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Inverse scattering theory: Renormalization of the Lippmann-Schwinger equation for acoustic
scattering in one dimension
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The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the
Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to
inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and espe-
cially for acoustic scattering for which the interaction depends on the square of the frequency. By contrast, it
is well known that the Born-Neumann series for the Volterra integral equations in quantum scattering are
absolutely convergent, independent of the strength of the coupling characterizing the interaction. The transfor-
mation of the Lippmann-Schwinger equation from a Fredholm to a Volterra structure by renormalization has
been considered previously for quantum scattering calculations and electromagnetic scattering. In this paper,
we employ the renormalization technique to obtain a Volterra equation framework for the inverse acoustic
scattering series, proving that this series also converges absolutely in the entire complex plane of coupling
constant and frequency values. The present results are for acoustic scattering in one dimension, but the method
is general. The approach is illustrated by applications to two simple one-dimensional models for acoustic
scattering.
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I. INTRODUCTION

The inverse scattering problem has enormous importa
both for practical and theoretical applications. The form
include hydrocarbon exploration and production, medi
imaging of many varieties, nondestructive testing, tar
identification and location, etc. The latter include relati
interactions governing atomic and molecular systems to
perimental measurements, determination of the structur
surfaces and condensed matter systems, imaging of n
structures, etc. In much of the literature, the focus has b
on determining the conditions under which the data invers
will yield a unique result and precisely what information
required to make an inversion possible. In terms of al
rithms employed for various types of imaging, an importa
practical tool is the first Born approximation, which assum
that all scattering is direct, involving a single interaction
the probe with the target. Of course, this is known to
incorrect. Indeed, most imaging procedures or algorith
typically make use of some assumed model for the propa
tion of the probe signal or disturbance in the scattering m
dium. Generally, inversion is practical only in the circum
stance where there is a sufficiently small difference betw
the propagation of the probe signal within the target and
‘‘reference propagation’’~low contrast between the targe
and the reference medium!. Over the last decade, Wegle
and co-workers@1# have pioneered inverse acoustic scatt
ing methods that do not require an assumed propagation
locity model within the medium. Their approach is based
the early work of Jost and Kohn@2#, Moses@3#, and Razavy
@4#, who used the Born-Neumann power series solution
the acoustic Lippmann-Schwinger equation and a conc
mittant expansion of the interaction in ‘‘orders of the data
1063-651X/2003/67~4!/046614~12!/$20.00 67 0466
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Reversion of the Born-Neumann series leads to an order
order scheme for evaluating the terms of the series repre
tation of the scattering interaction in terms of the measu
data, e.g., only the on-shell reflection amplitude is requi
to invert for a local interaction. In principle, the method
completely general and requires no prior information ab
the target or the propagation details of the probe sig
within the target. Theonly fundamental limitation of the ap
proach appears to be the finite radius of convergence of
Born-Neumann series solution of the acoustic Lippma
Schwinger equation. This is generally analyzed using
‘‘spectral radius’’ of the Fredholm kernel of this equatio
~Morse and Feshbach@5#; Newton @6#!, and in particular by
the L 2 norm of this kernel. References and very clear d
cussions on the issues, involved in the convergence of
Born-Neumann forward scattering series, can be found
works of Goldberger and Watson@7#, and Newton@6#. De-
spite this limitation, Weglein and co-workers@1# have made
significant progress using this approach by introducing
idea of ‘‘subseries’’ within the Born-Neumann expansio
which are associated with specific inversion tasks. This
presses the inversion series in terms of a set of subta
which can be carried out separately from one another. A p
ticularly significant benefit of this approach is the fact th
the convergence properties of the subseries studied to
are much more favorable than those of the full Bor
Neumann series. Indeed, empirical evidence has been
encouraging regarding the convergence of the inverse se
However, the nature of the kernel of the Lippman
Schwinger equation, viewed as an equation for the inter
tion in terms of theT operator, is such that its maximum
eigenvalue always depends on the explicit nature of the
and off-shellT matrix, and general statements regarding co
©2003 The American Physical Society14-1
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vergence are difficult to obtain~Prosser@8#!.
Another, more robust approach towards solving integ

equations is given by Fredholm@9#, which can be viewed as
a generalization of the well-known Cramer’s method
solving systems of linear simultaneous algebraic equatio
Consequently, fundamental to the approach is a continu
generalization of the determinant of coefficients and its
nors. Under the circumstances where the integral equatio
of the Volterra type, the ‘‘Fredholm determinant’’ can b
shown to be equal to one and the Fredholm solution redu
to a Born-Neumann expansion, allbeit one that conver
absolutely independent of the scattering interaction stren
Consequently, for such Volterra equations, the Bo
Neumann expansion possesses the most robust converg
properties for which one can hope.

Some years ago, Sams and Kouri@10# ~for noniterative
computations in quantum scattering! and Kouri @11# ~for
electromagnetic scattering! showed that one could carry ou
a renormalization transformation of the Lippman
Schwinger equation into a Volterra equation form. Althou
the Volterra equations for quantum scattering were w
known ~Goldberger and Watson@7#; Newton @6#!, previous
studies had focused almost exclusively on their use
studying the analytic structure of theS matrix and the scat-
tering state. The work of Kouri and co-workers concentra
on making use of the Volterra form of the scattering eq
tions to create a noniterative computational algorithm. Th
approach, however, made essential use of the ‘‘triangu
character of the Volterra equation kernel, which in one
mension~1D! is

K~z,z8!50, z>z8 or K~z,z8!50, z<z8, ~1!

combined with a Newton-Cotes quadrature to solve the eq
tions by a noniterative recursion. However, it is also w
known that the property~1! underlies the extremely robus
nature of the convergence of these Volterra equations w
respect to an iterative solution~Morse and Feshbach@5#;
Newton @6#!. Indeed, the Born-Neumann series solution
the Volterra equation converges absolutely, irrespective
the magnitude of the~in general complex! coupling strength
of the interaction. Furthermore, the convergence depend
the global behavior of the interaction~essentially whether it
is measureable in a particular sense! and not on its smooth
ness. For 1D interactions having compact support~and for
even more general interactions in the case of 3D scatteri!,
the iterative solution of the Volterra equation converges u
formly on any closed domain of definition in the scatteri
position variable. Again, under certain relatively weak co
ditions on the interaction, the iterative solution is an ent
function of the scattering wave numberk ~Newton @6#!.

