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Deflections in magnet fringe fields
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A transverse multipole expansion is derived, including the longitudinal components necessarily present in
regions of varying magnetic field profile. It can be used for exact numerical orbit following through the
fringe-field regions of magnets whose end designs introduce no extraneous components, i.e., fields not required
to be present by Maxwell’s equations. Analytic evaluations of the deflections are obtained in various approxi-
mations. Mainly emphasized is a “straight-line approximation,” in which particle orbits are treated as straight
lines through the fringe-field regions. This approximation leads to a readily-evaluated figure of merit, the ratio
of rms end deflection to nominal body deflection, that can be used to determine whether or not a fringe field
can be neglected. Deflections in “critical” casés.g., near intersection regionare analyzed in the same
approximation.
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I. STRATEGY AND NOTATION the entire deflection caused by the magnet occurs at a single
longitudinal position. Even more extreme than our straight
The purpose of this paper is to derive formulas for theline approximation is to treat the transverse orbit coordinates
orbit deflections caused by the fringe fields of nonsolenoida(x,y) as constant through the entire magnet, body, and ends;
accelerator magnets. The main ingredient is a multipole exthe deflection(say horizontalis proportional to dield inte-
pansion for fields having arbitrary longitudinal profile andgral of the form Ax'(x,y)~/[Z.B(x,y,z)dz, where
including all field componentgand only thosgrequired to  B(X,y,z) stands for any one ofB,,B,,dB,/dx,dB,/
be present by Maxwell’s equations. dy, ..., thatis, either of the transverse magnetic field com-
Because terminology describing magnets depends on copponents, or any of their derivatives with respeck &nd/ory.
text, we define some of our terms, if only implicitly, by using Commonly then, one defines &ffective magnet lengthk
them in this section. Most magnets in accelerators are “di=L such thatf” . 3(0,0z)dz=B(0,0,0)L.x. This length is
poles,” “quadrupoles” or other “multipoles” where we dis- specific to the particular multipole, the magnet is designed to
tinguish by quotation marks the common names of thes@roduce. In spite of the facts that the magnet must be long to
magnets from the dipole, quadrupole, multipole, etc., termsalidate the multipole approximation, yet short to validate
appearing in mathematical expansions of their magnetiche thin element treatment, and that discontinuous magnetic
fields. The particle orbits angaraxial, with smalltransverse fields violate the Maxwell's equations, this approximation is
displacements r=(x>+y?)¥2  with slopes &',y’) curiously accurate for most accelerator magnets. Because of
=(dx/dzdy/dz) small compared to one because the orbitsthis good start, it promises to be effective to improve upon
are more or less parallel to tieaxis, which is the magnet the approximation by assuming that magnets have ideal mul-
centerline. The dominant magnetic field componentsipole fields within the length. s, but also to include “end
(Bx,By) are thereforetransverseto this axis, and the cur- fields” applicable in regions of lengtAL _ and AL, at in-
rents in most accelerator magnets are thereforgitudinal  put and output ends. In this approximation, the transverse
But actual magnet coils must have radial leads to return thenagnetic fields are continuous, but their derivatives are dis-
currents and, because of practical considerations, they alsntinuous at both ends of the fringe-field regions.
have azimuthal currents. In a well-designed magnet, the same multipole that is
The standard multipole expansion derives entirely fromdominant in the central region is dominant in the end re-
longitudinal magnet currentéhis includes the bound cur- gions. But the fields in the end regions are necessarily more
rents in ferromagnetslt is only for along magnet whose complicated and include longitudinal componeBiéx,y,z).
lengthL is large (for example, compared to a typical radial Since the fields in these regions are, in principle, constrained
magnetic half-aperture;,) that a single multipole term pro- only by Maxwell’s equations, rigorous formulas for the de-
vides a good approximation to the field. Yet, as concerns thélections they cause can only be evaluated by solving differ-
effect of the magnet on a particle orbit, a common idealizaential equations appropriate for the detailed magnet end con-
tion is theshort magnebr thin lensapproximation, in which  figuration. To obtain analytic formulas, we must make some
assumptions, the first of which is that the formulation is not
intended to apply to “intentional solenoidghecause of their
*Present address: European Synchrotron Radiation Facilitye Boi large azimuthal currents and longitudinal field components
Postale 220, F-38043 Grenoble Cedex, France; electronic addredsurthermore, the only longitudinal fields included are those
yannis@esrf.fr that are required by Maxwell's equations to be present in re-
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gions of varying longitudinal profile. In other words, the for- whered satisfies
mulas can be expected to be accurate for “well-designed”

magnets, in which the dominant fringe-field multipolarity ) PD  Pd PP

matches the body multipolarity. This can, in principle, be Veb(x,y,2)= PV + Py + e =0. @)
assured by proper shaping of pole ends and proper confor- y

mation of the magnet return currents. In the absence of magxn appropriate expansion is

netic field measurements in the end regions, this is the only

practical assumption one can make when predicting the r - Xym

fringe-field deflections. If the fieldhave been accurately d)(x,y,z)=mzo nEO Cm,n(z)m, 3)

measured or calculated, to improve on formulas given in this

paper, it would be necessary to separate oufphesumably where the coefficiente
smal) extraneous components and include their effects perﬁositionz 3]
turbatively. One cannot exclude the possibility of end geom- Substitutiﬁg Eq(3) into Eq. (2), we get a recursion rela-
etries that introduce multipoles for which the extraneoustion for the coefficients, e

fringe fields are large compared to the required fringe fields,
either intentionally or unintentionally. The present formalism Cons 2n=—Crm n+2_C£T%]n , (4)
would not be directly applicable for such fields. ’ ' ’

In this paper, we derive first approximations for the de-where in this and in subsequent formulas, a supersfipt
flections occurring in the end field regions, of the form denotes! differentiations with respect ta; in this casel
Ax’,~f9AL_B(x,y,z)dz and Ax’+~ft+AL*B(x,y,Z)dz =2. Now, we can evaluate the gradient of the potential and

[1] Like the thin lens approximation, these formulas assumget the field Components in the three Cartesian directions
the transverse orbit displacement is constant through the end o o om

intervalsAL _ andAL _ . This is a much more valid assump- B.xy.2)=> S ¢ (2) Xy

tion than assuming constant displacement through the whole e oo ™M nim!?

