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Gibbs-Bogolyubov inequality and transport properties for strongly coupled Yukawa fluids
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The Gibbs-Bogolyubov inequality is used to establish a mapping between the Yukawa system and both the
hard-sphere and the one-component reference systems. The transport coefficients of self-diffusion, shear vis-
cosity, and thermal conductivity are computed for the Yukawa fluid using known properties of the reference
systems. Comparisons are made with simulation results. For sufficiently strong screening, the hard-sphere
reference system yields a lower upper bound of the Yukawa Helmholtz free energy and a better estimate of the
Yukawa transport coefficients.
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[. INTRODUCTION systems is easily generalized to yield a relation between the
Yukawa system, for which the interparticle pair interaction is
When the properties of a many-body system are nobf the form
known, or are difficult to calculate, it is common to relate the 5
system to anothesimpler reference system and use the v (r)=z—eexp(—ar) 1)
known properties of that system. Most often, the relationship v '
between the systems is found using a variational approach
such as the Gibbs-Bogolyubov inequalit@Bl). The GBI ~ and the HS system. Here, Z, and« are the electron charge,
yields a lower upper bound on the Helmholtz free energy ofhe ion charge, and an effective inverse screening length,
the system of interest in terms of properties of the referencéespectively. If we express all lengths in unit of the Wigner-
system. An outcome of the variational procedure is a mapSeitz radiusays, the interparticle pair interactiomy multi-
ping between parameters of the systems. The hard-sphepd/ by the inverse temperatuye can be read under a more
(HS) system is often used as the reference, although the ongsual and compact expression
component plasmé&CP may be encountered for the Cou-
lomb systems. For example, Ashcroft and Stroud have used Uy(r)= Eexp(— Kr) 2
known properties of the HS system to compute thermody- Y r '
namic properties of simple liquid metdl$]. This yields, for
example, a mapping between the Coulomb coupling paramwherel” = 3Z?e?/ays and k= aays are dimensionless cou-
eterI" of the one-component plasma and the HS packingling and screening parameter8=1/kgT, (477/3)33v90i
fraction . Screened dense plasmas characteristic of Joviar 1. p;=N/(} is the particle density of the system Nfions
interiors have been similarly modeled by Galam and Hansenontained in the volumé), T is the temperature of the sys-
by relating them to the HS and OCP systef% In their  tem supposed to be in thermodynamic equilibrium, kgds
comparisons of the Helmholtz free energy, they find that thehe Boltzmann constant. The Yukawa-HS mapping can in
OCP is a superior reference system than the HS under allirn be used to find a relationship between the OCP and
conditions considered, in the sense that the OCP yields ¥ukawa systems, as shown by Murill6], which should be
lower bound on the free energy than the HS. an improvement since the OCP limit{0) is an exact limit
Properties other than thermodynamic quantities can alsand the OCP generally yields a lower free energy estimate
be computed using the mapping that results from the GBIfor screened Coulomb systems, as mentioned af@@ In
For example, lyetomét al. [3] compare accurate radial dis- this method the HS system acts only as an intermediate sys-
tribution functions for the screened Coulomb systems obtem to establish the Yukawa-OCP mapping. Recentlyr-Cle
tained from Monte Carlo to those obtained from OCP andouin and Dufrehe [6] have shown that this relationship
HS reference systems. They find that the reference systenygelds satisfactory results for the diffusion coefficient and
yield radial distribution functions similar to the Monte Carlo shear viscosity, as compared to simulation results for dense
results. In agreement with Galam and Hansen, they also findydrogen.
that the OCP is a superior reference system to the HS system Generally we do not know priori how good the mapping
for screened Coulomb systems. Transport properties hawgiven by the GBI is, other than knowing that one reference
also been computed in this way. The diffusion coefficient forsystem may be bettéyields a lower upper bound on the free
the OCP has been estimated by Tanaka and Ichirfdfu energy than another. Due to the intense recent interest in
using the known diffusion coefficient of the HS system andsystems described by the Yukawa model, we are now in a
the HS-OCP mapping. The relation between the OCP and Hfosition to be able to perform careful tests of this variational
technique. Dusty plasmdgplasmas containing micron-sized
impurities or “grains”) have provided much of the impetus
*Corresponding author. Email address: gerald.faussurier@cea.fifor these studies, for which the intergrain interaction is
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known to be of the Yukawa forri7]. This system is similar exp(— BFy)=Tr{pexd — BHy—In(p)1},
to a colloidal system, which can also have Yukawa interac-
tions under suitable condition8]; however, the colloidal =(exg —BHy—In(p)]), . %)

systems are Brownian systems whose dynamics are strongH ) ) )