Thus, the possible benefits of formulating acoustic sc
tering in terms of Volterra kernels appear substantial. T
infinitely large radius of convergence of the Born-Neuma
series solution of the Volterra equation is of special inter
from the standpoint of the inverse acoustic scattering
proach of Weglein and co-workers@1#. It seems natural
therefore, to investigate the possible benefits of using
renormalization technique as a framework for developing
04661
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inverse scattering series. In fact, we shall show that it
possible to establish general rigorous convergence prope
for the inverse acoustic scattering series, and in the pro
show that its radius of convergence is also infinite. We sh
restrict our discussion here to 1D scattering, but our
proach is completely general and extends to higher dim
sions.

This paper is organized as follows. In Sec. II, we discu
renormalization of the Lippmann-Schwinger equation
acoustic scattering and introduce an auxilliary transition
eratorT̃. This is used as the framework to analyze the co
vergence of the forward scattering Born-Neumann ser
The approach is illustrated by applying it to scattering by
Dirac d-function model interaction. In Sec. III, we show th
relationship between the interaction as a function of
physical T operator and as a function of the auxilliaryT̃
operator. We next analyze the nonlocal nature ofT̃ in the
coordinate representation, and then use the results to e
lish the convergence properties of the Volterra-based Bo
Neumann inverse series for the interaction. We include
this section an application to the Diracd-function interac-
tion. Next, in Sec. IV, the Volterra inverse series is applied
the case of sound scattering by either a square well or bar
Our conclusions are given in Sec. V.

II. RENORMALIZATION OF THE LIPPMANN-
SCHWINGER EQUATION

A. Derivation of the renormalization transformation and
auxilliary transition operator T̃

We assume that the reader is familiar with the acou
scattering Lippmann-Schwinger equation for the transit
operatorT, given by Razavy@4#, Goldberger and Watson@5#,
and Newton@6#:

T5gV1gVG0k
1 T, ~2!

whereG0k
1 is the causal free Green’s operator, multiplied

a factor ofk2,

G0k
1 5

k2

E2H01 i e
, ~3!

k25E ~i.e., k is the frequency associated with the incide
acoustic wave!, H0 governs the ‘‘free propagation’’ of the
acoustic wave, andgV is the interaction responsible for th
scattering, withg being the coupling parameter character
ing the strength of the interaction. In general,g is complex.
The additional factor ofk2 results from the fact that in acous
tic scattering~as in general for scattering governed by
Helmholtz-type wave equation!, the interaction responsible
for scattering depends onk2. The full acoustic wave propa
gation ~scattering process! is thus governed by the operato
H,

H5H01k2gV. ~4!

The present 1D acoustic scattering problem in the coordin
representation leads to
4-2
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T~z,z8!5gV~z,z8!

1E
2`

`

dz9gV~z,z9!E
2`

`

dz-G0k
1 ~z9,z-!T~z-,z8!.

~5!

By incorporating this factor ofk2 into the Green’s function,
we are able to treat the remaining portion of the interacti
which depends purely on the spatial variation of the scat
ing interaction. Initially, we restrict ourselves to ‘‘local sca
tering media,’’ so thatV(z,z8)5V(z)d(z2z8) and therefore

T~z,z8!5gV~z!d~z2z8!

1gV~z!E
2`

`

dz9G0k
1 ~z,z9!T~z9,z8!. ~6!

The nonlocal character of the causal free Green’s func
G0k

1 (z,z9), reflected in its noncommutation withgV, is re-
sponsible for the fact thatT(z,z9) is also generally nonlocal
i.e., it is neverdiagonal in the coordinate representation@ex-
cept for a local, Diracd-function interaction, V(z,z8)
5V(z)d(z2z8)5ld(z2z8)d(z2z0)]. For 1D causal scat-
tering boundary conditions,G0k

1 (z,z9) is explicitly
g

04661
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G0k
1 ~z,z9!52

ik

2
eikuz2z9u. ~7!

The general scattering amplitude is determined by the ma
elements of theT operator, usually computed in the mome
tum representationT(k8,k9), given by

T~k8,k9!5^k8uTuk9&, ~8!

where in generalk8,k9, and the on-energy-shell wave num
ber k5AE need not be equal to one another. The physi
‘‘reflection scattering amplitude,’’ denotedr (k), results
when uk8u5uk9u5uku andk852k:

r ~k!5~2 ikp!^2kuTuk&. ~9!

In 1D scattering, one can also identify the transmission a
plitude t(k) given by

t~k!511~2 ikp!^kuTuk&. ~10!

In the work of Sams and Kouri@10#, the renormalization
transformation to a Volterra equation results from eliminati
the uz2z9u argument in the free Green’s function in Eq.~6!.
This is done by dividing the integration overz9 into seg-
ments from2` to z and fromz to `:
T~z,z8!5gV~z!d~z2z8!2
ik

2
gV~z!E

2`

z

dz9eik(z2z9)T~z9,z8!2
ik

2
gV~z!E

z

`

dz9e2 ik(z2z9)T~z9,z8!. ~11!
sis
n’s

.

One then adds and subtracts2( ik/2)gV(z)*z
`dz9exp@ik(z

2z9)#T(z9,z8), and after simple manipulation, one obtains

T~z,z8!5gV~z!Fd~z2z8!2
ik

2
eikzE

2`

`

dz9e2 ikz9T~z9,z8!G
2

ik

2
gV~z!E

z

`

dz9@e2 ik(z2z9)

2eik(z2z9)#T~z9,z8!. ~12!

