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Instabilities and bifurcations of nonlinear impurity modes
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We study the structure and stability of nonlinear impurity modes in the discrete nonlineardiBgero
equation with a single on-site nonlinear impurity emphasizing the effects of interplay between discreteness,
nonlinearity, and disorder. We show how the interaction of a nonlinear localized faodiscrete soliton or
discrete breathgmwith a repulsive impurity generates a family of stationary states near the impurity site, as
well as examine both theoretical and numerical criteria for the transition between different localized states via
a cascade of bifurcations.
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[. INTRODUCTION focused on the scattering of localized modes by impurities in
the DNLS equatiorf16,17, as well as in the Klein-Gordon
Nonlinear localized modes in discrete systems, also callechodel[18]. The effect of the impurity on localization prop-
intrinsic localized modes or discrete breathers, are selferties of the nonlinear lattice and stability of localized modes
localized states that exist due to the interplay between latticeas studied, to the best of our knowledge, only for lattices
coupling and nonlinear effects. Spatially localized modes ofvith anharmonic couplingi19].
the discrete nonlinear Schitimger (DNLS) equation, known However, the earlier theoretical predictiofs/] and re-
asdiscrete solitonshave appeared in many diverse areas ofcent experimental resul{®0,21] for the interaction of the
physics, such as biophysics, nonlinear optics, solid statdiscrete solitons with structural defects in arrays of AlGaAs
physics[1], waveguide arrayE2], and, more recently, in the optical waveguides suggest that discreteness should play a
studies of the Bose-Einstein condensates in optical latticegrucial role in the properties and stability of nonlinear local-
[3] and photonic-crystal waveguides and circlit ized modes. In this paper, we study, in the framework of the
In application to nonlinear guided-wave optics, discreteDNLS model, how the interaction of a discrete localized
solitons have been suggested to exist in nonlinear waveguidaode with a repulsive nonlinear impurity leads to different
arrays[5], and they have been observed a decade later ilpcalized states, as well as examine, both analytically and
AlGaAs waveguide structurg$] (see also a review paper numerically, the stability criteria for the bifurcations between
[2]). Several other issues, such as the discreteness-inducdiferent localized modes near the impurity site.
soliton dynamics and soliton interactions have been investi- The existence of multiple localized states near the impu-
gated. Regarding applications, it was recently shown thatity site can be understood by means of simple physics. In-
discrete solitons in two-dimensional networks of nonlineardeed, in the continuum approximation, a two-hump localized
waveguide arrays can be used to realize various functionahode centered at the defef@2] is known to be unstable
operations, such as blocking, routing, logic functions, timewith respect to an exponential growth of antisymmetric lin-
gating, etc[7]. ear perturbation$14,15. The above-mentioned instability
On the other hand, localized impurities are known to playleads to the motion of the localized mode away from the
a crucial role in numerous physical systems, not only intro-defect[15], and for small distances between the mode cen-
ducing interesting wave scattering phenomg8 but also  ter and the defect, the effective interaction energy can be
creating the possibility for the excitation of impurity modes, presented in the forril;,;= Ho—A&2, whereA is defined by
which are spatially localized oscillatory states at the impuritythe defect parameter$ig is a constant However, this situ-
sites[9]. The relevant phenomenology has been recognizedtion becomes quite different in discrete systems because of
as important in a variety of physical settings ranging fromthe so-called “Peierls relief,” an effective periodic potential
defect modes in superconductif)] to the dynamics of the due to the lattice discreteness. Such a potential was first cal-
electron-phonon interactiod1] and from the propagation culated for small-amplitude breathers in a nonlinear elastic
of light in dielectric superlattices with embedded defect lay-chain described by the discrete nonlinear Klein-Gordon
ers[12] to defect modes in photonic crystdls3]. equation[23] applying an approach suggested for kinks of
It is crucially important to examine the interplay betweenthe Frenkel-Kontorova modg24]. The potential has the fol-
disorder and nonlinearity. For the continuum problems, thidowing structureH,=H; — B cos(2ré/h), whereh is the lat-
interplay is known to lead to the existence of symmetric andice spacing K;,B are constanjs Thus, a competition be-
asymmetric impurity modes and their interesting stabilitytween these two potentials defines a sequence of stable
properties(see Refs[14,15 and references therginHere  positions of a localized mode near the defect. This qualitative
we concentrate on the study of the discrete systems such agture is valid in the limit of smalh and, generally speak-
the DNLS model. Some earlier results for discrete latticesng, the problem should be solved numerically. Below, we
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consider this problem in the framework of the DNLS model In the homogeneou6.e., no impurity or equivalentlyy
with a single on-site nonlinear defect. =0), continuum(i.e., h—0) limit, the model Eq(1) has an
The paper is organized as follows. In Sec. Il we introduceexact localized solution of the forrfin the long-wave ap-
our model and discuss the analytical results obtained for thproximation, i.e., foh»<1)
family of the stationary states localized near the defect site.
Then, in Sec. lll we study numerically symmetric localized ne
modes and their symmetry-breaking instability, including the u(x,t)= m’ ©)
analysis of the linear eigenvalue problem. Section IV in-
cludes the results of the instability-induced dynamics of 10~yhere A = 522, A is the frequency of the breathéand
calized modes and the study of the families of asymmetriGnoyid be positive to avoid resonances with the linear spec-
localized modes which appear as stable states due to a bglym of plane waves and 7 essentially defines an effective

