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We study the existence and stability of discrete breathers in a chain consisting of alternating light and heavy
particles, with nearest-neighbor coupling containing quartic soft or hard anharmonicity. This study is focused
on breathers with frequency in the gap that separates the acoustic and optical bands of the phonon spectrum.
Simple analytical and physical results obtained through explicit solutions of algebraic equations demonstrate
the possibility of the existence of gap breathers with both types of symmetry, i.e., symmetric and antisymmet-
ric. The specific pattern depends on the type of anharmonicity present, i.e., soft or hard, and whether the center
of the breather is on a light or a heavy particle. These analytical results are verified systematically through the
use of a numerically exact procedure from the anticontinuous limit.
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[. INTRODUCTION (Sievers-Takeno modg3]) or antisymmetric(Page mode
[4]), with frequencies of oscillations shiftextbovethe linear
Intrinsic localized modes odiscrete breathers(DBSs) (phonon band. A resemblance between the DBs of this type
[1-4] are nonlinear collective excitations that seem to play aand the well known impurity modes can be described by
very important role in condensed matter physics and evensing simple analytical calculations. The main qualitative re-
possibly in biology. Interest in these modes has been intersult of such an analysis is the existence of DBs in the mono-
sified recently due to their experimental generation and obatomic 8-FPU chain under the condition that the quartic an-
servation in chemical compounds], antiferromagnet$6],  harmonicity is hard, i.e., the fourth-order expansion
coupled arrays of Josephson junctidis3], and myoglobin  coefficientg in the interatomic interaction must be positive,
[9]. The existence of DBs can affect essentially the physicaif in addition the breather’s higher harmonics do not resonate
properties of a system. Thus, as shown in Rgff6,11], such  with frequencies from the banth nonresonance condition
localized vibrations are responsible for the nonexponentigll]).
thermal relaxation in nonlinear lattices and therefore they are Similarly, it would be instructive to study intrinsic local-
expected to contribute to the thermodynamical behavior ofzed modes in a nonlinear diatomic lattice. In this paper, we
the system. Another physical problem, where DBs are inconsider the simplest version of the nonlinear diatomic chain
volved, is the energy exchange between different parts of that contains only nearest-neighbor interactions with a quar-
large and complicated system. As shown by Cheal.[12], tic (soft or hard anharmonicity. Correspondingly, this 1D
under certain conditions DBs can be mokilethey are ex- lattice can be called a diatomig-FPU chain. The linear
cited appropriately and therefore they can become energyspectrum of this lattice consists of two finite bands, outside
carriers. An important property of the discrete breathers isvhich stable DBs are expected to exist if again the nonreso-
the so-called targeted energy trangfes], which means that nance condition is fulfilled. Here we study only the breathers
under some conditions, a very selective vibrational energyith frequency inside the gap separating the acoustic and
transfer between DBs from one part of the system to anothewptical bands. In what follows, these nonlinear localized
one can occur. Therefore, in order to understand better themodes are referred to aliscrete gap breatherddGBS).
importance of DBs for physical problems, it is necessary to Despite a number of disseminated publications being de-
study their fundamental properties such as their existenceoted to the existence and dynamical properties of the
and stability for systems with more sophisticateealistio breathers astronglylocalized excitations in diatomic chains
spatial symmetry and structure. [14-23), including also extendedmoving) gap solitons
The present paper is focused on nonlindatomiclat-  [24-33, the problem of their existence and stability is not
tices. Its purpose and contents are motivated as follows. Beyet fully solved. In this context, Ref21] should be men-
ing the most simpleonlineargeneralization of the standard tioned, where the DBs were investigated rigorously. How-
one-dimensional(1D) monoatomiclattice with an inter- ever, this paper is mainly focused on the interesting bifurca-
atomic harmonic interaction, the so-call@l Fermi-Pasta- tion behavior of the DBs with frequency above the optical
Ulam (FPU) chain that includes quartic anharmonicity is a band. It should be noticed here that in order to perform the
convential theoretioncal model to describe the appearance ebntinuation of a breather solution from the anticontinuous
DBs in lattices due to discreteness and anharmonicity. A$AC) limit in a diatomic FPU lattice, it is necessary some-
regards the symmetry of the displacements of the chain akhow to decouple the system of nonlinearly coupled oscilla-
oms from their equilibria, their profiléof the amplitudes of tors. One way to accomplish this procedure is the “freezing”
localized oscillationshas been shown to be either symmetric of heavy massell (the mass of light particlesi=1), taking
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the limite=M ~Y2—-0 [19,21]. In this case, a diatomic chain between a proton donor groub—H and a proton acceptor
is continuously transformed into a monoatomic one. Belowgroup B, forming a hydrogen-bonded(HB) bridge
we develop another approach, which is based on an apprés—H---B [38]. Long chains of these bridges, like
priate transformation of our realistic system to a fictitious- - - X—H---X—H---X-=H---, where X=A or B [39], are
lattice with its particles placedh situ. In other words, the ubiquitous in soft matter; in addition to being formed in wa-
equations of motion are modified to containcantinuous ter and icg40], they form the basic means of creating three-
parameter, say (O<\<1), such that in the limik—0, the  dimensional structures in biopolymefgl]. The typical
lattice becomes as a system of completely decoupled nonlirstructure of the H bond between adjacent idhée.g., oxy-
ear oscillators, whereas in the opposite limit- 1, the equa- gens is that of a double well. In some cases, when the typi-
tions of motion recover their realistioriginal) form. Here  cal excitation energies are much higher or the interion dis-
the AC limit corresponds ta—0, when the intersite cou- tance is small, e.g., due to exogenous factors such as
pling in the system is completely transformed into a fictitiouspressure, the H bond becomes symmetric and acquires a
on-site potential. single well. However, in spite of the structure of realistic HB
The present paper aims at systematically studying the gagomplexes being too complicated, saft anharmonicity is
breather modes with all possible symmetries for both sofalways present in the H bond, resulting in the well-known
and hard quartic anharmonicities. In general, from symmetrgxperimental observation of decreasing ¥eH stretching
arguments for each kind of anharmonicigoft or hard, four ~ frequency[38]. It is thus very important to investigate thor-
possible localized solutions: centered at a light or a heavpughly the conditions of nonlinear localization of vibrations
particle with symmetri¢3] or antisymmetrid4] profile may  with all possible symmetries and for all possible types of
be assumed to exist. The current studies in this directio@nharmonicity(soft and hargland compare then these find-
have at their disposal a powerful tool such as the MacKayings with the experiments on the redshift of the-H fre-
Aubry theorem[34,35 dealing with the existence and quency. Thus, the first question that immediately arises is
unigueness of DBs. The numerical implementation of thiswhether or not a soft anharmonicity in thgFPU model
theorem has recently been developed by ‘Mamd Aubry indeed results in only softening thé-H vibrations. In other
[36], including the linear stability analysis by studying a cor- words, it should be proven rigorously, using modern math-
responding Floquet operator. Owing to this significantematical tools on the breather’s stability, whether there exist
progress, it is reasonable now to simplify the available anadynamically stable localized oscillations, which bifurcate
lytical results concerning the breather existefiiceluding  down into the frequency gap beginning from the optical
also the previous results obtained by Aoki, Takeno, and Sievkand, and if this occurs, to indicate what symmetry of the
ers[14], Chubykalo and Kivshaf15], and othersas much oscillations is responsible for this frequency shift. The next
as possible, in order to get the DGB solutions in a form ofinteresting question is to examine whether or not(thenre-
closed expressions of archetypal simplicity. Therefore, usinglistic) hard anharmonicity can participate in softening the
extensively symmetry arguments, here we develop a pede¥—H stretching vibrations. As a result of such a theoretical
trian approach. More precisely, in addition to the well knownanalysis, one can finally assert with certainty that come
rotating wave approximatiofRWA), we also introduce a from the four possible DGB’s modes “survives.” Its local-
local anharmonicity approximatigiLAA ), where the nonlin-  ized oscillations are proven to be symmetric and centered at
earity in the nearest-neighbor coupling is involved only fora light particle(proton in the middle of anX- - - X bridge.
the central ongsymmetric patternor two (antisymmetric It should also be noticed that the hydrogen bonding is
pattern particles of a breather profile, while the rest particlesstructurally directional and therefore except for translational
of the chain are assumed to oscillate with small amplitudesnotions of HB protons there are also rotations of ¥eH
(with the harmonic approximation being appliedhe LAA  bonds. Therefore, similarly to the existence of two types of
is reasonable, because the discrete breathers’ dynamics dopological solitons, i.e., extendednic and bonding (Bjer-
similar to those of impurity modgs37]. In this way, we are rum) defects[42], which are related to the translational and
able to extract simplified nonlinear algebraic equations, berotational motions, respectively, two types of DBs can be
ing at the same simple level as the standard linear theory dafistinguished in HB networks. Here we are dealing with the
a diatomic lattice, and at the same time giving an insight intdranslational degrees of freedom in the HB chain. The exis-
the existence of DGBs. Thus, from our simple analysis, ongéence and stability of orientational DBs in a HB chain has
can immediately show that for each type of anharmonicityrecently been studied by Khalack and VelgakdsS], using
(soft or hard only two, instead offour DGB solutions, are the AC approach.
available and find at whiclilight or heavy particle their The paper is organized as follows. In Sec. Il, we introduce
profile can be centered. the model and governing equations of motion adapted for the
Finally, it is very important to indicate those realistic sys- studies, using a continuation from the anticontinuous limit.
tems, wherestable DGBs could exist. In this context, net- The phonon spectrum and the relation between the localiza-
works of hydroger(H) bonds seem to be the most appropri- tion length and the gap frequency for exponentially decaying
ate systems because their dynamics are basically governédeather solutions are presented in Sec. lll. The next section
both by nonlinearity, i.e., anharmonicity of interparticle in- is devoted to an analytical analysis of all possible DGB so-
teractions and by “diatomicity” of hydrogen bonding, i.e., lutions, using both the approximations: LAA and RWA. In
the presence of two coupled species in the lattice: heavy ionSec. V, we omit both the approximations and study the DGB
and protons. More specifically, the hydrogen bonding occursolutions for the diatomig-FPU chain, using a continuation
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from the AC limit. Finally, in Sec. VI, we draw conclusions ¢ — 1w’ —a) W' (g.— (1= W
and make an outlook. Oh [ (Qn+l qn) (qn Qn)] ( ) (qn()3)
II. MODIFIED EQUATIONS OF MOTION These equations describe the diatomic FPU chain in the AC
WITH A FICTITIOUS ON-SITE POTENTIAL limit if A—0, whereas the original form of the system is