affected by the solvent. Here our focus is on transport proptiere the average is defined @4),=Tr[p.A]. Itis now pos-

erties in the absence of damping by background species. Sible to write, using the inequalityexp(P)),=exp(P),)
The accuracy of the variational procedure can be asce 14],

tained by comparing the variational free energy to recently

available simulation results. Hamaguchi and co-workers  (&XH—BHy—In(p)]),=exfd(—BHy—In(p)),], (©)

have given accurate results based on molecular dynami%ar equivalentl

simulationg 9] and Caillol and Gilles have presented similar ~’ q Y

information using Monte Carlo calculatioh$0]. The results - +8 YIn 7

of the variational principle can then be used to obtain trans- Fv=(Hy)pt £ Inp)), @

port coefficients. Hamaguchi and co-workers have performegye would now like to choose an approximate form foand
molecular dynamics simulations of transport properties of ariationally minimize the right-hand side of this equation to

Yukawa systems, including both the diffusion CoefﬁCie”toptimize the accuracy of using for the Yukawa system.
[11] and the shear viscosifyi2]. More recently, Salin and gare we choose

Caillol [13] have presented a few molecular dynamics com-
putations of the thermal conductivity and the shear and bulk exp(— BH,)
viscosities of the Yukawa one-component plasma. p=——""

In Sec. Il, the GBIl is reviewed in general and for OCP and exp— A7)
HS reference systems. In Sec. Ill, computational details and
results are given for the variational procedure. The resulting expl— BF,) =Trlexp— BH,)] ®)
Yukawa-OCP mapping is used to compute several transpo
coefficients in Sec. IV and comparisons are made with simu
lation results. Section V is the conclusion.

t

{0 be that of some other many-body system, the “reference
system,” that has well-known properties. For such a refer-
ence system we find that

Il. VARIATIONAL PROCEDURE Fy<F,+(Hy=MH,),, 9

The variational approach using the GBI is briefly re- . . . i
viewed in this section in the context of the Yukawa system.Wh.ICh is the GBI[14,15. Note that the average Is over prop
rties of the reference system. Once the optim& found

Both the OCP and HS systems are considered as possi fom this inequality, the right-hand side serves as an approxi-
reference systems. quality, g pp

mation for the Yukawa Helmholtz free energy. The degree to
) ) ) _ which the reference system can estimate the properties of the
A. Review of the Gibbs-Bogolyubov inequality Yukawa system can be ascertained by the closeness of this

We wish to estimate the free energy of the Yukawa sysestimate to the exact free energy . From Eq.(9), various
tem, as characterized H¥',«}, using the known properties thermodynamic quantities can be deduced such as pressure,
of a reference system, as characterized by some set of ptternal energy, and entropy. Details are given in Appendix
rameters{a,}. To establish the specific parameters of theA. Though many systems can be used as reference systems,
reference systenfie,} that will best describe the Yukawa the number of choices is drastically reduced if we take into
system, the variational approach based on the GBI is usedccount the constraints that such a reference system should
We assume that the particles in the reference system have tRBey in order to test the GBI efficiently. We must have ac-

same mass and temperature than the Yukawa system. cess to the excess free energy, the excess internal energy, and
The Helmholtz free energyr, of the Yukawa system is the radial pair-correlation function over the entire fluid do-
defined in terms of its Hamiltoniaft, as main. Moreover, the main transport coefficients, i.e., the self-
diffusion, the shear viscosity, and the thermal conductivity,
exp(— BFy)=Ti exp(— BHy)]. (3 must be known analytically in the same conditions. To our

knowledge, the HS and the OCP systems are the only many-
Here the trace operation is defined for a classical system agody systems that can pass this test and can be selected as
two possible reference systems.

1
Tr[A]ENIh?:Nj dsNrJ d*Np4, (4) B. Hard-sphere reference

Consider a HS system composed\b$pheres of diameter
whereh is the Planck constant. Consider an arbitrary phasee in a volume() at temperaturd. This system is character-
space density, which describes the reference system withized by pair interactions of the form
parameter§a,} and is normalized such that[fr]=1. The 0 U3
unit ratio p/p=p exg —In(p)] can be inserted into the trace | T=em

: Ups(r) = 13 (10)
to yield 0, r>29",
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where the HS packing fraction is defined as= mp;o/6. between 0 and 180. Very precise formulas already exist for
The HS system can be characterized by the single parametef2?, andf 2, that have been obtained by fitting very accu-
7. rate Monte Carlo datfl9—-21. Some approximate and semi-
empirical expressions fajocp(r) have been proposed in the
C. One-component plasma reference litterature [22,23. Some interpolations from very precise
Monte Carlo data have been published &§cp(r), or at
least for the structure fact¢24,20. However, none of these
expressions can be used to minimize the right-hand side of
Eq. (12) with respect tal'g¢cp in the entire fluid domain of
Tocp the Yukawa plangl’, k}. The consistency between the radial
Uocp(r)= . (1)  distribution function and the equation of state is one point.
r The other point is related to the curvature of the function