It is easily verified that this is equivalent to writin
G0k

1 (z,z9) as

G0k
1 ~z,z9!5G̃0k~z,z9!2

ik

2
eik(z2z9), ~13!

so that

G̃0k~z,z9!52
ik

2
@eik(z92z)2e2 ik(z92z)#

[k sin@k~z92z!#, z,z9 ~14!

50, z>z9. ~15!

In abstract operator notation, this is
G0k
1 5G̃0k2 ikpuk&^ku. ~16!

This relation is extremely useful in our subsequent analy
and we shall make much use of it. Notice that the Gree
operatorG̃0k differs from the usual causal one,G0k

1 , by a
solution of the homogeneous equation~Newton @6#!:

~E2H0!G0k
1 5k2, ~17!

~E2H0!G̃0k5k2, ~18!

~E2H0!@2 ikpuk&^ku#5@2 ikpuk&^ku#~E2H0!50.
~19!

The abstract version of Eq.~12! results from substituting Eq
~16! into Eq. ~2!:

T5gV@12 ikpuk&^kuT#1gVG̃0kT. ~20!

Next we note that the action ofT on the initial stateuk& is of
the form

Tuk&5gV@12 ikp^kuTuk&#uk&1gVG̃0kTuk&. ~21!

Defining the~unknown! constant ck as
4-3
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ck512 ikp^kuTuk&[t~k!, ~22!

we see that

Tuk&5gVckuk&1gVG̃0kTuk&. ~23!

The relationship betweenTuk& and the Lippmann-Schwinge
pressure stateuPk

1& is

A2pTuk&5gVuPk
1&, ~24!

and thus

uPk
1&5A2pckuk&1G̃0kgVuPk

1&. ~25!

Clearly, the factorck is simply anormalization constant, and
one can define an auxiliary pressure state vectorupk&, in
relation touPk

1&, according to

uPk
1&5ckupk&, ~26!

upk&5A2puk&1G̃0kgVupk&. ~27!

The coordinate representation^zupk&5pk(z) satisfies

pk~z!5eikz1kE
z

`

dz9sin@k~z92z!#gV~z9!pk~z9!,

~28!

which is recognized as an inhomogeneous Volterra inte
equation of the second kind. We remark here that Volte
equations involving improper limits~i.e., 6`) still converge
absolutely forugu,`, but they must satisfy additional re
strictions on thez dependence of the interaction. This is e
pecially true in order for their iterative solutions to conver
uniformly on any closed interval@z1 ,z2#. It is sufficient that
the interactionV(z) has compact support anduV(z)u is mea-
surable. It remains true even for infinite ranged interactio
as long as they decay sufficiently rapidly and are not
singular. This is discussed for similar Volterra equations
Goldberger and Watson@5#, and Newton@6#. Throughout our
discussion, we assume that such conditions are met. By
~26!, upk& results from renormalizinguPk

1& according to

upk&5
uPk

1&
ck

; ~29!

in fact, ck is essentially the inverse of the Jost functi
~Newton@6#!. We remark that the above expression also p
vides the physical interpretation of the ‘‘Volterra pressu
wave’’ pk(z) @12#. Clearly, it represents a wave produced
an incident plane wave having an amplitude equal to 1ck
[1/t(k). This leads to a reflected wave with the amplitu
r (k)/t(k), and a transmitted wave with the amplitude exac
equal to 1. Of course, such an incident wave cannot, in g
eral, be created experimentally since it requires adva
knowledge of the effect of the scatterer in the form of 1/t(k).
However, this does not alter the interpretation of the wa
pk(z).
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Let us now return to Eq.~20! and define an auxilliary
transition operatorT̃ according to

T5T̃@12 ikpuk&^kuT#. ~30!

It is easily verified that

T̃5gV1gVG̃0kT̃, ~31!

and this is the fundamental equation that will be used
analyze the inverse series forgV. ~Note that the operato
inverse@12 ikpuk&^kuT#21 should always exist. This essen
tially requires that the operatorikpuk&^kuT does not have
any eigenvalues equal to11. A worst case would corre
spond to the inverse ofT being equal toikpuk&^ku, which
cannot occur sinceT doesnot commute withH0 while uk&^ku
does.! It is instructive to evaluate explicitly the normalizatio
constantck in terms of the solution of the Volterra equatio
This is quite easily done by combining Eqs.~21!, ~22!, and
~30! to write

Tuk&5ckT̃uk&. ~32!

Then Eq.~22! can be expressed as

ck512 ikp^kuT̃uk&ck , ~33!

so that

ck5
1

11 ikp^kuT̃uk&
. ~34!

Thus, the renormalized or auxiliary pressure stateupk& is
given by

upk&5uPk
1&@11 ikp^kuT̃uk&#. ~35!

The physical reflection amplituder (k) is given by

r ~k!52 ikp^2kuTuk&52t~k!ikp^2kuT̃uk&. ~36!

These relations provide us with the necessary tools to
press auxilliary amplitudes in terms of the physical amp
tudes.

B. Convergence of the Born-Neumann series forzpk‹ and T̃

On one hand, the convergence of the Born-Neumann
ries for eitheruPk

1& or T is well known to depend critically
on the size of the coupling constantg ~or equivalently, on the
size of the ‘‘contrast’’ between the propagation underH0 and
that under H5H01k2gV) ~Goldberger and Watson@5#;
Newton @6#!. On the other hand, it is also well known th
iterative solutions of either Eq.~28! or ~31! converge abso-
lutely for ugu,` ~Newton@6#!. Furthermore, the iteration o
Eq. ~28! converges uniformly on any closed domain ofz ~for
a wide class of interactions!. It is useful to stress the origin o
this robustness since it turns out to be the basis of the c
vergence of the Volterra-based inverse series forgV. The
kernel of Eq.~28! can be written~for all z,z9) as
4-4
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gK~z,z9!5kg sin@k~z92z!#V~z9!, z,z9 ~37!

[0, z>z9. ~38!

