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Instabilities and bifurcations of nonlinear impurity modes
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We study the structure and stability of nonlinear impurity modes in the discrete nonlinear Schro¨dinger
equation with a single on-site nonlinear impurity emphasizing the effects of interplay between discreteness,
nonlinearity, and disorder. We show how the interaction of a nonlinear localized mode~a discrete soliton or
discrete breather! with a repulsive impurity generates a family of stationary states near the impurity site, as
well as examine both theoretical and numerical criteria for the transition between different localized states via
a cascade of bifurcations.
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I. INTRODUCTION

Nonlinear localized modes in discrete systems, also ca
intrinsic localized modes or discrete breathers, are s
localized states that exist due to the interplay between la
coupling and nonlinear effects. Spatially localized modes
the discrete nonlinear Schro¨dinger~DNLS! equation, known
asdiscrete solitons, have appeared in many diverse areas
physics, such as biophysics, nonlinear optics, solid s
physics@1#, waveguide arrays@2#, and, more recently, in the
studies of the Bose-Einstein condensates in optical latt
@3# and photonic-crystal waveguides and circuits@4#.

In application to nonlinear guided-wave optics, discre
solitons have been suggested to exist in nonlinear waveg
arrays @5#, and they have been observed a decade late
AlGaAs waveguide structures@6# ~see also a review pape
@2#!. Several other issues, such as the discreteness-ind
soliton dynamics and soliton interactions have been inve
gated. Regarding applications, it was recently shown
discrete solitons in two-dimensional networks of nonline
waveguide arrays can be used to realize various functio
operations, such as blocking, routing, logic functions, ti
gating, etc.@7#.

On the other hand, localized impurities are known to p
a crucial role in numerous physical systems, not only int
ducing interesting wave scattering phenomena@8#, but also
creating the possibility for the excitation of impurity mode
which are spatially localized oscillatory states at the impu
sites@9#. The relevant phenomenology has been recogni
as important in a variety of physical settings ranging fro
defect modes in superconductors@10# to the dynamics of the
electron-phonon interactions@11# and from the propagation
of light in dielectric superlattices with embedded defect la
ers @12# to defect modes in photonic crystals@13#.

It is crucially important to examine the interplay betwe
disorder and nonlinearity. For the continuum problems, t
interplay is known to lead to the existence of symmetric a
asymmetric impurity modes and their interesting stabi
properties~see Refs.@14,15# and references therein!. Here
we concentrate on the study of the discrete systems suc
the DNLS model. Some earlier results for discrete lattic
1063-651X/2003/67~4!/046604~8!/$20.00 67 0466
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focused on the scattering of localized modes by impurities
the DNLS equation@16,17#, as well as in the Klein-Gordon
model @18#. The effect of the impurity on localization prop
erties of the nonlinear lattice and stability of localized mod
was studied, to the best of our knowledge, only for lattic
with anharmonic coupling@19#.

However, the earlier theoretical predictions@17# and re-
cent experimental results@20,21# for the interaction of the
discrete solitons with structural defects in arrays of AlGa
optical waveguides suggest that discreteness should pl
crucial role in the properties and stability of nonlinear loc
ized modes. In this paper, we study, in the framework of
DNLS model, how the interaction of a discrete localiz
mode with a repulsive nonlinear impurity leads to differe
localized states, as well as examine, both analytically
numerically, the stability criteria for the bifurcations betwe
different localized modes near the impurity site.

The existence of multiple localized states near the im
rity site can be understood by means of simple physics.
deed, in the continuum approximation, a two-hump localiz
mode centered at the defect@22# is known to be unstable
with respect to an exponential growth of antisymmetric l
ear perturbations@14,15#. The above-mentioned instabilit
leads to the motion of the localized mode away from t
defect@15#, and for small distancesj between the mode cen
ter and the defect, the effective interaction energy can
presented in the formH int.H02Aj2, whereA is defined by
the defect parameters (H0 is a constant!. However, this situ-
ation becomes quite different in discrete systems becaus
the so-called ‘‘Peierls relief,’’ an effective periodic potenti
due to the lattice discreteness. Such a potential was first
culated for small-amplitude breathers in a nonlinear ela
chain described by the discrete nonlinear Klein-Gord
equation@23# applying an approach suggested for kinks
the Frenkel-Kontorova model@24#. The potential has the fol-
lowing structure,Hp.H12B cos(2pj/h), whereh is the lat-
tice spacing (H1 ,B are constants!. Thus, a competition be
tween these two potentials defines a sequence of st
positions of a localized mode near the defect. This qualita
picture is valid in the limit of smallh and, generally speak
ing, the problem should be solved numerically. Below, w
©2003 The American Physical Society04-1
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consider this problem in the framework of the DNLS mod
with a single on-site nonlinear defect.