The unscreened OCP system Mfions in volume() at
temperatureT, neutralized by a rigid homogeneous back-
ground, is characterized by pair interactions of the form

This is EqQ.(2) with I'=Tg¢cp and k=0. The OCP system I AfSBI(T
can be characterized by the single paramEtggp. oce—AfF . (Toce)

:(ex)_(ex)+&J°° 2
lll. RESULTS FOR THE HELMHOLTZ FREE ENERGY foce™Uoce 2 Jo dramrBuoy(r)

As shown in Appendix A, Eq(9) can be rewritten as Tk
X[gocp(r)_l]_j- (13

(09< f(eX) _ (o9 &Jm 2 e
o=t R 2)o draar"fov(rlg,(r)—1] 2" When k=0, this function must have only one minimum for
(12 T'gcp=T". This means that the best GBI OCP to a given OCP
must be the same OCP. If we start from the Yukawa system
where f{#¥ f(pex), and uff”‘) are the Yukawa, the reference (T «}, we must recover the OCP systdii,0} as a particu-
system excess free, and the reference system internal engir case, when minimizing the right-hand side of Efj2)
gies per particle normalized in terms KET, respectively. with respect tol'ocp. None of the aforementioned expres-

g,(r) is the radial distribution function of the reference sys-gjons forf(oeé)P’ U(Oeé)Pi andgocp(r) satisfy this rule. In gen-

tem. £, £*9, andu(*? are dimensionless quantitifs5].  eral, the situation is worse with increasifig The more we
The right-hand side of Eq12) can be minimized with re-  approach the critical valu€.=171.8 corresponding to the
spect ton(I'ocp) if the reference system is the HOCP  OCP melting [5], the flatter is the function near the
system for fixed I', x}. By construction, this procedure con- minimum. As a consequence, any slight inconsistency or
tains the OCP as the special case. The terfn inside the inaccuracy can seriously perturb the functioRgcp
integral is due to the rigid and neutralizing background.  _, AfS8(T,..) and lead to unphysical resultsne mini-

As for the HS system, the approximate Carnahan-Starlingam different fromI", two minima, or even no minimum

(CS HS excess free energy has been uskg]. The hard- 4 al). In summary, the consistency betweE&%, usd,,
sphere radial distribution function is taken in the Percus-,

; o _ ) d gocp(r) and the fact that the functionlg¢cp
Yevick (PY) approximation with or without the procedure . AfSBI(T ) has a single minimum i ocp=1" consti-
proposed originally by Verlet and WeiggW) [17] and ex- tute a stringent test to study the quality of a given OCP
tended by Henderson and GrundkeG) [18] in order to g y q Y g

. S system. It should be noted that for HS reference system, the
correct two major defects of the PY solution: first, the value . .
. - equivalent function

at contactgy (o) is too small; second, the later oscillations
have the wrong phase and are too weakly damped. Within o (=
the VW and the HG approacheg, () is correct and has a n—ATER () =5 —uffd+ E'f dramr2Buy(r)
value in agreement with the Carnahan-Starling equation of 0
state. Moreover, the radial distribution functigng(r) gives
the correct isothermal compressibility, which is also consis- X[Gus(r) — 1] —
tent with the Carnahan-Starling equation of state. The result- s 2
ing radial distribution function fits the “exact” computer-
generatedMonte Carlo or molecular dynamicfunctions to  has always one minimum for the OCP case. Moreover, the
within one percent for ally [15]. Note that this procedure three approximations CS-PY, CS-VW, and CS-HG give
can be adapted to any HS equation of state. In each case, thearly the same value of when minimizing the right-hand
integral in Eq.(12) can be done analyticalljp], as shown in  side of Eq.(12). The difference does not exceed a few per-
Appendix B. cents. Furthermore, the curvature in the vincinity of the mini-

As for the OCP system, the situation is far more difficult mum is strongly marked, so that the difficulties encountered
because we do not know any simple, accurate, and consistewith the OCP reference system are absent there.
analytic expressions for the excess internal ene@S}P, the To sum up, we need for the OCP reference sysitgé)b,
excess free ener eé)P, and the radial distribution function ug*g)P, andgocp(r) that are self-consistent and match ex-
Jocp(r) that span the entire fluid domain, namelypcp  actly the computer-generated quantities for dlpcp