obtained in the limin—1.
The system we study is a diatomic FPU chain with a

symmetric .interparticlle coupling. More precisely, it is sup- IIl. DISPERSION LAWS FOR PHONONS
posed that in each unit cell there exists a heavy &tam, an AND DISCRETE BREATHERS
oxygen atom with mas$1=16) and a light atome.g., a
hydrogen atom with massi=1). Each atom is considered = The phonon dispersion relation of a nonlinear lattice can
to interact only with its nearest neighbors through an anharbe found if the corresponding equations of motion are linear-
monic potentialW(r), wherer is the relative displacement ized. Since we deal with a diatomic chain, the phonon spec-
between adjacent heavy and light atoms in the chain. W&um of such a system, which can be calculated analytically,
consider two qualitatively different potential¥(r), one be- ~ consists in general of two bands: the acoustic one with the
ing soft, while the other being hard. frequencies lying betweew; and w,, and the optical one
For numerical calculations of breather states, it is esserwith the frequencies lying between; and w,, so that the
tial to introduce in our system the AC limit. To this end, the edge frequencies for these bands are arranged<a®;0
nonlinear intersite potential/(r) is multiplied by a param- <w,<wz<w,. We callw, andw; the lower and the upper
eter\, whereas each chain particle is subject tmdditional ~ edges of the phonon band gap, respectively. In the case if the
on-site potentialmultiplied by some other parametey. diatomic chain is isolated from any substréba-site poten-
Then the AC limit is obtained ik =0 and =1, while the tial, ®;=0.
original system we want to study corresponds\te 1 and A necessary condition for the breather to exist is to avoid
n=0. The continuation from the trivial solution found in the resonances with the phonons, meaning that the breather fre-
AC limit can be implemented along any path in the two-quency and all its higher harmonics must lie outside the pho-
parameter setX,7) e[0,1]X[0,1] that connects the points non bands. A continuation of the breather from the AC limit
(1,0 and(0,1). The Hamiltonian of such a modified system can be performed only if in every continuation step, the
takes the form breather frequency fulfills this condition. To find a valid con-
tinuation path, it is necessary to have the phonon dispersion
1., 1 ., Iaw.for.eachh. The corresponding linearized version of Egs.
EMQn+ qun+)\W(Qn_qn)+)\w(qn_Qn+l) (3) IS given by

H=2>

MQn:)\(qn_2Qn+Qn—1)_(1_)\)Qnv
FW(Qu)+ nW<qn>}, & @

m.qnz)\(Qn+l_2qn+Qn)_(1_)\)qn-

Substituting the linear wave®,=Aexgdi(kn—wt)] and q,
=aexfi(kn—wt)], with ke [0,7] being the wave vector and

w the phonon frequency, into the linear equations of motion
ﬁ), one can find a phonon dispersion law. As a result, the
frequencies of the acoustic and optical bands as functions of
éhe parametek are given by

where the summation is over all the unit cells of the lattice
andQ, andq, are the displacements of the heavy and light
atoms in thenth cell of the chain from their equilibria, re-
spectively. These displacements are labeled according to t
Sequence{ et !Qn—l!qn—van1qn1Qn+1!qn+lv T } In
fact, onlyoneparameter, the mass rafib/m is characteristic
for the dynamics. Nevertheless, throughout this paper wi

keep the symmetric notations for the masses, Meandm. 14+7/1 1
In numerical simulations, we will fixn=1. For simplicity of w?(k;\)= T(_ + Vi
analytical calculations, we restrict ourselves in this paper to m
the symmetric potentidlV(r), namely, \/ 14N (1 1|17 27\%(1+cosk)
- T(E_M” MmO
Wr)—ErZJrEr4 2)
(N=3r+7" (5)

