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Inverse scattering theory: Renormalization of the Lippmann-Schwinger equation for acoustic
scattering in one dimension
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The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the
Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to
inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and espe-
cially for acoustic scattering for which the interaction depends on the square of the frequency. By contrast, it
is well known that the Born-Neumann series for the \olterra integral equations in quantum scattering are
absolutely convergent, independent of the strength of the coupling characterizing the interaction. The transfor-
mation of the Lippmann-Schwinger equation from a Fredholm to a \olterra structure by renormalization has
been considered previously for quantum scattering calculations and electromagnetic scattering. In this paper,
we employ the renormalization technique to obtain a Volterra equation framework for the inverse acoustic
scattering series, proving that this series also converges absolutely in the entire complex plane of coupling
constant and frequency values. The present results are for acoustic scattering in one dimension, but the method
is general. The approach is illustrated by applications to two simple one-dimensional models for acoustic
scattering.
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[. INTRODUCTION Reversion of the Born-Neumann series leads to an order-by-
order scheme for evaluating the terms of the series represen-
The inverse scattering problem has enormous importanc&tion of the scattering interaction in terms of the measured
both for practical and theoretical applications. The formerdata, e.g., only the on-shell reflection amplitude is required
include hydrocarbon exploration and production, medicato invert for a local interaction. In principle, the method is
imaging of many varieties, nondestructive testing, targecompletely general and requires no prior information about
identification and location, etc. The latter include relatingthe target or the propagation details of the probe signal
interactions governing atomic and molecular systems to exwithin the target. Thenly fundamental limitation of the ap-
perimental measurements, determination of the structure gfroach appears to be the finite radius of convergence of the
surfaces and condensed matter systems, imaging of nanBorn-Neumann series solution of the acoustic Lippmann-
structures, etc. In much of the literature, the focus has beefichwinger equation. This is generally analyzed using the
on determining the conditions under which the data inversiorispectral radius” of the Fredholm kernel of this equation
will yield a unique result and precisely what information is (Morse and Feshbadlb]; Newton[6]), and in particular by
required to make an inversion possible. In terms of algothe £2 norm of this kernel. References and very clear dis-
rithms employed for various types of imaging, an importantcussions on the issues, involved in the convergence of the
practical tool is the first Born approximation, which assumesBorn-Neumann forward scattering series, can be found in
that all scattering is direct, involving a single interaction of works of Goldberger and Watsdii], and Newton[6]. De-
the probe with the target. Of course, this is known to bespite this limitation, Weglein and co-workelr$] have made
incorrect. Indeed, most imaging procedures or algorithmsignificant progress using this approach by introducing the
typically make use of some assumed model for the propagddea of “subseries” within the Born-Neumann expansion,
tion of the probe signal or disturbance in the scattering mewhich are associated with specific inversion tasks. This ex-
dium. Generally, inversion is practical only in the circum- presses the inversion series in terms of a set of subtasks,
stance where there is a sufficiently small difference betweewhich can be carried out separately from one another. A par-
the propagation of the probe signal within the target and itgicularly significant benefit of this approach is the fact that
“reference propagation”(low contrast between the target the convergence properties of the subseries studied to date
and the reference mediymOver the last decade, Weglein are much more favorable than those of the full Born-
and co-workerg1] have pioneered inverse acoustic scatterNeumann series. Indeed, empirical evidence has been very
ing methods that do not require an assumed propagation vencouraging regarding the convergence of the inverse series.
locity model within the medium. Their approach is based onHowever, the nature of the kernel of the Lippmann-
the early work of Jost and KoHr2], Moses[3], and Razavy Schwinger equation, viewed as an equation for the interac-
[4], who used the Born-Neumann power series solution ofion in terms of theT operator, is such that its maximum
the acoustic Lippmann-Schwinger equation and a conconeigenvalue always depends on the explicit nature of the on-
mittant expansion of the interaction in “orders of the data.” and off-shellT matrix, and general statements regarding con-
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vergence are difficult to obtaiProssef8]). inverse scattering series. In fact, we shall show that it is
Another, more robust approach towards solving integrapossible to establish general rigorous convergence properties
equations is given by Fredholf®], which can be viewed as for the inverse acoustic scattering series, and in the process
a generalization of the well-known Cramer’s method forshow that its radius of convergence is also infinite. We shall
solving systems of linear simultaneous algebraic equationsestrict our discussion here to 1D scattering, but our ap-
Consequently, fundamental to the approach is a continuoysroach is completely general and extends to higher dimen-
generalization of the determinant of coefficients and its mi-sions.
nors. Under the circumstances where the integral equation is This paper is organized as follows. In Sec. Il, we discuss
of the Volterra type, the “Fredholm determinant” can be renormalization of the Lippmann-Schwinger equation for
shown to be equal to one and the Fredholm solution reducescoustic scattering and introduce an auxilliary transition op-

to a Born-Neumann expansion, allbeit one that convergegratorT. This is used as the framework to analyze the con-
absolutely independent of the scattering interaction strengthergence of the forward scattering Born-Neumann series.
Consequently, for such Volterra equations, the Born-The approach is illustrated by applying it to scattering by a
Neumann expansion possesses the most robust convergensiac s-function model interaction. In Sec. Ill, we show the
properties for which one can hope. o relationship between the interaction as a function of the
Some years ago, Sams and KoltD] (for noniterative physical T operator and as a function of the auxilliafly
computations in quantum scatterjngnd Kouri [11] (for ~ .
operator. We next analyze the nonlocal natureTain the

electromagnetic scatteringhowed that one could carry out X )
a renormalization transformation of the Lippmann- cpordmate representation, aqd then use the results to estab-
Schwinger equation into a Volterra equation form. AIthough“Sh the convergence properties of the Volterra-based Born-

the \olterra equations for quantum scattering were We"Neumann inverse series for the interaction. We include in

known (Goldberger and Watsofv]; Newton[6]), previous this section an application to the Dira&function interac-
studies had focused almost exclusively on their use fotion. Next, in Sec. IV, the Volterra inverse series is applied to

studying the analytic structure of tiematrix and the scat- the case of sound scattering by either a square well or barrier.