The paper is organized as follows. In Sec. II we introdu
our model and discuss the analytical results obtained for
family of the stationary states localized near the defect s
Then, in Sec. III we study numerically symmetric localiz
modes and their symmetry-breaking instability, including t
analysis of the linear eigenvalue problem. Section IV
cludes the results of the instability-induced dynamics of
calized modes and the study of the families of asymme
localized modes which appear as stable states due to a
ance of the defect repulsion and the effective trapping po
tial of the lattice. We also find the families of asymmetr
modes and demonstrate their stability. Finally, Sec. V c
cludes the paper.

II. MODEL AND ANALYTICAL RESULTS

We consider a DNLS model with a nonlinear impurity o
one site of the lattice. To examine the interplay between
creteness, nonlinearity and disorder, we study the case
focusing nonlinearity in the waveguide array with a repuls
nonlinear defect. The DNLS equation describing our mo
can be written in the following dimensionless form:

i u̇n1
C

2
D2un1uunu2un5adn,n0

uunu4un , ~1!

where D2un[(un111un2122un), un describes the com
plex envelope of the electric field in the waveguide with t
index n, while the dot stands for the spatial derivative alo
the array propagation direction~which we treat here as
time t).

In this study, we select the quintic nonlinearity for th
defect, in order to differentiate its effect from the lattice
well as to model non-Kerr nonlinear response often obser
in experiment~see, e.g., Ref.@21#!. However, we expect tha
similar results will be qualitatively valid for any type o
power-law nonlinearity of ordern. The generalized nonlin
earity of the defect can also appear in the theory of photo
circuits @25#.

The coupling coefficientC can be expressed through th
lattice spacingh as followsC51/h2, and it characterizes th
effective diffraction in the array. We should notice that t
lattice spacingh may not coincide with the relative distanc
between the waveguide in an array, and these values
connected in a more complicated way@26,27#.

Equation~1! stems from the Hamiltonian

H5(
n

1

2
~Cuun112unu22uunu4!1

a

3
uun0

u6 ~2!

upon setting its derivative with respect toun* equal toi u̇n .
The linear waves of the formun5u0 exp(iVt2iknh) have

the ~phonon! spectrumV52(2/h2)sin2(kh/2) consisting of
a band of negative frequencies (V,0).
04660
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In the homogeneous~i.e., no impurity or equivalentlya
50), continuum~i.e., h→0) limit, the model Eq.~1! has an
exact localized solution of the form~in the long-wave ap-
proximation, i.e., forhh!1)

u~x,t !5
h eiLt

cosh@h~x2j!#
, ~3!

where L5h2/2, L is the frequency of the breather~and
should be positive to avoid resonances with the linear sp
trum of plane waves!, andh essentially defines an effectiv
mass of the breather excitation in the long-wave approxim
tion according toMe f f52h.

A natural approach to the study of a discrete model is
use expression~3! as an ansatzsolution in the Hamiltonian
Eq. ~2! in order to obtain information about the static sol
tion of Eq. ~1! and its stability. The last term of Eq.~2! is
then easy to evaluate in the framework of the ansatz Eq.~3!.
On the other hand, the first two terms~in parentheses! of Eq.
~2! can be evaluated using the Poisson summation form
@28#, which states that

(
n52`

`

f ~bn!5
A2p

b (
m52`

`

FS 2mp

b D , ~4!

whereF is the Fourier transform off,

F~k!5
1

A2p
E

2`

`

f ~x!eikxdx. ~5!

Using the above remarks and formulas for the Ham
tonian Eq.~2!, we can evaluateH5H(j;$h,h%) ~up to con-
stant, independent ofj terms! as the following:

H5Hp1H int , ~6!

where

Hp52
4p2

h2 (
m51

`
m cos~2mpj/h!

sinh~mp2/hh!

3F2
1

h2
1

h2

3 S 11
m2p2

h2h2 D G ,

H int5
ah6

3 cosh6~hj!
.

