
PHYSICAL REVIEW E 67, 046615 ~2003!
Soliton propagation in a medium with Kerr nonlinearity and resonant impurities:
A variational approach
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Using a variational approach we have studied the shape preserving coherent propagation of light pulses in a
resonant dispersive medium in the presence of the Kerr nonlinearity. Within the framework of a combined
nonintegrable system composed of one nonlinear Schro¨dinger and a pair of Bloch equations, we show the
existence of a solitary wave. We have tested our analytical solution through numerical simulations confirming
its solitary wave nature.
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I. INTRODUCTION

Investigation on coherent pulse propagation in a fi
waveguide with resonant impurities is a recurrent subjec
the physical literature@1–3#. It combines two quite differen
regimes of soliton propagation: resonant propagation rela
to the self-induced transparency~SIT! phenomenon and non
resonant propagation under the influence of weak disper
and Kerr-like nonlinearity described by a mean field nonl
ear Schro¨dinger equation~NLS!. Recently,@4# periodic and
soliton solutions describing the propagation of an opti
field through a nonlinear dispersive medium embedded w
two level atoms, were obtained within the inverse scatter
transform~IST! method. However, the family of mixed sol
ton solutions presented in these studies is only possible f
particular choice of pulse power satisfying both the N
condition for the fundamental soliton as well as the a
theorem for the SIT soliton. More specifically, the pow
required to launch a fundamental fiber soliton should
equal to the power of a 2p-SIT pulse, i.e.,P2p5PN51. This
condition on the interdependence of SIT and Kerr parame
is a physical consequence of the condition of complete in
grability of the equations. Unfortunately this fact limits s
verely the usefulness of the SIT-Kerr soliton for practic
applications@5#. Hence it is important to develop some a
proximate alternative approach to the IST to deal with a n
integrable system so that this limitation is weakened
eliminated at all. This is a perfect scenario for a variatio
method used successfully in perturbation theory of solit
@6#, propagation in the presence of nonlinear dissipation@7#,
nonintegrable systems such as cascadedx (2) nonlinearity
@8,9#, etc. In these references, an approximate variatio
family of solitons was obtained, convergent to the kno
exact solutions for particular values of the physical para
eters. Usually, the variational result reproduces interpola
formulas for solitonlike pulses in a wide region of param
eters between limiting regions of values that admit ex
solutions.
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Based on the above discussion, we apply the variatio
method to investigate the existence of solitary wave so
tions in media with combined Kerr nonlinearity and S
resonance under conditions that do not necessarily satisfy
integrability requirement. Using an ansatz based on the e
result we have found a solitary wave solution whose n
features are described by an extra term. This solution
shown to converge to the exact result obtained previously
the inverse scattering method. We show further that the a
lytical result is confirmed by numerical simulations of th
NLS-Bloch equations describing the system evolution.

II. RESONANT AND NONRESONANT LAGRANGIAN

We begin by writing the equations for a system with co
bined Kerr and SIT terms in a standard form

iEZ1ETT12guEu2E1d50,

dT12iDd522i f En, ~1!

nT5 i f ~d* E2dE* !.

HereT5t2z. Z andt are the dimensionless spatial and tim
coordinates, respectively;E(Z,T) is the slowly varying elec-
tromagnetic field envelope.d(Z,T) and n(Z,T) denote the
normalized electric dipole moment of the transition and
population difference of the two-level atoms, respectively.D
is the detuning parameter between the atomic transition
the central frequency of the electromagnetic wave. The v
ablesd andn satisfy the normalization condition

udu21n251, ~2!

which reflects the conservation of probability in the sen
that the total probability for an atom to be found either in t
upper or lower levels is equal to unity.