[T ]

where the sign " (“ +") stands for the acoustioptical)

where the anharmonicity paramej@may be either positive phonon band. We define the edges of these bands by

(hard anharmonicifyor negative(soft anharmonicity.
In the simplest case, one can choose in the parameter set w1 AN)=w(0:N) and w,s\)=w(m\), (6)
[0,1] X[ 0,1] the straight linep=1—\, so that the modified ' ’
equations of motion that correspond to the Hamiltoniéh  peing functions of the parametar, where the subscripts
become “1,2" and “3,4” correspond to the signs “~" and “+.” Be-
sides these edges, we will also use a central gap frequency
MQu=AW'(dn—Qn) W' (Qn—0n_1)]— (1= MW'(Q,),  defined bywi=(w3+ w3)/2. On the whole interval &\
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which is forbidden for the breather frequency and, due to the
specific mass ratid1/m= 16, the lower edge of the forbid-
den zone coincides with the upper edge of the acoustic band
(see Fig. 1 For each step in a continuation path A\ (7), it
is essential for the gap frequenayto lie outside the phonon
bands, including the submultiples of the optical band. Thus,
the frequency can lie within the gap between the optical and
acoustic bands as long as its higher harmonics do not reso-
nate with the phonons, or it can also be above the optical
band. These restrictions are essential for the numerical con-
tinuation of a breather solution from the AC limit. There are
many ways to get a given frequency outside the phonon
bands in the limi\—1, e.g., imposing in each step of the
, ‘ , , continuation procedure a constant distance of this frequency
0 02 o4, 08 08 1™ from a band edge.
For the localized modes, we impose an exponential de-

FIG. 1. Acoustic and optical phonon ban@®unded with solid  crease of the oscillation’s amplitudesmat: = given by the
lines), including the optical band divided by fbounded with  exponential factor exp(|n|/A)Eﬁ”|, 0<{<1, whereA is a
dashed lines by 3 (bounded with dotted lingsand by 4(bounded |ocalization length. Since the linear waves at the frequency
above with dotted-dashed lipeplotted (in dimensionless unilsas  gap edgedi.e., atk=, where w=,4) become simply
functions of the parametér for the diatomic lattice with the mass standing waves with out-of-phase oscillations in the neigh-
ratio M/m=16. Due to the specific value of thd/m ratio, the boring lattice cells given byQ,=(—1)"A cost) and g,

lower dotted-dashed line coincides with the upper edge of the:(—l)”a cost), one can assume for the DGBs the follow-
acoustic band. Each of these quotient zones corresponds to breaﬂ?ﬁb asymptotics: '

frequencies, for which the second, third, and fourth harmonics enter
the optical band. The frequenci€y’s, j=1,2,3,4, are defined by Qn=(—1)”Ai§‘”|Cos(wt), (9)
Egs.(8).

02

=(—1)"a* ¢I"cog wt), 10
<1, we have the inequalities <Qw;(\)<w,(\)<wq 4 =(=1)"a {Feogwt) (19

<ws(A)=w4(N). Next, we incorporate the notations for the asn— + . Here we have introduced the scaling constants
gap middle and the band edges)at1 according to{);  (amplitude3 A* anda®, where the superscript" stands

=wj|,-1, with j=0,1,2,3, and 4. Then one can easily obtainfor the right asymptoticsi(— ) and “—" for the left ones
from Eq. (5) the following values: (n— —). In general, the right and the left asymptotics are
different, depending where and how the breather is centered.
w2:1+}‘ £+ i w2:l+)‘ w2:1+’\ @) Inserting the asymptotic€®) and (10) into the linear equa-
o 2 \m M/ 2 M T m tions of motion(4), we get the set of four linear algebraic
equations with respect to the constaits and a®, from
02=0, Q3=2/M, Q%=2/m, Q3=202, which immediately one find¢at A\=1) the following two
relations:
2 1 1 (8)
Qig=m *+M ™7, N N
0 a® ("'-1 Mw?-2
) ) ) NFE = — . (ll)
which will be used throughout this paper. AT me?-2 (-1

The lower and upper edges of the acoustic and optical
bands are shown in Fig. 1 by solid lines for the ratio masdere the last equality is the “dispersion law” for the gap
M/m=16. At A\=0, both the phonon bands merge into thebreathers with exponentially decaying profile. The solution
two single points: w1(0)=w,(0)=M Y2 and w4(0)  of this equation that depends on the paramétezads
=w4(0)=m 2 Figure 1 also represents the three addi-

tional zones obtained from the optical band by its division by o L1 \/ 1 7)1 1

2, 3, and 4. In order to avoid a resonance with the second w ()= mTvT m M/lm ™) (12)
harmonic, the breather frequency must lie outside the first

zone bounded by the dashed lines that correspond to thehere “—" (“ +") stands for the lowefuppe)y branch of

lower and upper frequencies of the optical band divided by 2the curvew= w({), with Qr,<w<Qy (Qe<w=<()3), plot-
Similarly, for the third harmonic, the frequency must lie out- ted in Fig. 2. It is worthwhile to notice here that the imposed
side the region bounded by the dotted lines that corresponelxponential behavior given by Eg€) and (10) is also an

to the lower and upper edges of the optical band divided byapproximation because the breather solutions of faster de-
3, whereas the dotted-dashed line represents the upper edgease are known at presgrd].

of the optical band divided by #&or the fourth harmonic The solution(12) is valid for the localization lengths in
The fourth harmonic resonance region creates a thin zonghe intervalIn(M/m)] <A <c. Note also the following as-
lying very close to the acoustic phonon band from aboveymptotics that follow from Eq(12):
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Q \ tion, being an exact solution to the linear equati¢sand
given by Eqs(9)—(11), where( is given by Eq.(14). There-

fore below we will need to solve the nonlinear equations for
the central particles of the breather centered either at a light
o | i particle or at a heavy patrticle, with symmetric and antisym-
metric profile (using RWA), accompanying a resulting solu-
tion in each case with the linear solution given by E@-—

o (11).

The following four cases of breather symmetries are pos-
sible: the breather with symmetric or antisymmetric profile is
centered either at a light particle or at a heavy particle. We
&, call each of these patterns LS and Ki8hen the breather
with symmetricprofile is centered at dight and aheavy
particle, respectivelyand LA and HA(when the breather
' with antisymmetrigorofile is centered at Bght and aheavy

0 % ' particle, respectively Below we will consider each of these
cases separately.

