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Photonic band structures solved by a plane-wave-based transfer-matrix method
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Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of
electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that
this technique, when combined with Bloch’s theorem, can be extended to solve the photonic band structure for
2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band
diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for
the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at
the boundary of different material domains have been employed to accelerate the convergence of numerical
computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals
the superior convergency of this different approach over the conventional plane-wave expansion method.
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[. INTRODUCTION of photonic band structures, the TMM can also handle the
wave scattering by a photonic crystal slab, leading to the
Photonic crystals, a novel class of material where the retransmission and reflection spectra, quantities directly ob-
fractive index is periodic in space, have stimulated extensiveerved experimentally, an advantage over the more popular
interest of study in recent years. Characterized by photoniconventional PWM.
band structures and photonic band gaps, these materials canln this paper, we will investigate in detail the plane-wave
mold the flow of photons much like conventional semicon-based TMM and apply this approach to calculate the photo-
ductors do to electrons. Armed with unprecedented power taic band structures for 2D and 3D photonic crystals with
control the light propagation behavior through a variety ofarbitrary lattice types and unit cell configurations. Three dif-
optical functional elements such as waveguides, cavitieSerent numerical schemes to solve the eigenproblem leading
bends, and branches in sizes comparable to the waveleng#§ traditional band diagramgplotted along the high-
_of light, photor_wic crysta_ls can serve as the platform for fUthesymmetry lines of the first Brillouin zongBZ)] will be pro-
integrated optical circuitpl—3]. posed and discussed. Comparison will be made between the
. _A basic while important tpol to understgnd the character,rrent method and the conventional PWM regarding the
istic of a photonic crystal is the photonic band structure,, merical convergency. This paper is arranged as follows. In

W:i(t:h ;eprtehsents thtetditshp(.ersion of [?[hot%qalletq BIOCh(;S Sec. Il and Appendixes A and B, we give a brief description
photons with respect to their propagation directions ana po- ¢y, plane-wave based TMM in application to wave scat-

larization states. A frequency range in the photonic band_ . .
structure within which no photons exist irrespective of the(fenng by 2D and 3D photonic crystal slabs, and correspond-

direction and polarization is called a complete photonic band"9 elgenprpblem cqnnected with the photonic pand struc-
gap. Numerous theoretical approaches have been developkf€- Two different eigenproblem schemes are discussed. In
in literatures to calculate the photonic band structure for two>€C- I, we will illustrate how to construct the traditional
dimensional2D) and three-dimension&BD) photonic crys- pand diagrams by looking qt different layer stacking direc-
tals. These include conventional plane-wave expansiofions for 2D and 3D photonic crystals. In Sec. IV we con-
method (PWM) [4—6], real-space transfer-matrix method Sider a 3D layer-by-layer photonic crystal to show how to
(TMM) [7,8], finite-difference time-domain methd8], and  build the whole band diagram by only looking at one single
Korringa-Kohn-RostokerfKKR) method [10-14 for sys-  stacking direction. In Sec. V we further discuss third eigen-
tems built from spherical or cylindrical particles. Different problem scheme, which combines the merits of the first two
from the conventional PWM, the real-space TMNM8] and  schemes. In Sec. VI we conclude this paper.

the KKR methodg11,12,14 look upon the photonic crystal

as an infinite stack of identical periodic crystal layers along a

certain direction, and thus an infinitely thick grating. Corre- ||, pLANE-WAVE-BASED TMM EOR WAVE SCATTERING

spondingly, Maxwell’s equations are solved within every  AND PHOTONIC BAND STRUCTURE SOLUTIONS
single layer, and electromagnet®m) fields among different

layers are connected to each other through a transfer matrix. In a general wave scattering problem, we suppose a plane
Recently, within the general framework of transfer-matrixem wave is incident from the left-hand side on a photonic
formulation, various approaches have been exploited witlerystal slab placed in an air background. Let the wave propa-
different types of basis functions used to represent the ergate along the-axis direction, the incident wave vector is
fields, including the Rayleigh multipolefl4], analytical ko= (Kox,Koy.Ko,). For the present, we consider a general
modal functions[15], and Fourier modal functiongalso three-dimensional3D) photonic crystal slab, corresponding
called plane-wave functiop$15—20. In addition to solution to which we are dealing with the scattering problem of em
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(a) slab backwards propagating plane waves. The tangential compo-
nents of the electric field in the left hand-side air film can be
Qo+ o written into
n

Ex(y)(r):% [Eff x)(D+Eif (2 1€l ki (3)

Q B :
° n where Ejj ,)(2) =Ejf )€ P1® V=B ;). Ejj x»)(2)
1 e 0 i#1ec =Ei}yx(y)e;' ii(;zi—l)zz Elgéx(y), szincezz:zial. Bij is given
. by B = (K~ K2 ,— 2 )P or kZ—I2 —k2 =0, and;

(b) slice i =i(k:

it kﬁ-'y—kg)l’zj for kj—kjj (—ki ,<0. The tangen-
Q* o tial components of the magnetic field are

Hx(y)<r>=; [HIT (D) +Hij (2 Tt ki,
Q 4

il where Hij ) (2) = Hij )€ Pl 50 =Hij ) Hij x)(2)

ij x(y €
FIG. 1. (8 Definition of the S matrix in the transfer-matrix = Hij x(y)€ itera =Hij xy) - For gach Bragg wave
method for a photonic crystal slab, which is divided into a numbervector we have the+ f0||(+)W"T19 relat|0+n be}we;en tie
of thin slices.(b) Definition of theS matrix for an individual slice. ~and E fields: (H;j . ,Hjj ) =To;(Ejj «,Eijy) ', and
(Hij Hij y)T=—To;j(Ejj x.Ejj )T, where the superscript

waves by a 2D grating. The situation of a 2D photonic crys-* T" denotes matrix tlrlansposmon. Thex2 mat”i(ZTO,ij gas
tal slab(and thus the scattering problem of a 1D gratiogn matrix elements Tgj; = —kij xkij y/(KoBij),  Tojj = (Kij «
be directly dgnygd from the 3D case. .See'Appendlxes A and. kg)/(koﬁij)v TS}; — (kg_ kiZJ_ D(koBy), and Tgfj
B. Let the pr|m|t|ve latticeR of the grating in th@(Y plang =ki xkij.y/(KoBij). The em fields in the right-hand side air
has two unit vectors, anda,, and the corresponding recip- fjjm have the same form of expansion. In E®.and(4) we

rocal IatticeQ has two unit _vectors le andb,. . . simply replaCGEﬁ,X(y) andHiijr,x(y) with Uﬁ,x(y) andVﬁ,x(y),
The em fplfjs at an arbitrary pointcan be written into respectively.vﬁ ) andUﬁ «y) are also connected to each
the superposition of Bragg wavésr plane waves other through the %2 matrix Toii -

