
PHYSICAL REVIEW E 67, 046603 ~2003!
Nonuniform dynamic gratings in photorefractive media with nonlocal response
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The amplitude of the phase dynamic grating is a nonuniform space distributed in photorefractive crystals
with nonlocal response as a result of energy transfer between the interacted waves. The dynamical process of
grating formation in the case of transmission two- and four-wave mixing is described by the damped sine-
Gordon equation that governs the soliton propagation. A stationary soliton solution for the grating amplitude
profile was obtained. Experiments on observation of a nonuniform distribution of the grating amplitude
through the crystal volume are presented. It is experimentally shown that the changes of the grating amplitude
profile in dependence of input intensity ratio match the solutions of the damped sine-Gordon equation in steady
state. The diffraction efficiency of energy transfer is determined by the value of the integral under the grating
amplitude profile. The soliton profile is altered with changing input intensity ratio of recorded beams. It
provides the effect of diffraction efficiency management by changing the half-width and the position of the
soliton. The theory predicts a multisoliton behavior in reversible media with strong amplitifcaiton gain that
leads to auto-oscillations of output wave intensities.
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I. INTRODUCTION

The theory of the optical dynamic holography consid
the effect resulting from the interaction of laser beams
nonlinear media, mostly in ferroelectric crystals. In a m
dium with nonlocal response the wave self-diffraction exh
its the effect of wave amplification being conditional on
phase shift between the interference pattern and the reco
grating @1,2#. Many applications in photonics are based
this effect@3–6#. Their conventional theoretical modeling
reduced to a set of nonlinear equations for the output w
intensities.

The processes of the dynamic wave mixing are based
the nonlinear properties of ferroelectric crystals and on
photorefractive effects@1–8#. An interference pattern of the
interacting laser beams induces an internal space charge
is nonuniformly distributed in the crystals. The space-cha
field modulates the refractive index. The same interact
waves create the refractive index grating and diffract fr
such grating during the self-diffraction process. The dif
sion dominant photorefractive mechanism is a conventio
one to record nonlocal gratings, which are shifted on
quarter of the space period relative to the light interfere
pattern. Because of the presence of the additional phase
the well-known effect of the energy transfer between
coupled waves and amplification of one of them appear. F
thermore, the energy transfer leads to changes in the con
of the interference pattern over the direction of wave pro
gation, because the wave intensities are changed inside
crystal. In this way the grating amplitude must change
well. The essentials of the nonuniform distribution of t
grating amplitude across the crystal have already been
scribed in the first papers devoted to the optical dyna
holography@8,9#.

In the present paper we study the transmission four-w
mixing ~FWM! in ferroelectric crystals. Our main intere
1063-651X/2003/67~4!/046603~8!/$20.00 67 0466
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lies in the investigation of the photoinduced grating insi
the crystal. We have obtained that the nonlinear proces
the wave self-diffraction in the case of the nonlocal respo
can be described by the sine-Gordon equation@10–13#. The
variable of the sine-Gordon equation is the integral under
grating amplitude profile. It is known well that the sine
Gordon equation together with the nonlinear Schro¨dinger
and Korteweg-de Vries ones possesses the soliton solu
@14#. We have derived that the grating amplitude has a s
ton shape in the spatial direction of the wave propagation
steady state the shape of the soliton is determined by
input intensity ratio of recording beams.

We present some experiments on the measurement o
nonuniform distribution of the grating amplitude profi
across the crystal and of its dependence of input inten
ratio. For this measurement we propose a different exp
mental setup that uses an expanded probe beam cov
completely the upper surface of the crystal sample, incid
from a Bragg direction of the grating planes, but not in t
plane of the recording beams. Since there is no vertical
sition dependence in the distribution of the spatial grating,
points of the diffracted pattern of the probe beam has a p
portional intensity to the square of the magnitude of the
fractive index grating at the respective horizontal positio
~The effect of the deviation of the probe beam from the v
tical direction inside the crystal is negligible in our case d
to the large value of the refractive index!. The experimental
results are in good qualitative agreement with the theoret
calculations of the soliton profile.