Notice that the first part of the expression pertaining to
summation assumes the correct asymptotic~i.e., small h)
form used, e.g., in Eq.~3.5! in Ref. @29#, as well as in refer-
ences therein. Finally, it is worth mentioning that the ser
in Eq. ~6! has terms which are exponentially smaller wi
respect to the leading order terms and hence even keep
small number of terms in the series should yield reasona
accurate results. In the leading order approximation,
Hamiltonian can be approximated as follows:
4-2
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H.2
16p2

h4
e2p2/hh cos~2pj/h!1

ah6

3 cosh6hj
. ~7!

The criterion for obtaining a steady state in the reduc
variable formalism ofH5H(j;$h,h%) requires that

]H

]j
50. ~8!

It is worth noting that the fact that the solutions of Eq.~8!
will be static solutions of Eq.~1! has beenrigorouslyproved
recently by Kapitula@30#, through the use of a Lyapunov
Schmidt reduction. Given that the ansatz of Eq.~3! is not
exact, this result should be interpreted in the orbital se
~i.e., there are orbits in the configuration space which
close to the approximate solution of Eq.~8! in conjunction
with Eq. ~3!, in the appropriate norm!. In particular, in this
case one can directly observe thatj50 will always be a
solution of Eq.~8!. Additional solutions are present close
j5nh (nPZ), and unstable ones close toj5(n11/2)h. In
the homogeneous limit, the pulselike steady states are
actly at these points, as is well known, but now the prese
of the impurity modifies their exact location, albeit slight
due to the exponential decay of the impurity potential aw
from its location atj50.

Of particular interest is the stability of the solution atj
50. One naturally expects that when the impurity is su
ciently strong and repulsive, it willreversethe local stability
picture close toj50, converting the relevant local energ
minimum into a local energy maximum. We should note h
that as per the positive definite nature of the Hessian ma
in the focusing case~for a single pulse!, the local minima of
the energy landscapeH5H(j;$h,h%) will correspond to
stable solutions. The opposite will be true for local maxim
The Hessian matrix here is given by]P/]L, whereP is the
power or~squared! L2 norm of the solutionP5uuuuu2

2 @31#.
Recall that theLp norm is defined asuuuuup5((nuunup)1/p.
The L` norm ~used also below! is given by uuuuu`
5maxnuunu. P can be thought of as the number of element
excitations present in the field. In the optics literature, this
often called the ‘‘energy’’ of the solution.

Hence, the instability criterion in the reduced, one deg
of freedom dynamical system for the relevant steady s
will be

]2H

]j2U
j50

,0, ~9!

which can be restated in the form of the asymptotic appro
mation, through the leading order term of the series in
~6!, as followsa.ac , where

ac5
32p4

h6h8
e2p2/hh. ~10!

In terms of the full series, the critical value reads
04660
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ac5
8p4

h8h6 (
m51

`
m3

sinh~mp2/hh!
F2

1

h2
1

h2

3 S 11
m2p2

h2h2 D G ,

~11!

which can be easily confirmed to have as leading order
havior Eq.~10!.

The result Eq.~11! describes the stability threshold of th
discrete mode localized at the impurity siten50, so that
when the impurity is sufficiently strong and repulsive, it w
reverse the local stability of the mode close toj50, convert-
ing the relevant local energy minimum into a local ener
maximum. However, results~8! and ~9! are more general
and suggest the existence of many different stable statio
states located at certain distances from the impurity acc
ing to the local minima of the effective energy. The
minima are produced by the effective periodic potential d
to the model discreteness, but their exact location depend
the ‘‘strength’’ of the impurity~effectively measured by the
value ofa). For all such states, the physical picture based
the reduced Hamiltonian is valid only approximately, a
more detailed numerical studies are required.

III. LOCALIZED MODES AND THEIR STABILITY

We now turn to numerical results. We numerically co
structed solutions of Eq.~1!, for a chain withN5200 sites,
localized at the impurity siten05100, using a Newton
method with an initial condition given by Eq.~3!, assuming
L50.5 (h51). Upon convergence, linear stabilit
analysis of the resulting pulses was performed. This w
done by linearizing using the ansatz:un5usol
1e exp(iLt)@an exp(2ivt)1bn exp(iv* t)#; usol is the exact
solution ~around which we are linearizing! and the v ’s
denote the linearization eigenfrequencies. Then toO(e)
we obtain the relevant~linearization! eigenvalue problem