Having written down the em fields around the slice, we
_ ) (ki Xtk oY) need to further solve the em fields inside the 2D lamellar
E(r) ; Eij(z)e™ M (1) grating slice. The procedure has been described in Appen-
dixes A and B. By defining column vector€);”
:( .. 'EiT,X’EiT,y’. . .)T, Qr:( . "UiT,X’UiT,y" . .)T,
H(r)=>, Hij(z)ei(kij,xx"'kij,yy), (2) where —N<i<N, —M<j<M, with N and M being the
ij truncation orders, we have

where the Bragg wave vectds; = (k;j x,Kij y) = (Kox,Koy) (Qﬁ) _ (Qﬁl) ©)
I

+ib;+jb,, Ej, and Hj; are unknown expansion coeffi- QO =T O,
cients of the electric and magnetic fields. In principle, the

indicesi andj should run from—< to +, butin numerical T is called the transfer matrixmore accurately, the
practice, truncation over a certain order is necessary. Tq.matrix) for theith slice. The overall matrix for the whole
solve the unknown variablds; andHj; , the whole photonic  gjgp, js simply given byf =T, T,_;---T;---T,T;, a simple
crystal slab is divided into a number of thin slices, as Showr}nultiplication. Although simple in nature, thig-matrix

in Fig. 1(a), where each slice can be approximated as gnethod proves to be numerically unstable for thick gratings
lamellar 2D grating, within which the dielectric function IS gych as the photonic crystal slabs studied here. The reason is
constant along the-axis direction. If the slab has already that the evanescent wave components in the plane-wave ex-
been a lamellar grating, no division procedure is requiredyansion will increase exponentially when tlienatrices for

We further imagine that each sligiadexed from 1,2..., to g slices accumulate, as can be found in Appendix A. One
n) is surrounded by an infinitely thin film of air in both hand gcheme to overcome this numerical instability is the
sides. This amounts to place the whole diffraction prOblemscattering-matrix$—matrix) method[7,8,20. In this method,

into a plane-wave basis in the air background. With a zerqne transfer matrix for théth slice in Eq.(5) is redefined as
thickness, these artificial air thin films will generate no im-

pact to the diffraction problem. o o
As shown in Fig. 1), the em fields in the two air thin ( ! ):Si( '_1)
films around theth slice is both consisting of forwards and Qi Q;

(6)
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s' is called theS matrix for slicei. The overallS matrix of ~ From Bloch's theorem Eq7), we have(}; =e'*%0 and
the whole slabS is connected to individuas, through a Q7 =€'%Q, . Then Eq.(8) becomes
trix is solved, one can easily obtain the transmission and
reflection coefficients for the grating slab under arbitrary in- T

With the layer transfer matrix at hand, we can directly\yhich means that Bloch’s phase factor is the eigenvalue of
solve the photonic band structure. Assume the primitive latyhe T matrix for a unit cell of the photonic crystal layer. To
that these three vectors are not necessarily orthogonal to eagfinatrix algorithm. From equation
other for a general lattice, say, a face-centered c(fb@ or
plane formed bya; anda, as theXQY plane, which means a- S a- a-
that in this plane we have a 2D lattice with primitive lattice 0 1 S Sz 1

N - A and using Bloch’s theorem, we can derive

tors areb;=2m(ay,X2)/[(a;Xay)-z], by=2m(zXay)/[ (a4
X a,)-Z], and a general reciprocal vector is given Gy; (511 0
direction, every layer hgving the same primitive lattice VeC-Equation(11) is a standard form of generalized eigenprob-
tors (a; anda,) and reciprocal lattice vectord{ andb,). lem Ax=\Bx, whereA andB are both square matrices,is
boundary condition along the stacking direction of the infi-iya | apack libraries. Equatior(11) can be written into an-
nite grating. According to Bloch’s theorem, the fieldratls  oiner form
. . . Qg Qg
field or H field, k=(k,,k, ,k;,) is the Bloch’s wave vector, a- =P a- =0.
0 0

simple iteration algorithni7,8,20. When the overalb ma- . .
Q Q
O)Ieik.a3( 0), (9)
cidence conditions.
tice vectors of a 3D photonic crystal aag, a,, andas. Note  gppreciate numerical stability, we need to turn to the
face-centered tetragonétt) lattice. We can always set the (Q f) (Qg) (511 512) ( Qg)
vectorsa; anda,. The corresponding reciprocal lattice vec-
Qo 1 =S| (Q
=ib;+jb,. The whole infinite photonic crystal is looked Sy —1/\la: =€, _s,lla ] (11)
upon as an infinite number of layers stacking alongzthsis ! 0 2 0
The key to jump from a general wave scattering problemy,q gigenvalue, anis the eigenvector. It can be solved by

to a photonic band structure problem is to impose a periodigiandard eigensolution algorithms such as those provided in
connected to the field atr+R through u(r+R)
=e'*Ru(r), whereu is one of the components of eithEr (511 0 ) | —Sp,

_ elkas( )
and R is a lattice vector of the 3D lattice. The periodic Su | 0 —S»
boundary condition along theaxis direction leads to (12