magnet if, as is usually true, the end regions are “short”;

m.n(2) depend on the longitudinal

AL.<<L. Furthermore, terms proportional to transverse c = xMy™
slopesx’ andy’ can be consistently included in the formulas By(x,y,2)= >, > Cn+1n(2) Sy
for the deflections. m=0n=0 '
A criterion for the validity of treating the end region as w o nom
short can be based on the inequalig, |AL. /B, ,<1, _ 1, Y
qualifg, ,[AL . /By, BZ(X'y’Z)_mE:o ngo Cinn(2) oy (5)

where g, , and B)’(’y are the usuaB functions and their de-

rivatives with respect to the longitudinal positian When ) N ]
this is true, the(fractiona) rate of change of multipole 1he two-index coefficiente, , can be expressed in terms of

strength 1AL . is large compared to thgractiona) rate of the usual normal and skew multipole coefficients which, as

change of lattice8 functions. well as being conventional, have only one index,
There is often a tendency to believe that multipole contri- N
butions from opposite ends of a magnet cancel each other. by(2)=Cyn(2)= J"By (2)
But, since this is not universally valid, in this paper no such . n x| S '
assumption will be made. =y
"B
Il. THREE-DIMENSIONAL MULTIPOLE EXPANSION an(z):CO,n+1(Z):< &an) (2). ©)
In this section, a multipole expansion is developed that is x=y=0

appropriate for performing the calculation just describedyye next seek a representation of the field as a function of

This expansion is applicable to magnetic fields that depengese coefficients and their derivatives. The relatiéncan
arbitrarily on the longitudinal coordinate but, being a po applied recursively to obtain

power series in the transverse coordinatesdy, its accu-

racy after truncation to an orderdeteriorates at large trans- k Kk
verse amplitudes. The expansion is intended to describe an Cm,n:Z (—1)k( | szk,mzk—zlv (7)
arbitrary multipole magnet along with its fringe field. The 1=0

formalism presented here generalizes an approach, describe%

. : ere the upper limit of the seridsis equal to the integer
by Steffen and reduces to formulas he gives in the case dgart of /2. This shows that the coefficients, , can be

expressed as a series of even derivative€ygf.; or C;,.
Using Eq.(6), we can distinguish two cases for, namely,
m=2k (even or m=2k+1 (odd), and we have

dipoles and quadrupolgg].

In the current-free regions, to which the beams are re
stricted, the magnetostatic fieB{x,y,z) can be expressed as
the gradient of a scalar potentid®(x,y,z):

k
b b oD k

= = Xt —y+ — Co0=0, Coxn= —1k(
B(xy,2)=V®(xy,2)= —x+ PV AL 1) 0,0 2k, 20( A

2l
alilh oy for n>0,
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For example, let us keep just one more term as a “next
n+2k o - (8) approximation,” arrange its leadind €0) part to match a
given body field az=0, and let it vary linearly witly;

Coxv1p= 2( 1)k

The requirementCy =0 corresponds to the restriction to xn—Ly2m+1
nonsolenoidal magnets. B,(X,Y,2)~ 2 E | (—1)M b,
Substituting this representation into E¢S). and rearrang- =1m=o0 (n—1)!(2Zm+1)!
ing them-summation yields
+bi omzl,
o0 o0 m
By(xy.2)=2 > > (-1)" yor
) n=0 m=0 1=0 X Y, Z) nz E n'(2m)' 1)m[bL0-%]-2m n+2m ]
( m) Xny2m ( b y
X [ — * 2m+1
|/ nl(2m)! nrems1-25m T X"y m
XyZ) 20 mzo n|(2m+1)|( 1) bn+2mv
+aihn o ) , (10
where then index has been shifted by 1 in tiBg expansion
xMy2m m for convenience in the next step. Next, we arrange for
m____ 7 .
By(X,y,2)= 2 2 (1) nl(2m)! Z,O n+2m 2l B,(x,y,AL)=0 by setting
m+1 b
- med a[2 ] L bn+2m nA+L2m- (13)
“h | nt2m+1-2lom 1|’
e o m It can be seen that this condition also assuBeéx,y,AL)
_ _a\m =0. This is a consequence of the requirement fatB
BA(x,y.2) 20 mzzo .:20 (=D =0. SettingB(x,y,z)=0 for z=AL, we have assured that
the transverse field components are continuous. Due to the
m) xny?" pi21+1] y artificial assumption of linear fall off of the field in the fringe
X | | n'(2m)! n+2m 2lom+1 region, the longitudinal componei, is discontinuous in
this approximation.
4 gl2i+1] ©) At this point, the multipole magnet has been idealized by
n+am-1-21 ) a model whose parameters, apart from its multipolarity in-

dex, are its multipole strengtb{HZm, and its length .4 and

again limiting the ranges so the lowest coefficients lage AL . This representation is appropriate for representing the
=Cypandag=Cyp;. magnet within a particle tracking computer program. The

In an idealized model of a magnet, only of@ in the lengthsAL. could be determined by best fitting to measured
case of combined function magnets, waf the multipole  fringe fields. But, to reduce the number of parameters in the
coefficients will be nonvanishing in the body of the magnetremainder of this paper, and with some reduction in accu-
(length L¢g) and in this region only thé=0 terms in the racy, a slightly different approach will be taken; the impulses
expansions survive. The important terms are=(0,| =0) delivered by the fringe fields will be evaluated in a way that
corresponding to the leading “design” multipolem& 0l is independent of the fringe field lengths: all the integrals
=1), the “next-to-leading” term associated with longitudi- involved will be computed by using the “hard-edge” ap-
nal variation of the design multipole; andh& 11=0) com-  proximation, i.e., taking the limit for whichL . —0. In this
ing from the next higher body multipole. Examples in this limit the straight line approximation becomes exact.
paper are mainly concerned with the relative importance of For the sake of consistency, another point must also be
the first two of these terms in the deflections caused by thenade. Since the dominant multipole in the magnet body is
actual magnet, including body and ends. The same formulaalso dominant in the fringe field, there can be an appreciable
could, however, be used to evaluate the relative importanceontribution to the dominant field integra@ue to the magnet
of the second and third terms—to answer the questioms a wholgthat comes from the fields in the fringe regions.
“Which are more important, fringe-fields or body field im- It is a matter of taste whether this contribution is to be
perfection?” treated as part of the main field or part of the fringe field. In