FIG. 2. Dependence of localization parametem frequencyw

given in dimensionless units and plotted according to @&¢). In A. Light-particle symmetric mode: LS pattern
this figure, the edges of the phonon band3,=0,Q, . . .
=0.3536,0,=1.0308,0,=1.414, and Q,=1.4577 are also The LS mode describes the breather with symmetric pro-

shown. file centered at a light particle, for instance, at the site with
n=0. Then this particle can be assumed to oscillate with
Mw?=2+0[(1-¢)?] and mw?=2+0[(1-?)?], some breather frequeney and a certain amplituda,, both

(13)  tobe determined from the equations of motion for the central
particle and its two adjacent heavy particles. The other light
at the lower and the upper gap edges, respectively. The irparticles are assumed to oscillate symmetrically with the
verse form of solutior{12), which can be represented as  same frequencw, so that we suppose in E(LO) the sym-
metryq_,=q, foralln=x1,£2,. ... Itfollows then from
{w)=1— }(MwZ—Z)(me—Z)—g these conditions that in Eq10) one can pua =a‘=a.
2 2 Using this symmetry property in Eqéll), one finds from
Eg.(9) the relationA™ = — A~ =A that determines the sym-
XV(Mo?=2)(mw?-2)[Mmo?~2(M+m)], metry in oscillations of the heavy particles. As a result, the
(14) LS breather ansatz can entirely be written as follows:

wherew € [Q,,Q3], will also be useful below for analytical Jo=apcog wt),
calculations.
a,=(—1D)"as"cogwt), n=+1,+2, ...,
IV. LOCAL ANHARMONICITY AND ROTATING

—(_1)\n n—1 —
WAVE APPROXIMATIONS Qn=(=1)"A" “coswt), n=12,..., (19

The basic property of a breather solution is its spatial Qn=(—1)"'A{"cogwt), n=0,—1,-2,....
localization, so that only central particles in the localization .
region oscillate with large amplitudes, whereas the rest of thechematically, the LS pattern can be represented by the se-
chain can be considered as linearly coupled small-amplitudgu€nce
oscillators. Therefore the first approximation to calculate the o 2. . . L2
breather analytically is to neglect the anharmonic term in the U am PA LA —lai— Ao, — Al La lA s,
interaction potential, except for the interaction of the central  — 2A; || 1. (16)
particles of the breather with its nearest neighbors. We call
this approach, which is associated with the exponential an this sequence, the semicolons separate symmetrically the
satz given by Eqgs(9) and (10), the LAA. As a second ap- “central pattern cell”(consisting of a light particle and its
proximation, we use for analytical calculations the welltwo heavy neighbojsand the “lateral pattern cells{each
known RWA. Since we deal with potentié®), according to  consisting of a light and a heavy particle, similarly to a unit
RWA, for the central particles of a breather ansatz in thecell in a diatomic chain Note that the amplitudes in each
equations of motior§3), we will make the approximate sub- subsequengmore remote from the cendateral pattern cell
stitution: coS(wt)—(3/4) cosft). are obtained from the amplitudes in the previous one by
The present section deals only with the original systemmultiplying the latter ones by the factor ¢.
whenA=1. In the LAA approach, the system of the nonlin-  Next, we assume in Eqg3) with A=1, that only the
ear equations of motiofEgs.(3) with A =1] for the central central particle(with the coordinategy) oscillates with a
particles is completed by the exponentially decaying solularge amplitude,. In other words, we suppose that the quar-
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tic anharmonicity[in potential (2)] exists only in the cou- A m a (1-¢m M
pling between the central particles and its adjacent left and—— —, —— 57— With a,—2\/557 a0
right heavy particles wittQ, and Q, (using the LAA ap- 3 M'a 2(M-m) 3p(M+3m)

: ) . (21
proach. The equations of motion for the central particle

(situated at the site with=0) and one of its lateral heavy g {—1 at the lower gap edgex—Q,), and
particles, e.g.Q [due to the pattern symmetr@d,=Q,= ’

—Acost) andq_,=q,= — {a cos@t)], can be written us- A (1-0Om a [2(1—-O)m
ing RWA as a—oﬂm, a—0—>1 with ay— m,

(Mmw?—2)ay,—2A—(3/2)B(ag+A)3=0, (22)

1 .
(Mw?—2)A—ay+La—(3/4) B(ay+A)3=0. (7 as{—1 at the upper gap edges(-(13). The LS solution
given by Eqgs.(18)—(20) is also simplified at the frequency

The last two equations together with the pair of E(fsl) w={, [see Eqs(8)], where{=m/M. As a result, the LS

specified for the LS case as solution at this frequency is given by the pattéi), with
a_ 1-t Mo?-2 18 ag=—4M/3B(2M+3m), A=may/2M, a=ay/2.
A mat-2 1-¢ (9 @3

determine the four parameters: the amplitude of the central Finally, from the comparison of the asymptotic behavior
light particlea,, the “amplitude scalings” in the heavy and ©Of the breather solution given by Eq1) and (22) as ¢

light sublatticesA and a, respectively, and the localization —1 at the lower and upper gap edges, we find that the LS
factor ¢, as functions of the breather frequeneyfrom the breather mode bifurcates from tlogtical band. Indeed, the
gap interval,< w< . lower edge of the optical phonon band corresponds to the
In order to treat the breather solution to E€7) and(18) standing .Iinear waves whgn the heavy particlgs are at rest
analytically, we may assume that only the central light par_and t_he light _partlcles oscnlate_ out of_ phage Wlth_th_e same
ticle oscillates with large amplitude, whereas the amplitude@MPplitude. This phonon mode is obtained in the ligiit 1
of the lateral heavy particles are small, so that they can b&om Egs.(22), where the amplitudé tends to zero faster
linearized. As a result, from Eq¢17) and (18) one finds than the amplitude, and in the meantimegy—a. In other

approximately the solution for the amplitude of the centralWords, the local (impuritylike) negative anharmonicity
light particlea, in the form causes the localization of the out-of-phase oscillations of the

light particles, which in its turn results in the appearance of
, 2(1+¢) the Ioca}lized .out—of.-phase oscillations of the heavy particles
ag= 157 M 3 (19 of the diatomic chain. Mathematically, in pattgi®), for all
3 4__(_+ —m) w2 the frequencies from the gap inten@b<w <3, we have
1-¢ \1-¢ 2 the inequalitiesA>0 anda>0 if a;>0. In spite of the LS
. . breather solution, which is given by Eqé&l4)—(16) and
a_md the relation between the amplitudes of the heavy Palg)—(20), being obtained b?/ usingy tw?)e‘laz)p(rox)imations
ticles and that of the central one: (LAA and RWA), it appears to be in a good agreement with
the numerically exact solution obtained below from the AC
o 5 (20) limit when solving the equations of motidB). The compari-
ag 2+9Bay/2 son of these solutions is demonstrated by Fig. 3 for two
values of the breather frequenay As intuitively expected,
the local anharmonicity approximation should “localize” a

; ; _litle bit the influence of anharmonicity, making it effectively
by Egs.(8). This means that the LS pattern can exist only 'fstronger. This is why the amplitud€,'s andg, s obtained

B<0 (soft anharmonici.ty. Thus, the analytical'sol.ution for \within this approximation appear o be a bit higher than the
the LS mode as a functlo_n of the gap frequeﬂ_cgs given by corresponding exact values.
Egs.(18)—(20). More precisely, Eq(19) determines uniquely
the functionay=ag(w), and inserting next this function into
Eqg. (20), one finds the amplitudd=A(w). Finally, using
the functionA(w) in any of the two equation&l8), the third In the case of the HS mode, the breather is centered at a
amplitudea=a(w) is easily obtained. Furthermore, all the heavy ion, e.g., at the site with=0, so thatQ, is supposed
three amplitudes,, A, anda as functions of frequency ~ to perform large-amplitude oscillations with frequeney
appear to be well defined on the whole intenfab<w from the gap. The rest of the heavy particles of the chain are
<Qs. assumed to oscillate symmetrically with the same frequency:
Using the asymptotic&l3), one can find from Eq€18)—- Q_,=Q, for all n=*x1,+2,. ... Therefore we impose in
(20) the asymptotic behavior of the amplitudes, A, anda, Eq. (9) thatA"=A*=A, and using this property as well as
as {—1 (i.e., when the localization lengtih—«), ap- Eq. (10), one finds from Eqgs(11) the relationa™ = —¢a~
proaching both the phonon bands. As a result, we obtain =a. Let Ay be the amplitude of oscillations of the central