ance of the defect repulsion and the effective trapping potenyass of the breather excitation in the long-wave approxima-
tial of the lattice. We also find the families of asymmetric {jq, according toM ;= 27.

modes and demonstrate their stability. Finally, Sec. V con- A natural approach to the study of a discrete model is to

cludes the paper. use expressiof3) as an ansatsgolutionin the Hamiltonian
Eqg. (2) in order to obtain information about the static solu-
tion of Eq. (1) and its stability. The last term of E@2) is
then easy to evaluate in the framework of the ansatz &q.

We consider a DNLS model with a nonlinear impurity on On the other hand, the first two terrtis parenthesg<f Eq.
one site of the lattice. To examine the interplay between disf2) can be evaluated using the Poisson summation formula
creteness, nonlinearity and disorder, we study the case of[@8], which states that
focusing nonlinearity in the waveguide array with a repulsive

iAt

II. MODEL AND ANALYTICAL RESULTS

nonlinear defect. The DNLS equation describing our model * 2a & 2mmr
can be written in the following dimensionless form: nz f(Bn)= R mz F 5 ) (4)
. C ) 4 whereF is the Fourier transform of
|un+§A2un+|un| unzaén,no|un| Up, (1)
1 (= .
F(k)=—==| f(x)e*dx. (5
where A,u,=(Upy1+U,_1—2U,), U, describes the com- V2 -

plex envelope of the electric field in the waveguide with the _ _
index n, while the dot stands for the spatial derivative along Using the above remarks and formulas for the Hamil-
the array propagation directiofwhich we treat here as tonian Eq.(2), we can evaluatél =H(¢;{7,h}) (up to con-

time t). stant, independent a@f termg as the following:
In this study, we select the quintic nonlinearity for the
defect, in order to differentiate its effect from the lattice as H=H,+Hiy, (6)

well as to model non-Kerr nonlinear response often observed
in experimentsee, e.g., Ref21]). However, we expect that Where
similar results will be qualitatively valid for any type of
power-law nonlinearity of orden. The generalized nonlin- H 47? & mcog2mmélh)
ii(er\(r:t)i/tsogztg]e. defect can also appear in the theory of photonic p h2 w1 sinh(ma2/ ph)
The coupling coefficienC can be expressed through the m2 a2
i
n°h

2

lattice spacindh as followsC = 1/h?, and it characterizes the X + n

effective diffraction in the array. We should notice that the 3

lattice spacindh may not coincide with the relative distance
between the waveguide in an array, and these values are an®

connected in a more complicated ,217]. Hipn=—————.

P Weap, 21 ™3 cosB( 5¢)

Equation(1) stems from the Hamiltonian

Notice that the first part of the expression pertaining to the

summation assumes the correct asymptaotie., smallh)

form used, e.g., in Eq3.5) in Ref.[29], as well as in refer-

ences therein. Finally, it is worth mentioning that the series

) in Eq. (6) has terms which are exponentially smaller with

upon setting its derivative with respect ) equal toiu,. respect to the leading order terms and hence even keeping a
The linear waves of the form,,= ug exp(Qt—iknh) have  small number of terms in the series should yield reasonably

the (phonon spectrumQ = — (2/h?)sirf(khV2) consisting of  accurate results. In the leading order approximation, the

a band of negative frequencieQ €0). Hamiltonian can be approximated as follows:

1 o
HZE E(C|un+1_un|2_|un|4)+§|un0|6 (2)
n
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H 167 o g2mélh)+ @ 7 87" S m . 7 1+ mem
=— e "' coq 2 EE—— .= _ - —+ = ,
h4 3 cosfiné ¢ pBh®m=1 sinima?yh)| h? 3 7°h?
(11
The criterion for obtaining a steady state in the reduced
variable formalism oH=H(¢;{#,h}) requires that which can be easily confirmed to have as leading order be-
havior Eq.(10).
oH The result Eq(11) describes the stability threshold of the
5_520- ®) discrete mode localized at the impurity site=0, so that

when the impurity is sufficiently strong and repulsive, it will
It is worth noting that the fact that the solutions of Eg) ~ '€verse the local stability of the mode closete0, convert-
will be static solutions of Eq(1) has beemigorouslyproved N9 the relevant local energy minimum into a local energy

recently by Kapitula[30], through the use of a Lyapunov- maximum. Howeve_r, resulté3) and (9_) are more gener_al,
Schmidt reduction. Given that the ansatz of Egj. is not and suggest the existence of many different stable stationary

exact, this result should be interpreted in the orbital sensgt@tes located at certain distances from the impurity accord-
(i.e., there are orbits in the configuration space which ard9 fo the local minima of the effective energy. These
closeto the approximate solution of E¢8) in conjunction ~Mminima are prpduced by the effeqtlve peI’IOdIC' potential due
with Eq. (3), in the appropriate normIn particular, in this to the model discreteness, but their exact location depends on
case one can directly observe that0 will always be a the “strength” of the |mpur|ty(effect|vely_mea§ured by the
solution of Eq.(8). Additional solutions are present close to Value ofe). For all such states, the physical picture based on
£=nh (ne Z), and unstable ones closede- (n+1/2)h. In the reduced Hamllto_nlan is \_/alld only approxmately, and
the homogeneous limit, the pulselike steady states are ef10reé detailed numerical studies are required.

actly at these points, as is well known, but now the presence

of the impurity modifies their exact location, albeit slightly IIl. LOCALIZED MODES AND THEIR STABILITY
due to the exponential decay of the impurity potential away . _
from its location até=0. We now turn to numerical results. We numerically con-

Of particular interest is the stability of the solution gt structed solutions of Eq1), for a chain withN=200 sites,
=0. One naturally expects that when the impurity is suffi-localized at the impurity siteny=100, using a Newton
ciently strong and repulsive, it witeversethe local stability ~mMethod with an initial condition given by E¢3), assuming
picture close to£=0, converting the relevant local energy A=0.5 (»=1). Upon convergence, linear stability
minimum into a local energy maximum. We should note hereanalysis of the resulting pulses was performed. This was
that as per the positive definite nature of the Hessian matrigone by linearizing using the ansatzu,=us
in the focusing caséor a single pulsg the local minima of ~ + € exp{At)[a, exp(—iwt)+b,expfw*t)]; use is the exact
the energy |andscapH:H(§;{n,h}) will correspond to solution (around which we are linearizingand the w’'s
stable solutions. The opposite will be true for local maxima.denote the linearization eigenfrequencies. ThenOe)

The Hessian matrix here is given Bf/dA, whereP is the ~ We obtain the relevarflinearization eigenvalue problem
power or(squaredl L? norm of the solutiorP=||u||3 [31].
Recall that theL? norm is defined ag|ul|,= (=, u,|?)*P.
The L® norm (used also beloy is given by ||ull..
=max,|u,|. P can be thought of as the number of elementary 1t
excitations present in the field. In the optics literature, this is
often called the “energy” of the solution.

Hence, the instability criterion in the reduced, one degree
of freedom dynamical system for the relevant steady state
will be s° osf

08

7 <0 9
— ,
o€ £=0
021
which can be restated in the form of the asymptotic approxi-
mation, through the leading order term of the series in Eq.