To obtain results concerning the symmetries of the skewthis paper, from here on, to simplify the formulas somewhat,
and normal multipole coefficients, it is more useful to ex-the term “fringe field” will refer to components other than
press these formulas in terms of cylindrical coordinates. Thishe dominant component, but restricted to those components
is done in Appendix A. necessarily associated with the dominant multipole. In other

In the fringe regions of the magnet, the fields can be arwords, the contributions from the dominant multipole com-
ranged so that they match the central fields at the ends of th@onent in the fringe regions will be counted as part of the
body region and fall linearly to zero in the fringe regions. ideal magnet field integral. Treating the magnet in this way
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increases its effective length, probably making it more nearly b _
equal to the the physical magnet length; iles Lo, and Apx:_efb . By(X,y,z)dz~ —ebL e
this will be assumed in all subsequent formulas. o

Re{(x+iy)"}
n! ’

Im{(x+iy)"}
n!

lIl. DEFLECTIONS AT MAGNET ENDS Ap§=ef B.(X,y,z)dz~eb,L

body
For a given magnet with a perfect 2 1)-pole geom- (19
etry, written in cylindrical coordinatesee Appendix A the

where L= Z)dz/b,, is the effective length of the
scalar potential satisfies the following symmetry condition: et =J boaPn(2)dZ/by g

magnet and, is the nominal field coefficient in the body of
o the multipole magnet. The quantities in E45), the inten-
r,m — 0,2) , (12 tional and dominang‘zero order”) deflections caused by the
magnet, are only approximate, since they account neither for

which leads to a relation between the harmonic multipole?™Pit curvature within the body of the magnet nor for end

number allowed by symmetrp’ and the multipole order fi€ld deflections. Expressions like this will be used only as
(n+1): “normalizing denominators” in ratios havingthe presum-

ably much smaller magnet end deflections as numerators.
n'=(2j+1)(n+1)—1. (13 For magnets other than bending magnets, for which the av-

erage deflection is zero, it will be necessary to use rms values
Thus, for a normal dipolen=0), the multipole coefficients for both the normalizing denominator and the numerator.
allowed by the magnet symmetry are of the fobg, for a The impulse due to the fringe field at one end of a magnet
normal quadrupoler(=1) by, for a normal sextupole is defined in this paper as the effect of field deviation from
(n=2) bgj,, etc. Consider now a multipole magnet, with nominal, from well insidgwhere the nominal multipole co-
normal symmetry, for example. Following the symmetry efficient is assumed to be independentzpfto well outside
condition (13), we can rewrite the field component87),  the magnetwhere all field components are assumed to van-

d(r,0,2)=D

keeping terms of the expansion to leading order: ish). These will be the limits for the integrals used in order to
- calculate the fringe deflection. To obtain explicit formulas,
B,(x.y.2)=Im (x+iy)"bn(2) the upper limit of these integrals will be taken to be infinity.
T n! Exploiting the assumed constancyoéndy along the orbit,
a1 _ 2] these integrals will all be evaluated using integration by
B (x+iy)"" [(n+3)x—i(n+1)y]lby*(2) parts.
4(n+2)! Suppressing the entire pure multipole contribution, as ex-
plained above, we havé” B(x,y,z)dz=~0. Forx=y=0,
+O(n+4)}, this is an equalitypy definition and for finite displacements,
it is approximately true if, as we are assuming, the transverse

particle displacements remain approximately constant. This
(x+iy)"b,(2) is consistent with our straight-line orbit approximation.
Y The individual components of the impulse can themselves
be separated into terms due to longitudinal figldgeled|)

By(x,y,2)=R

B (x+iy)" " [(n+1)x—=i(n+3)y]bi(2) and due to transverse fieldsbeled. )
A2 ARL,=ApLy()+ ApLy(L), (16
+0(n+4);, where
B(xy.2)=Im <x+i(yn>”+*1l)b!k”<z>+ P Ap(lh=e fﬁmgey'Bz<x,y,z>dz,
where the funqtion@(j) represent polynomial terms in. the Ap;(”): _eJ - X'By(x,y,z)dz (17
transverse variables andy of order greater or equal tp fringe

These expressions apply far>0. The special case of the , ,
dipole will be treated separately. Here the terms proportiona‘?‘re the momentum increments of the particle caused by the
to bLl] and bLZ] , approximate the fields present due to the ongitudinal component of the magnetic field, and
longitudinal field profile variation and do not include fields
that could be present due to nonideal magnet design. ApL(L)z —ej - By(xy,2)dz

For a particle traversing the magnet along the straight line fringe
having transverse coordinates,y), the impulse (i.e.,
c_hange of transyerse momentummparted by the nominal Ap;(L)=ef B,(x,y,2)dz, (18)
field component is fringe
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are the momentum increments of the particle caused by the.HC) and the Spallation Neutron Sour€8NS accumula-
transverse components of the magnetic field. Using the leader ring. The calculations are based on Eg13).
ing order expressions of the magnetic field, we obtain the

relations A. Flat beam

eb, For a flat beam, one of the transverse degrees of freedom
Api(h~ TS Im{(x+iy)""1}y’, (e.g., the verticay,y’) vanishes. Thus, the total transverse
' rms momentum increment from the magnet body is

eb, N b, —
Apy(lh== Grgypmiocr ™, a9 (AP o= V((APEE) ~ oty zn)ﬁ“ez, (22

2"! n
and _
- wheres" represents the average of & in the body of the
‘ —eb, - , ) magnet ande, is the transverse emittance. The total trans-
ApX(L)mee{(xﬂy) [(n+1)xx"+(n+3)yy verse rms momentum increment from one of the fringes of
the magnet is
+i(n=1)xy' —i(n+1)yx']},
- (ApD)ims=((Ap)?)
f - €0n : ’ ’ —
Apy(L)~mlm{(x+|y)”[(n+3)xx +(n+1)yy __eb, \/ 2n+2\ B 1+(2n+3)a?] e
i ; 27301 n+1 2(n+2) Lo
+i(n+1)xy’ —i(n—=21)yx']}. (20

