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Nonuniform dynamic gratings in photorefractive media with nonlocal response
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The amplitude of the phase dynamic grating is a nonuniform space distributed in photorefractive crystals
with nonlocal response as a result of energy transfer between the interacted waves. The dynamical process of
grating formation in the case of transmission two- and four-wave mixing is described by the damped sine-
Gordon equation that governs the soliton propagation. A stationary soliton solution for the grating amplitude
profile was obtained. Experiments on observation of a nonuniform distribution of the grating amplitude
through the crystal volume are presented. It is experimentally shown that the changes of the grating amplitude
profile in dependence of input intensity ratio match the solutions of the damped sine-Gordon equation in steady
state. The diffraction efficiency of energy transfer is determined by the value of the integral under the grating
amplitude profile. The soliton profile is altered with changing input intensity ratio of recorded beams. It
provides the effect of diffraction efficiency management by changing the half-width and the position of the
soliton. The theory predicts a multisoliton behavior in reversible media with strong amplitifcaiton gain that
leads to auto-oscillations of output wave intensities.
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[. INTRODUCTION lies in the investigation of the photoinduced grating inside
the crystal. We have obtained that the nonlinear process of

The theory of the optical dynamic holography considersthe wave self-diffraction in the case of the nonlocal response
the effect resulting from the interaction of laser beams incan be described by the sine-Gordon equali+13. The
nonlinear media, mostly in ferroelectric crystals. In a me-variable of the sine-Gordon equation is the integral under the
dium with nonlocal response the wave self-diffraction exhib-grating amplitude profile. It is known well that the sine-
its the effect of wave amplification being conditional on aGordon equation together with the nonlinear Sclimger
phase shift between the interference pattern and the recordedid Korteweg-de Vries ones possesses the soliton solutions
grating[1,2]. Many applications in photonics are based on[14]. We have derived that the grating amplitude has a soli-
this effect[3—6]. Their conventional theoretical modeling is ton shape in the spatial direction of the wave propagation. In
reduced to a set of nonlinear equations for the output waveteady state the shape of the soliton is determined by the
intensities. input intensity ratio of recording beams.

The processes of the dynamic wave mixing are based on We present some experiments on the measurement of the
the nonlinear properties of ferroelectric crystals and on thaonuniform distribution of the grating amplitude profile
photorefractive effectfl—8]. An interference pattern of the across the crystal and of its dependence of input intensity
interacting laser beams induces an internal space charge thatio. For this measurement we propose a different experi-
is nonuniformly distributed in the crystals. The space-chargenental setup that uses an expanded probe beam covering
field modulates the refractive index. The same interactingompletely the upper surface of the crystal sample, incident
waves create the refractive index grating and diffract fromfrom a Bragg direction of the grating planes, but not in the
such grating during the self-diffraction process. The diffu-plane of the recording beams. Since there is no vertical po-
sion dominant photorefractive mechanism is a conventionasition dependence in the distribution of the spatial grating, all
one to record nonlocal gratings, which are shifted on thepoints of the diffracted pattern of the probe beam has a pro-
quarter of the space period relative to the light interferenceportional intensity to the square of the magnitude of the re-
pattern. Because of the presence of the additional phase shifactive index grating at the respective horizontal position.
the well-known effect of the energy transfer between the(The effect of the deviation of the probe beam from the ver-
coupled waves and amplification of one of them appear. Furtical direction inside the crystal is negligible in our case due
thermore, the energy transfer leads to changes in the contrast the large value of the refractive indeXhe experimental
of the interference pattern over the direction of wave proparesults are in good qualitative agreement with the theoretical
gation, because the wave intensities are changed inside tlealculations of the soliton profile.
crystal. In this way the grating amplitude must change as In the developed theoretical description all solutions for
well. The essentials of the nonuniform distribution of the output intensities are derived from the grating amplitude so-
grating amplitude across the crystal have already been déution, which is determined by the intensity ratio of the input
scribed in the first papers devoted to the optical dynamiavaves. By changing the input intensity ratio, the grating am-
holography{8,9]. plitude shape changes as well, and this way all output param-