FIG. 1. Nonlinear localized mode in the model Eq.~1! for h
51. The solid line with circles depicts the continuum solution E
~3!. Stars and pluses denote the discrete solution (h51) at a50
anda5ac'0.22, respectively. In the discrete case, the solid line
a guide to the eye only.
4-3
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FIG. 2. Different localized modes~left panels!
and their stability properties~right panels! in the
model~1! for h51. Results of the linear stability
analysis are given in the form of the spectr
plane (v r ,v i) showing the real and imaginar
part of the eigenfrequency, respectively. The t
row is for a50, the middle is fora50.3.ac ,
while the bottom is fora50.5.
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bk*
D 5J•S ak

bk*
D ,

whereJ is the linear stability~Jacobian! matrix of the form

J5S ]Fi

]uj

]Fi

]uj*

2
]Fi*

]uj
2

]Fi*

]uj*

D ,

FIG. 3. Threshold of the instability onset for the nonlinear im
purity mode centered at the impurity site, shown as the crit
impurity strengthac vs the lattice spacingh. The solid line shows
the full numerical result, the dashed line shows the asymptotic
oretical prediction of Eq.~10!, while the dashed-dotted line repre
sents the prediction of Eq.~11!, includingm550 terms in the sum-
mation.
04660
where Fi52 1
2 C(ui 111ui 2122ui)2ui

2ui* 1aui
3ui*

2d i ,n0
.

When the corresponding eigenfrequenciesv are real, then
the solution is linearly stable. On the contrary, the prese
of a mode with a nonzero imaginary part in its eigenfr
quency denotes the presence of an instability.

Figure 1 shows a typical mode profile obtained in diffe
ent cases. These soliton profiles are similar to those
cussed in the long-wave approximation in Refs.@14,15,22#.
For a50 ~homogeneous case!, the circles denote the dis
cretization of the continuum profile in accordance with E
~3!. The correspondingexactdiscrete homogeneous solutio
is shown by the stars. These results are shown for the la

l

e-

FIG. 4. Top: theL2 ~solid line! andL` ~dashed line! norms of
the localized mode vsa. Bottom: the relevant point spectrum e
genvalues of the problem continued overa. The solid line shows
the pinning~or translational! mode that becomes unstable~dotted
line! afterac'0.22. The dashed line shows the breathing~or edge!
mode, while the dashed-dotted line indicates the band edge o
continuous spectrum.
4-4
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FIG. 5. Development of the mode instabilit
for a50.3 andh51. The top left panel shows the
mode spatial profile att5200. The top right
shows the modulus squared of the central site a
of the site nearest to it, indicating relaxation to a
exponentially localized configuration centere
around the neighboring minimum~at n'99).
The bottom left panel shows a space time plot
the evolution of the modulus squared of the fiel
while the bottom right indicates the relaxation o
the localized mode center from sitexc'100 to
the one withxc'99.
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spacing parameterh51. Notice, that discreteness induces
narrowing and increase of amplitude with respect to the c
tinuum pulse. Finally, the pluses indicate the solution at
onset of the instability~that occurs asa is increased!, for
a50.22. An interesting observation is that at the onset of
instability, the pulse has essentially regained its continu
shapebut for a significantly larger amplitude at the centr
site.

A more detailed study of the mode instability that occu
as a is increased is presented in Figs. 2 and 3. Figur
shows three different examples of the discrete locali
mode and the corresponding linear stability results. The
panel is fora50.1, in the subcritical case, where the stab
ity of the mode can be determined by the absence of im
nary eigenfrequencies~see the top right panel in Fig. 2!. The
middle row shows a slightly supercritical value of the imp
04660
-
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rity strength (a50.3, whileac'0.22), while a strongly un-
stable, supercritical mode fora50.5 is shown in the bottom
panel. It is important to remark here that a perhaps coun
intuitive result of our numerical investigations is that th
instability point isnot coincident with the point~in parameter
space! where the symmetric mode becomes two humped.
have generically observed that the mode becomes
humped for considerably larger~than the instability thresh-
old! values of the defect strengtha.