According to the discussion,~Newton @6#; see also those in
Rodberg and Thaler@13# and Mathews and Walker@14#!, one
characterizes the convergence in terms of Fredhol
method of solution. This method is the continuum analog
solving a linear system of algebraic equations, and it
presses the inverse of the integral kernel in terms of the r
of the first Fredholm minor to the Fredholm determinantD.
The determinantD can be expressed as an infinite series
the form ~for the acoustic case!

D5 (
n50

`

~g!nkn , ~39!

where

kn[Tr~Kn!. ~40!

It is not difficult to verify that for the Volterra kernelK(z,z9)
above,

kn5dn0 , ~41!

and consequently, for such kernels,

D[1, ~42!

regardless of the strength of the scatterer,g. Furthermore, by
use of Hadamard’s theorem@6,13#, it is easily proved that the
infinite series for the first Fredholm minor converges ab
lutely and uniformly forg in the entire complex plane~more
details are given in the Appendix to this paper!. It also has
been established~Mathews and Walker@14#! that when the
Fredholm determinant equals 1, the Fredholm solution
identical to the Born-Neumann iterative solution of the in
gral equation. We conclude that iterative solutions of Volte
integral equations possess the most robust convergence
sible. While it is true that these convergence properties
independent of the strength ofg, there are conditions on th
analytical structure allowed for the scattering interactio
These have to do with the integrability of any singulariti
and the behavior at infinity. They are discussed by New
@6# in some detail. If the interaction has compact supp
and is not too singular, then the convergence is of the st
gest character~i.e., absolute and uniform, leading to enti
functions of wave numberk and couplingg).

It is therefore clear that the essential property of the V
terra kernel is that it satisfies Eqs.~37! and~38!; as noted by
Newton@6#, this is the continuous version of the ‘‘triangular
property of matrices. It is equivalent to the property that
Fredholm determinant of Eq.~28! or ~31! is identically 1.
Furthermore, it ensures that the Born-Neumann series
pk(z), obtained from Eq.~31!, is uniformly convergent on
any closed domain ofz for a wide class of interactions.

We stress that this is all well known. We have included
explicitly here because its implications for the inverse sc
tering series determininggV have never been explicated. I
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addition, it is perhaps not appreciated that the origi
Lippmann-Schwinger equation itself can be directly itera
in a fashion that is also everywhere absolutely converg
Obviously, such an iteration must differ from the straightfo
ward iteration of the Lippmann-Schwinger equationuPk

1&
5A2puk&1G0k

1 gVuPk
1&, which leads to

uPk
1&5A2p (

n50

`

~G0k
1 gV!nuk&, ~43!

the proof of whose convergence depends on theL 2 norm of
the kernel,iG0k

1 gVi2. In fact, we can simply iterate Eq.~25!
for the Lippmann-Schwinger stateuPk

1&:

uPk
1&5A2p (

n50

`

~G̃0kgV!nckuk&5A2pck(
n50

`

~G̃0kgV!nuk&.

~44!

We stress that even thoughck is unknown in Eq.~44!, it is
simply a number and can be calculated directly from
known iterate vectors, (G̃0kgV)nuk&. Thus,

ck5
1

11 ikp (
n50

`

^kugV~G̃0kgV!nuk&

5t~k!. ~45!

Obviously, this is equivalent to the iterative solution forupk&,
but the point we wish to stress is that the standard phys
Lippmann-Schwinger equation can be iterated in an ab
lutely convergent fashion, independent of the strength of
interaction. Of course, this is simply a reflection of the fa
that the Lippmann-Schwinger equation isneither purely a
Fredholmn or a Volterra equation. Therefore, it can manif
the convergence characteristics of either, depending on
manner in which it is written and iterated.

C. Illustrative example

It is helpful to consider an example problem in order
appreciate better the vast difference in convergence betw
the Born-Neumann series, based on the Lippma
Schwinger Fredholm equation, and the renormaliz
Lippmann-Schwinger Volterra equation. A convenient a
simple model scattering interaction is the Diracd function:

gV~z!5gd~z2z0!. ~46!

The solution to the Lippmann-Schwinger equation is eas
found from noting that

Pk
1~z!5eikz2

ikg

2
eikuz2z0uPk

1~z0!. ~47!

Obviously, this implies that

Pk
1~z0!5

eikz0

S 11
ikg

2 D ~48!
4-5
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so the exact solution is

Pk
1~z!5eikz2

ikg/2

11 ikg/2
eikz0eikuz2z0u. ~49!

The Born-Neumann series solution is given by

Pk
1~z!5eikz2S ikg

2 Deikz0eikuz2z0uF12
ikg

2
1S ikg

2 D 2

1•••G .
~50!

It is clear that the convergence of this series is determined
the requirementukg/2u,1, which is just the condition for
the convergence of a power series expansion of
1 ikg/2)21. It is also evident that the Born-Neumann seri
is convergent only at low energies in this case since
5AE, and therefore only for sufficiently low E will the con
vergence condition will be satisfied. This is the opposite of
the usual situation that applies to quantum scattering~Gold-
berger and Watson@5#!. Of course, in this simple example
one can easily recognize that the series can be analytic
summed to yield the exact result valid at allk and g. In
general, that will not be the case.

We next consider the Born-Neumann series forpk(z); Eq.
~28! then becomes

pk~z!5eikz1kE
z

`

dz9sin@k~z92z!#gd~z92z0!eikz91k2

3E
z

`

dz9sin@k~z92z!#gd~z92z0!

3E
z9

`

dz-sin@k~z-2z9!#gd~z-2z0!eikz-1•••.

~51!

We see that all terms higher than first order in the interac
vanish identically due to the appearance of the fac
sin@k(z02z0)#. Thus, forz>z0, we obtain exactly

pk~z!5eikz ~52!

and forz,z0, we obtain exactly

pk~z!5eikz1kg sin@k~z02z!#eikz0. ~53!

This does not complete the analysis since we must
evaluateck using only information generated by the iterati
solution for pk(z). This is simple using Eqs.~32!–~36! and
yields

ck5
1

11
ikg

2 E
2`

`

dze2 ikzd~z2z0!pk~z!