(23
The total impulses caused by the fringe field are, there-
fore, where and« represent the beta and alpha functions, at the
fringe location. The ratio of these quantities is

eb
Apf~— —L _Re{(x+iy)"[(n+1)(x—iy) (X' +iy’
Px= " gine pra T DOy Oy (AP )ms € [(2n+ DAT1+(2n+3)a?]
+2iy’ (x+iy)T}, (APD)ims  Bler (n+1H(n+2)"
_ (24
eb
Apl~ —nlm{(x+iy)"[(n+ L) (x—iy)(x"+iy") Assuming that the8 functions are not varying rapidly, if the
Y 4(n+1)! : L . S
magnets are in noncritical locatiorfe/hich is to say most
—2x" (x+iy)]}. (22) magnet$, the square root dependence can be neglected, so an

order-of-magnitude estimat@ropping ann-dependent nu-
Even though they occur at a fixed point in the lattice, merical factor not very different from)dis given by
because these impulses depend on slopeandy’ and are
truncated Taylor series, they are not symplectic. To use them (Api)rmS €,
in long term, damping-free tracking, symplecticity would 2P Ly (25
have to be restored by including deviations in transverse co- Pr)rms  “e

ordinates(4,6-8. The case in which fringe-field deflections are likely to be

most important, is wheny is anomalously large, for ex-
IV. APPLICATION EXAMPLES ample, in the vicinity of beam waists such as at the location

The formulas just derived are appropriate to calculate th&f in'gersectio_n points in qolliding beam I_attices. In t_his case,
end field deflection of any single particle. But to assess théagain dropping a numerical facidhe ratio of deflections is
importance of these deflections, it is appropriate to calculateoughly
their impact on the beam as a whole, for example, by ‘
calculating an rms deflection, such asAp()ms (Apj_)rms%ae_J_ 26
=\((Ap)?)+((Ap})?). Here the operatof-) denotes an (AP®)ims et
averaging over angle variables. Note that here, and from here
on, the subscript specifies the transverse impulse, and does’he same result is obtained by settifg> 8, in Egs.(B13).
not refer to a magnetic-field component. Formulas for rms Often the relative deflection is so small as to make neglect
values like these are derived in Appendix B. This sectionof the fringe-field deflection entirely persuasive. The simplic-
contains examples of the use of those formulas, starting witity of the formula is due to the fact that the fringe contribu-
the cases of flat and round beams, then specializing the réion is expressed as a fraction of the dominant contribution.
sults further for dipole and quadrupole magnets. The derivetlote that, as stated before, this formula applies to each end
formulas are finally applied for evaluating the impact of separately, and does not depend on any cancellation of the
magnets end fields in the case of the Large Hadron Collidecontributions from two ends. In fact, nonlinear analysis
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shows that in magnets fringe-field contributions can tend tazed hypergeometric functiosee Ref[5] for detaily. Ap-
add up instead of cancellifd]. plying the same simplifications, the rms momentum kick

given by the fringe field is

For a round beam, the two transverse emittances are equal 1) eb Bnlz R zn: 2(”—|) (2
ex=€,= €, . For simplicity, we assume that typical values of L) rms™ =5 g”~' o)
horizontal and vertical lattice functions are approximately (28)
equal; By=~By=pB and ay~ay=a. Also assume thap"
~pB", i.e., theB functions do not vary significantly in the where we considereg,~g,=8 and the same for the
body of the magnet. Taking into account the previous hyfunctions. Notice now that the sum of the coefficiegts
potheses, the total transverse rms momentum increment ferg, | o+ 9n |1+ 0n, 2 depends only om?. The series in-
the body becomes volvmg them can be also written as a sum of a few general-
ized hypergeometric functions. The ratio of the rms momen-
tum transverse kicks is

B. Round beam
1/2

eb_nLe

—
(Apjb_)rms% oni2, !ﬁnlz 2/2 Fo(1/2,—n,—n;1,1/2
A f) € ni2
(2n—=1)!! 12 (p+rms L Bn/z ( 2) (29)
_n;l)T ) (27 (Apt)rms ff:B
where the function in the square root represents the generalthere the coefficien€, is
|
n 2(n—|) 2l 12
2y _ -
(@) 8(n+1) 3F2(1/2,—n,—n;1,1/2—n;l)(2n—1)!! (30
T
Let us consider two cases, as before: one wheis small C. Dipole magnet

and one wherex is large, as near the interaction points of  consider a “straight” dipole magnet; the configuration of
large colliders. For the first caser(smal), we may neglect qes and coils is symmetric about the 0 andy=0 planes,
the terms havingr as a factor in the coefficie,; and in  anq the coils are excited with alternating signs and equal
the second case, we can pull eufrom the square root and strength. By symmetnB, is odd in bothx andy, B, is even
neglect terms in the coefficiegt, | having now thex func- i, poth x andy, andB, is even inx and odd iny. lesing the
tion in the denominator. In this way, the coefficiellg of general field expansion of E¢9), we get

Eq. (30) will depend only on the orden. We plot in Figs. 1,

the behavior of these coefficients as a function of the multi- o8 (- 1)mx2n+1y2m+1/ m

pole ordern, for large and smalke. The dominant factor in By= 2 2 (2n+1)'(2m+1)|\ | )b2n+2m+2 2 s

C, seems to be 1f(+1), which is reflected in the slow mn=01=0 ' '

asymptotic decay depicted at the plots. For all practical cases

(multipole orders up to 20 C, lies between 1/2 and 1/10. B i § (—DHmy2mmy o
Assuming now that the averaggin the body of the magnet VoS lo 56 (2n)1(2myt | | ) T2nrem=2t
is not so different fromg in the fringe, one gets for smadl
functions “ M (—1)mx2ny2ml
[21+1]
;: Z (2n)!(2m+1)! )b neam-a - (33

(Apt)rms f_t 31)

(Apt)rms Lert’ Taking the field expansion up to leading order, we get
as in Eq.(25), and fora large B,=b,xy+0(4),

Ap) ! !
( pt)rmsmae_t, 32) B,=bo— EbB2]y2+ 5D —y?)+0(4),

(Apf)rms L et
as in Eq.(26). B,=ybf1+0(3), (34)
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2\ 2
iy (L3
035 8 ’
03 (1+a2)B
o €y E
£ 025 (Y =(y)(x'H)=—" "=, (39
&) 4B
0.2
0.15 and the rms transverse momentum kick becomes
0.1 f — [(1+3a2)€ (1+ad)Byesey
0.05 (Ap.)rms=¢€bg ) + 48 ,
0 20 40 60 80 100 X
order (39
Thus, the by-now-standard ratio is
0.4
(Apj_)rms 1 \/(1+3a)2/)5§ (1+a>2<):8y6x6y
————~— + .
0.3 (AP°)ms Lef 8 4B
= (40
o : . :
0.2 Except for numerical factors near one, this formula yields the
same “ball-park” estimates as given by E(81) and (32)
0.1 for the smalle and largea cases.