In the present paper we study the transmission four-waveters of the FWM scheme change, too. In addition to station-
mixing (FWM) in ferroelectric crystals. Our main interest ary soliton solutions we have obtained multisoliton behavior

1063-651X/2003/6(#)/0466038)/$20.00 67 046603-1 ©2003 The American Physical Society



BUGAYCHUK et al. PHYSICAL REVIEW E 67, 046603 (2003

IA;19z=—18eA,,

IR} 19z=i6eAT
I10\ ——————— ‘/Ltd (1)

A x _ A*x
IVv _______ ,\IM dAZ19z=—i6eA} ,
& , L Q IAL102=1 e Ay,

98elat=F(AAF)—3elTy. 2

FIG. 1. The four-wave mixing scheme with symmetrical trans-
mission geometry. The nonlocal phase gratigshed linesis Here 8e(t,2) = |Ae(t,2)|exdiV’ (t,2)] is the complex am-
shifted rela_tivg to the _maximum intensities <_)f the light interferencep”tude of the dynamic grating. We neglect here the absorp-
pattern(solid lines. C is the crystal polar axis. tion in the crystal and declare that the total light intensity is
a constantiy=1,+1,+15+1,=const. All wave amplitudes
are normalized by the value &f. We assume the fulfillment
by numeric calculations. They show auto-oscillations of thepf the phase-matching conditionsk; —K,=k,—Ks=K,

grating and as a consequence they lead to auto-oscillations Wherelz is thenth wave vector and is the grating vector.
all output wave intensities. The possibility of their existenceg ., er::]uation of1) shows a change of wave amplitude
has a basis in the fact that a local component of the gratingring its propagation through a medium. Material equation
appears and it leads to mutual changes of phases of int€fy) describes the grating dynamics in a photorefractive me-
acted waves. As a result, the grating indexes are inclined igjum. The first term in the right side of E(@) is an operator
the crystal volume and a stationary grating cannot be retp describe a photorefractive response being proportional to
corded. the light intensity, and the second term reveals the grating
The present model of grating dynamics can be used in thgelaxation with the relaxation time constafR§. We neglect
description with lot of phenomena and applications of dy-here the effects of grating diffusion and drift.
namic holography with photorefractive media. Furthermore, In the case of nonlocal response the operator of (.
it can be applied for designing new applications, for eX-can be written as(|E|?)=iy=E,E¥, wherey is the am-
ample, in signal processing, in optical switching, in opticalplification gain. The grating is shifted by a quarter of the
logic, in interferometer and sensor devices. space period relative to the light interference pattern that is
expressed by the factarThe diffusion dominant mechanism
is the conventional one to record nonlocal gratings in photo-
Il. THE SINE-GORDON EQUATION IN TRANSMISSION refractive crystals.
FOUR-WAVE MIXING We assume thaty is a constant and it determines the

_ ) ~ maximum photorefractive gain of the energy transfer. For
In the following we consider a degenerate four-wave mix-example,y can be found from the expression

ing in symmetrical transmission geomettlfig. 1). The z

axis shows the crystal thickness in the direction of wave 72—7”33”3550[)\ cog6)] 1,

propagation. The polar crystallographic ax{s éaxis is di-

rected along thex axis of light modulation. The photoin- where E,. is the maximum amplitude of the space-charge
duced refractive index grating is shifted relative to the inter-field, n, is the average refractive index for the extraordinary
ference pattern in the direction of tkieaxis (the dashed lines waves 53 is the tensor component of the electro-optical con-
in Fig. 1). According to such determination waves 1 and 4stant,\ is the wavelength, and is the divergence angle of
are amplified, and waves 2 and 3 lose energy. iifmewave  the light beams relative to the normal of the input crystal
complex amplitude isA,=A(t,z)exdieq(t,2)], where both ~ Surfaces. _ o .