In the developed theoretical description all solutions
output intensities are derived from the grating amplitude
lution, which is determined by the intensity ratio of the inp
waves. By changing the input intensity ratio, the grating a
plitude shape changes as well, and this way all output par
eters of the FWM scheme change, too. In addition to stati
ary soliton solutions we have obtained multisoliton behav
©2003 The American Physical Society03-1
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by numeric calculations. They show auto-oscillations of
grating and as a consequence they lead to auto-oscillation
all output wave intensities. The possibility of their existen
has a basis in the fact that a local component of the gra
appears and it leads to mutual changes of phases of i
acted waves. As a result, the grating indexes are incline
the crystal volume and a stationary grating cannot be
corded.

The present model of grating dynamics can be used in
description with lot of phenomena and applications of d
namic holography with photorefractive media. Furthermo
it can be applied for designing new applications, for e
ample, in signal processing, in optical switching, in optic
logic, in interferometer and sensor devices.

II. THE SINE-GORDON EQUATION IN TRANSMISSION
FOUR-WAVE MIXING

In the following we consider a degenerate four-wave m
ing in symmetrical transmission geometry~Fig. 1!. The z
axis shows the crystal thickness in the direction of wa
propagation. The polar crystallographic axis (C axis! is di-
rected along thex axis of light modulation. The photoin
duced refractive index grating is shifted relative to the int
ference pattern in the direction of theC axis~the dashed lines
in Fig. 1!. According to such determination waves 1 and
are amplified, and waves 2 and 3 lose energy. Thenth wave

complex amplitude isĀn5An(t,z)exp@iwn(t,z)#, where both
the real amplitude and the phase of the wave depend on
time and on the space coordinate. We designate the inte
ties of input waves asI 10, I 20, I 3d , I 4d ; note that the fourth
wave is absent on its input (I 4d50) in the conventional
FWM. Let us assume for the simplicity that the polarizatio
of all interacted waves are extraordinary, although the s
Gordon equation does not depend on the wave polariza
state, but is determined by only a nonlocal response
transmission geometry of the wave interaction.

The wave self-diffraction description is conventionally r
duced to the following nonlinear equation set in the assum
tion of slow variation amplitude of plane waves@1–13#:

FIG. 1. The four-wave mixing scheme with symmetrical tran
mission geometry. The nonlocal phase grating~dashed lines! is
shifted relative to the maximum intensities of the light interferen
pattern~solid lines!. C is the crystal polar axis.
04660
e
of

g
er-
in
-

e
-
,
-
l

-

e

-

he
si-

s
e-
n
d

-

]Ā1 /]z52 id«Ā2 ,

]Ā2* /]z5 id«Ā1* ,
~1!

]Ā3* /]z52 id«Ā4* ,

]Ā4 /]z5 id«Ā3 ,

]d«/]t5F̂~Āi Āj* !2d«/T0 . ~2!

Hered«(t,z)5uD«(t,z)uexp@iC8(t,z)# is the complex am-
plitude of the dynamic grating. We neglect here the abso
tion in the crystal and declare that the total light intensity
a constant:I 05I 11I 21I 31I 45const. All wave amplitudes
are normalized by the value ofI 0. We assume the fulfillmen
of the phase-matching conditions:kW12kW25kW42kW35KW ,
wherekWn is thenth wave vector andKW is the grating vector.
Each equation of~1! shows a change of wave amplitud
during its propagation through a medium. Material equat
~2! describes the grating dynamics in a photorefractive m
dium. The first term in the right side of Eq.~2! is an operator
to describe a photorefractive response being proportiona
the light intensity, and the second term reveals the gra
relaxation with the relaxation time constantT0. We neglect
here the effects of grating diffusion and drift.