~54!

5
1

11
ikg

2
e2 ikz0pk~z0!

. ~55!
04661
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But by Eq.~52!, this gives

ck5
1

11
ikg

2

. ~56!

Therefore the Born-Neumann series forPk
1(z) based on the

renormalized Lippmann-Schwinger equation results in

Pk
1~z!5

eikz

11
ikg/2

2

, z>z0 ~57!

5eikz2
ikg/2

11 ikg/2
e2ikz0e2 ikz, z,z0 . ~58!

We conclude that the Volterra-based iteration converges
the exact answer with just the first-order term, all highe
terms being zero. The fundamental difference between
Volterra and the Fredholm iterated expressions is that
former doesnot involve a power series expansion of th
normalization factorck , whose convergence would have r
quired thatukg/2u be less than 1. Instead,ck has been fac-
tored out by renormalizing fromPk

1(z) to pk(z). We empha-
size that this renormalization follows forany scattering
problem that is expressible in terms of Green’s functio
G0k

6 , since it is true in general~for 1D scattering! that

G0k
6 5G̃0k7 ikpuk&^ku. ~59!

We also note that analogous relationships have been der
for 3D scattering Green’s functions. We now turn to consider
the inverse scattering series for the interactiongV.

III. THE INVERSE SCATTERING SERIES FOR gV

A. Fredholm and Volterra Born-Neumann series for gV

We begin by establishing that distinct Born-Neumann
ries forgV can be obtained from Eq.~2! for T or Eq.~31! for
T̃. We solve Eq.~2! for gV as

gV5T~11G0k
1 T!21 ~60!

5T~11G̃0kT2 ikpuk&^kuT!21. ~61!

But by Eq.~30!, this yields

gV5T~@12 ikpuk&^kuT#1G̃0kT̃@12 ikpuk&^kuT# !21 ~62!

5T@12 ikpuk&^kuT#21~11G̃0kT̃!21, ~63!

so that finally,

gV5T̃~11G̃0kT̃!21. ~64!

It follows that, provided they converge,gV can be obtained
from either of the following Born-Neumann series expa
sions:
4-6
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gV5 (
n50

`

T~2Gok
1 T!n ~65!

or

gV5 (
n50

`

T̃~2G̃0kT̃!n. ~66!

The convergence properties of Eq.~65! depend, of course, on
the spectral radius of the kernelG0k

1 T, which in turn depends
crucially on both the on- and off-shell elements of theT
matrix. For this reason, general conclusions regarding
convergence of Eq.~65! have been extremely difficult to
obtain despite heroic efforts~Prosser@8#!. We shall see tha
this is not the case for Eq.~66!.

The convergence properties of Eq.~66! will be studied
using the Fredholm method of solving Eq.~64!. To do so
requires knowledge of the properties of the kernelG̃0kT̃,
which are yet to be established. It is clear, however, t
when both expansions converge, theymustagree since con
vergent power series yield a unique result~Kaplan @15#!. In
order to investigate the convergence of Eq.~66!, we now
consider the nonlocal character ofT̃ in the coordinate repre
sentation.

B. Nonlocal character of T̃„z,z8…

The aim of this section is to establish thatT̃(z,z8)50,
whenz.z8. It is not difficult to show that Eq.~31! has the
solution

T̃5gV1gVG̃gV, ~67!

where

G̃5G̃01G̃0gVG̃ ~68!

@see work of Newton@6#, pp. 343–344; especially Eq
~12.42! and the following unnumbered equation#. From Eq.
~12.40a! in Ref. @6#, we see that

G1~k;z,z8!52kc1~k,z,! f ~k,z.!, ~69!

wherec1(k,z) is the regular~physical or causal! scattering
solution of the interacting Schro¨dinger equation andf (k,z)
is an irregular solution of the same equation, introduced
Jost @6#. Then by defining an interacting Green’s functio
G̃(k;z,z8), which vanishes forz>z8, it is easy to see that

G̃~k;z,z8!5G1~k;z,z8!1kc1~k,z8! f ~k,z!. ~70!

Obviously, kc1(k,z8) f (k,z) satisfies thehomogeneousin-
teracting Green’s function Schro¨dinger equation. Then

G̃~z,z8!50, z>z8, ~71!

and for local potentials
04661
e
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T̃~z,z8!5gV~z!d~z2z8!1g2E
2`

`

dz9E
2`

`

dz-V~z!d~z

2z9!G̃~z9,z-!V~z-!d~z-2z8! ~72!

or

T̃~z,z8!5gV~z!d~z2z8!1g2V~z!G̃~z,z8!V~z8!.
~73!

It is therefore clear that as a function of eitherz or z8,
T̃(z,z8) has support determined byV(z) or V(z8). Also, for
z.z8, the first term on the right-hand side~RHS! of Eq. ~73!
is zero due to the Diracd function, and the second term i
zero due toG̃(z,z8). Therefore, we have proved that

T̃~z,z8!50, z.z8. ~74!

Finally, T̃(z,z8) has an integrable singularity atz5z8.

C. Convergence of the inverse series forgV

We note next that the kernel of the Volterra-based Bo
Neumann series forgV, @Eq. ~64!#, is given by

K̃~z,z8!5^zuG̃0kT̃uz8&. ~75!

It is necessary to compute Tr(K̃n), but it is sufficient to ex-
amine Tr(K̃2) to see how the general case behaves,

Tr~K̃2!5E
2`

`

dzE
2`

`

dz8K̃~z,z8!K̃~z8,z!. ~76!

This can be written as

Tr~K̃2!5E
2`

`

dz1•••E
2`

`

dz4G̃0k~z1 ,z2!

3T̃~z2 ,z3!G̃0k~z3 ,z4!T̃~z4 ,z1!. ~77!