tering state. The work of Kouri and co-workers concentrated®Ur conclusions are given in Sec. V.

on making use of the \Volterra form of the scattering equa-

tions to create a noniterative computational algorithm. Their Il. RENORMALIZATION OF THE LIPPMANN-
approach, however, made essential use of the “triangular” SCHWINGER EQUATION
character of the Volterra equation kernel, which in one di-
mension(1D) is

A. Derivation of the renormalization transformation and
auxilliary transition operator T

K(z,z)=0, z=z' or K(zz)=0, z<z', (1) We assume that the reader is familiar with the acoustic
scattering Lippmann-Schwinger equation for the transition

combined with a Newton-Cotes quadrature to solve the equaqperatorT, given by Razavy4], Goldberger and Watsds),

tions by a noniterative recursion. However, it is also weIIand Newtor(6]:

known that the propertyl) underlies the extremely robust T= W+ WGET ©)

nature of the convergence of these \olterra equations with ok

respect to an iterative solutiofMorse and Feshbacfbl;  \hereGg, is the causal free Green'’s operator, multiplied by

Newton [6]). Indeed, the Born-Neumann series solution of 3 factor ofk?,

the Volterra equation converges absolutely, irrespective of

the magnitude of théin general complexcoupling strength k2

of the interaction. Furthermore, the convergence depends on ng:ma ()

the global behavior of the interactigessentially whether it 0

is measureable in a particular senaed not on its smooth- K2=E (j.e., k is the frequency associated with the incident

ness. For 1D interactions having compact supgand for  acoustic wave H, governs the “free propagation” of the

even more general interactions in the case of 3D scatieringacoustic wave, angV is the interaction responsible for the

the iterative solution of the Volterra equation converges Uniscattering, withy being the coupling parameter characteriz-

formly on any closed domain of definition in the scatteringing the strength of the interaction. In generglis complex.

position variable. Again, under certain relatively weak con-the additional factor ok? results from the fact that in acous-

ditions on the interaction, the iterative solution is an entirejjc scattering(as in general for scattering governed by a

function of the scattering wave numble(Newton([6]). Helmholtz-type wave equatignthe interaction responsible
Thus, the possible benefits of formulating acoustic scatsq, scattering depends def. The full acoustic wave propa-

fcer_in_g in terms of_ \olterra kernels appear substantial. Th%jation (scattering processs thus governed by the operator
infinitely large radius of convergence of the Born-Neumanny

series solution of the Volterra equation is of special interest

from the standpoint of the inverse acoustic scattering ap- H=Hy+kZyV. (4)
proach of Weglein and co-workefd]. It seems natural,

therefore, to investigate the possible benefits of using th&he present 1D acoustic scattering problem in the coordinate
renormalization technique as a framework for developing amepresentation leads to
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T(szl): ’)/V(Z,Z/) Ga-k(z ZN) — Beik|2—2"| (7)
) 2 .

’ " "+ "o /-
" ﬁoch, W(zz )ﬁmdz’ Go(2",2)T(2".2'). The general scattering amplitude is determined by the matrix
5) elements of th@ operator, usually computed in the momen-

tum representatioii (k' ,k"), given by

By incorporating this factor ok? into the Green’s function, T(K' k") = (k' | T|K") ®)
we are able to treat the remaining portion of the interaction, ' '
which depends purely on the spatial variation of the scatterwhere in generak’,k”, and the on-energy-shell wave num-
ing interaction. Initially, we restrict ourselves to “local scat- ber k= \E need not be equal to one another. The physical
tering media,” so thaV/(z,z") =V(z) 5(z—z') and therefore “reflection scattering amplitude,” denoted (k), results
when |k'|=|K"|=|k| andk’ = —k:

r(k)=(—ikm)(—Kk|T|k). ©)]

+V(2) jﬁxdz”ng(z,z”)T(z”,z’). ®  In 1D scattering, one can also identify the transmission am-
plitude t(k) given by

The nonlocal character of the causal free Green’s function :
Ga(z,2"), reflected in its noncommutation withV, is re- t(k) =1+ (= ikm){K| Tk). (10
sponsible for the fact that(z,z") is also generally nonlocal, In the work of Sams and Koufil0], the renormalization
i.e., it isneverdiagonal in the coordinate representatier-  transformation to a Volterra equation results from eliminating
cept for a local, Dirac é-function interaction,V(z,z") the |z—Z"| argument in the free Green’s function in EG).
=V(2)8(z—2")=N6(z—2")8(z—zp)]. For 1D causal scat- This is done by dividing the integration ovef into seg-

T(z,2')=yV(2)8(z—2")

tering boundary conditionss,(z,2") is explicitly ments from—o0 to z and fromz to «:
ik z A ” ik * : "
T(z,2')=yV(z)8(z—2')— ?yV(z)f dz'ek@2T(7" ')~ §yV(z)f dz’e K@ 20T(2" 2'). (11
— % z
|
One then adds and subtracts(ik/2)yV(z) [;dZ'exdik(z Gei=Gox— ik K)(K. (16)