In the case of nonlocal response the operator of Eq.~2!

can be written asF̂(uEu2)5 ig(EiEj* , whereg is the am-
plification gain. The grating is shifted by a quarter of th
space period relative to the light interference pattern tha
expressed by the factori. The diffusion dominant mechanism
is the conventional one to record nonlocal gratings in pho
refractive crystals.

We assume thatg is a constant and it determines th
maximum photorefractive gain of the energy transfer. F
example,g can be found from the expression

g52pr 33ne
3Esc@l cos~u!#21,

where Esc is the maximum amplitude of the space-char
field, ne is the average refractive index for the extraordina
waves,r 33 is the tensor component of the electro-optical co
stant,l is the wavelength, andu is the divergence angle o
the light beams relative to the normal of the input crys
surfaces.

We can write dynamic equation~2! in the following form:

]D«/]t5g@Ā1Ā2* 1Ā4Ā3* #2D«, ~3!

where D«(t,z)52 id«(t,z)5uD«(t,z)uexp@iC(t,z)# is the
shifted grating, uD«u is the grating amplitude,C5p/2
2C8, t5t/T0 , g is normalized to the total light intensity
I 0.

To solve the set~1!,~3! we introduce a new real variable

u~t,z!5E
z
uD«~t,z!udz. ~4!

-

e
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NONUNIFORM DYNAMIC GRATINGS IN . . . PHYSICAL REVIEW E67, 046603 ~2003!
The variableu(t,z) has the physical meaning of th
photoinduced changes of the optical path length along
axis z of wave-propagation direction. In the stationary sta
u(z) is defined by the light contrast.

Considering the time argument as a parameter, we
split set ~1! in two systems: for the amplitudes and for th
phase differences of copropagated waves,

dA1 /du5A2cos~F1!,

dA2 /du52A1cos~F1!,

dF1 /du5sin~F1!~A1
22A2

2!~A1A2!21, ~5!

dA3 /du5A4cos~F2!,

dA4 /du52A3cos~F2!,

dF2 /du5sin~F2!~A3
22A4

2!~A3A4!21, ~6!

where F15w12w22C8, F25w42w32C8. Systems~5!
and ~6! has the following initial integrals:

d15A1
21A2

2 ,

d25A1A2sin~F1!,

p15A3
21A4

2 ,

p25A3A4sin~F2!.

With the help of the initial integrals we obtain the exa
solutions for the intensities and the phases of four coup
waves:

A1
2~z!5sin@b12u~z!2C1#

Ad1
224d2

2

2
1

d1

2
,

A2
2~z!5d12A1

2~z!,
~7!

A3
2~z!5sin$b22@u~z!2ud#2C2%

Ap1
224p2

2

2
1

p1

2
,

A4
2~z!5p12A3

2~z!,

cos@F1~z!#5cos@b12u~z!2C1#
Ad1

224d2
2

2A1~z!A2~z!
,

~8!

cos@F2~z!#5cos$b22@u~z!2ud#2C2%
Ap1

224p2
2

2A3~z!A4~z!
,

where ud(t)5u(t,z5d), d is the thickness of the crysta
sample. The constantsC1 andC2 are defined by the follow-
ing input boundary conditions:
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C15arcsin@~ I 202I 10!/Ad1
224d2

2#,

C25arcsin@~ I 4d2I 3d!/Ap1
224p2

2#,

b15sgn@cos~F10!#,

b25sgn@cos~F2d!#.

F10, F2d are the input phase differences at the crystal s
faces that can be considered relative to a phase of a sta
grating.

We substitute solutions~7! and ~8! as well as definition
~4! into dynamic equation~3! and obtain the sine-Gordo
equation with the damping term]u/]z:

]2u

]t]z
1

]u

]z
5R sin~2u1a!, ~9!

where the values ofR anda are defined by input condition
and by the value ofud(t). In case of matching mutua
phasesF12F25$0,p% the values ofR anda can be deter-
mined from the following expressions:

tg~a!5$b1AI 10I 201~ I 3d1I 4d!sin@2ud2b2arctan~1/q!#%

3$ 1
2 ~ I 202I 10!1~ I 3d1I 4d!