Because of the condition set by Eq.~2!, the Lagrangian
for the system cannot be written directly in terms of t
©2003 The American Physical Society15-1
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variablesE, d, n. To circumvent this difficulty we introduce
the real variablesE1 , E2 , u, f according to

E5E12 iE2 , d5sinue2 if, n5cosu,

so that Eq.~2! is satisfied automatically and the system
Eqs.~1! takes the form

E1,Z2E2,TT22g~E1
21E2

2!E22sinu sinf50,

E2,Z1E1,TT12g~E1
21E2

2!E11sinu cosf50,
~3!

sinu~fT22D!22 f cosu~E1sinf1E2sinf!50,

uT12 f ~2E1sinf1E2cosf!50.

The Lagrangian form of these last two equations was in
cated in Ref.@10#. Using this result we obtain the full La
grangian of the system in the form

L5
1

2
~E1,ZE22E1E2,Z!1

1

2
~E1,T

2 1E2,T
2 !2

g

2
~E1

21E2
2!

2
1

2 f
~fT22D!cosu2sinu~E1cosf1E2sinf!.

~4!

It is easy to check that the Lagrange equations correspon
to the field Lagrangian Eq.~4! can be reduced to the syste
of equations~3!. In original complex variables this Lagrang
ian becomes

L52
i

2
~EZE* 2EEZ* !1uETu22guEu42Ed* 2E* d

2
1

f F i ~dTd* 2ddT* !

2udu2
22DGn. ~5!

It is known that the combined system composed of the N
equation together with the SIT equations under the condi

g5 f 2 ~6!

has an exact simultaneous soliton solution which can be w
ten as@4#

E~T,Z!5
2g

f
expF22iaT2 i S 4~a22g2!

1
f ~a2D!

~a2D!21g2D ZG 1

cosh@2g~T1Z/V!#
04661
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d~T,Z!52
2g

~a2D!21g2

a2D1 ig tanh@2g~T1Z/V!#

cosh@2g~T1Z/V!#

3expF22iaT2 i S 4~a22g2!

1
f ~a2D!

~a2D!21g2D ZG , ~7!

n~T,Z!5
2g2

~a2D!21g2

1

cosh2@2g~T1Z/V!#
21,

where the soliton’s velocityV is given by

1

V
54a2

f

2@~a2D!21g2#
, ~8!

with a andg being free parameters that determine the sh
of the soliton and its velocity. Our aim is to generalize sy
tem ~7! for arbitrary values ofg and f.

III. VARIATIONAL APPROACH TO SOLITON
PROPAGATION

Following the variational approach,~see Refs.@6–9#! we
choose a realistic and yet simple set of trial functions oT
and then calculate the ‘‘averaged’’ Lagrangian

L5E
2`

`

LdT ~9!

to determine the dependence of the parameters entering
the trial function on the evolution variableZ. It is well
known that the success of this approach depends cruciall
a proper choice of trial functions. For example, frequen
used Gaussian pulses simplify the calculation of integrals
Eq. ~9!, but they cannot reproduce exact solutions such
those in Eqs.~7!. A natural choice here for the trial functions
is to use the exact solution with varying parameters such
the following:

n~T,Z!5
2C2

B21C2

1

cosh2@k~T1z!#
21,

d~T,Z!52
2C

B21C2
$B1 iC tanh@k~T1z!#%

3
exp~ if!

cosh@k~T1z!#
, ~10!

E~T,Z!5
A exp~ if!

cosh@k~T1z!#
,

where

f5v~T1z!1h,
5-2
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andA(Z),B(Z),C(Z),z(Z),h(Z),k(Z),v(Z) are all consid-
ered as functions ofZ. The form ofd andn is chosen so tha
Eq. ~2! is satisfied automatically.