A mo’—2-3pag/?2

The expression in the square brackets of @§) appears
to benegativefor all the gap frequencies e[ ,,{)3] given

B. Heavy-particle symmetric mode: HS pattern

046612-6
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-1 me®-2
Mw2—2 {1

A
3 (29

Similarly, linearizing Eqs.(26) and (27) with respect toa,
one finds from Eqs(26)—(28) the following relations:

- 2(1+¢)

Ao= 1+¢ ( m 3 ) | 29
3ﬁ§ rg— 1T§+§M w
a M w?—2—38A5/2
Ao 2+98AL2 (30

The HS mode is expected to bifurcate from #eoustic

FIG. 3. The LS pattern obtained both analytically and numeri-Phonon band, when the light particles are at rest and the

cally for soft interaction(2) with B=—1 and mass ratidi/m

heavy particles oscillate out of phase. Similarly, as for the LS

=16, and plotted in dimensionless units for two breather frequencynode, one finds the asymptotics

values w=0.74 andw=1.40). For frequencw = 1.40, the ampli-

tudesQ,’s (q,’s) calculated numerically from the anticontinuous

limit [solving the equations of motia3)] are shown by bigsmal)

squares connected with solid lines, whereas for frequewncy
=0.74, these are shown by circles connected with dashed lines.

Accordingly, the analytical solution given by Eqd4)—(16) and
(18)—(20) is represented by diamondso€1.40) and stars ¢
=0.74) connected with dotted lines.

heavy particle. Then, Eq$9) and (10) are reduced to the
following ansatz for the HS pattern:

Qo=Agcog wt),

Q,=(—1)"A¢"Mcogwt), n=+1,%2, ...,

(24
gr=(—1)"a"coqwt), n=0,1,...,

q,=(—1)"tar (" Neogwt), n=—-1,—2, ..

as

{...;%,0°A;—(a,— [Asa,Aq,a;— ZA,

—{a;PA % L, (25)

a (1-)M
A, 2(M-m)’

A _ [2(1-)M
—1 with Ay— 38(M—m)’

Ao
(3D)

as{—1 at the lower gap edg@, [compare Eqs(22) and
(31)]. It follows from the asymptotic behavior for the ampli-
tude Ay as{—1 thatB must bepositive (hard anharmonic-
ity). However, contrary to the LS cagsee Eq.(19)], the
expression in the square brackets of &29) retains its(posi-
tive) sign only nearby the lower branch of cur¢&?). There-
fore the HS breather solution, for whi@d™>0 andA>0 if
Ay>0, exists only if it is not strongly localized, in some
interval Q,<w<w s, Where the critical frequency, s is
defined from zero equality of the denominator in the right
hand side of Eq(29). Thus, in the case oB=1, M =16,
andm=1, we havew,s=0.3692. In fact, as calculated be-
low exactly from the AC limit, the HS pattern exists for
higher frequencies, e.g., fas=0.38 andw=0.45, as illus-
trated by Fig. 4. The reason of this discrepancy is the same as

which schematically can be represented in the sequence forghove decribed for the LS pattern: due to the effective

strengthening of anharmonicity, the interval of available
breather frequencie® determined approximately by Eg.
(29) becomes a bit narrower and, as a result, both the fre-

quenciesw=0.38 andw = 0.45 appear outside thiapproxi-
mate interval.

where the semicolons separate symmetrically the central and

the lateral pattern cells in a similar manner as in the pattern

sequencel6).
It follows from the comparison of the patterii$6) and

(25) that all the analytical results for the HS mode can di-

C. Light-particle antisymmetric mode: LA pattern

For the LA mode, a light particlésituated, e.g., at the site
n=0) is fixed (Qu=0), whereas the rest of the light particles

rectly be obtained from the preceding subsection by the subczf the chain are allowed to oscillate antisymmetricatly:,

stitution ag— Ay, A——a, a—A, M<m in the LS solu-

tion (18)—(20). As a result, instead of Eq&l7) and(18), one
obtains the system

(Mw?—2)Ag+2a—(3/2) B(A,—a)3=0, (26)

(mw?—2)a+A,— (A+ (314 B(A,—a)®=0, (27

—qp for all n=x1,+2,.... Therefore one may put in
Eg. (10) thata” = —a*=a. Using then Eqgs(9) and (11),
one finds thatA™ = — A/¢ with —A~=A. Next, we assume
that the two central heavy particles perform out-of-phase

large-amplitude oscillations),= — Q;. More precisely, the
LA ansatz can be written as follows:

00=0, Qp=—Q;=Aqcog wt),

046612-7
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15 - ‘ The last two equations together with the pair of E(fsl)
rewritten as
tr a_ 1-{' Mo®-2 a5
K_ma)z—Z_ 1-¢ 39
-2 05 -
£ determine the four parameteksg, a, A, and{ as functions of
g the phonon gap frequenay. Using RWA[in Egs. (34] as
8 ofe well as Egs.(35), we get the quadratic equation
ora 8 , 16
-0.5 ,8 A0+ §PBA0—2—7§:0 (36)
. | with respect toBAZ, where
o 10 20
Lattice site 3_ g m 3
— _ — 2
FIG. 4. The HS pattern as an exact breather solution of the P= 1-¢ 1—§+ 2 M)w ' 37

equations of motioii3) for hard interactior{2) with =1 and mass
ratio M/m=16, obtained from the anticontinuous limit. Smaller It is also found that the amplitude ratio is
(biggen circles or squares correspond to ligheavy particles. The

amplitudesQ,’s andq,’'s for breather frequencies=0.38 (shown a Mw?—2— 3BA(2)/2

by circles connected with solid linesand w=0.45 (shown by A (1+9pAZa) (39)
squares connected with dashed linase plotted in dimensionless 0 0

units.