the real amplitude and the phase of the wave depend on the e can write dynamic equatid@) in the following form:
time and on the space coordinate. We designate the intensi-

ties of input waves abg, |0, |34, |44; NOte that the fourth IAelaT=yY[AAS +A,A% ] As, 3
wave is absent on its inputl {4=0) in the conventional _ _ _
FWM. Let us assume for the simplicity that the polarizationswhere Ae(7,2)= —ids(7,2)=|As(7,2)[exdi¥(72)] is the

of all interacted waves are extraordinary, although the sineshifted grating, [As| is the grating amplitude,V = /2
Gordon equation does not depend on the wave polarization V', 7=t/To, v is normalized to the total light intensity
state, but is determined by only a nonlocal response anbp-
transmission geometry of the wave interaction.

The wave self-diffraction description is conventionally re-
d_uced to the foI_Iov_ving nonl_inear equation set in the .assump- u(r,z)= f |Ae(7,0)|dc. (4
tion of slow variation amplitude of plane wavgs-13]: z

To solve the setl),(3) we introduce a new real variable,
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The variableu(r,z) has the physical meaning of the
photoinduced changes of the optical path length along the
axis z of wave-propagation direction. In the stationary state
u(z) is defined by the light contrast.

Considering the time argument as a parameter, we can
split set(1) in two systems: for the amplitudes and for the
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Cy=arcsifi (10— | 10/ Vdi—4d3],

Co=arcsif (1 49— 39)/VPi—4p3],

phase differences of copropagated waves,
dA;/du=A,cog®P,),
dA,/du=—A;coqd,),
d®, /du=sin(®) (A7 - AZ)(AAz) 5
dA;/du=A,cogP,),
dA,/du=—AzcogD,),
dd, /du=sin(D,) (A5~ A7) (AsA,) 1, (6)

where (Dj_: Q11— (,02_\1’,, (1)2: (o) QD3_q,,. SyStemS(S)
and (6) has the following initial integrals:

d;=Af+AZ,
do=A1Azsin(Dy),
pi=A3+AZ,

P2=AzA4SIN(D,).

With the help of the initial integrals we obtain the exact

Bi1=sgricog P )],

B2=sgricog Pyq)].

®,g, P,q are the input phase differences at the crystal sur-
faces that can be considered relative to a phase of a starting
grating.

We substitute solution§7) and (8) as well as definition
(4) into dynamic equatior(3) and obtain the sine-Gordon
equation with the damping ter@u/dz:

u + MY Rsin2ut 9
Graz gz RSin2uta), ©)

where the values dR and «a are defined by input conditions
and by the value ofuy(7). In case of matching mutual
phasesb,—®,={0,7} the values oR and« can be deter-
mined from the following expressions:

tg(a)={B1Vl1d 20+ (13q+144)SiN 2u4— Boarctar 1/93) 1}

X{3 (120~ 110) + (I3g+14q)

X sin 2ug+ Boarctari9) ]} 1,

solutions for the intensities and the phases of four coupled

waves:

A3(z)=sin B12u(z)—C,]

Vd2—4d3  d,
—+_
2

2 l

A3(z)=d,—AL(2),

7
/ 2_pn2
Ai(z)=sin{322[u(z)—ud]—02}¥+%,
Ai(z)=p1—A%(2),
Vdi-4d3
co§®,(z)]=co§B,2u(z)—Cy] ———,
2A1(2)Ay(2)
(8)
Vpi-4p3
co§ @,(z)]=cogB,2[u(z) —ug] - Cp} ———,
2A3(2)A4(2)

where uy(7)=u(7,z=d), d is the thickness of the crystal
sample. The constan€; andC, are defined by the follow-
ing input boundary conditions:

Whereﬂ:(\/|4d/|3d— \/I3d/|4d)/2

R=¥{z (l107120°+ 7 (134 1 49)*+cog2ug)[ 3 (120~ 1 10)
X (1ag—l30) 28182V 10l 20l 3dl 44]+SIN(2ug)
X[ B2\ zal ad(1 20— 110) = B1\1 10 20( 1 aa— 130) 1} 2.