Substituting these trial functions in the Lagrangian, o
easily finds the exact soliton solution of the bare NLS eq
tion ~without SIT terms!. However, a more extensive calcu
lation shows that the SIT soliton solution is not reproduc
exactly by this choice of trial functions. Fortunately, th
same calculation indicates that this deficiency may be fi
easily by a simple change of a constant factor in one of
terms in the averaged Lagrangian. As a result we obtain
Lagrangian final form

L5
2A2

k
~vzZ1hZ!1

2

3
kA212

A2v2

k
2

4

3

gA4

k

1
8ABC

k~B21C2!
1

4

f

v12D

k

C2

B21C2

2
4

f

BC

B21C2
1

4

f
arctan

C

B
. ~11!

To show that this Lagrangian is a correct starting point
the derivation of interpolation formulas for soliton solution
we have to prove that it leads to exact soliton solutions in
special cases when such solutions exist. For the sake of
ity, let us consider them separately.

IV. NLS LIMIT

In this limit the Lagrangian described in Eq.~11! reduces
to

L5
2A2

k
~vzZ1hZ!1

2

3
kA212

A2v2

k
2

4

3

gA4

k
. ~12!

Lagrange equations

]L

]A
5

]L

]k
5

]L

]v
50,

]

]Z

]L

]zZ
5

]

]Z

]L

]hZ
50 ~13!

yield to

vzZ1hZ1v21
1

3
k22

4

3
gA250, ~14!

vzZ1hZ1v22
1

3
k22

2

3
gA250, ~15!

zZ522v, ~16!

]

]Z S A2v

k D5
]

]Z S A2

k D50. ~17!

The difference between Eqs.~14! and ~15! gives directly

A5
k

Ag
, ~18!
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and this relation together with Eq.~17! show thatA, k, and
v are constants as expected. Then Eqs.~14! and ~16! give
hZ5k21v2, that is

z522vZ,h5~k21v2!, vz1h5~k22v2!Z.

Thus, we can write the trial function Eq.~10! as

E~T,Z!5
k

Ag

exp@ i ~vT1~k22v2!Z#

cosh@k~T22vZ!#
, ~19!

or after introducing new parameters

k52g, v522a, ~20!

we arrive at the following expression:

E~T,Z!5
2g

Ag

exp@22iaT24i ~a22g2!Z#

cosh@2g~T14aZ!#
, ~21!

which coincides exactly with the corresponding limit of E
~7!.

V. SIT LIMIT

In this limit Lagrangian~11! takes the form

L5
8ABC

k~B21C2!
1

4

f

v12D

k

C2

B21C2

2
4

f

BC

B21C2
1

4

f
arctan

C

B
. ~22!

Now, Lagrange equations

]L

]A
5

]L

]B
5

]L

]C
5

]L

]k
5

]L

]v
50,

]

]Z

]L

]zZ
5

]

]Z

]L

]hZ
50

~23!

yield

vzZ1hZ52
2BC

A~B21C2!
, ~24!

f A~B22C2!1~v12D!BC1kC250, ~25!

zZ52
2

f

C2

A2~B21C2!
, ~26!

f ~vzZ1hZ!A2~B21C2!14 f ABC12~v12D!C250,
~27!

A2

k
5const,

vA2

k
5const, ~28!

where Eq.~25! is obtained twice. Substitution of Eq.~24!
into Eq. ~27! gives
5-3
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AB

C
52

v12D

f
, ~29!

and hence from Eq.~25! we get

A5
k

f
. ~30!

This equation together with Eq.~28! show again thatA, k, v
are constant. Introducinga andg via Eq. ~20!, we find that
the other equations are satisfied if

A5
2g

f
, B52~a2D!, C52g, ~31!

and then the soliton velocity is equal to

zZ52
f

2@~a2D!21g2#
. ~32!

Substitution of these parameters into the trial function@Eq.
~10!# produces the exact solution of the SIT equations wh
coincides with the corresponding limit of the combined s
lution @Eqs.~7!#.

These calculations justify the above statement that the
grangian together with the trial functions provide the basis
obtain approximate formulas for the soliton solution. Aft
gaining this experience we can proceed to the general
with arbitrary values ofg and f.