(6), as followsa> a., where o4 % 98 0 1oz 104 108
3274 5 FIG. 1. Nonlinear localized mode in the model Ed) for h
ac=—— e ™/, (10 =1. The solid line with circles depicts the continuum solution Eq.
h®n (3). Stars and pluses denote the discrete solutloa X) at =0
anda= a.~0.22, respectively. In the discrete case, the solid line is
In terms of the full series, the critical value reads a guide to the eye only.
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FIG. 2. Different localized modegeft panels
and their stability propertiegight panel$ in the
model(1) for h=1. Results of the linear stability
analysis are given in the form of the spectral
plane (,,w;) showing the real and imaginary
part of the eigenfrequency, respectively. The top
row is for =0, the middle is fora=0.3>«,
while the bottom is fora=0.5.

1 2 3, %2
2C(Uip 1 U1 = 20) — Ui U + auiuf =8 o .

When the corresponding eigenfrequenciesare real, then
the solution is linearly stable. On the contrary, the presence
of a mode with a nonzero imaginary part in its eigenfre-
quency denotes the presence of an instability.

Figure 1 shows a typical mode profile obtained in differ-

ent cases. These soliton profiles are similar to those dis-
cussed in the long-wave approximation in Réfs4,15,23.

For «=0 (homogeneous cagethe circles denote the dis-
cretization of the continuum profile in accordance with Eg.
(3). The correspondingxactdiscrete homogeneous solution

is shown by the stars. These results are shown for the lattice

lu 1, » luJl_

FIG. 4. Top: thel.? (solid line) andL* (dashed ling norms of

FIG. 3. Threshold of the instability onset for the nonlinear im- the localized mode vs. Bottom: the relevant point spectrum ei-
purity mode centered at the impurity site, shown as the criticalgenvalues of the problem continued over The solid line shows
the pinning(or translationgl mode that becomes unstakidotted
the full numerical result, the dashed line shows the asymptotic theline) after «.~0.22. The dashed line shows the breathiogedge
oretical prediction of Eq(10), while the dashed-dotted line repre- mode, while the dashed-dotted line indicates the band edge of the
continuous spectrum.
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FIG. 5. Development of the mode instability
for «=0.3 andh=1. The top left panel shows the
mode spatial profile at=200. The top right
shows the modulus squared of the central site and
of the site nearest to it, indicating relaxation to an
exponentially localized configuration centered
100 around the neighboring minimunat n~99).
The bottom left panel shows a space time plot of
the evolution of the modulus squared of the field,
995 while the bottom right indicates the relaxation of
o the localized mode center from sitg~100 to
the one withx,~99.
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lu(n, B

99

200

50 100 150 200
t

spacing parametdr=1. Notice, that discreteness induces arity strength @=0.3, while a,~0.22), while a strongly un-
narrowing and increase of amplitude with respect to the constable, supercritical mode far=0.5 is shown in the bottom
tinuum pulse. Finally, the pluses indicate the solution at thepanel. It is important to remark here that a perhaps counter-
onset of the instabilit(that occurs asy is increasey for intuitive result of our numerical investigations is that the
a=0.22. An interesting observation is that at the onset of thenstability point isnot coincident with the poinfin parameter
instability, the pulse has essentially regained its continuunspacé where the symmetric mode becomes two humped. We
shapebut for a significantly larger amplitude at the central have generically observed that the mode becomes two
site. humped for considerably largéthan the instability thresh-

A more detailed study of the mode instability that occursold) values of the defect strength
as « is increased is presented in Figs. 2 and 3. Figure 2 Similar calculations were performed for different values
shows three different examples of the discrete localizedf the discreteness paramekeand a two-parameter stability
mode and the corresponding linear stability results. The topliagram is shown in Fig. 3. Above the different curves the
panel is fora=0.1, in the subcritical case, where the stabil- (centered at=0) solutions are unstable, while the opposite
ity of the mode can be determined by the absence of imagis true below the curves. The solid line denotes the exact
nary eigenfrequencigsee the top right panel in Fig).ZThe  numerical result, the dashed line is the asymptotic prediction
middle row shows a slightly supercritical value of the impu- of Eq. (10), while the dashed-dotted line is the prediction of

2 Ll
S 15 M
N i
1.5 = 1
e B
o = |
3‘: ! o Il
8 os \
0.5 3‘_ 1
‘\
0 0
0 50 100 150 200 0 50 100 150
n 1 FIG. 6. Same as in Fig. 5 but fat=1 and
h=0.5. The instability initiates the motion of the
70 localized mode along the chain.