Similar calculations were performed for different valu
of the discreteness parameterh and a two-parameter stabilit
diagram is shown in Fig. 3. Above the different curves t
~centered atj50) solutions are unstable, while the oppos
is true below the curves. The solid line denotes the ex
numerical result, the dashed line is the asymptotic predic
of Eq. ~10!, while the dashed-dotted line is the prediction
e

FIG. 6. Same as in Fig. 5 but fora51 and

h50.5. The instability initiates the motion of th
localized mode along the chain.
4-5
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Eq. ~11! including m550 terms in the summation. One ca
observe that even though the asymptotic result gradu
fails ~as it should! for larger h, the full series prediction of
Eq. ~11! remains very close to the fully numerical result. T
difference can be well accounted for by the approximatio
involved in the continuum ansatz.

Additional insight on the appearance of the instability
given in Fig. 4, where we examine the mode stability
different values ofa ~at h51). The bottom panel of the
figure shows the trajectory of the main eigenmodes of
point spectrum of the linearization around the solution. T
solid line shows the translational or pinning~antisymmetric!
mode, while the dashed line shows the edge or breath
~spatially symmetric! mode @32#. Notice that forh51 ~cf.
Fig. 1 of Ref.@32#!, the pinning mode has a larger frequen
than the breathing mode. The band edge of the continu
spectrum which lies atL50.5 @32# is shown by a dashed
dotted line. Asa is increased, it is clear that the breathin
mode is ‘‘repelled’’ by the presence of the impurity towar
the phonon band edge. On the contrary, the antisymme
mode gradually approaches the origin and becomes uns
~dotted part of the relevant curve! for a.0.22~thereafter, for

FIG. 7. Bifurcation diagram of the asymmetric localized imp
rity modes. The thickest solid line@branch~a!# corresponds to the
mode centered atn05100, while the corresponding dashed lin
@branch~b!#, to the mode centered atn0599.5. The medium thick
solid line and the corresponding dashed one@branches~c! and ~d!#
are centered, fora50 at n0599 andn0598.5, respectively. The
corresponding saddle-node bifurcation resulting at the disapp
ance of these branches occurs fora'0.001 47. Finally, the thin
solid and dashed lines@branches~e! and~f!# correspond to the case
of n0598 andn0597.5, respectively. The saddle-node bifurcati
occurs here ata'0.0105. The dotted line ata50.0005 indicates
the defect strength for which the mode profiles of the differ
branches are shown in Fig. 8. In the homogeneous case (a50) the
array of minima and maxima of the Peierls barrier occurs forn0

5m and n05m11/2 (mPZ). Hence, the points withn0

5100,99,98,97, etc., have the same norm~the same is true for the
branches withn0599.5,98.5,97.5, etc.! for a50. In the presence o
the impurity ~e.g., foraÞ0), this shift invariance is broken. Thu
we use the ‘‘original’’~e.g., fora50) center position of the branc
to classify them whenaÞ0.
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a.ac there appears an imaginary pair of eigenfrequenci!.
Perhaps it is even more interesting to examine the occurre
of this instability in the light of the top panels of the figur
The latter show theL2 and L` norms of the solution as a
function of a. It is worth noting that the occurrence of th
instability coincides with the change of concavity of theL2

norm, while it also coincides with a maximum of theL`

norm. The above results suggest two additional numer
criteria that can be used to identify the appearance of
instability, namely,

]2iui2

]a2
50 ~12!

and

]iui`

]a
50,

]2iui`

]a2
,0. ~13!

IV. DYNAMICAL EFFECTS AND ASYMMETRIC MODES

To examine the dynamical development of the instabil
once the solution becomes unstable for supercritical va
of a.ac , we have performed direct numerical simulatio
of Eq. ~1! with an initial condition consisting of anexact,
unstable localized mode fora50.3, perturbed by smal
noise ~of uniform distribution, and amplitude ranging from
0.0001 to 0.1!. The scenario that is described was found to
generic for such perturbations of the unstable solution. It w
thus found that as is shown in the top left panel of Fig. 5
t5200, the unstable mode sustains a symmetry break
which cleaves it intoanother stable localized modecentered
essentially at the neighboring~previous! lattice site~see also
the bottom right panel!, and to a small-amplitude mobile
pulse that propagates along the chain and carries an en
excess. It is worth noting that the original~unstable! eigen-
mode had 3 ‘‘main’’ sites oscillating at an amplitude
'0.9, while the breather resulting from the dynamical ev
lution of the instability is very strongly localized at a sing
site ~of amplitude'1.7).