3sin@2ud1b2arctan~q!#%21,

whereq5(AI 4d /I 3d2AI 3d /I 4d)/2

R5g$ 1
4 ~ I 101I 20!

21 1
4 ~ I 3d1I 4d!21cos~2ud!@ 1

2 ~ I 202I 10!

3~ I 4d2I 3d!12b1b2AI 10I 20I 3dI 4d#1sin~2ud!

3@b2AI 3dI 4d~ I 202I 10!2b1AI 10I 20~ I 4d2I 3d!#%1/2.

The sine-Gordon equation describes the nonlinear wa
matter interaction in the process of dynamic grating reco
ing. As a result a soliton is generated as a stable profile of
photoinduced modulation of the refractive index. The no
linear mechanism of the soliton formation resembles tha
light self-focusing of optical spatial solitons: the refractiv
index modulation is deeper in that spatial area where
light contrast is higher~in the case of the spatial solitons th
area is determined by the local intensity of a nonunifo
light beam!. But the natures of the two solitons are differen
Whereas in the case of the self-focusing the wave front o
propagated beam takes the soliton profile, in our case
wave self-diffraction not the electromagnetic waves but
amplitude of the refractive index grating assumes the sol
form.

In Fig. 2 it is drawn the distributions of the interacte
wave intensities and of the grating amplitude through
crystal thickness in the case of double phase conjuga
mirror with equaled intensity ratios on input crystal fac
3-3
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BUGAYCHUK et al. PHYSICAL REVIEW E 67, 046603 ~2003!
(I 105I 4d50, I 205I 3d). In consequence of the energy tran
fer from the nonlocal grating the wave intensities chan
inside the crystal volume and the light contrast has the m
mum at the point where intensities become equal. The
plitude of the photoinduced refractive index grating is p
portional to the light contrast and it is described by t
soliton shape. The grating amplitude maximum is located
the point of the maximal light contrast.

The temporal formation of a single soliton is shown
Fig. 3. The grating amplitude profile keeps its soliton sha
at any time of grating formation, this way it can be cons
ered as a temporal soliton. But in the special case of l
time and of matching mutual phases (F12F250 or p),

FIG. 2. Distribution of the grating amplitude and the intensit
of the coupled waves along the crystal thickness.I 105I 4d50, I 20

5I 3d ; I 051, gd510 uD«u/g is the dielectric susceptibility modu
lation normalized to the gain constant;z/d is a distance normalized
to the crystal thickness;I n is the intensity of thenth wave normal-
ized to the total light intensityI 0.

FIG. 3. The dynamics of the soliton formation. (I 10/I 20

5I 4d /I 3d50.05; I 051; gd520). t5t/T0 is a time normalized to
the grating relaxation timeT0. The designations ofuD«u/g andz/d
are the same as in Fig. 2.
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when the grating is already recorded, the grating profile
comes stable and does not change neither in time no
space if the input conditions are held constant. The soli
becomes the spatial temporal. Just this case will be con
ered in the subsequent sections.

III. STATIONARY SOLITON PROFILE OF THE GRATING
AMPLITUDE

In steady state equation~9! has the following solutions:

tg~u!5exp~2gCz1p!, ~10!

uD«u5
gC

cosh~2gCz1p!
, ~11!

wherep andC are the constants.C5const, i.e., the grating
indexes are not inclined. The valueuD«(z)u determines the
grating amplitude profile, the valueu(z) is the integral under
the grating amplitude profile from 0 toz andud is the same
integral over the crystal boundaries.