However, by the Volterra property ofG̃0k and T̃, a nonzero
contribution can only occur if

z1.z4.z3.z2.z1 , ~78!

which obviously isneversatisfied. We conclude that the Vo
terra property is satisfied for the product of two~or more!
Volterra kernels and

Tr~K̃2!5Tr~K̃n![0, n>2. ~79!

It is similarly easy to prove that Tr(K̃)50.
We therefore conclude that the Fredholm determinant

Eq. ~64! equals 1.This guarantees that, for a not-too
singular, local interaction having compact support, th
Volterra-based inverse scattering series converges absolu
and uniformly independent of the strength of the interacti.
This is an amazing result since it ensures that this inve
scattering seriesalwaysconverges for any magnitude~com-
plex! coupling constant.
4-7
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D. Utilization of the Volterra inverse series for gV in orders
of T̃ and the relation to data requirements

In order to use the new Volterra inverse series to de
minegV, the final step is to develop explicit expressions
it in terms of ‘‘far-field’’ measured quantities. The standa
Born-Neumann inversion of the Lippmann-Schwinger ba
approach, to obtain a local potential, requires knowled
only of the reflection amplituder (k) as a function ofk. We
shall see that the additional data are required in order to
the Volterra inverse series. Recall that by Eq.~66!,

gV5 (
n50

`

T̃~2G̃0kT̃!n, ~80!

where

T5T̃@12 ikpuk&^kuT#. ~81!

We shall expressgV as a power series in orders ofT̃,

gV5(
j 51

`

l̃ j Ṽ j , ~82!

where obviously

Ṽj5T̃~2G̃0kT̃! j 21, j 51,2, . . . . ~83!

Next, recall that by Eq.~31!,

T̃5 (
n50

`

~gVG̃0k!
ngV, ~84!

l̃T̃5 (
n50

` S (
j 51

`

l̃ j Ṽ j G̃0kD n

(
j 851

`

l̃ j 8Ṽj 8 , ~85!

sinceT̃ is obviously first order inl̃. We then collect coeffi-
cients of each power ofl̃ j ,

l̃1: T̃5Ṽ1 , ~86!

l̃2: 05Ṽ21Ṽ1G̃0kṼ1 , ~87!

l̃3: 05Ṽ31Ṽ2G̃0kṼ11Ṽ1G̃0kṼ21Ṽ1G̃0kṼ1G̃0kṼ1 ,
~88!

etc. Matrix elements of these expressions are first evalu
in thek representation and the results are subsequently tr
formed to thez representation. This is because the start
expression involves thek-representation matrix elements
T̃. However, using the lower-order operatorsṼl to express
Ṽj solely in terms ofṼ1 and G̃0k , one easily finds that, in
general,

Ṽj52Ṽj 21G̃0kṼ1 . ~89!

This is the most convenient form with which we can evalu
the higher-order corrections. The Volterra-based express
04661
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can be compared to the Born-Neumann inverse series b
on the usual Lippmann-Schwinger equation@1–4#,

gV5 (
n50

`

T~2G0k
1 T!n5(

j 51

`

l jVj , ~90!

T5 (
n50

`

~gVG0k
1 !ngV, ~91!

and this leads to

lT5 (
n50

` S (
j 51

`

l jVjG0k
1 D n

(
j 851

`

l j 8Vj 8 , ~92!

implying then

l1: T5V1 , ~93!

l2: 05V21V1G0k
1 V1 , ~94!

l3: 05V31V2G0k
1 V11V1G0k

1 V21V1G0k
1 V1G0k

1 V1 ,
~95!

etc. Again, one easily shows that in general,

Vj52Vj 21G0k
1 V1 . ~96!

However, it is crucial to recognize that

ṼjÞVj , ~97!

because they correspond to orders of completely differ
parameters (Ṽj is j th order inT̃ while Vj is j th order inT).
By Eq. ~81! above, it is clear that each separate factor oT

involvesall orders of T̃ and vice versa,

@11 ikpT̃uk&^ku#T5T̃, ~98!

so that

T5@11 ikpT̃uk&^ku#21T̃ ~99!

5 (
n50

`

~2 ikpT̃uk&^ku!nT̃. ~100!

Thus it is clear thatṼj andVj cannot be the same.
Now we ask how can one combine the measured d

with the Volterra inverse series? We compute the backsca
ing matrix element of Eq.~86!:

^2kuT̃uk&[T̃~2k,k!5^2kuṼ1uk&[Ṽ1~2k,k!.
~101!

But T̃(2k,k) is not directly measured. The far-field quant
ties typically measured are the reflection amplituder (k)5
2 ikpT(2k,k) and the transmission amplitudet(k)51
2 ikpT(k,k). By Eq. ~81!, we write

T~2k,k!5T̃~2k,k!2 ikpT̃~2k,k!T~k,k!, ~102!
4-8
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so

Ṽ1~2k,k!5
ir ~k!

kpt~k!
. ~103!

This expression is inverse Fourier transformed to the sp
domain, yieldingṼ1(z). The result is

Ṽ1~z!5
2i

p E
2`

`

dk
e22ikzr ~k!

kt~k!
52

4

pE0

`

dk
1

k
Im

e22ikzr ~k!

t~k!
.

~104!

One obtains the higher orderṼ2(z) according to

Ṽj~z!5E
2`

`

d~2k!e22ikz^2kuṼj 21G̃0kṼ1uk& ~105!

5
1

2pE2`

`

d~2k!e22ikzE
2`

`

dz8E
2`

`

3dz9eik(z81z9)Ṽj 21~z8!G̃0k~z8,z9!Ṽ1~z9!. ~106!

Again, it is instructive to carry out the application to scatt
ing by the Diracd-function interaction discussed earlier.
that case, we have

r ~k!5
2 ikg

21 ikg
e2ikz0, ~107!

t~k!5
2

~21 ikg!
. ~108!

It is then easily shown that

Ṽ1~z!5gd~z2z0!. ~109!

The second-order correction is given by

Ṽ2~z!5g2E
2`

`

d~2k!e22ikz

3E
2`

`

dz8E
2`

`

dz9eik(z81z9)d~z82z0!