D. Quadrupole magnet

order The configuration of poles and coils in a quadrupole mag-
pet is symmetric about the four plangs-0, y=0, x=Yy,
x=—Yy; and if the coils are excited with alternating signs and
equal strength, the magnetic field will satisfy the following
symmetry conditionsB, is even inx and odd iny; B, is odd

whereb, represents a sextupole field component allowed by? X @nd even iny; B, is odd in bothx andy, and
the symmetry of the dipole magnéor an ideally designed Bz(%,¥,2)=B:(y,x,2). As before, we may express the field
magnetb,=0) andO(3) and O(4) contain all the allowed COMponents as
terms of higher orders. =M (_1)my2nymilim
A point has to be made about the application of the inte- B.= E E Xy )blzll B
grals evaluating the rms momentum kicks for bending mag- U mito 150 (2m)1(2m+ 1)1 | | ) et ameL2l
nets: because of the curved central orbit, these integrals are
not exact, as previously mentioned. Nevertheless, in most 5 (—1)mx2ntly2mim [21]
practical cases, the field uniformity in the interior of a dipole By= 2 E m | Pntom+1-2i
magnet is very high, and thus, on heuristic grounds, this ’ ' '
approach can be expected to provide fairly good estimates

FIG. 1. Order dependent coefficient of the momentum incremen
ratio, for a round bearfsee Eq(30)], when thea function is small
(top) and when thex function is large(bottom).

¢ . o m (_1)mX2n+ly2m+1/m
even in this case. B= > > )b[22l+211 1o
The change of transverse momentum imparted by the di- - mazo (<0 (2n+1)I(2m+1)!| | | ~2n+2m®
pole field is[see Eq(15)] (41)
_ The field expansion can be written as
Apb: —e bodzk_EboLeﬁ, (35)
body 1
_ By=Yy|b;— = (3x®+y?)blF | +0O(5),
where as beforé .= fmd)pod Z/bg is the effective length of 12
the dipole magnet, an, is the main dipole field in the body 1
of the dipole magnet. Using E18), the deflections in one By=X|b;— 1_2(3y2+ xz)b[lzl +0(5),
fringe are
Apj~2eboyy’, Ap{~—eboyx’, (36) B,=xybil+0(4), (42
and the total rms fringe kick is whereb(z) is the transverse field gradient at the quadrupole
- axis, andO(4),0(5) contain all the higher-order terms. For
(AP ms=ebo\Va(y?y' 2+ (y?x'?). (37)  aparticle traversing the magnet with a horizontal deviation
and vertical deviatiory from the center, the momentum in-
Using Eqgs.(B10) and (B11), we have crements produced by the nominal field gradients are
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TABLE I|. Parameters associated with the LHC and SNS magnets, whose fringe-field figure of merit is
evaluated in Fig. 2. When two numbers occur, they are associated to the minimum and maximum value.

Magnet Number Lgg (M) By, (M) By (M) axyl (M) €, (mrad)
LHC quadrupole triplets 16 5.5-6.37 1055-4463 1157-4401 1.1-203.9 x5m3°
LHC arc quadrupoles 368 3.1 32-178 32-176 05-24 X8P°
LHC dipoles 1104 14.3 28-176 40-143 0.5-2.6 3P °
SNS dipoles 32 15 4-8 6 1.1-1.9 4804
SNS quadrupoles 52 0.5-0.7 2-28 2-26 0-8 X484
ApS=—ebyxLes, ApP=ebyyLe, 43 eb,
" ’ Apy=—[=2xx'y+(*+y?)y']. (46)

whereL = [ pog1d z/b, is the effective length of the quad-

rupole magnet. The momentum increments of the part'd%\gain, by averaging the sum of squares of the transverse

;glrgr;brléted from the longitudinal component of the magnencmomenta contribution, we obtain the total rms transverse

momentum kick imparted by the fringe field:
Apj(h~exyybs, Apj(|)~—exyXb;, (44 . ,
f 1 2 3 2\ 2
and the momentum increment produced by the transverse (ApL)rms”TG (1+5ax)ﬁx€x+ﬂ_[(1+“y)ﬁx
component of the fringe fields are Y

—8ayayByBy+2(1+ 3a>2(),8)2/] eiey

Apimw%bl[zxyy'+<x2+y2>x']. » 5 3 .
+(1+5a))Bye;+ B—[(l-l—ax)ﬁy
X
AL =2 o'y + (2 y2)y ] (45) T
Py 4 y yoyl. —Bayay BByt 2(1+302) B2 exel
Combining the contributions, the total momentum incre- (47)

ments due to fringe field are

_ Note that the expected rotation symmetry of the quadrupole
is exhibited both in this formula and in the body deflection

A f~e—bl[2x = (2 +yA)x']
Px 4 Yy y ’ formula. The standard ratio is

(ApDms 1 [(1+5a0)BiByei+ 3B (1+ ay) By~ BaxayBxBy+ 2(1+3a}) Byl /ey

(A pE)rmSN BLeft ZBXIBy(E€X+ﬁ_y€y)
| (L1500 BBIe 3B, (Lt o) By~ Baayfufy + 21+ 3a)) Bl evey| o
ZBXBy( Bxext IByEy)

Again dropping factors near 1, this leads to the same ballintensity accumulator, contains short normal conducting
park estimates of Eq$31) and (32). magnets with wide aperturéens of cm. In addition, the
lattice design, optics functions, and physical parameters of
the two machines are substantially different, e.g., the emit-
E. Magnets of LHC and SNS tance of the SNS beam is several orders of magnitude bigger
The LHC and the SNS accumulator ring are good exthan the one of the LHC. In Table |, we summarize the pa-
amples for testing the validity of the derived fringe-field fig- rameters of the main magnets in the two accelerators enter-
ure of merit formulas. Indeed, the purpose of these two proing in the figure of merit formulag40) and (48).
ton machines and, thereby, their magnet design differs in In Fig. 2, we plot in logarithmic scale the fringe-field
great extent: the LHC, a high-energy hadron collider, is filledfigure of merit estimates for the LHC and the SNS accumu-
with long superconducting magnets of very small aperturdator ring magnets. The dark blue bars represent evaluation
(around 1 cm In contrast, the SNS ring, a low-energy high with the exact formulas derived for dipoles and quadrupoles
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1