(14)
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€[0,180. The ideal solution would be to use the computer- TABLE I. Values of TI'gcp minimizing the function
generated quantities directly in-line, while minimizing the AF£6'(Toce) [see Eq(15)] for different values of". Four cases
right-hand side of Eq(12) with respect tdocp. However, —are considered, depending on how the three terms of the right-hand
one has to eliminate this solution for computer-time reasonSide of Eq.(15) are calculateda) the three terms are calculated by
The same reason prevents ourselves to solve in-line imegrgpadrature(b) the first term is calculated using the fit of DeWitt
equations to get the radial distribution functigcp(r) and Slattery{21] and the two. other terms are calculated by quadra-
from the potential Buocp(r)=Tocp/r. The problem of ture, (c) only the last term is calculated by quadrature, the other
bridge function or closure brings additional complications'®™S are taken from the i21], (d) the whole terms are calculated
15,25-31. The situation would be hopeless without thefrom the f|t[21]._ Fc_ is th_e critical coupling strength corresponding
[15, . - . P . .~ to the Yukawa liquid-solid phase boundal,=171.8 for OCH5].
Chebyshev approximatiof82,33. This method consists in

expanding a given smooth function, defined in the interval - 1.000 10.00 4000 8000 1600 T

[ —1,1], on the Chebyshev polynomials up to orderFor a ¢
fixed N, this particular polynomial approximation of func- I'ocp (@ 1.000 10.00 40.00 80.00 160.0 I';

tions is better than any other one, because the Chebyshev () 1.009 1059 41.82 8210 159.8 170.9
approximation is very nearly the same polynomial as the (¢ 0992 10.71 4115 83.00 170.8>T,
minimax polynomial, which(among all polynomials of the (d 1.000 10.00 40.00 80.00 160.0 I',

same degreehas the smallest maximum deviation from the
true function. The minimax polynomial is very difficult to
find; the Chebyshev approximating polynomial is almostother potential and for other method to get the radial distri-
identical and is very easy to compute. This method can b&ution function(Monte Carlo, molecular dynamics, HMSA
easily generalized to approximate functions defined in finitd28], . . .). Finally, u§2; is calculated by quadrature from
or infinite intervals[33] and combined with fast Fourier ggcp(r) andf(c?é)P is obtained by running coupling-constant
transform (FFT) to speed up the calculations whéhis a integration fromu{$?,. Both u$d, and f &3, are developed
power of 2. Last but not the least, we can evaluate, quickhon  256(32) Chebyshev  polynomials  for'gcp
and with high precision, the derivative or integral of the <[0.1,180 (I'ocpe[0,0.1]).
function just as if it were a function that has been Asan illustration, let us start from E¢L3) with x=0 and
Chebyshev-fittecab initio and fit that way many variable |et us find the minimum of the function
functions[32].

We have thus solved the hypernetted ch@NC) equa-
tions with the bridge function proposed by Iyetoetial.[30] Locp— ARG (Tocp) = fEde—uldp+ FOCPU(C%)P'
for OCP system forre[0,50] (r[0,10]) and T'gcp (15)
€[0.1,180 (I'ocpe[0,0.1]), and expanded the radial dis- ) )
tribution function(the short-range part of the screening func-in the following four cases, depending on how the three
tion [25,30)), considered as a function &f,cp andr on the ~ terms of the right-hand side of E(L5) are calculgted(:a) thg
Chebyshev polynomials. The intervg,180 was split in three terms are calcul_ated by qgadratt@b&,the first term is
two intervals[0,0.1] and[0.1,180, to avoid the Gibbs phe- calculated using the fit of DeWitt and Slatte@l] and the
nomenon due to the stiffness @ p(r) near the origin with two other terms are calculated by quadratieepnly the last
decreasinglocp: 256 (32) polynomials were used for term term is callculated by quadrature, the other terms are
T'ocp for the largest(shortest interval. For the shortest in- taken from the fif21], (d) the whole terms are calcnulated
terval, the radial distribution function is taken to be identi- from the fit[21]. Results are written in Table L'¢ is the
cally null beyond ten. As for, 256 (32) polynomials were grmf:al c_oupllng strength corresponding to the Yukawa
used for the largesishortest interval. Clearly, knowing the liquid-solid phase boundary. The OCP vallig=171.8 is
radial distribution for 32- 256 different values of ocp in  t@ken to be consistent with simulation resyig Only cases
the radial rangd0,50] allows ourselves to know the radial (& and(d) give Tocp=T" up to the OCP liquid-solid phase
distribution function as if we had solved the correspondingPoundary. In caséb), we are using a reference excess free
integral equations in the same interval whatever the value d§N€rgy inconsistent with the radial pair-correlation function,
T'ocp May be. The storage capacity is limited to the mini-Put the first-order correction, nameld’/r —T'ocp/M)r .,
mum without loss of accuracy due to interpolation procedure= (I'/T ocp— 1)ulds [see Eqs(2), (9), and(15)], is calcu-
or approximate semiempirical analytical fit. All the comput- lated self-consistently with the same radial pair-correlation
ing time is spent in generating the data basis, but this work isunction. I'q¢p is different fromI" but results are good be-
done once for all!l We could have expanded rather the shorcause both values are close to each other and the phase
range part of the direct correlation function, which is boundary transition is nearly described. In casg we are
smoother than the radial distribution function fdlocp  using a reference excess entropy inconsistent with the radial
€[0,18Q. Yet, one should have to perfom an FFT to obtainpair-correlation function. Results are similar to céseuntil
docp(r) by solving the Ornstein-Zernike equati¢p@5,15.  we approach the phase boundary transition: we thus see that
This procedure has the main drawback of slowing down théhey rapidly deteriorate and the phase boundary transition is
minimization of the right-hand side of E§12) unnecessar- not correctly described. In summary, we can use the data
ily. Note that this method is neither limited to the OCP sys-obtained by solving the HNC equations with the bridge func-
tem nor to integral equations. One could imagine to use it fotion proposed by lyetonmet al.[30] (HNC+ B) for the OCP