55

50
0

50 100 150
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a>a, there appears an imaginary pair of eigenfrequencies
Perhaps it is even more interesting to examine the occurrence
of this instability in the light of the top panels of the figure.
The latter show thé.? and L* norms of the solution as a
function of «. It is worth noting that the occurrence of the
instability coincides with the change of concavity of the
norm, while it also coincides with a maximum of the&

1.9744

1.9742

1974

1.9738

o . .
19736 norm. The above results suggest two additional numerical
criteria that can be used to identify the appearance of the
1.9734 instability, namely,
19732 I &ZHUHZ
> =0 (12
1.973 aa
! '97280 0.001 0.0‘02 O.C:03 0.0‘04 0.0‘05 0.(;06 0.607 0.0‘08 O.C:OQ 0.;)1 an d
2
* dl|ull-- |-
. . . ' o =0, <O0. (13
FIG. 7. Bifurcation diagram of the asymmetric localized impu- da Ja?

rity modes. The thickest solid lingbranch(a)] corresponds to the
mode centered aby=100, while the corresponding dashed line
[branch(b)], to the mode centered at=99.5. The medium thick V. DYNAMICAL EFFECTS AND ASYMMETRIC MODES
solid line and the corresponding dashed fmeanchegc) and (d)]
are centered, forr=0 at ng=99 andny=98.5, respectively. The

corresponding saddle-node bifurcation resulting at the disappeal . ; . .
ance of these branches occurs fer~=0.00147. Finally, the thin of a>a., we have performed direct numerical simulations

solid and dashed lindsranchege) and(f)] correspond to the cases ©f EQ- (1) with an initial condition consisting of aexact,
of ny=98 andn,=97.5, respectively. The saddle-node bifurcation Unstable localized mode fora=0.3, perturbed by small

occurs here at~0.0105. The dotted line at=0.0005 indicates noise (of uniform distribution, and amplitude ranging from
the defect strength for which the mode profiles of the different0.0001 to 0.1 The scenario that is described was found to be

branches are shown in Fig. 8. In the homogeneous cas®] the generic for such perturbations of the unstable solution. It was
array of minima and maxima of the Peierls barrier occursrigr  thus found that as is shown in the top left panel of Fig. 5 for
=m and nyg=m+1/2 (me2). Hence, the points withn, t=200, the unstable mode sustains a symmetry breaking,
=100,99,98,97, etc., have the same ndthe same is true for the which cleaves it intanother stable localized modentered
branches witm=99.5,98.5,97.5, etcfor «=0. In the presence of essentially at the neighboririgrevious lattice site(see also
the impurity (e.g., fora#0), this shift invariance is broken. Thus the bottom right pangl and to a small-amplitude mobile
we use the “original’(e.g., fora=0) center position of the branch pulse that propagates along the chain and carries an energy
to classify them whernv#0. excess. It is worth noting that the origin@alnstablé eigen-
mode had 3 “main” sites oscillating at an amplitude of
Eq. (12) including m=50 terms in the summation. One can ~0.9, while the breather resulting from the dynamical evo-
observe that even though the asymptotic result gradualljution of the instability is very strongly localized at a single
fails (as it should for largerh, the full series prediction of site (of amplitude~1.7).
Eqg. (11) remains very close to the fully numerical result. The  The trapping of the unstable mode by the neighboring site
difference can be well accounted for by the approximationss consistent with the physical picture described by the effec-
involved in the continuum ansatz. tive Hamiltonian Eg.(6), when the mode overcomes the
Additional insight on the appearance of the instability isneighboring Peierls barrier and becomes localized by the
given in Fig. 4, where we examine the mode stability fornext minimum. However, for smaller values of the lattice
different values ofa (at h=1). The bottom panel of the spacingh, when the Peierls barrier becomes negligible, the
figure shows the trajectory of the main eigenmodes of thainstable localized mode can start moving through the lattice
point spectrum of the linearization around the solution. Theunder the action of the initial perturbation and as a result of
solid line shows the translational or pinni@ntisymmetrit  the development of the symmetry-breaking instability. An
mode, while the dashed line shows the edge or breathingxample of the latter type is shown in Fig. 6 for the defect
(spatially symmetriz mode [32]. Notice that forh=1 (cf. strengthae=1 andh=0.5.
Fig. 1 of Ref.[32]), the pinning mode has a larger frequency One of the most interesting findings of our study of the
than the breathing mode. The band edge of the continuoume evolution as a result of the mode instability is the ef-
spectrum which lies af\ =0.5 [32] is shown by a dashed- fective “relaxation” (at least for larger values df) of the
dotted line. Asa is increased, it is clear that the breathing unstable mode towards the mode centered at the neighboring
mode is “repelled” by the presence of the impurity towards (to the defect site. The latter result prompted us to explore
the phonon band edge. On the contrary, the antisymmetrithe modes in the vicinity of the defect. Due to symmetry, our
mode gradually approaches the origin and becomes unstakdtudy was restricted to modes on one side of the impurity
(dotted part of the relevant curvior a>0.22(thereafter, for  site. The bifurcation diagram of the relevant branches of so-