VI. COMBINED NLS AND SIT REGIME

In the general case of Lagrangian equation~11!, Hamil-
ton’s principle provides the following set of Lagrange equ
tions:
tio

u
th
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vzZ1hZ1v21
1

3
k22

4

3
gA21

2BC

A~B21C2!
50, ~33!

f A~B22C2!1~v12D!BC1kC250, ~34!

zZ522v2
2

f

C2

A2~B21C2!
, ~35!

vzZ1hZ1v22
1

3
k22

2

3
gA21

4BC

A~B21C2!

1
2~v12D!

f

C2

A2~B21C2!
50, ~36!

as well as Eq.~29!. Again we introduce new constantsa and
g, so thatA,B, andC are determined by Eqs.~44! and

v522a1gm, ~37!

wherem is the parameter to be determined. To this end,
find on one hand that the difference between Eqs.~33! and
~36! gives

k25
4g

f 2
g21

3 f gm

4@~a2D!21g2#
, ~38!

and on the other hand from Eq.~34! we obtain

k52g2~a2D!m. ~39!

Thus, we arrive at a quadratic equation form. Note thatm
50 implies g5 f 2 and this particular case reproduces t
exact solution. Thus we obtain
m5
1

2~a2D!2 H 4~a2D!g1
3 f g

4@~a2D!21g2#
2AS 4~a2D!g1

3 f g

4@~a2D!21g2#
D 2

216~a2D!2S 12
g

f 2D J .

~40!
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At last, we find the expression for soliton’s velocity

1

V
5zZ54a2

f

2@~a2D!21g2#
22gm, ~41!

where Eqs.~37! and~39! with m defined by Eq.~40! give the
width of the soliton and its velocity as functions of the ra
g/ f 2 provided the amplitude of the soliton is given by

A5
2g

f
. ~42!

VII. NUMERICAL RESULTS

To test our analytical solutions we have carried out n
merical experiments. The basic idea is to show that using
-
e

variational solution as an initial condition the resultin
propagation exhibits a solitary wave behavior. To obtain
propagation behavior, we have numerically solved the se
Eqs. ~1!, using a combination of the Runge-Kutta with th
beam propagation method to determine both the dynamic
the atomic system and the optical field evolution, with t
following set of parameters:D50.1, g50.125. We choose
the initial conditions for the atomic system so that the pop
lation is in the ground state to start with and we choos
sech temporal profile for the optical pulse with area 2p,
corresponding to a NLS soliton with amplitudeA50.5. In
Fig. 1~a! we show the pulse propagation illustrating solita
wave behavior for the integrable case, i.e., forg5 f 2. While
Fig. 2 illustrates the situation for the nonintegrable case,
g52 f 2, where we can clearly see a solitary wave propag
5-4
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ing stably for several soliton periods.

VIII. CONCLUSIONS

Coherent soliton propagation in a resonant fiber wa
guide is demonstrated for a general system of equations
do not satisfy integrability conditions, opening the real po
sibility of obtaining the SIT-Kerr soliton in practical cond
tions. Within a variational approach, we have obtained
full description of a family of approximate solutions th
exhibits solitary wave properties beyond the mixed soli
state condition, that is,P2pÞPN51. Based on the exact re
sult for the integrable system, we were able to relax
dependence among the physical parameters allowing fo
alistic conditions to permit the experimental observation o
SIT-Kerr soliton. The variational solutions obtained depe
on two free parameters and in the limiting cases are redu

FIG. 1. Soliton propagation for the integrable case,g5 f 2.
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to the correspondent exact solution . Furthermore, we h
confirmed the analytical results by numerical simulatio
evidencing the solitary behavior of the light pulse. This S
Kerr solitonic behavior in doped fiber media may be prov
extremely useful to the future of optical communications a
photonic devices. It combines the convenient propaga
properties of an optical fiber with the remarkable manipu
tion properties of a resonant active medium opening a n
perspective for optical techniques.
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