046404-4



GIBBS-BOGOLYUBOV INEQUALITY AND TRANSPOR . ..

— ocp /
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120 140

FIG. 1. The OCP coupling parameter versus the Yukawa param-
eter for various« values and for HS and OCP reference systems.

system in a self-consistent way within the GBI method. The 5 (x)=0. 540_ 24.

HNC+ B data reproduce well the OCP syst¢B80] but are
not perfect{ 34,35, the uncertainty being greater for the ex-
cess entropy than for the excess free energy.

We propose now to minimize the functiod gcp
—AfEB(Tocp) in Eq. (13) with respect tdocp, find the
new OCP-Yukawa mapping, and compare to the old method

[5]. Results are plotted on Fig. 1. We have used the casesa,(«)=7.421—

depicted on Fig. 2 of Ref5]. We see that for each value of
«, I'ocp found with the new method is larger than that found
with the old method. This means that using a HS reference

system tends to overestimate the screening, especially at low

I' and high «. Calculations were also performed far
=0,1,...,9,20 andl">1 to get an analytical expression for
the OCP-Yukawa mapping parameter effective OCP cou-
pling strength I" ocp With respect to the Yukawa parameters
I' and «. The full set of solutions was fit by the form

Tocp=a(x)IPw, (16)

1—exp<—

where

a(x)=0.081+0.920

7.816 |
S an

and

80
60 L g
and
40 L B
20
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z solutions for CS-PY was fit by the form

In(7)=3In(I")—In(8) +[a,(x)taz(x)IN(I")]

X In{w[ag(x)IN(T) +ay(x)1}, (19

% where

exp(x)

w(x)= 1+expx)’

(20

6.754
1+« B

0.328
(1+k)?

7.487
ao(K): —-0.115- 1TK +

1—exp( -

53.273

8 (1+«)?

25.541
1+«

0.744
(14 «)?

249
+
K

1—exp(—

51.771

. (1+K)2

44.408
+
1+«

1.938
(1+«)?

+
K

X 1—exp( -

0.467
a3( k)=—0.02H m +

X 1—exp( -

47.579
(1+«)?

0.494

: —+
0.046- Trn

0.014
(1+«)?

(21)

31.914
(1+«)?

Right now, this expression extends the fit originally proposed
by Murillo [5]. It is consistent with the OCP limit at loW,

i.e., 7~ (I'/2)° [36]. We found that the relative error with
respect to the analytic result of Stroud and Ashcf8€] for
OCP is less than 20% over the range-10 °,0.6. Equa-
tions (19), (20), and (21) generalize the OCP case to the
Yukawa case. Numerical values in Eq21) were obtained

b(x)=0.084+0.923

1—exp<—

Numerical values in Eqg17) and (18) were obtained from

18.009 | ]
5

(14 k)t

(18

from the data written in Table Ill. From now on, the whole
applications are done with the original solutions; the use of
any fit is explicitly specified.

Although the above results can be justified by the use of

the data written in Table Il. To be complete, the full set ofthe variational principle, the optimal results of the GBI does

TABLE II. Values of a(x) andb(«), defined by Eq(16), used to obtain Eqg17) and (18).

K 0 1 2 3 4 5 6 7 8 9 10
a(k) 1.000 0.709 0361 0.225 0.163 0.132 0.114 0.103 0.096 0.091 0.089
b(«) 1.000 0.999 0.997 0917 0.824 0.737 0.662 0.600 0.546 0.501 0.462
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TABLE IlI. Values of [a;(«)](i-03) defined by Eq(19), used to obtain Eq21).