The constantC is determined by the following expression

C5 1
2 AH214~A1A21A3A4!25const,

whereH5uĀ2u21uĀ4u22uĀ1u22uĀ3u2.
The profile of the grating amplitude has a soliton sha

Constantsp and C, which define the soliton shape, can b
determined from the following input boundary conditions:

uD«~z50!u5A10A20cos~F10!1A3~0!A4~0!cos@F2~0!#

5
gC

cosh~p!
,

uD«~z5d!u5A1~d!A2~d!cos@F1~d!#1A3dA4dcos~F2d!

5
gC

cosh~2gdC1p!
, ~12!

whereA1(d), A2(d), A3(0), A4(0) are the amplitude of the
output waves,F1(d) andF2(0) are the phase differences o
output waves on the corresponding crystal faces. After s
stituting solutions~7! and~8! into Eq. ~12!, one can find the
equations to determine the valuesC andp. The result will be
the following: both constantsC and p, and also the profile
uD«(z)u are determined by input intensity ratio, by inp
wave phase difference, and by the crystal photorefrac
gaing. The productgC defines the amplitude of the station
ary soliton profile, the product 2Cgd determines the soliton
half-width, and parameterp indicates the shift of the soliton
maximum relative to the coordinate origin. The key para
eter of the soliton detection is the coupling constantgd of a
medium that determines the strength of the energy trans
the light contrast changes and the soliton half-width. T
soliton can be observed in those ferroelectric crystals, wh
3-4
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NONUNIFORM DYNAMIC GRATINGS IN . . . PHYSICAL REVIEW E67, 046603 ~2003!
have strong photorefractive gain and a thickness more
some millimeters, e.g.gd>10.

The stationary soliton profiles calculated from formu
~11! for the case of FWM with four input waves and fo
different intensity ratios are presented in Fig. 4. We de
mine the ratiosI 10/I 20 and I 4d /I 3d of copropagating waves
at each input surface of the crystals, whereI 10 andI 4d are the
intensities of those waves that have a wave-vector com
nent directed along the polar axisc, and respectively the
waves with intensitiesI 20 and I 3d have a wave-vector com
ponent directed opposite to the polar axis. The theoret
calculations give results published in Refs.@12,15#. Only in
such cases when these ratios are equaled (I 10/I 20
5I 4d /I 3d), the soliton maximum is located exactly in th
center of the crystal. When such ratio is broken (I 10/I 20
ÞI 4d /I 3d), the soliton maximum is shifted to one of th
crystal input faces. In the cases of usual FWM with thr
input waves the soliton maximum is located near such cry
surface where two copropagating waves enter. If FWM
four input waves, the soliton has a maximum near the surf
where the corresponding ratioI 10/I 20 or I 4d /I 3d is less. In
addition to the location of the soliton maximum, the inp
intensity ratio determines the soliton half-width as well. T
stationary soliton can be expanded and its localization de
can be decreased by means of increasing the ratiosI 10/I 20
and/orI 4d /I 3d . On the other hand, the soliton can be loc
ized strongly in the case ofI 10!I 20 or/andI 4d!I 3d ~see the
curves 3 and 4 in Fig. 4!.

From solutions~7! one can obtain the diffraction effi
ciency in the steady state as the sine-square function of
parameterud . For instance, the diffraction efficiency in th
most common case of four-wave mixing withI 4d50 is equal
to h5I 4(0)/I 3d5sin2(ud). This way, the diffraction effi-

FIG. 4. Alteration of the soliton shape in steady state by cha
ing input intensity ratios: 1—I 10/I 2050.1, I 205I 3d5I 4d ;
2—I 10/I 2050.5, I 205I 3d5I 4d ; 3—I 10/I 205I 4d /I 3d51;
4—I 10/I 205I 4d /I 3d50.01. (I 051; gd510). The designations o
uD«u/g andz/d are the same as in the Fig. 2.
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ciency is defined by the integral under the soliton shape
the grating amplitude over the crystal boundaries. It show
new method to the diffraction efficiency management
means of changes of the soliton shape, i.e. its amplitu
half-width, and the position shift. All these soliton param
eters are determined by the ratiosI 10/I 20 and I 4d /I 3d on the
crystal surfaces.