The trapping of the unstable mode by the neighboring
is consistent with the physical picture described by the eff
tive Hamiltonian Eq.~6!, when the mode overcomes th
neighboring Peierls barrier and becomes localized by
next minimum. However, for smaller values of the latti
spacingh, when the Peierls barrier becomes negligible,
unstable localized mode can start moving through the lat
under the action of the initial perturbation and as a resul
the development of the symmetry-breaking instability. A
example of the latter type is shown in Fig. 6 for the defe
strengtha51 andh50.5.

One of the most interesting findings of our study of t
time evolution as a result of the mode instability is the
fective ‘‘relaxation’’ ~at least for larger values ofh) of the
unstable mode towards the mode centered at the neighbo
~to the defect! site. The latter result prompted us to explo
the modes in the vicinity of the defect. Due to symmetry, o
study was restricted to modes on one side of the impu
site. The bifurcation diagram of the relevant branches of

r-

t

4-6
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lutions is shown in Fig. 7 obtained forh50.5. We have
observed the relevant phenomenology to be generic, bu
port it for this value of the lattice spacing that necessita
narrower ranges of parameter sweeps~i.e., the same obser
vations can be obtained for largerh, but due to the weake
coupling, the relevant critical points occur for considerab
larger values of the defect strengtha).

The natural starting point for our analysis is the contin
ation from the case of an homogeneous lattice (a50),
where the stationary modes are well known to exist o
lattice site and between two consecutive lattice sites. He
in the homogeneous case we consider the branches cen
at n05100 ~branch a!, n0599.5 ~branch b!, n0599 ~c!, n0
598.5 ~d!, n0597.5 ~e!, andn0597 ~f!. We observe thatat
the instability pointac'0.002 52, the stable branch~a! and
the unstable branch~b! merge. The resulting branch is al
ways unstable thereafter. For any other branch apart from
central one, we have found that the relevant stable~node!
and unstable~saddle! solutions exist for a parameter interv
that depends on the distance of the central site of the bra
from the defect site; naturally, the branches whose cen
site is more remote from the defect are less affected b
~and exist for larger intervals of defect strengths!. These
branches eventually disappear in saddle-node bifurcation
is observed for branches~c!–~f! in Fig. 7. A set of spatial
profiles corresponding to the different branches is shown
Fig. 8 for the different branches of Fig. 7 and fora
50.0005~corresponding to the vertical dotted line in Fig. 7!.

Disappearance of the relevant branches of static solut
is consonant with the mobility of the unstable modes
smaller values ofh observed in Fig. 6 above. For small
values ofh, the neighboring branches disappear for sma
defect strengths, hence allowing for no static solutions in
vicinity ~in configuration space! of the unstable solution
thereby resulting in the mobility of the latter~i.e., the solu-
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tion cannot be trapped in neighboring potential wells as th
have disappeared!. However, in the opposite case of largeh,
the lattice is strongly discrete and an adiabatic growth of
defect strengtha leads to the mode motion from an unstab
~due to the presence of the impurity! state to its neighboring
stable state.

V. CONCLUSIONS

We have studied the existence and stability of nonlin
localized modes in the framework of the DNLS model. W
have used a variational formalism to obtain the analyti
result for the occurrence of an instability due to the interp
between attractive nonlinearity and repulsive impurity. W
have examined the variational prediction by means of
merical bifurcation theory, linear stability analysis, as well
direct integration of the discrete lattice model. We ha
found the variational prediction~and its refinements! to be in
reasonable agreement with the numerical results, attribu
the discrepancies to the variation of the original profile w
respect to the preselected ansatz. We have observed tha
instability develops much before the solution becomes t
humped, and we have developed numerically motivated
teria for the identification of the instability. The study of th
dynamical evolution of the unstable modes revealed the
tential for mobile localized modes for smaller values of t
lattice spacing, while it results in relaxation to the neighb
ing potential wells and the corresponding stable, static so
tions for larger values of the spacing. Finally, the bifurcati
diagram has been explored as a function of the de
strength, using continuation from the homogeneous lat
case. We have found that for the branch corresponding to
defect site, the stable and nearest unstable solution bran
merge at the instability point~producing a thereafter alway
unstable branch!, while the neighboring sites correspondin
FIG. 8. Spatial profiles of the localized modes corresponding to the branches~a!–~f! for the defect strengtha50.0005. A repulsive
impurity is located at the siten05100.
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stable and unstable branches disappear through collision
saddle-node bifurcations. Such a bifurcation scenario is
perfect agreement with the concept of the Peierls poten
that affects the mode motion in discrete systems.
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