K 0 1 2 3 4 5 6 7 8 9 10

ag(«) —-1503 -0.887 -0.731 -0.700 -0.722 —-0.753 -—-0.767 —0.762 —0.748 —-0.727 —0.691
a,(k) 0.220 0.144 -0.017 -0.292 -0.631 —0.930 —-1.122 —1.209 —-1243 —1.231 -—1.144
ay(k) 1.845 3.143 3.707 3.648 3.333 3.087 3.006 3.054 3.155 3.308 3.577
as(k) 0.006 0.009 0.015 0.023 0.029 0.030 0.028 0.025 0.022 0.019 0.016

not reveal how close the reference excess free energy is tntropy of the OCP reference system is the best approximate
the actual excess free energy, nor what physical quantitgf the Yukawa system excess entropy, in the GBI framework.
other than the excess free energy can be extracted from thResults for excess entropy are good. Note that the excess
optimal results. To quantify the accuracy, the OCP-Yukawaentropy of the OCP reference system is below the excess
mapping using GBI serves to predict the liquid-solid phasesntropy of the Yukawa system as expecfad].

boundary of the Yukawa fluid and to compare to the simula- To be complete, let us now see whether the variational
tion data of Hamaguchét al. [9]. The phase boundary is free energies based on the HS reference system lie system-
found by solving for the critical coupling strengih, and for  atically above the variational results based on the QZJP

various the equation For eachl’, we have searched for values ofusing the GBI
such thatf 2% (T ocp) in Eq.(13) equalsf£2'(7) in Eq. (14).
I'e=Tocp(l' &), (22)  Results are plotted in Fig. 5. We have kept the phase bound-

) ) ary of Fig. 2 predicted by molecular dynamics simulations of
whereT is the unknown and the OCP is kept equal to  Hamaguchiet al.[9] and by the OCP and HS reference sys-
171.8. We have done similar calculations for the HS refertems pased on GBI calculations. We see that the liquid part
ence solving for the critical HS parametgg and for various  of yYukawa system plane can be divided into two parts. For a
« the equation given value ofl’, the OCP reference system gives a lower

excess free energyOCP liquid up to a critical value ofx,
ne= (', 1), (23 beyond which the HS reference system gives a lower excess

N . free energy(HS liquid). This result could be expectedpri-
wherel is siill the unk_nown one and the Hﬁb IS kn(_)wn © o because for wealkstrong coupling, the OCRHS) poten-
be 7¢=2/37cp. ncp is the closed-packing fractiome, i) jg physically closer to the Yukawa potential. This result
=m/3/\2 [37]. This procedure differs from that originally gpoyid be compared to GBI calculations using MC or MD

proposed in Ref[5], which had the drawback of not using yata for the OCP reference system, because of the bias due to
directly the properties of the reference system, namely, herg,; HNC+B scheme.

the HS packing fraction at freezing. Results are shown in
Fig. 2. Compared to Fig. 3 of Reff5], the actual procedure

adopted for HS reference gives a considerable improvemen +MD K
in predicting the phase boundary. Taking into account the 10* } jggp
VW or the HG corrections have negligible effects on the OOCP - Fit y

results. As for OCP reference system, the agreement with th
simulation data is excellent considering the simplicity of the
theory. The accuracy of the fit is good too. The differences
between both reference systems is more pronounced at lo\
I', showing that the OCP provides a better reference systerr
for the Yukawa system in this situation. Moreover, such a 10° ¢
correspondence is guaranteed to give the exac0 limit,
whereas a HS reference does not give such a guarantee.
We have plotted in Figs. 3 and 4 the excess entropy anc
the excess pressure versususing the OCP reference sys-
tem. The Yukawa values are taken from the procedure anc
the fits proposed by Caillol and Gill¢§0], whereas the OCP

10°

exact values are taken from the fit of DeWitt and Slattery '® o 2 s
[21]. Results are excellent for excess pressure—even bette. x
for excess for free energy and excess internal enéngy FIG. 2. Phase diagram of the Yukawa system infthec} plane.

shown herg—as long as those quantities are calculated byryg jiquid-solid phase boundary is shown as predicted by the solu-
quadrature using the radial pair distribution functiod'atr  tion of Eq.(22) for OCP reference systesolid line), the solution
without forgiving the term—T"«/2. Results are wrong if we of Eq. (23) for HS reference systerfdashed ling and the molecu-
use the excess free energy, excess internal energy, and excegsdynamics(MD) results of Hamaguchet al. [9] (cross. The
pressure of the OCP reference system. The situation is dikolution of Eq.(22) using the fit of Eqs(16), (17), and (18) is
ferent for excess entropy because, by construction, the excesisown too(circle).
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FIG. 3. Excess pressure as predicted by the GBI using the OCP . .
reference systentsolid line and the simulation results for the _ G- 5. Phase diagram of the Yukawa system inithiec} plane.