To examine the dynamical development of the instability,
pnce the solution becomes unstable for supercritical values
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lutions is shown in Fig. 7 obtained fdi=0.5. We have tion cannot be trapped in neighboring potential wells as these
observed the relevant phenomenology to be generic, but rérave disappeargdHowever, in the opposite case of large
port it for this value of the lattice spacing that necessitateshe lattice is strongly discrete and an adiabatic growth of the
narrower ranges of parameter sweéps., the same obser- defect strengthw leads to the mode motion from an unstable
vations can be obtained for largky but due to the weaker (due to the presence of the impujitstate to its neighboring
coupling, the relevant critical points occur for considerablystable state.
larger values of the defect strengif).

The natural starting point for our analysis is the continu-
ation from the case of an homogeneous lattiee=Q),
where the stationary modes are well known to exist on a We have studied the existence and stability of nonlinear
lattice site and between two consecutive lattice sites. Hencédgcalized modes in the framework of the DNLS model. We
in the homogeneous case we consider the branches centefgalve used a variational formalism to obtain the analytical
at ng=100 (branch 3 ny=99.5 (branch b, ny=99 (c), ng result for the occurrence of an instability due to the interplay
=98.5(d), ng=97.5(e), andny=97 (f). We observe thaait  between attractive nonlinearity and repulsive impurity. We
the instability pointa,~0.002 52, the stable brandh) and  have examined the variational prediction by means of nu-
the unstable branckb) merge The resulting branch is al- merical bifurcation theory, linear stability analysis, as well as
ways unstable thereafter. For any other branch apart from théirect integration of the discrete lattice model. We have
central one, we have found that the relevant stdhtele found the variational predictiofand its refinemenjgo be in
and unstablésaddle solutions exist for a parameter interval reasonable agreement with the numerical results, attributing
that depends on the distance of the central site of the brandhe discrepancies to the variation of the original profile with
from the defect site; naturally, the branches whose centralespect to the preselected ansatz. We have observed that the
site is more remote from the defect are less affected by iinstability develops much before the solution becomes two
(and exist for larger intervals of defect strength¥hese humped, and we have developed numerically motivated cri-
branches eventually disappear in saddle-node bifurcations, asria for the identification of the instability. The study of the
is observed for brancheg)—(f) in Fig. 7. A set of spatial dynamical evolution of the unstable modes revealed the po-
profiles corresponding to the different branches is shown irtential for mobile localized modes for smaller values of the
Fig. 8 for the different branches of Fig. 7 and far lattice spacing, while it results in relaxation to the neighbor-
=0.0005(corresponding to the vertical dotted line in Fig. 7 ing potential wells and the corresponding stable, static solu-

Disappearance of the relevant branches of static solutiortsons for larger values of the spacing. Finally, the bifurcation
is consonant with the mobility of the unstable modes fordiagram has been explored as a function of the defect
smaller values oh observed in Fig. 6 above. For smaller strength, using continuation from the homogeneous lattice
values ofh, the neighboring branches disappear for smalleccase. We have found that for the branch corresponding to the
defect strengths, hence allowing for no static solutions in thelefect site, the stable and nearest unstable solution branches
vicinity (in configuration spageof the unstable solution, merge at the instability poinforoducing a thereafter always
thereby resulting in the mobility of the lattére., the solu- unstable brandh while the neighboring sites corresponding

V. CONCLUSIONS

1 1
a b
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FIG. 8. Spatial profiles of the localized modes corresponding to the brariahd$) for the defect strengtla=0.0005. A repulsive
impurity is located at the sitay=100.
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