiziizo
A 9B dC dk dw ' IZ Iy IZ Iny
gL aL  aL g L 9 dL (23
A ik de O Zig dzam 0 B
e {z 1z yield
ield to
y - 2BC o
1 4 WezT Nz= T o A2y
Wizt nzt 0P+ 5 kP ZgAP=0, (14) A(B"+CH
fA(B?—C?)+(w+2A)BC+ «C?=0, (25)
2 1 2 2 2 _
wlz+n+o 3K —§gA =0, (15 . 5 c2 o6
2T T o ot
f A2(R2. 2
{r=—20, (16 AABT+C)
9 (A2w\ o |A2 f(wl{z+ 17)A%(B%+C?)+4fABC+2(w+2A)C2=0,
02( K ) &Z(K) 0. (7
, _ , A? wA?
The difference between Eg&l4) and(15) gives directly 7=const,T=const, (28
A= L, (18  Where Eq.(25) is obtained twice. Substitution of E@24)
Jg into Eq. (27) gives
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AB w+2A 1 4 2BC
—=- , (29 wlz+ n7+ 0w+ s k?— sgA’+ —————=0, (33
h f Eq2
and hence from Eq25) we get fA(B2—C2)+(w+2A)BC+xC2=0,  (34)
K
A= T (30 . , 5 c2 5
2T TN 2 n2 ., 2y
This equation together with ER8) show again thad, «, o F A%(B%+C?)
are constant. Introducing and y via Eq. (20), we find that 1 5 4BC
the other equations are satisfied if Wit Dt 02— Z 2= —gA24 ———
, gZ Nz 3 3 g A(BZ+C2)
Y
A=—, B=2(a—4), C=2y, 31 2(w+2A)  C2
+ =0, (36)
f A%B?*+C?
and then the soliton velocity is equal to
f as well as Eq(29). Again we introduce new constarisand

= —, (32 v, so thatA,B, andC are determined by Eq$44) and
T A(a—ar
- . : w=-2atyu, (37)
Substitution of these parameters into the trial funciifq.
(10)] produces the exact solution of the SIT equations whichwhere i is the parameter to be determined. To this end, we

coincides with the corresponding limit of the combined so-find on one hand that the difference between Eg8) and

lution [Egs. (7)]. (36) gives
These calculations justify the above statement that the La-
grangian together with the trial functions provide the basis to 2 49 2, 3fyu 38
obtain approximate formulas for the soliton solution. After K £2 Y 4 (a—A)2+ 2]’
gaining this experience we can proceed to the general case
with arbitrary values ofy andf. and on the other hand from E(34) we obtain
VI. COMBINED NLS AND SIT REGIME k=2y=(a=A)p. (39
In the general case of Lagrangian equatiéf), Hamil-  Thus, we arrive at a quadratic equation for Note thatu
ton’s principle provides the following set of Lagrange equa-=0 implies g=f2 and this particular case reproduces the
tions: exact solution. Thus we obtain
|
1 3fy 3fy z g
=— V4o ANyt ————F— \/ 4la—A)y+ ———————| —168(a—A)? 1——)
K a0y 7T A (a-1)2+ 2] Y ez TR
(40)
|
At last, we find the expression for soliton’s velocity variational solution as an initial condition the resulting
1 propagation exhibits a solitary wave behavior. To obtain the
—={=da— —————— 2ypu, (41) propagation behavior, we have numerically solved the set of
\ 2[(a—A)>+y?] Egs. (1), using a combination of the Runge-Kutta with the

_ _ ) beam propagation method to determine both the dynamics of
where Eqs(37) and(39) with u defined by Eq(40) give the  {he atomic system and the optical field evolution, with the
width of the soliton and its velocity as functions of the ratio following set of parametersA=0.1, g=0.125. We choose

2 . . . . .
g/f* provided the amplitude of the soliton is given by the initial conditions for the atomic system so that the popu-
2y lation is in the ground state to start with and we choose a
A=—. (42 sech temporal profile for the optical pulse with area,2

corresponding to a NLS soliton with amplitude=0.5. In
Fig. 1(a) we show the pulse propagation illustrating solitary
wave behavior for the integrable case, i.e., def 2. While

To test our analytical solutions we have carried out nu-Fig. 2 illustrates the situation for the nonintegrable case, i.e.,
merical experiments. The basic idea is to show that using thg= 2f2, where we can clearly see a solitary wave propagat-

VIl. NUMERICAL RESULTS

046615-4



SOLITON PROPAGATION IN A MEDIUM WITH KERR . .. PHYSICAL REVIEW E 67, 046615 (2003

10 10
=
08 2 085
] c
k< 2
- c
0.6 E 0.6 =
04 75 04 X
: :
% 02 g % 02 §
3o‘o 00
2 2
7y 2
FIG. 1. Soliton propagation for the integrable cage . FIG. 2. Soliton propagation for the nonintegrable cage,
=2f2,
ing stably for several soliton periods. .
to the correspondent exact solution . Furthermore, we have

confirmed the analytical results by numerical simulations,

VIIl. CONCLUSIONS evidencing the solitary behavior of the light pulse. This SIT-

Coherent soliton propagation in a resonant fiber wave-Kerr solitonic behavior in doped fib_er media may bE.’ proved

guide is demonstrated for a general system of equations thgﬁtrem_ely USG."fUI o the futu_re of optical communications a_nd

do not satisfy integrability conditions, opening the real pos-p otonic devices. It. Comb'”es. the convenient propagation

sibility of obtaining the SIT-Kerr soliton in practical condi- properties O.f an optical fiber W'th. the remarkable r_nampula—

tions. Within a variational approach, we have obtained théIon propertles of a reso”""”? active medium opening a new
full description of a family of approximate solutions that perspective for optical techniques.

exhibits solitary wave properties beyond the mixed soliton

state condition, that is,,.# Py-;. Based on the exact re-
sult for the integrable system, we were able to relax the S.B.C. and J.M.H. thanks the Instituto do Mile de In-

dependence among the physical parameters allowing for réerma@o Quantica, CAPES, CNPq, FAPEAL, PRONEX-
alistic conditions to permit the experimental observation of aNEON, ANP-CTPETRO for support. A.M.K. is grateful to
SIT-Kerr soliton. The variational solutions obtained depend=APESP, FAPEAL, and RFBRGrant No. 01-01 00696
on two free parameters and in the limiting cases are reduced.A.K. gratefully acknowledges the support of FAPESP.
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