Since at the upper edge of the acoustic band all the heavy
particles oscillate out of phase and the light particles are at

do=F(—D"azcogwt), n=x1,22,..., rest, the LA mode(for which all the heavy particles have
been assumed above to perform out-of-phase oscillations
Qn=(—1)"*A{"'cogwt),n=2,3,..., (32  bifurcates from thdower edge of the phonon gap. At the
beginning of curve(12), where {—1 and thereforeP
Q,=(—1)" A "cogwt), n=—-1,-2,.... —2(M—m)/(1-{)M—=, being positive, we find from

Eq. (36) that BA3 must bepositive near this edge. Therefore
Schematically, this ansatz can be represented as the sequetite LA mode can exist only i3>0 (hard anharmonicity.
More precisely, we find the following asymptotics:
{ e ;§3a,§2A; - gzai - gA, §a1A0707_A0 T gaa {A,gza;

a (1-OM A : [ (1-)M
—PA,—Ba; . 33 Z - e BN Sl T
In this sequence, the semicolons separate the cefatnéit (39

symmetrig pattern cell(consisting of a standing central light
particle and its four lateral neighbgrand the lateral pattern these asymptotics and sequeriad), asw—Q,, the ampli-

cells (each consisting 9f a light and a heavy part)u;ldere_ . tudes of the out-of-phase oscillations of the heavy particles
the separation by semicolons has been arranged in a sm”ape sequalized” (A,—A), while the amplitude of the light
way as for the symmetric patterns, so that the amplitudes iBarticlesa tends t% zeré faster than the amplitude of the
each subsequeriinore remote from the cenjepattern cell heavy particlesA. The LA solution given by Eqs(35)—(37)

¥s essentially simplified ato=, [see Egs(8)], where{
=m/M. Indeed, the(positive solution of Eq.(36) is Ag
=4M/3Bm and then from Eqs(35) and (38) we obtaina
=M(M+m)Ag/ m(3M+m) and A=(M+m)Ay/(3M

m).

as{—1, approaching the lower gap edge. As follows from

multiplying the latter ones by the factor {. Contrary to
sequences(16) and (25), where the left and the right
“wings” of the LS and the HS patterns oscillate symmetri-
cally, here all the particles from the right and from the left of
the central standing particle oscillate antisymmetrically. . _
Similarly to the symmetric modes studied in the previous As regards the behaw_or of the amplitudés, a, andA
two subsections, the approximate equations of motion for th@" the whole frequency intervdl,<w<{3, we conclude

: : ; ; immediately from Eqs(35) that the signs oA anda are the
2’:/13 aﬂggﬁgggegl/]yt:ﬂg Itlr?? fg?r:|cles[f0r the variable<), same everywhere in this interval. The amplitude of the cen-

tral particlesAq is given by the solution of the quadratic

. equation(36) with respect to8A?2, which must be positive:
MO, =0d;—2Q,+BQ(30,—2Qy), Quation(36) pect tof P
(34

4
Mty = Q1 —20; + Qo+ BQ3(Q.—30,). BAG= — gP(FV1+31LP?), (40

046612-8
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where the sign “ " stands forP>0 and “+ " for P<0, and 3
BA3=4/3\37 if P=0. The solution(40) monotonically in-
creases from zero to a finite value, while running along curve  » |
(12), starting at the lower gap edge and ending at the uppe!
one, and being positive everywhere. Using solutid®), first

in Eqg. (38) and then in any of Eqq35), we find the other
amplitudesa and A. Therefore, the LA breather solution is
shown to exist for all gap frequencies and no sign changes
occur within the whole gap intervah>0 andA>0 if A,
>0. For two breather frequencies, the approximate LA
breather solutiorigiven by the four equation&5)—(38) to-
gether with Eqs(14) and(32) or (33)] is compared in Fig. 5
with the corresponding numerically exact solution obtained 2| ¢
below from the AC limit by solving the equations of motion i
(3). In this case, the approximate solution is not so close to _3
the exact solution as in the case of the LS patteompare

with Fig. 3), but their qualitative agreement is still satisfac-

tory. Note that the results obtained here for the LA mode FIG. 5. The LA pattern obtained both analytically and numeri-

agree (also qualitatively with those found previously by cally for hard interactior(2) with =1 and mass ratid//m= 16,
Chubykalo and Kivshaf15]. and plotted in dimensionless units for two breather frequencies (

=0.51 andw=0.63). For frequency=0.51, the amplitude®,’s
(g,’s) calculated numerically from the anticontinuous lifrgblving
the equations of motiof3)] are shown by bigsmall circles con-

For the HA pattern, a heavy particle of the chain is as-nected with solid lines, whereas for frequeney-0.63, these are
sumed to be fixede.g., at the site witm=0, so thatQ, shown by squares connected with dashed lines. Accordingly, the
=0) and the rest of the heavy particles are imposed to osanalytical solution given by Eq¢14), (32), (33), (35)—(38) is rep-
cillate antisymmetrically, i.e., in Eq(9) we assume that resented by diamondsw(=0.51) and stars¢=0.63) connected
Q_,=—Q,. Then we may puA*=—A"=A. Using next With dotted lines.
Eg. (10), from Egs.(11) we geta =a/{, a=a’. Finally,
we also impose the antisymmetry property for the large-
amplitude oscillations of the two central light particles, as-
suming thatgqy=—q_;. Summarizing these assumptions,

Egs.(9) and(10) can be written as the following ansatz: A mw2—2—3,8a§/2

Displacements
o
T

IS

Lattice site

D. Heavy-particle antisymmetric mode: HA pattern

B2ag+ §p,Baz—E =0 (44)
09 o 27 7

P 2 , (45
Qp=0,q_;=—(gp=2agcoq wt), ag §(1+9Ba0/4)
ant(—l)”Ag"”‘cos(wt), n=+1+2 ... wherep is defined by
(41) 3-¢ M 3 )
dn=(—1)"af"cogwt), n=1.2,..., =17 li=¢ 2me (46)
dp=(—1D"af " Yeogwt), n=-2,-3,.... According to ansata41), all the light particles of the

_ _ _ chain are supposed to perform out-of-phase oscillations.
Schematically, this ansatz is represented by the sequence Since at the lower edge of the optical band, all the light
particles oscillate out of phase and all the heavy particles are

{.. = AP PA,— (a;— {A,a0,0,~ag,lA{a,— {’A;  standing, the HA breather bifurcates from tneperedge of
—a, %A .. (42) the phonon gap. At the beginning of the upper branch of
o curve (12) (as 7—1), p—2(m—M)/(1—)m— —= [see

where the separation with semicolons has been arrang '2(46)]’ being negative. _Then, as follows from Ed4),
similarly to the LA sequencé33). ag must tend to zero, beingegative Therefore the anhar-

One can conclude from the comparison of the sequencd§ONiCity must besoft (5<0). More precisely, we find from
(33) and(42) that all the results for the HA mode can directly =0S-(43)—(46) the following asymptotics:

be obtained from the preceding subsection by the substitu-

tion Ap—agy, a——A, A—a, andm«M in the LA solu- A_)w 3_4 with ag— /ﬂ,
tion given by Eqs(35—(38). As a result, the corresponding o 2(M—m)’ a, 3B(m—M)
relations take the form (47)

11 mw?—2 as {—1 along the upper branch of cury&2). Since 2M
- ¢ _Ne , (43) <w?<2/m, it follows from Egs.(43) that the signs of the
Mew?-2 (-1 amplitudesA anda are the same. Therefore in the vicinity of

A
a
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1 3 ‘ numerically using the Newton method, and then continue
this procedure up to the valde=1. The continuation must
proceed in a patfon the (\,w) pland, which avoids all the
resonances of the breather frequency and its higher harmon-
ics with the phonon bands.