Then the eigenproblem is solved by setting &t 0, or in

u(r+ag)=e"u(r). (7)  another way by finding the zero eigenvalue of the maix

Now we have two schemes for solving the same eigen-
roblem, scheme [Eq. (11)] and scheme 2Eq. (12)]. In
cheme 2, Bloch’s wave vectok,(, k, k,) is given explic-
itly as input, the unknown variable is. Therefore, it can be
classified asw=f(ky,ky,k,), similar to the conventional
PWM. However, there is a big difference. In the current
scheme, the eigenmatrix itself involves the unknown eigen-
value w. Therefore, the standard eigenproblem solution al-
gorithm is not applicable, instead, one should use other root-
) . . . searching algorithms of nonlinear equations to find the
= 2Uij(Zo+a3,) explikij «as,+ikij yazy ] expiki  x+ikj ], eigenvalges.ql'here is a merit as com?)ensation for this nu-
we can easily find out the transformation rule of both The arical inconvenience: the current scheme can effectively
matrix andS matrix under this phase shift. Another important deal with dispersive materials whegeis dispersive with

point is that in application of the transfer-matrix technique,respect to the frequency. Obviously, using this scheme, one
the Bragg wave vector_s for the 2D lattice in HOY plane 4 account for the conventional photonic band structures
should take Kij x.kij ) = (kxt Gij x.ky+ Gij ). (diagrams plotted along all high-symmetry lines in the first

_ After the transfer matrix connecting(r +as) andu(r) is gz by only carrying out transfer-matrix calculations along a
finally settled down, we are ready to move forward to SOIVesingIe stacking direction.

the photonic band structure. Denoting the column vector of
the fields in the both hand sides of the primitive unit cell as_
(Q7,97) and Qg ,Qg), in the T-matrix algorithm we
write

Thus we need to work out the transfer matrix connecting thés)
field atr andr+az. Remember that in Eq$5) and (6) the
transfer matrix is strictly propagating along the stacking di-
rection, namely, the axis. Thus, after we get the transfer
matrix connectingi(x,y,zp) andu(x,y,z,+as,), we should
further phase shift(x,y,zo+asz,) to u(x+asy,y+asy,zy
+a3,). Observing  that u(X,y,zo+as,)=2u;j(Zo
+ag,)exdiki x+ik; yl, and u(x+asy,y+asy,zotasy,)

In comparison, scheme 1 can be categorizedkas
f(w,ky,Ky), with @ and lateral Bloch’s wave vectok
andk,) explicitly given as an input, whild, left to be de-
termined .k, must be a real number, implying that the eigen-
value e*'% must be a complex number of unity modulus.
Ql+ Qg The same concept and principle of this scheme has been
( ):T< ) (8)  widely used in literature$7,8,11-15, which is called the

0y 79 on-shell approach. In our numerical experiences, the calcu-
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FIG. 2. Diagram of photonic band strulctqres ?e(‘j'_cﬂ'ateq byl_the FIG. 3. Diagram of photonic band structures calculated by the
plane-wave-based TMM for a 2D square lattice of dielectric cyl In-plane-wave-based TMM for a 3D simple cubic lattice of dielectric

ders ir_] ai_r under the TM polarizat!on mode. The Cy““‘?'ef has aspherical particles embedded in air. The particle has a refractive
refractive index on=3.4, and a radius af=0.2a, whereais the ;o t\_ 34 and a radius of=0.3a. wherea is the lattice

lattice constant of the photonic crys_tal. The inset denotes one AU3Eonstant of the photonic crystal. Inset, first BZ of a simple cubic
ter of the first BZ of the square lattice. lattice and corresponding high-symmetry points.

lated eigenvalue corresponding to a Bloch’s mode is always . ) ) ) )

of a modulus different from unity within T0:°. Scheme 1 ON€ S the cylinder slab with a thickness af, 2he other is an
can also apply to dispersive materials. Compared wittg— 2r thick air slab. To calculate the transfer matrix, the
scheme 2, scheme 1 is most numerically economic to solveYlinder slab is further divided into 10 equal-spacing small

the photonic band structure along a prefixed line in the firsEliceS, each one assumed to be a lamellar grating. The Fou-
BZ parallel to the layer stacking direction. In this cakg, [€r €xpansion coefficients of the dielectric function are ana-

= const, k,=const, andk,=f(w). For example, for an fcc Iy_tically calculated for gach slice_. The transfer ma_1trix for the
lattice, theT-X band is solved by considering tH&00) air slab can be analytically derlved_. For tﬁ‘eM line, we
stacking direction of the crystal layers, while thel band should carry_out.the tran_sfer_—ma.tnx calculation _along the
should be solved by using tti&11) stacking direction. In the (11)_ crystal dlrect|.on. In th|§ d_lr.ect|on,.the 1D grating has a
following we will use scheme 1 to solve the photonic bandPeriod of V2a, with the primitive lattice vector beingy
structure for 2D photonic crystals composed of dielectric=(122,0). Another primitive lattice vector along threaxis
cylinders arrayed in square and triangular lattices, and 3mlirection isa,=(1/2a,2/2a), so there is a phase shift for
photonic crystal consisting of cubic lattice of spherical par-the transfer matrix. With a layer-to-layer distance\&/2a,
ticles. We will use scheme 2 to treat a 3D layer-by-layerthe band edge is lying &t,= \/2(7/a), which is just thd to
photonic crystal arranged in an fct lattice. M distance.