Yukawa system using the procedure and the fits proposed by Caill(Sl_I—he “OCP liquid”-“HS liquid” phase boundary(see text, dotted

and Gilles[10], whereas the OCP exact values are taken from the ﬁ{me) is shown with the liquid-solid phase boundary as predicted by
the solution of Eq(22) for OCP reference systefsolid line), the

of DeWitt and Slattery21]. : :
solution of Eq.(23) for the HS reference systefdashed ling and
the molecular dynamic§MD) results of Hamaguchet al. [9]
(cross.
Transport coefficients such as self-diffusion, viscosity,
and thermal conductivity are the most fundamental dynamiis possible to predict dynamic properties of Yukawa systems
cal parameters that reflect the nature of the interparticle pofrom the GBI that is only valid to study static properties of
tentials and characterize the thermodynamics of the systergystems in thermodynamical equilibrium.
The variational approach using the GBI is used in order to
estimate the self-diffusion, the shear viscosity, and the ther- A. Diffusion
mal conductivity of the Yukawa system from the transport e - .
coefficients of the OCP and HS systems. Comparisons with The slelf-d|ffu.3|on coeff|C|er]t .W'” be de_notgd . MaF‘Y
onventions exist for normalizing the diffusion coefficient

MD data are done in a systematic manner over a wide rang . S o
that display quasiuniversal characteristics. Some of these

of the system parametefF, «}. Our goal is to see whether it are by Hanseret al. [39] D' =D/D,;, by Ohta and Hama-
guchi [11] D*=D/D¢¢, and by Rosenfeld40-43 D'
N =D/Dyg, Where Dyi=wyals, Der=wedlys, and Dpg

-==- Yukawa =p; "3kgT/m. Here,D 4, we, andw,=\4mp;Q*m are

the macroscopic diffusion, the Einstein frequency, and the
plasma frequency, respectively. The ratio between the plasma
frequency and the Einstein frequency can be obtained from a
fit to the result of Ohta and HamagudHil] as

IV. TRANSPORT COEFFICIENTS

5

V3w, _ o 0.2058(-5% (24)
@p

-(Excess entropy)

Note that the Einstein frequency accounts for variations in
the vibration frequency due to screening.
The diffusion coefficient for the OCP is given ph$9]

. 295
OCP:TM' (25)
l_‘OCP

200

FIG. 4. Minus excess entropy as predicted by the GBI using th%‘Sln.cewp/weT \/§df_or ocP z)]/)stem, tftl)e ;)C;P rgference dif-
OCP reference systefsolid line) and the simulation results for the usion normalized in terms dDe¢ can be detined as

Yukawa system using the procedure and the fits proposed by Caillol
and GiIIgs[lO], whereas the OCP exact values are taken from the fit D{cp= %’ = DécP\/g- (26)
of DeWitt and Slattery21]. ef
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The Yukawa diffusion may then be obtained from this OCP 04
result as

. 2.95/3
DYHMP(F’K):W' (27) 03

eff

In Eq. (27), Y refers to Yukawa and HMP to Hansen, Mc-
Donald, and Pollock39].

However, a log-log plot oD p as a function ol g¢p is
approximately linear and Ed25) reproduced the MD data
by Hanseret al.[39] within 20%, except at the lowest value
nearly equal to one. More recently, Ohta and HamagLicHi 01 b
found that the self-diffusion coefficients in Yukawa systems
follow a simple scaling law with respect to the normalized
temperaturelT* =I"./I". In short,T* is the ratio of the sys-

o2

tem temperaturd to the fluid-solid melting temperature or 0 ‘ ‘ )
critical temperaturd .. They fit their MD data to the form 0 8 }2 15 20
D*=a, (T*—1)P«+1y,, (28) FIG. 6. Self-diffusion coefficient normalized in terms of the

] ) _ Einstein frequencyD* vs normalized temperatur@* of the
for eachk. They were also able to fit the OCP simulation yykawa system wittk=1. MD, OH, HMP, and HS are the MD
data by Hanseret al. [39] to this same and more accurate calculations of Ohta and Hamagudhil], the effective OCP using
form, compared to the former power law given by E25).  the fit of Ohta and Hamaguchi1], the effective OCP using the fit
The Yukawa diffusion may thus be obtained from this newof Hansenet al. [39], and the effective HS using the analytic for-
OCP result as mula of Erpenbeck and Wodd1,44.
* — * B ) -
DYool #) = ao(Ter= 1™+ o, (29 fact that the VW and the HG corrections have negligible
effects on the Yukawa-HS mapping based on the GBI varia-

 _ . _ : .
whergTeff—FC/Feff with I'.=171.8, i.e.l'c used here is tional method. In Eq(30), # is the effective hard-sphere
the criticall” of the OCP system as calculated by Hamaguchi acking fraction of the Yukawa svstem determined by the
et al.[9]; ['c¢¢ is given by the GBI variational procedure. In P 9 y y

.GBI variational method. In E(30), Y refers to Yukawa and
Eq.(29), Y refers to Yukawa and OH to Ohta and Hamaguch|HS to hard sphere.