More precisely, for the numerical construction of DBs and

the investigation of their stability, we define a vectsr
:{leqlv' o 1QN AN ;leql e 1QN 1qN}Tv which  con-
tains the position and the velocity of every particle in the
lattice (for the numerical calculation we assume a finite lat-
tice with N unit cellg. We also define the nonlinear mdp
that corresponds to the time evolution of the vectdor one
i ‘ breather periodz . A breather solution?B will correspond to
0 B oo sio 20 a fixed point of this map{XB(t=t§)=T(XB(t=0))]. As-

FIG. 6. The HA patt btained both wticall g _suming then that we know a vect¥, which is close to the

. 6. The pattern obtained both analytically and numeri- . oo ® o

cally for soft interaction(2) with B=—1 and mass ratidi/m breather solution to _be found(g—X-.FA', Whe.reA IS avec-.
=16, and plotted in dimensionless units for two breather frequenior with Sma” r_nagnltud)'eand substituting it into the previ-
cies (@=0.74 andw=1.40). For frequency»=1.40, the ampli- OUS equation, it is possible to calculate a numerically exact
tudesQ,’s (q,'s) calculated numerically from the anticontinuous breather solution by solving the equatioM ¢ |).5:)Z
limit [solving the equations of motia3)] are shown by bigsmal) —T()Z), whereM is the tangent map of or the Floquet

circles connected with solid lines, whereas for frequenecy matrix of the svstem antlis the unit matrix. This equation
=0.74, these are shown by squares connected with dashed lines. b | dy ither b inimizati " th q - |
Accordingly, the analytical solution given by Eqd4) and (41)— can De solved either by minimization or using the singuiar

(46) is represented by diamonds € 1.40) and stars §=0.74) value decomposition. The Floquet matrix can be calculated

Displacements

-1

connected with dotted lines. numerically, integrating the linearized equations of motion
for a small perturbatiori over one breather perioig , E(t
the upper gap edge, we have the inequalilesO anda  =tgz)=M.€(t=0). The linear stability of the breather solu-

>0 if ag>0; in fact, they can be continued on the whole tion depends on the eigenvalues of the Floquet matrix; if one
curve (12). Indeed, the solution of the quadratic equationor more eigenvalues have magnitude larger than 1, then a
(44) for the soft anharmonicity £<0) is given by small perturbation of the solution will grow exponentially in
time and the solution will be linearly unstable. Since the
Floquet matrix is symplecti@f p is an eigenvalue, thend/

p*, and 1p* are also eigenvalugsa breather is stable only

if all the eigenvalues of the Floquet matrix lie on the unit
where the sign % " stands forp>0 and “—"for p<0, and circle (in the complex plane A linearly unstable breather in
Bag=—4/3y3¢ if p=0. The solution(48) monotonically & real system will be destroyed in short time due to the in-
increases(in modulug from zero to a finite value, while teractions with the environment, while a stable breather can
running along curvél12), starting at the upper gap edge andbe created spontaneously during energy relaxation, and as
ending at the lower one. Similarly to the LS pattern, thesoon as it is created, it will have a very long lifetime. More
approximate solution given by Eqetl)—(46) together with  information related to the Newton method and the stability
relation(14) is found to be in the same good agreement withanalysis can be found in Refs34-34.

the numerically exact solution obtained below from the AC ~ The continuation from the AC limitX— 0) is performed

4
Bag=— §p(1i V1+3/p?), (48)

limit and this is illustrated by Fig. 6. in the pathlin the (\,») spacé, which avoids all the reso-
nances of the breather frequency or its higher harmonics with
V. EXACT NUMERICS the optical phonon band. For each step, we increabg a

small quantityAA and then calculate the phonon frequencies

So far, to treat the gap breather solutions in the diatomidrom Eq. (5). If there is a resonance, we modify the breather
chain, we have used the two approximatiohAA and  frequency by a small quantity, in order to avoid the reso-
RWA), and therefore we were able to get the analytical sonance. Then, for these specific values\adind w, we calcu-
lutions for all possible symmetries in a very simple form. In late numerically the exact breather profile, using the standard
this section, we will treat rigorously these breather solutionsNewton-Raphson method. For the next step, we increase
omitting both these approximations, and study their stabilityand proceed in the same way. Below we present the results of
using the Floquet analysis. In other words, using the apthese numerical calculations for all the folrS, HS, LA,
proach based on the idea of the AC limit, we will calculateHA) patterns.
numerically the gap breather solutions of the original com- Thus, for thesoft interaction potentia[with g=—1 in
plete equations of motiofB). To this end, we choose some Eg. (2)], both the symmetric and antisymmetric modes can
initial condition, starting with\=0, solve these equations be found. For the symmetric mode with a light particle at the
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cal frequency, the LS breather is unstable. The critical veloc-
ity wcsiS very close to the minimum of the curni{w)
shown in Fig. 2.

Figure 4 represents the HS pattern for two different fre-
quencies. The first frequency lies in the gap close to the
acoustic band, whereas the second one has its third har-
monic, also lying in the gap, but close to the optical band.
The Floquet stability analysis shows that the HS mode is
unstable for each frequency within the gap. In fact, as dem-
onstrated analytically in Sec. 1V B, the interval of admissible
frequencies for the HS solution §3,< w<w 1< {)o, Where
wc hsiS a critical value. As follows from the expression in the
square brackets of EQR9), this frequency interval increases
with decreasing the mass rafid/m. Since this ratio has an

2 3 4 integer square root equal to 4, when the frequency belongs to
Real Part a thin region close to the acoustic band from above, the

FIG. 7. Stability analysis of the breather solutions for the Ls fourth harmonic resonates with the optical band. To avoid
pattern. Circles and squares correspond to frequencies.40 and  this resonance, we studied the case with a smaller mass ratio,
w=0.74, respectively. namely, M/m=2.5. For this case, when the breather fre-

quency is in the gap, all its harmonics are situated above the
center(LS pattern, the initial condition for the AC limit is  optical band, and therefore we avoid the resonances. The
chosen in the way when all the light and heavy particles oktability analysis for this mass ratio shows that the breather is
the chain are assumed to be at rest, except for one of the lightable only when its frequency is sufficiently close to the
particles, oscillating with some frequenaywithin the gap.  acousticband. For larger frequencies, the breather becomes
For the antisymmetric mode with a heavy particle fixelh  unstable The critical frequency, at which the instability oc-
patterr), the initial condition is chosen in the way, when all curs, is w=0.9492, while the upper edge of the acoustic
the particles are supposed to stay at rest, except for twband corresponds to frequency 0.8944, so that the width of
neighboring(in the light sublatticg particles, oscillating out the frequency interval, where the HS breathers are stéble
of phase with some frequency within the gap. This mode is a1/m=2.5), is 0.0548.