3G̃0k~z8,z9!d~z92z0! ~110!

5g2E
2`

`

d~2k!e22ikzG̃0k~z0 ,z0![0. ~111!

It should be clear that allṼj vanish for j >2. We conclude
that the Volterra inverse scattering series converges to
exact answer in a single term, in the same manner as
forward Volterra series for the Diracd function interaction.
We note that a crucial change from the Born-Neumann
proach to the Lippmann-Schwinger-based inversion is t
now we require both r(k) and t(k) to use the Volterra in-
verse series.

Before leaving this example, we point out that Razavy@4#
has considered the interaction 2ld(x) within the Lippmann-
04661
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Schwinger-based inverse scattering series. Again, analy
results are obtained and the exact result is equal to the su
the V1 andV2 terms. However, the higher-order terms we
not evaluated they do not vanish and involve alternat
signs. Thus, it appears that the series is only condition
convergent, depending on the order in which the terms
grouped and summed.

E. The Volterra series for nonlocal potentials

Up to this point, we have established that the Volte
property is shared by the coordinate representation ma
element̂ zuT̃uz8&, if the interaction is local.In fact, we now
show that this result is true for all nonlocal interactions a
long as they also possess the Volterra kernel property.We
recall that the exact solution forT̃ is

T̃5gV1g2VG̃V, ~112!

where

G̃5G̃01G̃0gVG̃ ~113!

and

G̃~z,z8!50, z>z8. ~114!

Now we do not restrictV to be local but we require that

V~z,z8!50, z.z8. ~115!

We want to prove that it remains true thatT̃(z,z8)50,z
.z8. Our equation now is

T̃~z,z8!5gV~z,z8!1g2E
z

`

dz9

3E
2`

z8
dz-V~z,z9!G̃~z9,z-!V~z-,z8!,

~116!

where we use the facts thatz9 must be greater thanz andz8
must be greater thanz-, due to the presence of the facto
V(z,z9) and V(z-,z8). Now suppose thatz.z8. The first
term on the RHS of Eq.~116! vanishes for this condition. Bu
the second term only has nonzero contributions forz8.z-
.z9.z since all terms involvingz9.z- vanish due to the
factor G̃(z9,z-). Therefore the only nonzero terms contr
dict the conditionz.z8. We conclude thatT̃(z,z8)50 if z
.z8, if the nonlocal potential has the same property.

The analysis in which the kernel of the inverse scatter
equation has the Volterra property and therefore a Fredh
determinant that equals 1 is easily carried out and we do
write it explicitly here. If one has the most general form
nonlocal potential,V(z,z8), for 1D scattering, then it turns
out that the inversion requires measuring both the far and
near fields. Clearly, the operator equations obtained from
inversion of k2gV in terms of theṼj ’s hold regardless of
whether the potential is local or nonlocal. This is also true
4-9
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D. J. KOURI AND A. VIJAY PHYSICAL REVIEW E 67, 046614 ~2003!
the absolute convergence of the series fork2gV in terms of
the Ṽj ~provided V itself has a Volterra-kernel structure!.
However, if the nonlocal potential has the general fo
V(z,z8), then Eq.~86! becomes

T̃~k8,k!5Ṽ1~k8,k!, ~117!

with k8 andk independent of one another. Then one uses
~81! to determine the off-shell elements ofT̃ in terms of the
physicalT matrix elements:

T~k8,k!5T̃~k8,k!2 ikpT̃~k8,k!T~k,k! ~118!

so that

T̃~k8,k!5
T~k8,k!

12 ikpT~k,k!
. ~119!

Thus, the knowledge of the on-shell and half-off-sh
T-matrix elements enables one to determine the corresp
ing elements of theT̃ matrix. Then inverse Fourier trans
forming on both k8 and k independently yieldsṼ1(z,z8),
which enables one to determine all higherṼj (z,z8), j .1.

It should be clear that scattering interactions that can
expressed in the formV(z)(dn/dzn)d(z2z8) will also pro-
duce Volterra kernels~that is, interactions involving deriva
tives of the field!. Thus, the range of systems for which o
results hold is very broad.

IV. APPLICATION TO THE SQUARE WELL OR BARRIER

As a second example, we present the results of
Volterra-based inverse series for acoustic scattering by
nite width well or barrier. Again the reflection and transm
sion amplitudes can be obtained analytically, as can the v
ousṼj terms in the power series for the potential. One ea
can show that

r ~k!5
V0

~22V0!12iA12V0cot~akA12V0!
, ~120!

’

t~k!5
2A12V0ie2 ika

V0sin~kaA12V0!
r ~k!. ~121!

In the case ofV0,0, one can have any finite value for th
magnitude of the interaction~corresponding to any finite in
crease in the velocity of sound in the medium!. In the case of
a barrier, 0,V0,1; otherwise one encounters an infini
(V051) or pure imaginary (V0.1) velocity of sound. It
follows that

Ṽ1~2k!5
V0

2pkA12V0

sin~kaA12V0!eika. ~122!

The Ṽ1(z) is then
04661
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Ṽ1~z!5
V0

pA12V0
E

2`

`

dk
sin~kaA12V0!

k
eik(a22z),

~123!

which is recognized as the Fourier transform of the s
function. This is well known to be a square well or barrie

Ṽ15
V0

A12V0

, ua22zu,aA12V0 ~124!

50, all other z. ~125!

Rearranging, we find that the region whereṼ1 is nonzero is

zmin,z,zmax, ~126!

zmin5
a

2
~12A12V0!, ~127!

zmax5
a

2
~11A12V0!. ~128!

For a barrier, 0,V0,1 and the first-order result has ahigher
barrier than the true one. For a well,V0,0 and the first-
order result is shallower than the true one. Thus, although
first-order result has the correct analytical form of a squ
well or barrier, it has incorrect width and height~or depth!.
However, the explicit form of the result is such that it
trivial to obtain theexactpotential fromzmin andzmax. It is
easily seen that

V0512S zmax2zmin

zmax1zmin
D 2

~129!

and

a5zmax1zmin , ~130!

a5
2zmin

12A12V0

5
2zmax

11A12V0

. ~131!