To complete the soliton class solutions we have to fi
multisoliton solutions, which describe interaction of seve
solitons or bond-soliton states~more general solutions! @14#.
Here we would like to make the following remarks. Th
four-wave mixing is known as a scheme, which has instab
ties and many-valued theoretical solutions@4,10,16,17#. On
the other hand, the investigation of nonstable behavior
FWM by means of solving the sine-Gordon equation show
auto-oscillations for the intensities of the output waves@10#.
We obtained the auto-oscillations of the output intensities
solving numerically the sine-Gordon equation with introdu
ing any small phase fluctuation between coupled waves@Fig.

-

FIG. 5. ~a! The oscillation of the output intensity of the phas
conjugated wave in four-wave mixing scheme.I 10/I 2053, I 3d

50,87, I 4d50, gd515, (I 051). ~b! The bound-soliton behavio
of the dynamic grating amplitude~the input conditions is the sam
as in Fig. 5~a!!. The designations of the normalized values are
same as in Figs. 2 and 3.
3-5
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5~a!#. Those oscillations are caused by a multisoliton beh
ior of the grating amplitude shown in Fig. 5~b!, where the
evolution of two-solitons bond states during a certain ti
period is depicted. The auto-oscillations exist in certain
gions of input intensity ratio, which are dependent on
coupling constant value@15#. They are stable to influence th
phase and intensity fluctuations of recorded beams.
mechanism of the bond-soliton behavior has a basis of
emergence of a local component of the grating that lead
phase exchanges between coupled waves during their pr
gation. As a result, the light contrast changes with time a
the grating is repeatedly erased and rerecorded. Hence
auto-oscillations can be observed only in optically reversi
media.

This way the sine-Gordon mathematical approach pred
not only the stationary soliton, but also the multisoliton s
lutions.

IV. EXPERIMENTAL OBSERVATION OF THE
NONUNIFORM DYNAMIC GRATING

To observe and measure the grating amplitude profile
tribution we apply a new setup with an expanded probe be

FIG. 6. ~a! The experimental setup to observe the longitudi
distribution of the dynamic grating.~b! The optical scheme of four
wave mixing with four input waves.C is a crystal,M are mirrors,
BS are beam splits, BE is a beam expander.
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incident from a Bragg direction of the grating planes, but
a plane that is perpendicular to the plane of the record
beams@Fig. 6~a!# @18#. The recorded beams are from an A
ion laser. We use transmission four-wave mixing sche
with symmetrical angles of incidence. The optical scheme
the recorded beams is shown in Fig. 6~b!. The expanded
beams are converged on the input crystal surfaces (a,c) from
an angle of 120, wherec is the optical axis of the crystals
The probe beam is from a He-Ne laser. We form a la
expanded probe beam, which has uniform intensity distri
tion across its cross section. The probe beam enters a
Bragg angle of the grating and it covers completely the
surface (b,c) of the crystal. We can observe the patterns
both the transmitted and the diffracted output probe bea
The local value of the probe beam diffraction efficiency
proportional to the horizontal distribution of the grating am
plitude point by point. This way the visual diffracted patte
is the projection of the volume distribution of the gratin
amplitude profile.

In present work we used LiNbO3 crystals doped with
0.005 wt % Fe2O3 reduced to approximately OD50.5 to let
the diffusion to be the dominant mechanism of recording
grating. The crystal size wasa3b3c5331435 mm3 with
the thickness of 14 mm in the direction of the wave prop
gation. In our experiments we observed the strong light s
tering in such thick crystal that takes away about 80% of
total light energy.

The typical pattern of the diffracted probe beam is sho
in Fig. 7. Such pattern has been observed for the trans
sion four-wave mixing with three input waves and for th
two-wave mixing as well. The grating amplitude is conce
trated near the crystal boundary of two input waves, a
there is an active energy transfer in this part. The light c
trast is depleted completely beyond a thickness of abou
mm and there is no grating and no diffracted beam in the
part of the crystal.