The sine-Gordon equation describes the nonlinear wave-
matter interaction in the process of dynamic grating record-
ing. As a result a soliton is generated as a stable profile of the
photoinduced modulation of the refractive index. The non-
linear mechanism of the soliton formation resembles that in
light self-focusing of optical spatial solitons: the refractive
index modulation is deeper in that spatial area where the
light contrast is highe(in the case of the spatial solitons that
area is determined by the local intensity of a nonuniform
light beam. But the natures of the two solitons are different.
Whereas in the case of the self-focusing the wave front of a
propagated beam takes the soliton profile, in our case of
wave self-diffraction not the electromagnetic waves but the
amplitude of the refractive index grating assumes the soliton
form.

In Fig. 2 it is drawn the distributions of the interacted
wave intensities and of the grating amplitude through the
crystal thickness in the case of double phase conjugation
mirror with equaled intensity ratios on input crystal faces
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0.5 when the grating is already recorded, the grating profile be-
comes stable and does not change neither in time nor in
space if the input conditions are held constant. The soliton

04 becomes the spatial temporal. Just this case will be consid-
ered in the subsequent sections.

0.3
I1l. STATIONARY SOLITON PROFILE OF THE GRATING

AMPLITUDE
0.2
In steady state equatid®) has the following solutions:
0.1
tg(u)=exp2yCz+p), (10
0.0 yC
Ag|l= —F—— 11
z/d |Ae| coshii2yCz+p)’ (1)

FIG. 2. Distribution of the grating amplitude and the intensities\wherep and C are the constantsV =const, i.e., the grating
of the coupled waves along the crystal thickndsg=14=0, 120  indexes are not inclined. The valiids(z)| determines the
=l3q; lo=1, yd=10|As|/y is the dielectric susceptibility modu- grating amplitude profile, the valugz) is the integral under
lation normallze.d to the gain co.nstaut.d is a distance normalized the grating amplitude profile from 0 anduy is the same
Fo the crystal thlc_knes_,st'ﬂ is _the intensity of thaath wave normal- integral over the crystal boundaries.
ized to the total light intensityo. The constan€ is determined by the following expression:

(I10=149=0, l50=134). In consequence of the energy trans-

fer from the nonlocal grating the wave intensities change C= LJVH?+4(A;A,+AsA,)2=const,

inside the crystal volume and the light contrast has the maxi-

mum at the point where intensities become equal. The amynereH = |A,|2+ |A,|2— A%~ |As)%

plitude of the photoinduced refractive index grating is pro-  The profile of the grating amplitude has a soliton shape.

soliton shape. The grating amplitude maximum is located afjetermined from the following input boundary conditions:
the point of the maximal light contrast.

The temporal formation of a single soliton is shown in
Fig. 3. The grating amplitude profile keeps its soliton shape 42(2=0)|=A10A2C0 P 10) +A3(0)A4(0)cog ,(0)]

at any time of grating formation, this way it can be consid- C
ered as a temporal soliton. But in the special case of long =—)
time and of matching mutual phase® {(—®,=0 or ), costip)
Aelly |Ae(z=d)[=Ay(d)A(d)cog ®1(d)]+ AzgAs4CO D)
C
0.4 -‘ _ Y , (12)
cosi2ydC+p)

0.3

whereA;(d), A,(d), A3(0), A4(0) are the amplitude of the
output wavesd ,(d) andd,(0) are the phase differences of
output waves on the corresponding crystal faces. After sub-
stituting solutiong7) and(8) into Eqg.(12), one can find the
equations to determine the valu@sandp. The result will be
the following: both constant€ and p, and also the profile
|Ae(z)| are determined by input intensity ratio, by input
wave phase difference, and by the crystal photorefractive
gainy. The productyC defines the amplitude of the station-
ary soliton profile, the product@yd determines the soliton
half-width, and parameteqy indicates the shift of the soliton
maximum relative to the coordinate origin. The key param-
FIG. 3. The dynamics of the soliton formationl,{/I,,  ©ter of the soliton detection is the coupling constadtof a
=1,4q/133=0.05;1,=1; yd=20). 7=t/T, is a time normalized to medium that determines the strength of the energy transfer,
the grating relaxation tim&,. The designations dﬂg|/—y andz/d the Iight contrast changes and the soliton half-width. The
are the same as in Fig. 2. soliton can be observed in those ferroelectric crystals, which