-2Z)|T(Z',Z), and after simple manipulation, one obtains

This relation is extremely useful in our subsequent analysis
and we shall make much use of it. Notice that the Green'’s
operatorGy differs from the usual causal on€, , by a
solution of the homogeneous equatidtewton[6]):

ik (> o
T(z,2')=yV(2) 5(2—2’)—7e"‘2f dz’e ¥ 1(z",2)

ik - —
——yV(z)f dz'[e k=7)
2 2

(E-Ho)Go=K?, (17)
—ek@T1(2" 7). (12) ~
(E-Ho)Gox=K?, (18)
It is easily verified that this is equivalent to writing
Gu(z,2") as (E—Ho)[—ika|k)(k|]=[—ika|k)(k|]I(E—Hg)=0.
19
+ A " | ik(z—2"
Go(2,2")=Go(2,2") — & ==, (13 The abstract version of E¢L2) results from substituting Eq.
(16) into Eq. (2):
so that
" T=y[1—ikm|k){K| TT+ yVGyT. (20)
éOk(Z!ZH) — I_[eik(z”—z)_ e—ik(Z”—Z)]
2 Next we note that the action dfon the initial staték) is of
=ksink(z'~2)], z<2' (14 theform
=0, z=7. (15) Tlk)= VI 1—ikm(k|Tlk) 1|k} + YW CoTlk). (2D
In abstract operator notation, this is Defining the(unknowr) constant ¢ as
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c=1—ikm(k|T|k)=t(k), (22 Let us now return to Eq(20) and define an auxilliary

transition operatofl according to
we see that
_ T=T[1-ikw|k){k|T]. (30
T|ky= yVc | k) + YV Gy T|K). (23 _ 3
It is easily verified that
The relationship betweeh|k) and the Lippmann-Schwinger

pressure stateP, ) is T= W+ WGy T, (31
V27 T|K)=yV|PY), (24)  and this is the fundamental equation that will be used to
analyze the inverse series feivV. (Note that the operator
and thus inverse[1—ik|k)(k|T]~* should always exist. This essen-
tially requires that the operatak«|k)(k|T does not have
IPY=2mc )+ GoyVIPy ). (25)  any eigenvalues equal te-1. A worst case would corre-

spond to the inverse of being equal tak|k)(k|, which
Clearly, the factoc, is simply anormalization constaptand  cannot occur sinc& doesnot commute withH , while |k)(K|
one can define an auxiliary pressure state veff, in  does) Itis instructive to evaluate explicitly the normalization

relation to|P, ), according to constantc, in terms of the solution of the Volterra equation.
. This is quite easily done by combining Ed&1), (22), and
IP)=culpi), (26)  (30) to write
P = V27|K) + GoyV|pi)- (27 TIk)=c,(TIK). (32
The coordinate representationp) = py(z) satisfies Then Eq.(22) can be expressed as
. - o =1—ikm(k|T|k)cy, (33
pu2)=e ek [ Az sik(z -2 1V p 2,
z so that
(28)
which is recognized as an inhomogeneous Volterra integral CkZ;»«- (34)
equation of the second kind. We remark here that Volterra 1+ik (k| T|k)

equations involving improper limit6.e., =) still converge
absolutely for|y|<, but they must satisfy additional re- Thus, the renormalized or auxiliary pressure statg is
strictions on thez dependence of the interaction. This is es-gdiven by

pecially true in order for their iterative solutions to converge . ) -

uniformly on any closed intervdlz; ,z,]. It is sufficient that [P = POIL+ika(K[T[K)]. (35
the interactionvV(z) has compact support afd(z)| is mea-
surable. It remains true even for infinite ranged interaction
as long as they decay sufficiently rapidly and are not too
singular. This is discussed for similar Volterra equations by
Goldberger and Watsdb], and Newtor{6]. Throughout our
discussion, we assume that such conditions are met. By E
(26), |py) results from renormalizingP,; ) according to

J'he physical reflection amplitudg(k) is given by
r(k)=—ikm(—k|T|k)=—t(k)ikm(—k[T|k). (36)

These relations provide us with the necessary tools to ex-
ﬂress auxilliary amplitudes in terms of the physical ampli-
tudes.
P) . -
P = o (29 B. Convergence of the Born-Neumann series fop,) and T
“ On one hand, the convergence of the Born-Neumann se-
in fact, ¢, is essentially the inverse of the Jost functionries for either|P, ) or T is well known to depend critically
(Newton[6]). We remark that the above expression also pro-on the size of the coupling constaptor equivalently, on the
vides the physical interpretation of the “Volterra pressuresize of the “contrast” between the propagation untigrand
wave” py(z) [12]. Clearly, it represents a wave produced bythat underH=H,+k?yV) (Goldberger and Watsof5];
an incident plane wave having an amplitude equal @ 1/ Newton[6]). On the other hand, it is also well known that
=1/(k). This leads to a reflected wave with the amplitudeiterative solutions of either Eq28) or (31) converge abso-
r (k)/t(k), and a transmitted wave with the amplitude exactlylutely for | y| <« (Newton[6]). Furthermore, the iteration of
equal to 1. Of course, such an incident wave cannot, in gerizg. (28) converges uniformly on any closed domainzdfor
eral, be created experimentally since it requires advance wide class of interactiondlt is useful to stress the origin of
knowledge of the effect of the scatterer in the form dfk). this robustness since it turns out to be the basis of the con-
However, this does not alter the interpretation of the waverergence of the \olterra-based inverse series+gt The
pk(2). kernel of Eq.(28) can be written(for all z,z") as
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"

vK(z,Z")=kysink(z"—2)]V(Z"), z<z

(37)
(39)

1"