The calculated photonic band structures are displayed in
Fig. 2 for the TM(with the electric field parallel to the cyl-
inder axig polarization mode. A minimum frequency step of
0.0005(2rc/a) is used in order to account for those flat

The 2D photonic crystal under study is a square lattice obands with small dispersion as well as modes close to the
dielectric cylinders in air, where the cylinder has a refractiveband gap edge. Up to 21 plane waves have been used in the
index of n=3.4 and a radius of =0.2a, wherea is the transfer-matrix calculations. We have compared with calcu-
lattice constant of the photonic crystal. In the traditionallations using the conventional PWM for 2D photonic crys-
band diagram for a square lattice, the dispersion is calculategls, and found good agreement between the two methods.
along the high-symmetry lines of-X-M-I', where I" For instance, the TMM finds a wide TM band gap opening
=(0,0), X=(m/a,0), M=(w/a,w/a) are high-symmetric between frequencies 0.2855t2/a) (at the M1 bang and
points in the first BZ. These three points and correspondin®.4200(27c/a) (at the X2 banyg see Fig. 3. Here is the
equivalent points are schematically depicted in the inset ofight speed in vacuum. Calculations by means of the conven-
Fig. 2, where only one quarter of the first BZ is displayed.tional PWM show that this TM band gap is lying between
Because we prefer to use scheme 1 in Sec. Il to solve th@.286 and 0.421(2c/a). The two results are very close. We
photonic band structure, we have set lileX andX-M ina  have also considered the TE mode, and find that the agree-
way that they are both parallel to tit@1) crystal direction, ment between the two methods for the TE mode is slightly
because of lattice symmetry. Then, we carry out transferdegraded. We also consider photonic crystals arrayed into a
matrix calculation along th€01) stacking direction of the triangular lattice, and find that application of lattice symme-
cylinder layer. In this direction, the 1D grating has a periodtry can also significantly reduce the numerical burden of
of a. The primitive lattice vector i, =(a,0), and another transfer-matrix calculations.
primitive lattice vector along the axis isa,=(0,a). For the Now we turn to a more complex structure, a 3D simple
I'-X line, we setk,=0, while for theX-M line, we setk, cubic lattice of dielectric spheres in air, to see how we can
= mr/a. The unit-cell thick layer is consisting of two regions, take advantage of the lattice symmetry to calculate the pho-

IIl. PHOTONIC BAND STRUCTURES FOR SIMPLE 2D
AND 3D LATTICES
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tonic band structure from as fewer as possible stacking di- =N =N

rection of crystal layers. Here we assume that the sphere ha (a) ]
a radius of 0.8 and a refractive index of 3.4. The first BZ of \

this crystal and some high-symmetry points are schemati- S
cally displayed in the inset of Fig. 3. The traditional band
diagram is plotted along the high-symmetry lifés<-M-R. 7z
Considering the lattice symmetry, we can select three discon T
nected lined'-X’, X-M, andM'-R as the equivalent alter-
native. Since these three lines are all parallel to ((0@&1)
direction of the crystal, we can use only one stacking direc- T
tion of the crystal layers to calculate the whole band dia-
gram. In this direction, the 2D grating is arrayed in a square Y
lattice with primitive lattice vectorsa;=(a,0,0) anda, X

=(0,a,0), while the third primitive lattice vector along tlze NN
axis isaz=(0,0a). For this very simple grating structure,
we have carried out the transfer-matrix solution using the (b) 2| tetragonal axis
scheme ok,=f(w,ky k) discussed in Sec. lll. The photo-
nic band structure using»9 plane waves are plotted in Fig.
3. This crystal does not have a complete band gap, as is we
known. It does have several directional band gaps along the
I'-X, namely, thg001) or other equivalent directions. If one
wishes to further consider the band diagram alonglthe
line, then one has to consider tfiEll) stacking direction of
the crystal layers. In this plane, the 2D grating is of a 2D
triangular lattice with a lattice constant qRa.

IV. PHOTONIC BAND STRUCTURES FOR 3D x
LAYER-BY-LAYER PHOTONIC CRYSTALS

We proceed further to consider a more complex 3D pho-
tonic crystal structure: a layer-by-layer photonic crystal
[21,22. This is an important class of photonic crystal struc-  FIG. 4. (a) Schematic configuration of a 3D layer-by-layer pho-
ture that has a complete band gap and has been realized tm_wic_ _crysta_l composed of r_ectangular dit_alectric rods ir_1 air. The
experiment at the infrared and optical wavelengths. Thereprlmltlye unit ceII_ is arrayed into an fct latticéb) Schema’qc con-
fore, it seems justified to carry out a detailed and deliberatdiguration of the flrst BZ ofaface-cgntered tetragonal lattice anq the
examination by means of the new method. The configuratio§oresPonding high-symmetry points. Note that the coordinate
of the photonic crystal is schematically shown in Figa)4 rames in(a) and(b) are of 45° rotation with respect to each other.
The photonic crystal is formed by stacking rectangular di-
electric rods layer by layer consecutively along tt®21) L(mlagy,mlag, 7/ cyp), U(w/2ay,ml2ay, 7/ Cyp), and
direction. Rods in each layer are arrayed into a 1D lamellaZ(0,0,27/c,). The whole band diagrams should run through
grating with a pitch ofa. Rods in one layer are perpendicular these high-symmetry points.
to those in the next layer, while rods in one layer are shifted For this complex 3D photonic crystal, if the eigenproblem
by a/2 with respect to those in the next two layers. In thesolution scheme ok,=f(w,k,k,) is used to generate the
(001) plane, the crystal is of a square lattice with a siz&.of whole band diagram, several different crystal stacking direc-
Each rod is of widthw and of thickness, so that the axis tions have to be considered separately. In addition, the struc-
aspect of this crystal i€y/a, whereco=4h is the pitch  tural symmetry involved in this layer-by-layer structure is far
along the(001) direction. The primitive unit cell of the 3D lower than the fct lattice symmetry itself. This means that we
photonic crystal is arrayed into a face-centered tetragonajannot reduce the solution of the whole band diagrams into
(fct) lattice. In Fig. 4a), the coordinate framénamed as transfer-matrix calculations along only one or two crystal
XY 2) is selected in a natural way so that thandy axes are  stacking directions, a way we have done to the simple cubic
parallel to the two rod extension directions, respectively. Theattice of spheres. Therefore, we prefer to use the scheme
coordinate framewritten asX'Y’Z’) for the conventional  w=f(k,,k k). Naturally, the transfer-matrix calculation is
tetragonal unit cell of an fct lattice is different, in that the performed along th€001) stacking direction of the crystal.
andy axes are of 45° with respect to the rods. Thus, in then fact, as analyzed in Appendix C, the plane-wave expan-
(001 plane, the crystal is still of a square lattice, but with sion method functions optimally along this direction because
a size ofay,=\2a. The standard BZ for the fct lattice, of the special geometrical configuration: Each layer is 1D
as schematically in Fig.(¥), is also defined in this latter lamellar grating. Usage of deliberately developed Fourier
coordinate frame. The coordinate of several high-symmetranalysis techniques can guarantee fast convergency of the
points are 1'(0,0,0), X(2w/ay,0,0), T(2m/ay,0,7/cyp), numerical computation. This is another major reason why we
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FIG. 5. Diagram of photonic band structures along some high- FIG- _6. Diagram of photonic band structures calculatgd by the
symmetry lines in the first BZ calculated by the plane-wave-basegonventional PWM for the same 3D layer-by-layer photonic crystal
TMM for a 3D layer-by-layer photonic crystal. The crystal is of a @S In Fig. S.
rod-to-rod spacinga, a rod width and thickness of 0.@5and