0.2 -
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FIG. 4. Alteration of the soliton shape in steady state by chang-
ing input intensity ratios: 1-p/1,0=0.1, 1y=Il34=1l4q;
2—110/150=0.5, [20=134= l44; 3—10/l20= l4g/13¢=1;

A—1 19/l 50=144/134=0.01. (,=1; yd=10). The designations of
|Ae|/y andz/d are the same as in the Fig. 2.

0.2 F

have strong photorefractive gain and a thickness more than
some millimeters, e.gyd=10.

The stationary soliton profiles calculated from formula
(12) for the case of FWM with four input waves and for
different intensity ratios are presented in Fig. 4. We deter-
mine the ratiod 19/1,0 andl44/134 Of copropagating waves  (b) 4 " s I .
at each input surface of the crystals, whefgandl 44 are the ’
intensities of those waves that have a wave-vector compo- FIG. 5. (a) The oscillation of the output intensity of the phase
nent directed along the polar axis and respectively the conjugated wave in four-wave mixing schemgg/l =3, g
waves with intensitie$,, and | 34 have a wave-vector com- =0,87,1,4=0, yd=15, (I,=1). (b) The bound-soliton behavior
ponent directed opposite to the polar axis. The theoreticadf the dynamic grating amplitudghe input conditions is the same
calculations give results published in Reff$2,15. Only in as in Fig. %a)). The designations of the normalized values are the
such cases when these ratios are equalég,/lp, Same asin Figs. 2 and 3.
=14q/134), the soliton maximum is located exactly in the
center of the crystal. When such ratio is brokdno(l,o  ciency is defined by the integral under the soliton shape of
#144/134), the soliton maximum is shifted to one of the the grating amplitude over the crystal boundaries. It shows a
crystal input faces. In the cases of usual FWM with threenew method to the diffraction efficiency management by
input waves the soliton maximum is located near such crystaheans of changes of the soliton shape, i.e. its amplitude,
surface where two copropagating waves enter. If FWM hasalf-width, and the position shift. All these soliton param-
four input waves, the soliton has a maximum near the surfaceters are determined by the ratigg/l,0 andl 44/134 On the
where the corresponding ratlqg/l 0 Or I44/134 is less. In  crystal surfaces.
addition to the location of the soliton maximum, the input  To complete the soliton class solutions we have to find
intensity ratio determines the soliton half-width as well. Themultisoliton solutions, which describe interaction of several
stationary soliton can be expanded and its localization degresolitons or bond-soliton statémore general solutiong14].
can be decreased by means of increasing the ratig$,, Here we would like to make the following remarks. The
and/orl 44/134. On the other hand, the soliton can be local-four-wave mixing is known as a scheme, which has instabili-
ized strongly in the case dfy<l,q or/andl ,q<I34 (See the ties and many-valued theoretical solutidds10,16,17. On
curves 3 and 4 in Fig.)4 the other hand, the investigation of nonstable behavior of

From solutions(7) one can obtain the diffraction effi- FWM by means of solving the sine-Gordon equation showed
ciency in the steady state as the sine-square function of theuto-oscillations for the intensities of the output waj/&g].
parametetuy . For instance, the diffraction efficiency in the We obtained the auto-oscillations of the output intensities by
most common case of four-wave mixing withy=0 is equal  solving numerically the sine-Gordon equation with introduc-
to »=1,(0)/I34=Ssir?(uy). This way, the diffraction effi- ing any small phase fluctuation between coupled wékFes
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probe beam

recording i =
beams 7

diffracted I A

1 mm
K

transmitted pattern

(@) FIG. 7. The pattern of the intensity distribution of the diffracted
probe beam.

incident from a Bragg direction of the grating planes, but in
a plane that is perpendicular to the plane of the recording
beamdFig. 6(a)] [18]. The recorded beams are from an Ar-
ion laser. We use transmission four-wave mixing scheme
with symmetrical angles of incidence. The optical scheme of
the recorded beams is shown in Figbp The expanded
beams are converged on the input crystal surfaaas) from

an angle of 12, wherec is the optical axis of the crystals.