=7

According to the discussioriNewton[6]; see also those in
Rodberg and Thaldi 3] and Mathews and Walké¢i4]), one

PHYSICAL REVIEW B7, 046614 (2003

addition, it is perhaps not appreciated that the original
Lippmann-Schwinger equation itself can be directly iterated
in a fashion that is also everywhere absolutely convergent.
Obviously, such an iteration must differ from the straightfor-
ward iteration of the Lippmann-Schwinger equatif®y, )
=27|k)+ G yV|Py ), which leads to

characterizes the convergence in terms of Fredholm’s

method of solution. This method is the continuum analog of
solving a linear system of algebraic equations, and it ex-

presses the inverse of the integral kernel in terms of the rati
of the first Fredholm minor to the Fredholm determinAnt
The determinanfA can be expressed as an infinite series o
the form (for the acoustic cage

A=n§0 (9)"kpq, (39)

where
Kn=Tr(K"). (40

It is not difficult to verify that for the Volterra kerné{(z,z")
above,

Kn=6n0, 41
and consequently, for such kernels,
A=1, (42

regardless of the strength of the scatteger-urthermore, by
use of Hadamard’s theorel,13], it is easily proved that the
infinite series for the first Fredholm minor converges abso
lutely and uniformly fory in the entire complex plan@nore
details are given in the Appendix to this papdt also has

|Pe)= Jﬁgo (GgYV)"K), (43)

(0]

fthe proof of whose convergence depends ondRenorm of

the kernel||GgyV|l,. In fact, we can simply iterate E¢R5)
for the Lippmann-Schwinger stat@, ):

[Py )= \/Enz'o (GoxYV) eyl k)= \/Eckn}::o (GoryV)"K).
(44)

We stress that even though is unknown in Eq.(44), it is
simply a number and can be calculated directly from the

known iterate vectors,GOKyV)”|k>. Thus,

1

Cr= —t(k). (45

1+ik772 (K| 7V(60kyV)n|k>
n=0

Obviously, this is equivalent to the iterative solution fpg),

but the point we wish to stress is that the standard physical
Lippmann-Schwinger equation can be iterated in an abso-
lutely convergent fashion, independent of the strength of the
interaction. Of course, this is simply a reflection of the fact
that the Lippmann-Schwinger equation nigither purely a
Fredholmn or a \olterra equation. Therefore, it can manifest

been establlshed\{lathews and Walkef14)) that when the .the convergence characteristics of either, depending on the
Fredholm determinant equals l th_e Fredh_olm SO'”“F’” $nanner in which it is written and iterated.
identical to the Born-Neumann iterative solution of the inte-
gral equation. We conclude that iterative solutions of Volterra
integral equations possess the most robust convergence pos-
sible. While it is true that these convergence properties are It is helpful to consider an example problem in order to
independent of the strength ¢f there are conditions on the appreciate better the vast difference in convergence between
analytical structure allowed for the scattering interactionthe Born-Neumann series, based on the Lippmann-
These have to do with the integrability of any singularitiesSchwinger Fredholm equation, and the renormalized
and the behavior at infinity. They are discussed by NewtorLippmann-Schwinger Volterra equation. A convenient and
[6] in some detail. If the interaction has compact supportsimple model scattering interaction is the Dirédunction:
and is not too singular, then the convergence is of the stron-

W(2)=7v8(z2—12p).

gest charactefi.e., absolute and uniform, leading to entire

functions of wave numbek and couplingy). . . . L .
plingy) I_The solution to the Lippmann-Schwinger equation is easily

found from noting that

C. lllustrative example

(46)

It is therefore clear that the essential property of the Vo
terra kernel is that it satisfies Eq87) and(38); as noted by
Newton[6], this is the continuous version of the “triangular”
property of matrices. It is equivalent to the property that the
Fredholm determinant of Eq28) or (31) is identically 1.
Furthermore, it ensures that the Born-Neumann series f
p«(z), obtained from Eq(31), is uniformly convergent on
any closed domain af for a wide class of interactions.

We stress that this is all well known. We have included it
explicitly here because its implications for the inverse scat-
tering series determiningV have never been explicated. In

) iky .
P, (z)=€k*— Tye'k'Z‘ZO'P;(zO).

(47)

O{)bviously, this implies that
eikzo
Py (20)= <—

iky
1*7)

(48)
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so the exact solution is But by Eq.(52), this gives

kY12 i 1
= |z—zg)| _
Triky® & % (49 Sy

5

P, (z)=¢k?

(56)

The Born-Neumann series solution is given by

. . . 2 Therefore the Born-Neumann series @f (z) based on the
. iky\ iky [iky : : . . .
Pl (z)=¢ek?— - eikzogiklz=2oll 1 — — 1 4 - renormalized Lippmann-Schwinger equation results in
eikz

. . o . P;(Z):W, z=17, (57)
It is clear that the convergence of this series is determined by 1+ ®yie
the requirementky/2|<1, which is just the condition for 2
the convergence of a power series expansion of (1 _
+iky/2)~1. It is also evident that the Born-Neumann series kY2 L
. L . . =gke— —— e 7<7,. (58
is convergent only at low energies in this case since k 1+ikyl2