0.312%, and a refractive index of the roas=3.4. crystal using the conventional 3D PWMI-6]. The dia-

grams of the lowest 4 photonic bands are shown in Fig. 6,
_ where 99X 9 plane waves have been used. The overall
use the scheme=f(kyky k,) to solve the photonic band structure of the band diagram in Fig. 6 is similar to that in
structure. Other stacking directions do not possess this meitig, 5. However, there are small discrepancy concerning the
of superior geometrical configuration. absolute value of the eigenfrequency. For instance, it is evi-
In the (001) plane, the crystal has a primitive unit cell gent that the 3 and 4 bands in Fig. 5 are higher than in Fig.
arrayed into a square lattice with a sizeaofThe calculation g especially along thE-Z andI'-X lines. The same for the
is most convenient in thXY Z coordinate frame, where the complete band gap. In Fig. 6 the complete band gap is lying
two unit vectors arey = (a,0) anda,=(0,a), while the third  petween 0.370 and 0.442¢2/a), about two percents lower
unit vector along the axis isaz=(al2,a/2,cy/2), reflecting  than in the TMM.
the fct lattice configuration. The coordinates of the high- |n order to understand the discrepancy between the two
symmetry points in thiXY Z frame can be obtained by per- calculations, we have investigated the convergence behavior
forming a 45° coordinate-rotational transform over those inof the two methods by increasing the plane-wave numbers.
the X"Y’Z’" frame. We write them explicitly herd?(0,0,0),  The positions of the complete band g&@-L3 and the di-
X(mla,mla,0),  T(wla,mla,mlcy),  L(m/a,0m/cy), rectional band gapX2-X3 andZ2-Z3 are adopted as mir-
U(m/2a,0,m/co), andZ(0,0,2m/cy). Following the numeri-  rors to reflect the numerical convergency. The results ob-
cal procedures of the eigenproblem scheme  tained by the conventional PWM and the plane-wave based
=f(ky,ky,k;), for each Bloch's wave vectork TMM are summarized in Tables | and Il, respectively. In
= (ky.ky,kz) within the first BZ, we have been able to de- Table I, the plane-wave number is increased froms5< 5
termine the eigenfrequeney that satisfies Eq12). Figure 5 to until 13x13x 13. In Table II, the plane-wave number is
displays the lowest 4 photonic bands for a crystal with increased from %5 to until 11X 11. It is quite evident that
=0.2%, h=0.312%, and refractive index of the rod as 3.4. the former method yields a convergency much slower than
The results have been obtained by usinga77plane waves the latter method. The latter method has already arrived at an
in the transfer-matrix computation. The photonic bands areccuracy better than 0.5% with a modest plane-wave number
exactly doubly degenerate along thieZ direction, a natural of 7x7. In the former method, all band gaps continue to
result is induced by the geometrical symmetry in this direc-move to higher frequencies, especially for higher band edge,
tion. There appears a wide complete band gap withTtRe with a tendency to accord with the converged results given
band andL3 band being the lower and upper band edgesby the latter method. This can explain why in the 3 and 4
respectively. The band gap is located between frequencies dbinds in Fig. 6 are 2% lower than in Fig. 5. The excellent
about 0.376-0.453(2c/a). As a comparison, we have cal- convergency of the TMM, achieved when applying optimal
culated the photonic band structure of the same photoniEourier expansion rule to the field and dielectric function,

TABLE |. Convergency of the conventional PWM applied to the layer-by-layer photonic crystal.

Plane-wave number Complete band gap (001) Band gap (100 Band gap
5X5X%5 0.3664-0.4343 0.3484-0.5035 0.3539-0.4591
TXTXT 0.3679-0.4392 0.3483-0.5026 0.3561-0.4663
9X9x%x9 0.3696-0.4420 0.3487-0.5078 0.3579-0.4689

11X 11X 11 0.3708-0.4439 0.3490-0.5116 0.3592-0.4715
13X 13X 13 0.3715-0.4453 0.3491-0.5127 0.3599-0.4729
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TABLE 1l. Convergency of the plane-wave based TMM applied to the layer-by-layer photonic crystal.

Plane-wave number Complete band gap (00D Band gap (100 Band gap
5X5 0.3804-0.4556 0.3543-0.5320 0.3701-0.4824
X7 0.3762-0.4530 0.3511-0.5247 0.3646-0.4823
9Xx9 0.3759-0.4522 0.3505-0.5239 0.3645-0.4816
11x 11 0.3759-0.4522 0.3504-0.5241 0.3645-0.4813

can set a solid reference to the much more popular converbtain the lateral wave vector in this plane, whictkjsand
tional PWM. Fairly speaking, the convergency of this popu-k, . Then we use the schenk;=f(kx,ky,w) to calculate

lar method is not bad: Using not very large a number ofthe dispersion along th@01) direction. Matchingk, to the
plane-waves, 1X11X11, the predicted width of the com- prefixed value ok, either through simple searching or inter-
plete band gap and other two directional band gaps is onlpolation technique, we can pick up the eigenfrequency cor-
larger than the converged values by less than 1%. Thereforegsponding tdk, namely, we have arrived at the scheme
the wide photonic band gap in this class of layer-by-layer=f(ky,ky,k,). To speed up the numerical solution, we can
photonic crystal structures is robust irrespective of inaccufirst find out the eigenfrequencies at one wave vector, say,
racy in previous theoretical methods, and it has been verifiethe high-symmetry poinZ in Fig. 5. Then we start from this
by numerous experimental tests. Very recently, the converPoint, and carry out the above numerical procedure in the
gence of the conventional PWM applied to another importangdjacent small frequency range to find out the eigenfre-
3D photonic crystal structure: diamond lattice of dielectricquency of the adjacent wave vector for each photonic band.
spherical particles in air has been carefully investigated byrepeating this procedure, we can efficiently work out the
comparing the PWM result with a convergent KKR calcula-whole traditional band diagrams.