M The probe beam is from a He-Ne laser. We form a large
/ expanded probe beam, which has uniform intensity distribu-
BS 4 tion across its cross section. The probe beam enters at the

BE Bragg angle of the grating and it covers completely the top

fﬁn surface p,c) of the crystal. We can observe the patterns of
M BS o both the transmitted and the diffracted output probe beams.
(b) The local value of the probe beam diffraction efficiency is

proportional to the horizontal distribution of the grating am-

FIG. 6. (a) The experimental setup to observe the longitudinalplitude point by point. This way the visual diffracted pattern
distribution of the dynamic gratingb) The optical scheme of four- g the projection of the volume distribution of the grating
wave mixing with four input wavesC is a crystal,M are mirrors, amplitude profile.
BS are beam splits, BE is a beam expander. In present work we used LiNbQcrystals doped with
0.005 wt % FeO; reduced to approximately OB0.5 to let
the diffusion to be the dominant mechanism of recording the

rating. The crystal size wasx bXc=3x14x5 mnt with

5(a)]. Those oscillations are caused by a multisoliton behav
ior of the grating amplitude shown in Fig(l§, where the

evolution of two-solitons bond states during a certain tim the thick 14 in the directi f th
period is depicted. The auto-oscillations exist in certain re-1€ NICKNESS 0 mm In the direction ot theé wave propa-

gions of input intensity ratio, which are dependent on thega’;ion._ In our ex_periments we observed the strong light scat-
coupling constant valugL5]. They are stable to influence the tering in such thick crystal that takes away about 80% of the

phase and intensity fluctuations of recorded beams. Thf?tal light energy. . .
mechanism of the bond-soliton behavior has a basis of the The typical pattern of the diffracted probe beam is shown

emergence of a local component of the grating that leads 8! Fi%‘ 7. Such pattern h.af] bheen c_)bserved for thedt;ansrr]nis-
phase exchanges between coupled waves during their propa®" four-wave mixing \I’}"t ht ree input wal\_/e(sj and for the
gation. As a result, the light contrast changes with time anawo-v(;/ave mn;]lng as W(le E)T edgratmfg amplitude is concen-d
the grating is repeatedly erased and rerecorded. Hence t @ted near the crystal boun ?ry_o rt]\.NO |npu1t_hwa|yeﬁ, an
auto-oscillations can be observed only in optically reversiblé ere I1s an active energy transfer in this part. e light con-
media. trast is deplete_zd compl_etely beyonq a thickness o_f about 5
This way the sine-Gordon mathematical approach predict@m and there is no grating and no diffracted beam in the rest

not only the stationary soliton, but also the multisoliton So_part.of the crystal. . - :
Iutionsy y Figure 8 shows the measured intensities of the diffracted

probe beam along the crystal thickness in the case of four
V. EXPERIMENTAL OBSERVATION OF THE input waves for different input intensity ratios. The observed
NONUNIEORM DYNAMIC GRATING intensity fluctuations are connected with heterogeneities in
the crystal volume and the light scattering. One can see that
To observe and measure the grating amplitude profile disthe situation is dramatically changed with four coupled
tribution we apply a new setup with an expanded probe beamwaves including into the interaction. When four input waves
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=4
s

a) V. CONCLUSION

14
Y]
L

The wave self-diffraction from a nonlocal phase grating in
photorefractive media can be described by the sine-Gordon
equation in the case of transmission geometry. The sine-
Gordon equation reveals the grating amplitude dynamics in-
duced by laser beam interaction. The grating amplitude dis-
tribution has a soliton shape in the direction of the wave
propagation.