=/E, and therefore only for sufficiently low E will the con-

vergence condition will be satisfie@his is the opposite of We conclude that the Volterra-based iteration converges to
the usual situation that applies to quantum scattef@gld-  the exactanswer with just the first-order term, all higher
berger and Watsofb]). Of course, in this simple example, terms being zero. The fundamental difference between the
one can easily recognize that the series can be analytical\olterra and the Fredholm iterated expressions is that the
summed to yield the exact result valid at &lland y. In ~ former doesnot involve a power series expansion of the

general, that will not be the case. normalization factorc,, whose convergence would have re-
We next consider the Born-Neumann seriesdg(z); Eq.  quired that|ky/2| be less than 1. Insteady has been fac-
(28) then becomes tored out by renormalizing frorR, (z) to p,(z). We empha-

size that this renormalization follows foany scattering
k2 R " . k2" | 12 problem that is expressible in terms of Green’s functions
P(z)=e kL dz'sink(z'=2)]yé(z"~zo)€ k Gok. since it is true in generdfor 1D scattering that

X f dZ"Sir[k(Z”_Z)]‘y&(Z,,_Zo) Gak:GOK:|k7T|k><k| (59)

z
We also note that analogous relationships have been derived
for 3D scattering Green’s function®Ve now turn to consider

s " i "n__ n "m__ ikz” .
X L,,di Sik(z"=2")Jyo(z" = 2o) €™ - . the inverse scattering series for the interactjon
(51)

We see that all terms higher than first order in the interaction
vanish identically due to the appearance of the factor

Ill. THE INVERSE SCATTERING SERIES FOR yV

A. Fredholm and Volterra Born-Neumann series for yV

sink(zy—zy)]. Thus, forz=z,, we obtain exactly We begin by establishing that distinct Born-Neumann se-
_ ries for yV can be obtained from E@) for T or Eq.(31) for
pr(z) =€ (52 T. We solve Eq(2) for yV as
and forz<z,, we obtain exactly W=T(1+GgT) ¢ (60)
— aikz ; _ ikz -
Pi(2) = et ky sintk(zo=2)Je™. 3 —T(1+ G T— ik K)(KIT) L. (61)

This does not complete the analysis since we must als
evaluatec, using only information generated by the iterative

)S/ioelludtis,on forpy(z). This is simple using Eq€32)—(36) and W=T([1— ik lk)(K ]+ BT 1— ik alk)(K[T]) L (62

But by Eq.(30), this yields

1 =T[1—ikam|K)(k|T] X1+ G T) 4, (63)

Cx= ik - (54)
1+77 dze *28(z— z,)pu(2)

so that finally,

W=T(1+GqT) L. (64)
= i ! ) (55) It follows that, provided they converge)\V can be obtained
1+ Ik_yefikzop (2o) from either of the following Born-Neumann series expan-
2 K1co sions:
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0

VV=;;1X—G&Tw (65)
or
yv:n§=)o T(—=Go)" (66)

The convergence properties of E§5) depend, of course, on
the spectral radius of the kern®}, T, which in turn depends
crucially on both the on- and off-shell elements of the

PHYSICAL REVIEW B7, 046614 (2003

[

T(z,2')=yV(2)8(z—2') + ysz dz"J dz"V(z)8(z

_Z//)"G(Z//'Z///)V(Z//r)6(2///_21) (72)

or

T(z,2)=W(2)8(z—2')+y*V(2)G(z,2/ )V(Z').
(73

It is therefore clear that as a function of eitheror z’,
T(z,2') has support determined by(z) or V(z'). Also, for

matrix. For this reason, general conclusions regarding thé> 2 » the first term on the right-hand sid&HS) of Eq.(73)
convergence of Eq(65) have been extremely difficult to 1S Z€r0 due~to the Dirad function, and the second term is
obtain despite heroic effori@rossef8]). We shall see that zero due toG(z,z"). Therefore, we have proved that

this is not the case for E{66).
The convergence properties of E@6) will be studied
using the Fredholm method of solving E@4). To do so

requires knowledge of the properties of the ker@gjT,

T(z,2')=0, z>7'. (74)

Finally, T(z,z') has an integrable singularity atz'.

which are yet to be established. It is clear, however, that

when both expansions converge, thraystagree since con-
vergent power series yield a unique reqidaplan[15]). In
order to investigate the convergence of KEG6), we now
consider the nonlocal characterBfin the coordinate repre-
sentation.

B. Nonlocal character of T(z,z')

The aim of this section is to establish thBtz,z')=0,
whenz>Zz'. It is not difficult to show that Eq(31) has the
solution

T=W+WGyV, (67)

where
G=Gy+GoyVG (68)
[see work of Newton[6], pp. 343—-344; especially Eq.
(12.42 and the following unnumbered equatjoffrom Eq.
(12.40a in Ref.[6], we see that
G+(k;Z,Z,)=_k¢+(k,Z<)f(k,Z>), (69)

where ¢* (k,z) is the regular(physical or causalscattering
solution of the interacting Schdinger equation and(k,z)

is an irregular solution of the same equation, introduced b
Jost[6]. Then by defining an interacting Green’s function

G(k;z,2"), which vanishes for=z', it is easy to see that
G(k;z,z)=G"(k;z,z')+kyT(k,2)f(k,2).  (70)

Obviously, kg (k,z')f(k,z) satisfies thehomogeneousn-
teracting Green’s function Schiimger equation. Then
G(z,z')=0, z=7, (71

and for local potentials

C. Convergence of the inverse series fopV
We note next that the kernel of the Volterra-based Born-
Neumann series foypV, [Eg. (64)], is given by

K(z,2')=(2|GyT|Z'). (75)

It is necessary to compute (), but it is sufficient to ex-
amine Tr{?) to see how the general case behaves,

Tr(R2)=J:dzf:dz’ﬁ(z,z’)k(z’,z). (76)
This can be written as
K= [z | d2Buiz .z
XT(22,25)Gol(23.24)T(24.21). W

However, by the Volterra property @&, andT, a nonzero
contribution can only occur if

Z1>24>23>2,>24, (79
which obviously isneversatisfied. We conclude that the Vol-
terra property is satisfied for the product of twar more
)yolterra kernels and

T(K?)=Tr(K"M=0, n=2. (79
It is similarly easy to prove that TK)=0.