Figure 8 shows the measured intensities of the diffrac
probe beam along the crystal thickness in the case of
input waves for different input intensity ratios. The observ
intensity fluctuations are connected with heterogeneities
the crystal volume and the light scattering. One can see
the situation is dramatically changed with four coupl
waves including into the interaction. When four input wav

l

FIG. 7. The pattern of the intensity distribution of the diffracte
probe beam.
3-6
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have equal intensities, the active energy transfer is arisen
in the center of the crystal, and there is the maximum of
location of the grating amplitude there. This process is
obvious, but it corresponds to the theoretical prediction
the soliton formation. We obtained experimentally the ma
mum of the grating amplitude in the center of the crystal
that case@Fig. 8~c!#.

The location of the grating amplitude maximum
changed versus the input intensity ratio. With decreasing
intensity I 10 the grating maximum moved towards that cry
tal surface where input waves 1 and 2 enter, in accorda
with the theory (I 10/I 20,I 4d /I 3d , see Sec. III!. The theoret-
ical graphs in Fig. 4 are calculated approximately for t
same input intensity ratio as in the experiments~Fig. 8! in
order to compare theoretical and experimental grating am
tude profiles. One can see that the experimental behavio
the grating amplitude distribution versus input intensity ra
is in good qualitative agreement with the theoretical mod
describing the soliton profile.

FIG. 8. The measured intensities of the diffracted probe be
along the crystal thickness.~a!—I 10/I 2050.08, I 205I 3d5I 4d ;
~b!—I 10/I 2050.14, I 205I 3d5I 4d ; ~c!—I 10/I 205I 4d /I 3d51.
04660
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V. CONCLUSION

The wave self-diffraction from a nonlocal phase grating
photorefractive media can be described by the sine-Gor
equation in the case of transmission geometry. The s
Gordon equation reveals the grating amplitude dynamics
duced by laser beam interaction. The grating amplitude
tribution has a soliton shape in the direction of the wa
propagation.

We measured experimentally the grating amplitude dis
bution in the volume of a photorefractive crystal. We o
served the alteration of the grating amplitude profile
means of changes of the input intensity ratio. To prov
such experiments we applied a different experimental se
with an expanded probe beam that entered on the inve
gated crystal at the Bragg angle on the surface being per
dicular to the input surfaces of recording beams. The d
fracted pattern of the probe beam displays the informat
about the amplitude distribution of the recorded grating
the crystal volume. We showed experimentally in stea
state that the changes of the grating amplitude profile ve
input intensity ratio correspond to single soliton solution
the sine-Gordon equation described the FWM process.
stationary grating shape is tolerant to fluctuations of wa
intensities or phases. To confirm the real soliton behavior
has to detect the time dependence of the soliton profile
its driving in accordance with the sine-Gordon equation. O
possibility for the experimental verification can be the use
a pulse radiation for grating recoding~or erasing! with simul-
taneous detection of the grating amplitude profile in time

The crucial parameter of the soliton is the energy trans
gain at a given distanced in the medium. The photorefractiv
gain determines the change of the light contrast during
wave propagation and this way the soliton localization d
gree as well. In the steady state the soliton is motionless
its parameters, i.e., the value and the position of the m
mum, and the half-width are unequivocally defined by t
input intensity ratio. The total change of the photoinduc
refractive index is defined by the integral under the solit
shape of the grating amplitude and it determines the wa
mixing diffraction efficiency. Alteration of the soliton shap
by means of the changes of the input intensity ratio int
duces a new method to control the output wave parame
It can be applied in all-optical signal and information pr
cessing, in optical switching and steering, and in opti
logic. We obtained a multisoliton behavior that leads to au
oscillations of output intensities. The auto-oscillations ha
found new applications, e.g., in interferometer devices,
optical information processing.
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