Imaginary Part

multibreather with a heavy particle at rggt the center of Figure 5 represents the LA pattern also for two different
the multibreather and with its nearest-neighbor light par- frequencies and the same maskks 16 andm=1. In gen-
ticles, oscillating out of phase. eral, for any mass ratiM/m>1, it can be found that the LA

Using the Newton method, both the LS and HA modesmode isstableif its frequency is sufficiently close to the
can be found from the AC limit for all the gap frequencies acousticband or one of its harmonics appears to lie close to
(Q,<w<Qgz). Note, when the particle masses are=1  theoptical band beingaboveit, andunstablef the frequency
andM =16, we have the following values for the edges ofor one of its harmonics is sufficiently close to tbetical
the phonon band<);=0 (the lower edge of the acoustic band, butbelowit. Thus, for the mass rativ/m=2.5, the
band, (,=0.3536 (the upper edge of the acoustic band stability analysis shows that there exists a critical frequency
Q3=1.4142 (the lower edge of the optical bandand(,  within the gap, namelyw=1.1, such that for all the gap
=1.4577(the upper edge of the optical ban¢h Fig. 3, the frequencies larger than this value, the LA mode is unstable,
amplitudexQ,’s andq,’s of the LS pattern are plotted for the whereas for all the frequencies less than this value, this mode
two different frequencies, one of which is situated close tais stable.
the optical band from below, while for the other frequency, Figure 6 represents the HA pattern for the same frequen-
the second harmonic appears to be close to the optical bancies as for the LS mode. This mode appears tahstable
but from above. The Floquet stability analy$isee Fig. 7 for all the gap frequencies: the number of the Floguet eigen-
with eigenvalues plotted thefeshows that the LS mode is values that lie outside the unit circle exceeds 1. The symmet-
stablefor frequencies sufficiently close to thaptical band  ric and antisymmetric modes can also be found for potential
from below; andunstablewhen one of the harmonics appears (2) with hard anharmonicity, using in the same way the New-
sufficiently close to theptical band, butaboveit. The pair  ton method and the AC limit. Similarly, in this case, the
of Floquet eigenvalues merge into 1 on the unit circle as theymmetric modéHS patternis centered on a heavy particle.
frequency decreasesvithin the gap, beginning from the The initial condition for the AC limit for this mode is chosen
upper gap edgé€)s;, and for a certain value, the eigenvaluesas follows: all the light and heavy particles are supposed to
collide at 1 and escape on the real axis, making the LS modee at rest, except for one heavy particle, oscillating with
unstable. More precisely, for the mass rdiém= 16, there  some frequency within the gap. For the antisymmetric mode
exists a critical frequency, at which the breather changes itwith a light particle fixed LA pattern, the initial condition is
stability. The collision of the Floquet eigenvalues on the unitchosen in the similar manner: all the particles of chain are at
circle occurs at the critical frequency.;=0.9627: for rest, except for two nearest-neighbor particles in the heavy
breather frequencies higher than this critical value, the LSublattice, oscillating out of phase with some frequency
breather is stable, while for frequencies lower than the criti-within the gap.
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TABLE |. Existence and stability results obtained by different techniques for all the four discrete gap breather modes.

Mode  Anharmonicity Bifurcation Analytically Numerically Stability
in the gap from approximate exact
LS Soft Optical band Within the whole gap Within the whole gap Stable near the optical band
HS Hard Acoustic band Close to the acoustic band  Close to the acoustic band Stable near the acoustic band
LA Hard Acoustic band Within the whole gap Close to the acoustic band Stable near the acoustic band
HA Soft Optical band Within the whole gap Within the whole gap Unstable within the whole gap
VI. SUMMARY exactsolutions found from the AC limit by solving the equa-

We have examined the existence and stability of discretéIOnS Qf motion (3) appears tq be re!atlvely QOOd' H_ere the
breathers in an isolated diatomic chain of alternating masse%nalyt'ca.I values for th.e amplitudeg,'s andqpslare higher
coupled through potentidR) with quartic (soft or hard an- than their correspondmg exgct yalues. Thls is because the
harmonicity. This chain is also called the diatomieFPU IOC"",' anharmonicity approximation eﬁ_eCt'Vely strengthens
chain. The study has been performed both analytically anf€ influence of anharmonicity, making it effectively stronger
numerically, and restricted to the breather solutions with fre2nd resulting in strengthening the localization.
quency within the gap between the acoustic and optical pho- In €ach casgsoft or hard anharmoniciytwo, instead of
non bands. The analytical investigation has been implefour, breather solutions have been shown to efastalyti-
mented, using the two approaches: LAA and RWA. Thecally and confirmed numericallyLS and HA for soft anhar-
exact breather solutions have been obtained numerically, ugonicity, and HS and LA for hard anharmonicity. Three of
ing the AC limit. In order to apply the AC limit, the standard these modef_.S, LA, and HA) exist for any frequency in the
equations of motion for the nonlinear diatomic chain havegap, while the HS mode can exist only near the lower gap
been rewritten in terms of the paramekez [0,1], in such a  edge. All these results are qualitatively summarized in Table
way [see Eqs(3)] that at\ =0 the chain becomes a system |. Since the hydrogen bonding hassaft anharmonicity, it
of decoupled nonlinear oscillators, while in the limit=1,  follows from this table that only the LS pattern is appropri-
this decoupling is gradually removed, restoring the originalate. This pattern describes the infrared shift of vibrational
(realistig form of the chain. spectra observed in numerous experiments.

For localized solutions, the LAA approach is motivated  As follows from the breather solutions plotted in Figs.
by the fact that, except for one, two, or several particle3_g, in each pattern celln the sequence&l6), (25), (33),
located in the center of a breather, the rest of the chain can hgg (42), the pattern cells are separated with semicdlafis
considered as a system of linear oscillators, admitting amne LS and HA modes, thigght andheavyparticles oscillate
exact solution with eXponential behavior. The second apbeing disp'aced imppositedirectiOHS, whereas these dis-
proximation(RWA) allows us to solve analytically the non- placements occur in theamedirections for the HS and LA
linear equations of motion for the central particlegiere the  preathers. This different dynamical behavior is because of
breather is supposed to be localizesid represent the solu- jnertia in high-frequency oscillating motion: it is easier for a
tion in simple terms. This representation is important fromjight particle to follow a heavy one than vice versa.
the point of view of the analysis of the existence of all pos- ~ The Floquet stability analysis of all these patterns has
sible types of breather solutions with given soft or hard anshown that when we avoid the nonresonance condition, only
harmonicity in potentia(2). Thus, using the structure of the the HA mode is unstable for all the gap frequencies. This
phonon modes at the upper edge of the acoustic biégftt  instability comes from the fact that the HA mode is a multi-
masses are at rest, while heavy masses oscillate out of)phasgeather, centered at a heavy particle at rest, with its nearest-
and the lower edge of the optical baffteavy masses are at pejghbor light particles oscillating out of phase. In physical
rest, while light masses oscillate out of phasee are able to  terms, the stability of the LA mode can be understood when
derive the four andae that correspond to all possible sym- jts profile is compared with the stable Page médEfor a
metl’ies Of the breather pattel’nS, W|th SieVerS-TakenO-likenonoatomic Chain: ||ght masses are eas”y drawn into the

symmetric[3] and Page-like antisymmetrigl] profiles in  oscillating motion and they do not perturb strongly the mo-
each(light and heavy sublattice. As a result, we have ob- tjon of heavy masses.

tainedsimple algebrai@xpressions in terms of a finite num-

ber of amplitude parameters. The minimal number of these

amplitudes for any type of breather solutions, LS, HS, LA, or ACKNOWLEDGMENTS

HA is three:ay or Ay, a, and A. These three amplitudes

together with the parametérsatisfy in each case the system  The work was partially supported by the European Union
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