We therefore conclude that the Fredholm determinant for
Eq. (64) equals 1.This guarantees that, for a not-too-
singular, local interaction having compact support, the
\olterra-based inverse scattering series converges absolutely
and uniformly independent of the strength of the interaction
This is an amazing result since it ensures that this inverse
scattering seriealwaysconverges for any magnitudeom-
plex) coupling constant.
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D. Utilization of the Volterra inverse series for ¥V in orders
of T and the relation to data requirements

can be compared to the Born-Neumann inverse series based
on the usual Lippmann-Schwinger equat{dn-4],

In order to use the new \olterra inverse series to deter- o o
mine yV, the final step is to develop explicit expressions for YW= 2 T(—GgT)"= 2 )\J'V]. , (90)
it in terms of “far-field” measured quantities. The standard n=0 =1
Born-Neumann inversion of the Lippmann-Schwinger based .
approach, to obtain a local potential, requires knowledge B +an
only of the reflection amplitude(k) as a function ok. We T_n=0 (WG ™V, (91)
shall see that the additional data are required in order to use
the Volterra inverse series. Recall that by E8p), and this leads to
=] 0 o n oo
W= T(—Gu)", (80) AT=> (2 Aivjegk) > N, (92)
n=0 n=0 \j=1 i'=1
where implying then
T=T[1-ikm|k)(K|T]. (81) A T=V, (93
We shall express/V as a power series in orders of A% 0=V, +V GV, (94)
S A3 0=V3+V,Gg Vit ViGg Vot ViGg V1Go Ve,
yv:jgl NV, (82) (95)
where obviously etc. Again, one easily shows that in general,
- e e e Vi=—-V;_;GjV;. (96)
Vi=T(-GpT) L, j=12,.... 83 b
However, it is crucial to recognize that
Next, recall that by Eq(31),
T:nZ:o (WGo)" WV, @84 pecause they correspond to orders of completely different
parameters?(i is jth order inT while Vj is jth order inT).
. S L By Eqg. (81) above, it is clear that each separate factoil of
KT:ﬂEO 121 NVGo| 2 NV, (85  involvesall ordersof T and vice versa,
= = J,:].

sinceT is obviously first order irk. We then collect coeffi-
cients of each power of/,

(86)
XZ: 0:’\72+'\71’éok'\71' (87)

Xs: O:\734‘v260kv1+vléOkv2+v160kv160kv1(,88)

in thek representation and the results are subsequently tra
formed to thez representation. This is because the starting
expression involves thk-representation matrix elements of

T. However, using the lower-order operat&‘s to express

V; solely in terms ofV; and Gy, one easily finds that, in
general,

v]: _’\V/j,lé()k’\\'/l. (89)

[1+ik7T|k)(KT=T, (98

so that
T=[1+ikaT|k)(k|]™*T (99
= ZO (—ikmT|K)(Kk])"T. (100

Thus it is clear thaf/j andV; cannot be the same.
Now we ask how can one combine the measured data

P153ith the Volterra inverse series? We compute the backscatter-

Mg matrix element of Eq(86):

(—K[TIK=T(—k,k) = (= K[V k) =V, (—k,K).
(101

But T(—k,k) is not directly measured. The far-field quanti-
ties typically measured are the reflection amplitudk) =
—ik7T(—k,k) and the transmission amplitudgk)=1
—ik7T(k,k). By Eq.(81), we write

This is the most convenient form with which we can evaluate

the higher-order corrections. The \olterra-based expressions

T(—k,K)=T(=k,k) —ikaT(—kk) T(kk), (102
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ir (k)

Vl(—k,k)=m.

(103
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Schwinger-based inverse scattering series. Again, analytical
results are obtained and the exact result is equal to the sum of
theV; andV, terms. However, the higher-order terms were
not evaluated they do not vanish and involve alternating
signs. Thus, it appears that the series is only conditionally

This eXpreSSion is inverse Fourier transformed to the Spa%nvergent, depending on the order in which the terms are

domain, yieldingV,(z). The result is

°c e*Z“‘Zr(k)_ 4f

- 2i 1 e 2k (k)
Vl(z):?f_mdk ktk) =

o dkEIm t(k)
(104

One obtains the higher ord®h(z) according to

\N/j(Z):f d(Zk)efzikz<_k|\~/j—160kvl|k> (109
1 ) . © 0
:EJ d(2k)672|sz dz,f
xdz'e* @2, _(2)Go(2',2")V1(2"). (108

Again, it is instructive to carry out the application to scatter-
ing by the Diracs-function interaction discussed earlier. In

that case, we have

kY i,
r(k)= 2+i|(ye 0, (107)
k)= 2 108
=2 iky) (108
It is then easily shown that
Vi(2)= y8(z-2o). (109
The second-order correction is given by
Vy(2)=7? f d(2k)e" 2k
xj dz’J dz’ek@ 2 5(z' —z4)
X Go(Z',2") 8(2" — 20) (110
:?’Zji d(2k)e™ 4Gy (29,20)=0. (111

It should be clear that aWj vanish forj=2. We conclude

grouped and summed.