tion [23], and much poorer convergency is found for the Similar technique has been used in Réf2] and[15],
PWM [24] compared to the layer-by-layer structure studiedwhere the overall photonic band structures are investigated
here. For instance, the complete band gap size in the clos8Y projecting a Bloch’s wave vector in traditional first BZ
packed diamond lattice is found to be drastically reducednto the surface Brillouin zonéSBZ) corresponding to the
from the earliest PWM calculation of about 15%) to the 2D lattice in the lateraXOY plane and then employing the
KKR calculation of 4.2%. Before final conclusion is drawn schemek,= f(k, ,k,,®) to get the solution. To appreciate
towards this striking contrast, it might be helpful to employ the advantage of this scheme, the projection photonic band
other independent efficient approach, such as the planstructures[characterized byw—(k,,k,)] along the high-
wave-based TMM presented in this paper, to have a doublgymmetry lines in the SBZ are plotted, consisting clusters of

check. occupied regiongBloch’s mode$ separated by unoccupied
regions(directional band gapsIn such forms of band dia-
V. THIRD SCHEME TO SOLVE THE PHOTONIC grams, only the size of complete band gaps are visible, yet its
BAND STRUCTURES exact position(upper and lower banglss invisible (which

usually lies at certain high-symmetry points in traditional

In the above sections we have discussed two differenBz), so is the size of band gaps along other important crys-
numerical schemes to solve the traditional band diagrams blline directions. To appreciate these features from direct
means of the plane-wave-based TMM. In schemekl, eye view, traditional band diagrams are preferred, and thus
=f(ky Ky, ), the transfer matrix is calculated exactly along the above simple third scheme can find its usage.
the stacking direction parallel to the high-symmetry lines in  Finally, it seems interesting to compare the current plane-
the band diagram. In principle, several stacking directionsvave based TMM with the more popular real-space TMM
are needed to account for the whole diagram. In scheme 27,8]. Both methods can handle the wave scattering by a
o=f(k,,ky,k;), one can calculate the whole diagram of finite photonic crystal slab and the photonic band structures
photonic band structures by looking at only one single stackfor an infinite system. The plane-wave-based method is more
ing direction. In scheme 1, very reliable standard eigenprobflexible in that it can deal with any periodic system with
lem solution tools are ready for use, while in scheme 2, conarbitrary lattice types and unit cell configurations. In con-
sideration of only one stacking direction can reduce therast, the real-space TMM basically is limited to orthogonal
numerical burden. More importantly, it is more flexible to lattices due to its use of cubic grid meshes in the finite-
select a stacking direction along which fast converged resultdifference scheme. Another advantage for the plane-wave-
can be achieved by using optimal Fourier expansion rules. based method is that a lot of advanced analysis tools have
may be valuable that one combines the advantages of thebeen developed in the grating community in the last several
two schemes. decades, in regards to, for example, the convergence prob-

Let us take the layer-by-layer photonic crystal as an exiem. As a comparison, in the real-space method, few studies
ample. To guarantee fast numerical convergence, we shoulthve been reported on such problems, which is essential and
consider the(001) stacking direction. Now for eackk important to a numerical method. However, the real-space
= (Kkx.ky,k,), which is usually lying at an arbitrary high- scheme is superior to the plane-wave-based scheme in one
symmetry line, we project it onto the stacking direction, andimportant aspect, that is, it is much faster in constructing the
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transfer matrix for a general slab than the plane-wave-based 9 1 9/ 9 J _
method, because it does not need to solve the eigenproblem —Hy=7——| -Ey——E,| —ikoeE,,  (A4)
. . o . Jz ikg dx\ ax ay
for each slice of lamellar grating, which is rather time con-
suming.
J 1 9/ J _
VI. SUMMARY AND CONCLUSION 2 Tk gy | ax Y gy Bx) TiKoeB (D)

In summary, we have extended the plane-wave-based

TMM from its routine service as a powerful tool to solve em \ne can further write down the plane-wave expansion expres-

wave scattering by a general multilayer grating and photonigjons of the em fieldgalready given in Eqe1) and(2)] and
crystal slab to handle the photonic band structure for an inthe dielectric function,

finite system. The numerically stable scattering-matrix algo-

rithm has been used, and three different numerical schemes

to solve the eigenproblem corresponding to traditional band

diagram have been proposed and discussed in detail. The e(r)=> €;€'CiT, (A6)
plane-wave-based TMM allows one to handle arbitrary lat- ij

tice types and unit-cell configurations. Advanced analysis

tools invented in the grating community that allow for effi-

cient Fourier expansion of the dielectric function and em e Yn=> ei}leieij'r_ (A7)
fields with discontinuities occuring at the boundary of differ- i

ent material domains have been exploited to greatly speed up

the convergence of numerical computation for 2D and 3D, I . .
systems. Detailed investigation of the numerical convergencgubSt'tUtmg them into EqgA2)—(A5) yields
behavior has been carried out for an important class of 3D

layer-by-layer photonic crystals by means of both the plane- 4 —ikij x .
wave-based TMM and the conventional PWM. The results -~ Eijx=— € mn(KmnxHmny = KmnyHmnx)
clearly reveal much better convergency of the TMM. o mn
+ikoHjj y» (A8)
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—iKoHij x, (A9)
APPENDIX A: EIGENMODES WITHIN A 2D LAMELLAR