10! BExact evaluation
.‘s’ . 5 O Approximation A . . .
g10 FIG. 2. (Color online only Fringe-field figure
kS " of merit estimates for the LHC and the SNS ac-
alo cumulator ring magnets. The two different bars in
§ —t each case represent evaluation with the exact for-
a}f mulas derived for the fringe-field figure of merit
_%bws . of Egs. (40) and (48) (dark blue barsand the
~ approximate formula for round bear1) (light

mra ﬂ ﬂ e

107

LHC LHC Arc LHC Arc Dipoles ~ SNS Dipoles ~ SNS Quadrupoles
Triplets Quadrupoles

[see Eqgs(40) and(48)] and the light blue bars represent the shows that fringe fields can be neglected in the magnets,
evaluation with the formula for round beani31). In both  populating the arcs of large colliders, such as the LHC. In
cases, the total effect for each magnet is computed by sunthese rings, the magnets are long enough and the emittances
ming up the fringe-field figures of merit from both ends dueare so smallof the order of 10° mrad) that the effect of
to all the magnets of the same type. The fringe-field impor4ringe fields is a tiny perturbation as compared to the domi-
tance in the case of the SNS is striking, especially for quadnant multipole errors in the body of the magnets. The effect
rupole magnets, whereas in the case of the LHC can be conmay be important, however, in small rings, as the SNS accu-
pletely neglected. Note that similar results can be derived bynulator ring[10] or the muon collider ring15], where the
careful dynamical analysis and computation of tune-shifteemittance is largetypically 10" % mrad) and the magnets
due to fringe fields or dynamic aperture analysis for both thenuch shorter. Careful consideration should be also taken in
LHC [9] and the SN$10]. It is important to stress that even the case of the magnets located in the interaction regions of
the approximate formula for round beartl) is slightly  the collider[16], where theg variation is quite big.
pessimisitic and within a factor of 2 of the exact figure of It is perhaps appropriate to call attention to possible
merit. “overly optimistic” use of the scaling law. Often, quadru-
poles are grouped in doublets or triplets, in which the desired
V. CONCLUSION focal properties rely on the intentional, highly tuned, near
cancellation of deflections caused by more than one element.

We have derived formulas for the momentum kicks im-In such cases, the fringe deflections are, of course, amplified
parted by the fringe fields of general straighonsolenoidal when evaluated relative to the gross multiplet deflection.
multipole magnets. These formulas are based on an expafhis effect is most obvious at focal points.
sion having arbitrary dependence on the longitudinal coordi- Since the early analytical studies of Lee-Whitirig’] and
nate. This expansion can be used for direct integration of thEorest[4,6], significant progress has been achieved for the
equations of motion for particle tracking or other analyticalconstruction of accurate maps that represent the motion of
nonlinear dynamics estimates. It also permits the fringe pararticles through the magnet fringe field, using either direct
and the body part of individual magnets to be identified and.]umerical evaluation with.exact integration of the magnetic
separated. A figure of merit, the ratio of rms end deflection tdield [18,19 or parameter fit of an adequate functj@d—22
rms body deflection is introduced and evaluated. Its proporte-g.. the Enge functiof23]). These maps are essential for
tionality to the transverse emittance results in an easilythe study of nonlinearities introduced by fringe fields
evaluated measure of the importance of fringe fields both ithrough Hamiltonian perturbation theory techniques. On the
cases in which the variation of optical functions is not tooother hand, the scaling law, we have emphasized, can pro-
rapid and in the opposite case of rapid variation. These revide a rough estimate of the impact of these fringe fields in a
sults are in agreement with previous crude estimations whicAng- If the fringe fields are found to be important, a thorough
emp|0yed Simp|e physics arguments based on Maxwell |aW§Umerica| mOdeling and analySiS of their effect has to be
[11]. Finally, the formalism has been applied to the mostundertaken, including computation of the amplitude depen-
common cases of multipole magnets, namely, normal dipolegent tune-shift, resonance excitation, and dynamic aperture
and quadrupolef12]. Since the straight-line approximation [10,13,14,24—2B as nonlinear dynamics can be very sensi-
has been used throughout, these formulas are only precise féye to the details of different lattices and magnet designs.
magnetic fields that are well approximated by step functiong urthermore, great care is required to preserve symplecticity
(the hard-edge approximatipnThus, the formulas contain and use these maps in particle tracking.
no parameters associated with the fringe shHémeexample,

see Re_zfs.[13,14]|). _Also, as stated previoqsly, only those_ ACKNOWLEDGMENTS
fringe fields matching, and, therefore, required by, the nomi-
nal body multipolarity are accounted for. The authors would like to thank A. Jain for useful sugges-

Numerical evaluation of the end-over-body figure of merittions regarding the magnetic field expansions, E. Keil for his
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criticism in an early version of this work, and R. Baartmanwith the general solution of the Laplace equation in cylindri-
for many useful comments and discussion. This work wagal coordinates, involving Bessel functiofik3,33,34.
performed under the auspices of the U.S. Department of En- Using Eq.(Al) and the Laplace equation, one gets that
ergy. Gn+10=0. Moreover,G,. 4, should vanish fom>0 (all
terms except the dipoleFinally, we have a recursion rela-
APPENDIX A: THREE-DIMENSIONAL MULTIPOLE tion [4,32] similar to Eq.(4):
EXPANSION, CYLINDRICAL COORDINATES

(2]