These exact, analytical expressions are found to work v
well in computational studies as well. Thus, it isnot neces-
sary to evaluate theṼj beyond j 51 in order to obtain the
exact parameters for a square well or barrier interacti
Even so, these higher-order terms can also be evaluated
lytically.

These results can again be compared to those obta
using the Fredholm-based Born-Neumann inverse scatte
series. Razavy@4# has also obtained an expression for theV1
term. In fact, the result is of the form of an infinite series,
a closed expression has not been possible. This also
vented him from obtaining higher-order corrections. Ho
ever, the structure manifested at the first order isnot a simple
square well but rather an infinite sequence of steps of
creasing magnitude. Razavy does not consider the con
gence of the series. Despite these qualitatively incorrect
tures, it is nevertheless possible to use Razavy’s resu
4-10
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INVERSE SCATTERING THEORY: RENORMALIZATION . . . PHYSICAL REVIEW E67, 046614 ~2003!
determine the square interaction parametersexactly. This is
because the terms in the infinite series permit one to ob
the correctV0 and thea parameter from the first of the infi
nite series of steps. However, because the Fredholm-b
inversion produces unphysical artifacts that are absent f
the Volterra-based results, the latter provides a more ro
framework for an inversion when one has an interaction t
does not yield an explicit formula for the various terms in t
series.

It is remarkable that the Volterra-based inverse scatte
series for both of these simple potentials is able to prov
either the exact answer or the exact functional form of
interaction with only the first-order term. Furthermore, t
fact that all higher-order terms can be evaluated analytic
is very useful.We stress that these results are consequen
of the fact that the Volterra-based inversion makes use
both the reflection and transmission information.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have used the fact that the acoustic s
tering Lippmann-Schwinger integral equation~in 1D! in-
volving the causal~or anticausal! Green’s function can be
renormalized to write it as a Volterra integral equation. Su
equations possess the best possible convergence behavi
der Born-Neumann iteration. Furthermore, for a wide cl
of interactions~local, differential, or nonlocal but with the
Volterra property!, the auxilliary transition operator also po
sesses the Volterra property. Consequently, the inverse ac
tic scattering series obtained by reverting the Volterra-ba
series in terms ofṼj also converges absolutely and uniform
for all ugu,`. This does not, of course, ensure that the r
of convergence is conveniently rapid. It is well known th
an absolutely convergent series can be rearranged or gro
in any manner without affecting its convergence~Kaplan
@15#!. Of course, this is not true for divergent or conditio
ally convergent series. In the case of seismic scattering,
may expect the changes in the velocity of sound to be m
eled reasonably by piecewise constant interactions since
distance over which there can be large changes shoul
small compared to the distances over which the sonic sp
changes less rapidly.

Our results show that a Volterra-based inversion can
done as a single comprehensive task,provided one has both
the reflection and transmission amplitudes as functions o.
Indeed, all 1D scattering problems that can be formulate
a Lippmann-Schwinger framework have now been shown
be invertible, givenr (k) and t(k). In subsequent work, we
shall consider this approach for scattering in higher dim
sions as well. The implications for various applications su
as medical imaging, seismic exploration, nondestructive t
ing, etc. are under current study and results will be repo
as they are obtained.

Note added. By appropriate use of Eq.~30!, we have been
able to express the Volterra-based inversion in a form
requiresonly r(k) as input, rather than bothr (k) and t(k).
This is an important reduction in the experimental data
quired to apply our approach. It has been pointed out to
that for the Diracd interaction, an approach based on t
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Heitler damping relation also yields the exact result@16# This
approach is for evaluating a first-order approximation only
complete discussion of the relation to the present appro
will be given elsewhere.
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APPENDIX

In this Appendix, we give a few more details regardin
the Fredholm solution of Eq.~28!,

pk~z!5eikz1E
z

`

dz9k2gK~z,z9!pk~z9!, ~A1!

whereK(z,z9) is defined in Eqs.~37! and~38!. The solution
may be written as

pk5eikz1E
0

`

dz8
D~z,z8!

D
eikz8, ~A2!

where

D512k2gE
0

`

dzK~z,z!

1
~k2g!2

2! E
0

`

dzE
0

`

dz8detS K~z,z! K~z,z8!

K~z8,z! K~z8,z8!
D 2•••

~A3!

and

D~z,z8!5k2gK~z,z8!

2~k2g!2E
0

`

dz9detS K~z,z8! K~z,z9!

K~z9,z8! K~z9,z9!
D 1•••.

~A4!

Note thatK(z,z) vanishes as long asV(z) is not too singular.
Therefore, all diagonal terms in the determinants appea
in Eq. ~A3! for D vanish. All other terms vanish, as discuss
in the text above, since they are of the form Tr(Kn). Conse-
quently, D51. Now consider the integra
*0

`dz8D(z,z8)exp(ikz8). We assume, for simplicity and con
venience, that the potential has compact support on the
main@0,Z#, and that it is bounded. Foranyvalue ofk andg,
4-11
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we
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we conclude thatk2gK(z,z8),uau, wherea is some finite
number. By Hadamard’s theorem@6,13#, the value of annth
order determinant formed from such elements is bounded
uaunnn/2. Then thenth term, saytn , in Eq. ~A4! is bounded
by

tn,
1

n!
Znuaunnn/2. ~A5!

Using Stirling’s approximation, one has
D.

pl
ar

s

s
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tn,
Znuaun

e2nnn/2n1/2
. ~A6!

By the root test~Kaplan @15#!, we see that

lim
n→`

~ tn!1/n5 lim
n→`

S Zuaue

n1/2n1/2nD 50. ~A7!

The radius of convergence is one divided by this limit so
conclude that the series forD(z,z8) converges absolutely
independent of the strength of the coupling parameterg or
the value ofk.
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