GRATING SLICE AND THE RESULTING "
J 1k;;
] .TRANS.FER MATRIX ] o EHij,x:% E 5ij;mn(kmn,xEmn,y_kmn,yEmn,x)
In this appendix we will present a detailed description on o mn
how the eigenmode of em fields within a 2D lamellar grating
slice is solved under the plane-wave basis, and how the - ikoE €ij;:mnEmny » (A10)
transfer-matrix connecting fields at the two hand sides of this mn
grating slice is related to these eigenmodes.
We start from Maxwell’'s equations,

iH-- :ME St KmnxEmnyv— KmnvEmnx)
VXE(r)=ikoH(r), VXH(r)=—ikoe(r)E(r). 2N I T
(A1)
Here €(r) is the periodic dielectric function of the grating +'k0% €ij;mnEmnx- (A11)

slice, it is homogeneous along th@xis. We can rewrite Eq.

(Al) into six partial-differential equations satisfied by _

(E.E,,E,) and H,,H,,H,). The z components of em Now define column vector&= (- - - ,Ej; ,Ejjy,---)" and
fields E, and H, can be deleted from these six equations,H=(:--.Hij x.Hij.y. - -)T, Eqs.(A8)—(A11) can be written

leading to the following four coupled equations: into a concise matrix form
J ! (31((3H (?H)+'kH (A2) d d
N — - _ = — —_— | ,
9z X —ikg ax|e\ax Y gy X oy SE=TiH, —H=T,E, (A12)

J _ 1 9
gz Y —ikg ay

1

€

d d
Hxﬂ—ikon, (A3)

ax Y ay where the matrice$,; andT, are defined as
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. -1 -1 2
Tij:mn_ | li xfu mnkmn,y k|] XEIJ mnkmn,x+k05ij;mn)
—_ — 2 l L
Ko kij,yeij;mnkmn,y_|<05ij;mn _kij,yfij;mnkmn,x
2
Tiimn_ ( _kij x5ij mnkmny I(ij,x5ij;mnkmn,x_koeij;mn)
2 o .
k kl] y5|J mnkmny+k05|] ;mn kij,y5ij;mnkmn,x

From Eqg.(A12) we finally obtain an eigenproblem for the block-diagonal matrix each block of which is a2 matrix

electric field, already given byT,;; in Eq. (4). Within the grating slice,
(92 + iBh +
—E=(T,T,)E=PE. (A13) E.(z)| [€* 0 \[Esi(z_-1)
0z 3 = _igh " , (A17)
Ea(z) 0 e Ea(zi-1)

Now suppose we have usé@dy plane waves in the expan-
sion, thenT;, T,, andP are all (Ng) X (2Ny) matrices. whereh=z—z_, is the thickness of the slice!’" denotes
Solution of Eq.(A13) will give us 2N, eigenvaluesdenoted  a (2N,) X (2N,) diagonal matrix whose element é%", i
asB?,i=1,2,...,N,, with Im(53;)=0) of the matrix— P =1,2,...,Ny. Deleting [E;(z_1),E;(z_1)]" and
= —T,T,. In addition, the (No) X (2No) matrixS,, whose  [E](z),E, (z)]" from Egs.(A15)—(A17) and making some
jth column is the eigenvector corresponding to the elgenana|yt|ca| derivations yields

value B, , can also be obtained S|multaneously The eigen-
mode corresponding tq8I is E/(2)=E_. 2i(2)+E,i(2),

El.(2)=E €A 2-0, E_(2)= E e i z-1, where o _[8n 312)_1(eiﬁh 0 an ap|[ Qi
E;" and E; are both unknown variables. Further define \ Q; Ay, Aap 0 e lay axy/ 0,/
column vector B=(....Bi,...), E. (A18)

_[ . a|(Z) ]T andE _[ . a|(z) ]T The _ _
electric field column vectoE are now expressed into the where a;;=3(S; 'S+ T, To), a1,=3(S; "So— T, 'To),
superposition of all the eigenmodeés=S,(E; +E,). The anday=ajp, ax»p=ajs;. Thus theT matrix for slicei is
corresponding magnetic field column vector are obtained

from Eq. (A12) and reads H=T;'9/dzE i ~1/iph

R _ ty, t a;; a e 0 a;; a
=T,'Sed/ 02(Ef +E, ) =iT 'SB(E, —E;)=Ta(Eq ,—( - 32) _( H “) ( B
—E,), whereT,=iT;'S,B. It proves convenient to write tn t3p) \@za ax 0 e azn ?izlg)

down the electric and magnetic fields at an arbitrary point

inside the grating slice into a concise form: ) ) o )
Now it becomes clear why thiEmatrix formalism is numeri-
cally unstable for thick gratings. Look at the two phase fac-
E(Z)> _ ( Sa S ) (Al4) tors e'#" and e"'#". For those Bragg wave components
H(z) To —Ta where B; has a significant imaginary part, one of them must
be exponentially increasing through the whole slab of grat-
The em fields in the two air films around the grating sllcemgs rendering numerical instability such as overflow.

Ea(2)
E.(2))

have been expressed in E¢3). and(4), and can be rewritten |n principle, theS matrix can be calculated from tHe
in a way similar to Eq(A14). Match of boundary conditions matrix through transformauorsll t11 tlz[tzz] th,, si,
yields =t thy] 7L, shy=—[th,] thy, sh,=[th,] . However, be-
cause theT-matnx algorithm is not stable, we prefer to de-
(SO S )(Qfl) (Sa Sa ) E;(Zil)) rive the S matrix for slicei directly from Eq.(A18) without
To —-To/\Q T. —TalEs(zy) the aid of theT matrix, largely depending on analytical deri-