The magnetic field representation in Cartesian coordinates ¢, ;... ,(z)= Gn+1n(2)
(x,y,2) is not optimal for studying symmetries imposed by ' (n+1)%=(m+2)?
the cylindrical geometry of a perfect multipole magnet. For (A2)
this, it is preferable to rely on expansions in cylindrical co- , o L
ordinates £,0,2)=(\x2+y? arctang/x),2) [4,6,18,29—3P W_here again the superspnpt in brackelts denotes derivatives
Both expansions are equivalent and the use of the former giith respect toz. Following these relations, one can show
the latter depends mostly on taste and the specific problem fgat all coefficients withm<n+1 vanish. Thus, the first

be treated. First, consider the magnetic scalar potential, wrif?onzero coefficient iy, 1,4 (for m=n+1). By extend-
ten in the following form[4,6]: ing the recursion relatioffA2) so as to express any coeffi-

cient as a function 0§, 1,41, We get

for m#n—-1,

<I>(r,0,z)=Re{ > @Y GoamI™, (AL (DD
n=0 m=0 On+1n+r1+2k(2)= m Ghrin+1(2).
where now the-dependent coefficients, ;. ; n(z) are gener- o (A3)

ally complex. The above expansion follows directly from the

fact that the Laplacian commutes withd 0 [4]. This allows  The summation indexes can be rearranged so as to express
the consideration of solutions where the dependenagi;n  the magnetic scalar potential in cylindrical coordinates
an harmonic 2ii+1)-pole. This expansion is compatible [4,35]:

c “ (—D)Xn+1)
— i(n+1)6 [2K] n+1+2k
o (r,6,2) Re{ 2,8 o ] (Ad)

and the three-dimensional field components are

o

— (—1)%(n+142K)(n+1)!
B.(r,0,2)=R gl(n+1)é (2] (7)pn+2k}
2 nzo = 2% (n+1+k)!k! Gnia(2)

S “ (—DXn+1)!(n+1)
— i(n+1)6 [2k] n+ 2k
By(r,6,2) ImanOe 2 Aniirina @
S o (=D¥n+1)
_ i(n+1)6 [2k+1] n+1+2k
BLr,6,2) Re{nEOe 2 Ay L O : (AS5)

The coefficientsG,+1=Gn+1n+1 Can be related with the usual multipole coefficients, through E)s.First, we write the
scalar magnetic potential in Cartesian coordinates,

B —1D)¥n+1) _
q’(X,y,Z):RE{ nZ:O go m gszll(z)(XﬂL'y)n”(XZﬂLyZ)Zk}- (A6)

The magnetic-field components are computed by the gradient of the poté@jal

oo

_ 1)k
Bx(x,y,z)zRe{ D (—DXn+1)!

o 2%t 11Kkl (24 YL x+iy)" I (n+ 1+ 2k)x—i(n+ 1)y]gL2+k]1(z)],

(—1)¥n+1)!

. m(x2+y2)k‘1(x+ iy)" I —(n+1)x+i(n+1+ 2k)y]g[nik11(z)] ,

By(x,y,z)=lm[ nkE:
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S (—D¥n+1)! _ .
Bz(X,yl):Re{n%O m(xﬂ”y)n”(quz)%gﬂl Yz)p. (A7)

Using Eqgs.(6), we get

n/2

_ 1)k . B
bn(z):—(n+1)!|m{gn+1(z)}_mkzl( 1¥(n+1-2k)(n+1-2Kk)!

22X(n+1+Kk)!k!

|m{g£12r]1—2k(z)}:

n/2

_ 1)k _ _
an(z)z(n+1)!Re{gn+1(z)}+mkZl( 1)%(n+1—-4k)(n+1—2Kk)!

2%K(n+1+Kk)!k!

Re(GIZ (D)}, (A8)

where the upper limit of both series is the integer pan/@ Thus, in the absence of longitudinal dependence of the field, the
normal and skew multipole coefficients are just scalar multiples of the imaginary and real gart;6f). On the other hand,
the situation is more complicated in the case of three-dimensional fields. By inverting the(&jewe have

1 n/2
Im{Gn1(2)} ==~ o7 2 RAKDIZL(2),

1 n/2
Re(Gn1(2)} =1 2 Rifalh(2), (A9)

where the coefficient® 3 andR % can be computed order by order by the1 relations

1 L (= D)Kn+1-2K)(n+1—2k)!
nor kzo ( ( (

= no _ -0N-
n.0 (n+1), 22k(n+1+k)!k! ,R’n72k,17k 0;
1 (= 1)%n+1—4K)(n+1—2k)!
sk __ ok , e
R & 2%(n+1+Kk)!k! Rn-2j-=0; (A10)

andj runs from 1 to the integer part af/2. Using the last The total rms transverse momentum kick imparted by the
relations, the scalar potential and the magnetic field can betinge field is (Ap!)rms= ((Ap})2) +((Ap})?), where the
expressed as a function of the usual multipole COEfﬁCientSoperator< > denotes the average over the angle variables. An
By expanding the complex polynomials in the expression ofquivalent expression stands for the deflection due to the
the magnetic field components, one recovers the expansiomgdy part of the field. Thé-) operator is linear, we can first

of the magnetic field¢9) in Cartesian coordinates. compute the sum of squares of the momentum kicks and then
proceed to their averaging. Thus, we have

APPENDIX B: EVALUATION OF rms END DEFLECTIONS

In order to evaluate the rms deflection caused by a magnet . eb, . 5
end, we start from the expressiof®i) by splitting the prod- (AP )rms™~ m[(H(Re[(XJF iy)"H)
uct inside the brackets, '

_ +fo(m{(x-+iy)"}H?

eb,

Apy~-— M[Rd(xﬂy)”}[(mr 1)xx’ +(n—1)yy'] +2f3Re{(x+iy)"Hm{(x+iy)"}) ]2,
+Im{(x+iy)"H = (n+3)xy’+(n+1)x"y)]], eb Lo
- (APD)rme~ —— L((Re{(x+iy)")?
eby, . '
APy~ 2y DRI+ Dxy' = (n+3)x'y] +(m{(x+iy)"H2)1*2 (82)

+Im{(x+iy)"H(n—=1)xx'+(n+1)yy")]]. (B1)  wheref,, f,, andf; are

046502-11



PAPAPHILIPPOU, WEI, AND TALMAN PHYSICAL REVIEW E67, 046502 (2003

fi=(N+ 123X 2+y'2)+y [ (n+3)%x'2+ (n—1)%y'?] After expanding the products in EB2) and collecting the
terms of equal power in the transverse variables, we have

—8(n+1)xx'yy’, that the transverse kicks can be written in the following
form:
f,=x2[(n—1)X"?+(n+3)2%y" 2]+ (n+1)%y*(x'>+y’?) eb,
f —
—8(n+1)xx'yy’, (AP} )rms™ GESIE E (Q;+Q,+Q3
1/2
fa=4[—(n+1)(x*+y*)X'y’ +xy(x'>+y'?)]. (B3 +Q+ 05+ 06) |