E. The Volterra series for nonlocal potentials
Up to this point, we have established that the \olterra
property is shared by the coordinate representation matrix

element(z|T|z'), if the interaction is localln fact, we now
show that this result is true for all nonlocal interactions as
long as they also possess the Volterra kernel propéhiy.

recall that the exact solution fdr is

T=W+y2VGV, (112
where
G=Gy+GyyVG (113
and
G(z,z')=0, z=7'. (114

Now we do not restricV to be local but we require that

V(z,2')=0, z>7. (115

We want to prove that it remains true th#(z,z’)=0,z
>z'. Our equation now is

T(z,z)=W(z,2')+ yzf dz’
zZ

XJZ dZWV(Z,ZH)AG(Z”,ZW)V(ZW,Z'),

(116

where we use the facts that must be greater thanandz’
must be greater thaz”, due to the presence of the factors
V(z,2") andV(z",z"). Now suppose that>z'. The first
term on the RHS of Eq116) vanishes for this condition. But
the second term only has nonzero contributionszor z"”
>Z7">7z since all terms involvingz”>2z" vanish due to the
factor G(z”,2”). Therefore the only nonzero terms contra-

dict the conditionz>z'. We conclude thal (z,z’)=0 if z
>z', if the nonlocal potential has the same property.

that the Volterra inverse scattering series converges to the The analysis in which the kernel of the inverse scattering
exact answer in a sing|e term, in the same manner as m@quation has the Volterra property and therefore a Fredholm
forward Volterra series for the Dirad function interaction. determinant that equals 1 is easily carried out and we do not
We note that a crucial Change from the Born-Neumann apWrite it eXpIICItIy here. If one has the most genel’al form of
proach to the Lippmann-Schwinger-based inversion is thafionlocal potentialV/(z,z"), for 1D scattering, then it turns

now we require both (k) and t(k) to use the Volterra in-
verse series.

Before leaving this example, we point out that Razpdlly
has considered the interactioi &(x) within the Lippmann-

out that the inversion requires measuring both the far and the
near fields. Clearly, the operator equations obtained from the
inversion ofk?yV in terms of theVJ-’s hold regardless of
whether the potential is local or nonlocal. This is also true of
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the gbsolute convergence of the serieskoyV in terms of 5 A = sin(ka /—1_\/0) K22
the V; (provided V itself has a Volterra-kernel structyre Vi(z)= ﬁf dkfe ,
However, if the nonlocal potential has the general form ™ i

V(z,z"), then Eq.(86) becomes (123

- ~ which is recognized as the Fourier transform of the sinc
T(k",k)=Vy(k' k), (117 function. This is well known to be a square well or barrier:

with k" andk independent of one another. Then one uses Eq.

= ~ Vo
(81) to determine the off-shell elements Bfin terms of the Vi= v la—2z]<ay1-V, (124
physical T matrix elements: 0

T(k' k) =T(k' k) —ikaT(k' K T(kk (118 =0, allother z. (129

so that Rearranging, we find that the region whéfe is nonzero is

T(K',k) Zmin<Z<Zmax (126

a
zminzi(l_ V1=Vy), (127
Thus, the knowledge of the on-shell and half-off-shell

T-matrix elements enables one to determine the correspond-

ing elements of thel matrix. Then inverse Fourier trans- Zmax:g(1+‘/1_vo)- (128
forming on both K and k independently yields/,(z,z’),
which enables one to determine all high&(z,z’),j>1. For a barrier, 8 Vo<1 and the first-order result hashher

It should be clear that scattering interactions that can bgarrier than the true one. For a well,<<0 and the first-
expressed in the forrv(z)(d"/dz") 5(z—z") will also pro-  order result is shallower than the true one. Thus, although the
duce Volterra kernelgthat is, interactions involving deriva- first-order result has the correct analytical form of a square
tives of the field. Thus, the range of systems for which our well or barrier, it has incorrect width and heigtar depth.

results hold is very broad. However, the explicit form of the result is such that it is
trivial to obtain theexactpotential fromz,,;, andz,,a,. It is
IV. APPLICATION TO THE SQUARE WELL OR BARRIER easily seen that
As a second example, we present the results of the Zmax— Zmin 2
\olterra-based inverse series for acoustic scattering by a fi- Vo=1-|——77— (129
. . . . . . Zmax+ Zmln
nite width well or barrier. Again the reflection and transmis-
sion amplitudes can be obtained analytically, as can the vargn(g
ousvj terms in the power series for the potential. One easily
can show that A= Zmaxt Zmins (130
\Y/ 27 i 27
r(k) 0 (120) min _ max (131)

- , a= = :
(2—V0)+2i\1—VOCOt(ak\1—V0) 1_\1_V0 1+\/1_V0

’ These exact, analytical expressions are found to work very
well in computational studies as well. Thus, itrist neces-

)= 2\J1-V,ie k@ (0 (122 sary to evaluate th¥; beyondj=1 in order to obtain the
Vosin(kay1—Vo) : exact parameters for a square well or barrier interaction.

Even so, these higher-order terms can also be evaluated ana-

In the case ol/,<0, one can have any finite value for the !Ytically. _ _
magnitude of the interactiofcorresponding to any finite in- 1 N€Se results can again be compared to those obtained
crease in the velocity of sound in the mediutm the case of  USiNg the Fredholm-based Born-Neumann inverse scattering

a barrier, 6<V,<1: otherwise one encounters an infinite S€fes. Razav4] has also obtained an expression for the
(Vo=1) or pure imaginary {,>1) velocity of sound. It term. In fact, the result is of the form of an infinite series, so

a closed expression has not been possible. This also pre-

follows that . S X .
vented him from obtaining higher-order corrections. How-
i ever, the structure manifested at the first orderaisa simple
T/l(zk)z —Osin(ka\/l_vo)eika_ (122 square well but rather an infinite sequence of steps of de-
27k\1—V, creasing magnitude. Razavy does not consider the conver-
5 gence of the series. Despite these qualitatively incorrect fea-
TheV,(2) is then tures, it is nevertheless possible to use Razavy’s result to
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determine the square interaction parameeactly This is  Heitler damping relation also yields the exact regL@i] This

because the terms in the infinite series permit one to obtaiapproach is for evaluating a first-order approximation only. A

the correctV, and thea parameter from the first of the infi- complete discussion of the relation to the present approach

nite series of steps. However, because the Fredholm-basedll be given elsewhere.