2 0 2 4 6 8 10 12 14 16 We measured experimentally the grating amplitude distri-
longitudinal position (mm) bution in the volume of a photorefractive crystal. We ob-
served the alteration of the grating amplitude profile by
means of changes of the input intensity ratio. To provide
such experiments we applied a different experimental setup
with an expanded probe beam that entered on the investi-
gated crystal at the Bragg angle on the surface being perpen-
dicular to the input surfaces of recording beams. The dif-
fracted pattern of the probe beam displays the information
about the amplitude distribution of the recorded grating in
the crystal volume. We showed experimentally in steady
2 0 2 4 6 8 10 12 14 state that the changes of the grating amplitude profile versus
longitudinal position (mm) input intensity ratio correspond to single soliton solution of
the sine-Gordon equation described the FWM process. The
0107 c) stationary grating shape is tolerant to fluctuations of wave
intensities or phases. To confirm the real soliton behavior one
- measured has to detect the time dependence of the soliton profile and
1|‘-_ - fied its driving in accordance with the sine-Gordon equation. One
possibility for the experimental verification can be the use of
a pulse radiation for grating recodirigr erasing with simul-
taneous detection of the grating amplitude profile in time.
The crucial parameter of the soliton is the energy transfer

14
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L
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— fitted
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o
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=1
LY
= .

0.08 -

0.06

0.044

0.024

diffraction efficiency (arb. units)

o0 = — gain at a given distanain the medium. The photorefractive
2 0 2 & & & 10 12 14 1s gain determines the change of the light contrast during the
longitudinal position (mm) wave propagation and this way the soliton localization de-

. - . gree as well. In the steady state the soliton is motionless and

FIG. 8. The measgred intensities of the diffracted probe beani]ts parameters, i.e., the value and the position of the maxi-
along the crystal thickness@—I10/150=0.08, 15=l39=laai  mum, and the half-width are unequivocally defined by the
(0)—110/120=0.14, 1 59=I34=laa: (O—l10/120= laa/l3a=1. input intensity ratio. The total change of the photoinduced
refractive index is defined by the integral under the soliton

have equal intensities, the active energy transfer is arisen jushape of the grating amplitude and it determines the wave-
in the center of the crystal, and there is the maximum of themixing diffraction efficiency. Alteration of the soliton shape
location of the grating amplitude there. This process is noby means of the changes of the input intensity ratio intro-

obvious, but it corresponds to the theoretical prediction ofduces a new method to control the output wave parameters.
the soliton formation. We obtained experimentally the maxi-It can be applied in all-optical signal and information pro-

mum of the grating amplitude in the center of the crystal forc€SSing, in optical switching and steering, and in optical
that casdFig. 80)]. logic. We obtained a multisoliton behavior that leads to auto-

oscillations of output intensities. The auto-oscillations have
Eound new applications, e.g., in interferometer devices, in
optical information processing.

The location of the grating amplitude maximum is
changed versus the input intensity ratio. With decreasing th
intensity | 1o the grating maximum moved towards that crys-
tal surface where input waves 1 and 2 enter, in accordance
with the theory (1o/120<l4q/l3q, See Sec. l)l The theoret-
ical graphs in Fig. 4 are calculated approximately for the
same input intensity ratio as in the experime(fg. 8) in The authors wish to thank Dr. Tatiana Davidova and Dr.
order to compare theoretical and experimental grating amplivuriy Koblyanskiy for helpful discussions about solitons in
tude profiles. One can see that the experimental behavior @xperimental physics. This research was supported by OTKA
the grating amplitude distribution versus input intensity ratioContract No. T26088, by the Austrian-Hungarian Intergov-
is in good qualitative agreement with the theoretical modelernmental S&T Program A-8/2001, and by the Center of Ex-
describing the soliton profile. cellence Program ICA1-CT-2000-70029.
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