(A15) vation. The final answer is

at the left interface=z_, and

i iy Sh PatitPoty  Pata+Poty
s'=1 S ., (A20)
(SO So) (Sa Sa) E;(zi)) Sz1 S22/ \PataT Pty Pititpols
_|= _ (A16)
To -To\o) |1, -7 :
° ol 14 2 a/\Ea (2) where pi=[a;;—ePMasa e telfha )t P2
at the right interface=z,. S, and T, are counterparts &,  =a;; €*"a;fa;;—€e'fMa.a;lePa;,] 2, ti=e "Bhall, and

and T, in an air film. Sy=1, a unit matrix, andT, is a  t,=—aj,. From Eq.(A20), it is obvious thats' is a block-
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symmetric matrix, reflecting the fact that the grating slice is Py
symmetric with respect to its middle plane at(z_, —2Ey=(T1T2)Ey: PE,, (B2
+z)/2. 9z

APPENDIX B: EIGENMODES WITHIN A 1D LAMELLAR N . 5 -
GRATING SLICE where Ty"=(i/ko) (Kj.y€;:nKny—K56j:n), "=
—iko[(lle)]j‘;r}. In the aboveg;., is the direct Fourier ex-

In this appendix we will derive the eigenmode of em . .- 1 . .
) o . . 7 pansion coefficient ok(y). €., is obtained by the inverse
fields within a 1D lamellar grating slice directly from the matrix of ;.. following from D,— ¢E, in Eqs. (A1)~(A3),

general 2D case. Both the TM and TE polarization modes ; : ; o
will be considered simultaneously. whereE, is always continuous at the boundary, since it is
In recent years, powerful analytical tools of Fourier ex- palrlallel t,ol _the btdpmgmb v::allt IS f _Iamtellar f gratings.
pansion for the dielectric function and em fields applied to a[( €(¥))]jn is obtained by first Fourier transform over

1D grating have been developed. The optimal Fourier exparfye(yr)]' thin inverse ”:je re§ﬁ!tin% matrilx. ! ah
sion rule can efficiently handle the subtle discontinuityeof VNen the eigenmode within the 1D lamellar grating have

and em fields at the boundary of the two different materialbeen so_lved_wa EqsB1) an_d(BZ), the c_orrespondlng trans-
domains, and allows for accelerated numerical convergenc;Per matrix, either thel matrix or S matrix, can be obtained
[18,19. These rules can be summarized as follows. Consid pllowmg the same procedure for the general 2D case dis-
D= ¢E, whereD andE are one of the three components of cUssed in Appendix A.

the electric displacement and electric field vectorsk ifs

continuous across the boundary, then the direct Fourier trans-

formation overe should be used to Fourier transforin APPENDIX C: OPTIMAL FOURIER EXPANSION RULE
namely, D;=¢;E;. Here doubly appearance of the index FOR A LAYER-BY-LAYER PHOTONIC CRYSTAL

J” means summation overj”’. If D is continuous across |, this appendix we will present the optimal Fourier ex-

the boundary, then the inverS(la rule of Fourier expansion OVESansion rule for an important class of 3D photonic crystal:
e should be used);=[(1/e) ];; 'E; , where[ (1/¢)] ! means  |ayer-by-layer photonic crystals. This can be done because of
the inverse matrix of the Fourier transformation matrix of theihe special geometrical configuration of this kind of photonic
function 1k. I crystal, where each layer of rectangular rods in air is a 1D
Now suppose a 1D lamellar grating is periodic alongythe |amellar grating, so that the effective and efficient rule de-
axis and homogeneous along thexis. For the TM mode, yeloped in Appendix B can be directly utilized. The rapid
the field variables areH, ,H,), while for the TE mode, the convergence behavior of numerical calculations allow us to
field variables are, ,H,). Following the above rules and yse this as a reference to appraise the convergency of the
using Eqs.(A12) andA13), the optimal form of the eigen- conventional PWM when applied to this important 3D pho-

problem for the TM mode is tonic crystal structure.
72 In Appendix A, we have not used the optimal Fourier
e _ expansion rule for the discontinuous dielectric functie(
2 Ex=(TiT2)E=PE,, BY and e %(r) in a 3D photonic crystal. Now following the

_ _ rules described in Appendix B, for a layer where the rods are
where TJl;”=ik05j;n, TJZ:n:(i/kO)(—ij’er kgej;n). For the along thex-axis direction,T; andT, in Eq. (A12) should be

TE mode, we have written as
J
. -1 -1 2
Tiiimn_ : Kij x€ijimrKmny _kii,xeij;mnkmn,x+k05ij;mn)
1 Tk -1 2 -1 '
kO kij,yeij ;mnkmn,y_ k05ij ;mn - I(ij,yeij;mnkmn,x
1 -1
. 2
ij:mn | _kij,xéij;mnkmn,y kij,xﬁij;mnkmn,x_kouz)}
Ty :k_ ij;mn

0 2

_kij,yaij;mnkmn,y+kOEij;mn kij,y5ij;mnkmn,x

The reason is tha, andE, are both parallel to the air-rod boundary, whide is perpendicular to the air-rod boundary. For
the same reason, for a layer where the rods are along-&éxé direction,T; andT, in Eq. (A12) should be

. -1 -1 2
| kij,><fij;mnkmn,y _kij,xéij;mnkmn,x+k05ij;mn)

Tij;mn__
1 - -1 2 -1
Ko kij Y €ij ;mnkmn,y_ kO‘sij :mn - I(ij yEij ;mnkmn,x
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- kij ,x5ij ;mnkmn,y

1 -1
a2l
ij;mn

Tij;mn:i_ 5
I(O - kij ,y5ij ;mnkmn,y+ kO

PHYSICAL REVIEW E 67, 046607 (2003
2
kij,xéij;mnkmn,x_ kOEij;mn

kij ,y5ij ;mnkmn,x

It should be noted that until now, optimal Fourier crystal built from spherical particles, such as the simple
expansion rules as powerful as the above for 1D gratingsubic lattice considered in Sec. lll, we simply use the
are still to be found for a general 3D photonic crystal with direct rule of Fourier expansion rule fef;.,,, and inverse
arbitrary geometrical configuration, although promisingrule for Ei_j;lmn in the matricesl'; andT, in (A12) of Appen-

progress has been madd8,19. For a 3D photonic
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