We have the following relations for the real and imaginary —

N b ebnl-eff ik n — 1
part of (x-+iy)" (ApD)me~ — | 2 || |0 L BD)

where theQ),’'s are

n/2
weicrin =3, -31{ o,
Q1= wi(n,1)+ wy(n,1) (X221 +2x 2 (y21),

(n—1)12 _ 2n—21y, 12\ /1,21 +2
Im{(x+iy)"}= |Zo (—1) -~ xn—21- 12141, Qo=[ws(n,1)+ way(n,H](x*""2x"2)(y? "2,
(B4) Q3=[ws(n,1)+ws(n,H]E" 2 2)(y?ly?),
and thus, Qu=[w1(n,1)+ we(n, (X" 2)(y? "2y'?),
1 95:w7(n,|)<X2n72I71X/><y2I+3yr>,
(Re{(x+iy)"})*= L [P+y?)"+Re{(x+iy)*"}]
Qe=[w7(n,1)+wg(n, ("2 1x ) (y? * ),
10 2n (B8)
- _ 2n-21,,2
2;0[ * 1)(2|)X ¥ . o
with the coefficientaw,’s
1 n 2n
(Im{(X+iy)n})ZZE[(XZ-FyZ)n—Re{(X-Hy)Z"}] a)l(n,l):(n2+l) I), wz(n,l):2n(—l)|(2|),
10 2n
— _(_ | 2n—2I,,2I
=22 ( ) =1 2|> oA wg(n,1)=(n?+4n+5) T)
Re{(x+iy)"Hm{(x+iy)"} 2(5n+2In+2)(—1)' [ 2n
wq(n.1)= 2171 2|
Im{(x+iy)2™
1 2 (n,)=—=2(n+2)( 1)'(2n
_ PN L TP @stihl) == a 21)’
T A P y= (B9
—2l(2n+1)(—-1)'[2n
where the upper limit of the last sum is taken tolben for we(n,1)= o151 o]
uniformity in the equations, instead of the last nonzero term
for whichl=n—1. Finally, it is straightforward to show that
—8(n+1)(n—1)(=1)"{2n
@ (n.1)= A+ 1 (2|)’
(Re[(x+iy)"H*+ (Im{(x+iy)")?=(x*+y?)"
=Z( ) 2n=2ly2l, (B6) wg(n,1)=—8(n+1) r|1> (B9)
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In order to proceed to the averaging of the transverse vari-
ables, we write them in the standard form

{x,y}= \/Exyﬁxycxyi {xy'}= Xy(Sx +a’xy xy)
(B10)

wheree, , are the transverse emittances associated with the
corresponding phase space dimensigR; , «,, are the
usualB, anda functions; andC, S, stand for cog,,sin¢y,
respectively. Using the above relations and averaging over
the angle variableg,, one can show that

(9*™q'%) =

(q

2m+1

(g?™) =

PHYSICAL REVIEW E7, 046502 (2003

<2m

q')=

m_m
m)ﬁq €q

22m

[1+(2m+1)a;]1By eg ™

2(m+1)
m+1

Then, theQ),’'s become

22M (m+1)

m m+1
aqfBq €q

22m+2

(2n—21+1)[1+(2n-21+3)af1B} 'Byer ' e,

—|) 21
Ql=[w1(n,|)+wz(n,|)] )

22" 2(n—1+1)(n—1+2)

(21+D)[1+(2n-21+1)aZ] By 1B, e

X

y

n—I+1 _I+1
€

Q3=[w3(n,|)+w5(n,l)]

22" 2(n—1+1)(1+1)

y

n—I+1 _I+1

s
¥
i

2(n—1)
Qz=[w3(n,|)+w4(n,l)]( ne )

22n+2(

-1) I)(Zn 21+ D[1+(21+1)ef18y 1By ten

n—1+1)(1+1)

(21+1)[1+(21+3)al 18y ' Brer e,

y~X y

2(n—1)\ /2l
94:[‘01(”,')4'(06(”,')]( ne )(

227 2(1 +1)(1+2)

(214+1)(21+3) agayBy 1B, e

X

y

-1 I+
nI€I2

2(n_—||))(2|l

95:w7(n,|)<

22" 2(1+1)(1+2)

(2n—21+1)(21+ 1) axa, By 'Bler et

y—X y

2(n—1)\ {2l
96:[0’7(”,')4'008(”,')]( Nl )(I

After collecting terms of equal emittances, the rms transverse momentum kicks can be expressed as

T

(Api)rms

2”+3(n+1)l

22" 2(n—1+1)(1+1)

1/2
—l ol _n—1 I 2—
XBQ ByEQ fymE:O gn,l,m(a’x,yaﬁx,y)ETfy m} '

(APD)yme=

2”|

(n2+1)(21+1)

2

where the bars on th@'s denote their average values over the body of the magnet. The coeffigignts given by

)(I)ﬁ—g_

n
X

|
y

n 2n
I)—ZI(2n+1)(—1)'<

2

1/2
I |

[1+(21+3)aj]

gn,I,O( Ay y :Bx,y) =

I+1)(1+2)

By(I+1)(1+2)

046502-13

2
8(n+1)(n—1)(21+3)(— 1)'( 2?) ayayBy

(B11)

(B12)

(B13)



PAPAPHILIPPOU, WEI, AND TALMAN PHYSICAL REVIEW E67, 046502 (2003

(n24+4n+5)(21+1) [1+(2n—21+1)a}] By

n
[

2
+2(5n+2ln+2)(—1)'( 2?

Gn1al@xy Bxy) = Bx(n—1+1)(1+1)

(n®+4n+5)

n 2n
| ) —2(n+2)(—1)' N ”(Zn—ZI +1)[1+(21+1)e] By
By,(n—1+1)(I+1)

2n
2l

(n—1+1)(1+1) '

+

8(n+1)[ (21+1)| , |+(n—=1)(—1)' (2n—21+1)aya,

n
I

n
|

ZT (2n=21+1)[1+(2n—21+3)a?]
(n=1+1)(n=1+4+2) '

2
+2n(—-1)'

(n’+1)

gn,l,z(ax,y vﬂx,y): (B14)

depend on the twiss functions, ,, By, and on the multi- representing the body contributideee also Refi4]). Thus,
pole ordem. One may note that the rms transverse momentheir ratio should be proportional to the transverse emittance.
tum kick of the fringe is represented by the square root of arhis scaling law is indeed exact for the case of the dipole and
polynomial of orden+ 2 in the transverse emittancesand  quadrupole. For higher-order multipoles, it is exact for flat
€, as compared to the square root of a polynomial of order and round beaméSec. V).
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