inversion produces unphysical artifacts that are absent from

the Volterra-based results, the latter provides a more robust ACKNOWLEDGMENTS

framework for an inversion when one has an interaction that o i ,

does not yield an explicit formula for the various terms in the D-J.K. is indebted to Professor A. B. Weglein for intro-

series. ducing him to the acoustic inverse scattering problem, and
It is remarkable that the Volterra-based inverse scatterind? sharing his deep knowledge of the Born-Neumann inver-

series for both of these simple potentials is able to providéion of the Lippmann-Schwinger equation. He acknowledges

either the exact answer or the exact functional form of thePr- Jon Sheiman and Dr. Jacques Leveille for very helpful

interaction with only the first-order term. Furthermore, thediscussions. D.J.K. was supported in part by the National

fact that all higher-order terms can be evaluated analyticallppciénce Foundation under Grant No. CHE-0074311, the R.A.

is very usefulWe stress that these results are consequence&/€/ch Foundation under Grant No. E 0608, and the Texas

of the fact that the Volterra-based inversion makes use oféarning and Computing Center through the UH Institute for

both the reflection and transmission information. Digital Informatics and Analysis. A.V. was supported by
Texas Higher Education Coordinating Board under Grant

No. ARP 003652-0071-2001.
V. CONCLUSIONS AND FUTURE WORK

In this paper, we have used the fact that the acoustic scat- APPENDIX
tering Lippmann-Schwinger integral equatidgim 1D) in-
volving the causalor anticausal Green’s function can be t
renormalized to write it as a \Volterra integral equation. Such
equations possess the best possible convergence behavior un- » P
der Born-Neumann iteration. Furthermore, for a wide class pk(z)=¢ Z+f dZ'k?yK(z,2")p(Z"), (A1)
of interactions(local, differential, or nonlocal but with the z
\olterra property, the auxilliary transition operator also pos- whereK (z,2") is defined in Eqs(37) and(38). The solution
sesses the Volterra property. Consequently, the inverse acoys- .

. ; . . i ay be written as
tic scattering series obtained by reverting the \Volterra-base

series in terms o?/j also converges absolutely and uniformly - = D(z,2')
for all |y| <. This does not, of course, ensure that the rate P=€""F fo dz'—F—e
of convergence is conveniently rapid. It is well known that
an absolutely convergent series can be rearranged or groupgghere
in any manner without affecting its convergeng@eaplan
[15]). Of course, this is not true for divergent or condition- , [~
ally convergent series. In the case of seismic scattering, oné® =1 K Vfo dzK(z,2)
may expect the changes in the velocity of sound to be mod-
eled reasonably by piecewise constant interactions since the (K%y)? (= o K(z,z2) K(z,Z2")
| fo dzf0 dz’det< )—

In this Appendix, we give a few more details regarding
he Fredholm solution of E(J28),

ikZ', (AZ)

distance over which there can be large changes should be +—57— / "o
X ) i 2! K(z',z) K(z',Z")

small compared to the distances over which the sonic speed

changes less rapidly. (A3)

Our results show that a Volterra-based inversion can be

done as a single comprehensive tgskyvided one has both and

the reflection and transmission amplitudes as functions of kD(z 2')=K2yK(2,2')

Indeed, all 1D scattering problems that can be formulated in”™ ™" yYaLs

a Lippmann-Schwinger framework have now been shown to o K(z,z') K(z,2")

be invertible, giverr (k) andt(k). In subsequent work, we —(kzy)zf dz”de( "y - )+ ..
shall consider this approach for scattering in higher dimen- 0 K(Z'.z") K(z".Z')

sions as well. The implications for various applications such (Ad)

as medical imaging, seismic exploration, nondestructive test-

ing, etc. are under current study and results will be reportedlote thatk (z,z) vanishes as long a&(z) is not too singular.

as they are obtained. Therefore, all diagonal terms in the determinants appearing
Note addedBy appropriate use of EG30), we have been in Eq.(A3) for D vanish. All other terms vanish, as discussed

able to express the \olterra-based inversion in a form thain the text above, since they are of the formR"j. Conse-

requiresonly r(k) as input, rather than both(k) andt(k).  quently, D=1. Now  consider the integral

This is an important reduction in the experimental data re{;dz' D(z,z")exp(kz’). We assume, for simplicity and con-

quired to apply our approach. It has been pointed out to usenience, that the potential has compact support on the do-

that for the Diracé interaction, an approach based on themain[0,Z], and that it is bounded. Fanyvalue ofk andy,
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we conclude thak?yK(z,z')<|al|, wherea is some finite Z"al"
number. By Hadamard’s theorej8,13], the value of amth tﬁw- (A6)
order determinant formed from such elements is bounded by
|a|"n"2. Then thenth term, sayt,,, in Eq. (A4) is bounded By the root testKaplan[15]), we see that
by
lim (t,) "= lim L&ﬂe =0 (A7)
1 - n e | N2l )
_=n nn/2
tn<n! Z'a|"n"™ (A5) The radius of convergence is one divided by this limit so we
conclude that the series fdd(z,z') converges absolutely
independent of the strength of the coupling parameter
Using Stirling’s approximation, one has the value ofk.
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