[11]. . )
As for HS system, Enskog’s theory for hard sphere is Results are plotted on Figs. 6, 7, and 8, where the normal

remarkably accurate when compared to simulat{@dis. We

propose to use a fit to the relatively small corrections to 04
Enskog, as obtained from the most recent simulations for the - g:l“’
hard-sphere fluid44]. Normalizing in terms ofDg¢, the k=3 — ™MD
Yukawa diffusion may be obtained from the HS redDlfg 0s b ——-HS
as ’
Dus Dus De Dgas
DY 4T k)= =— , 30
YHS( ) Det De Dgas Det =50 & 02}
where
Dus _ 2 3
D——1.018 961+ 0.073p+ 11.609%)— 26.951;), 01
E
De _ (1_77)3
Dgas  (1=7/2)’ % 5 10 15 20
*
Dgas 1 T 1.590 . . .. . .
= — 02058 (3D FIG. 7. Self-diffusion coefficient normalized in terms of the
Def 8772/3 r Einstein frequencyD* vs normalized temperaturd* of the

Yukawa system withk=3. MD, OH, HMP, and HS are the MD
Here, Dy, and Dg are the result for a dilute gas and En- calculations of Ohta and HamagudHhil], the effective OCP using
skog’s result, respectively. Note that the CS equation of statghe fit of Ohta and Hamagucfil1], the effective OCP using the fit
for the radial pair distribution function at contact has beenof Hansenet al. [39], and the effective HS using the analytic for-
used(see Appendix B This approximation is justified by the mula of Erpenbeck and Wodd1,44.
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0.4 ; - - ized shear viscosities are given by = », /7, [15], 7*
T B =nyIner [12], and 7'=n,/ny, [40-43, where 7,

®=5 — MD :mpiwpa\%VSa Net= mPi\/§wea\2NSv and 77mu:Pi2/3\/kaT-

0s | —--HS | Here, 7, is the macroscopic viscosity. Note that = 7’

whenk=0, i.e., for the OCP system. The normalization em-
ployed for' has been widely used for the OCP sys{dr|.
The normalization used fop* has been shown to be more
suited for Yukawa systems, and is considered to be a natural
extension ofy’ of the OCP in finite screening.e., k#0)
[12].

The viscosity coefficient for the OCP is given p45]

& o2

17 (1+\1,)2

nocp=A1+ ——, (32)
N3

where

A= 2T (3T oep)??
FIG. 8. Self-diffusion normalized in terms of Einstein frequency 3 ockPl

D* vs normalized temperatur€* of the Yukawa system with

=5. MD, OH, HMP, and HS are the MD calculations of Ohta and |1:(18¢Ocp73/2)71,
Hamaguchi[11], the effective OCP using the fit of Ohta and

Hamaguchi[11], the effective OCP using the fit of Hansenal. 0.49-2 2 =13
[39], and the effective HS using the analytic formula of Erpenbeck |,=— T ock
and Wood[41,44]. 6072

ized self-diffusion coefficienD* is plotted in function of 19

OCP
normalized temperatur€* for k=1,3,5, respectively. The |3:O'241W' (33
range of variation off* corresponds roughly to the Yukawa

system excess entropy above one, i.e., to the stronglypis analytical fit to the OCP viscosity agrees reasonably
coupled Yukawa systems. From Fig. 5, we know that there i§yiih simulation result§46] and represents a procedure for

a competition between OCP and HS systems, the HS systegynnyting the Yukawa viscosity. The Yukawa viscosity may
producing a lower GBI excess free energy with increasing inen be obtained from this OCP result as
at constant’. This means that wher is small (large, the

Yukawa system is more OCP-likgiS-like), especially near (1+\1,)?

the liquid-solid phase boundary, i.e., wH&h tends to unity. Pywd L) =N+ P (34)

This is exactly what we find foD*. For k=1, the Yukawa 3

self-diffusion coefficient is better estimated using the OCRyjth ', .p replaced byl given by the GBI variational
system given either by Eq27) or Eq.(28) than by the HS  procedure in Eqs(32) and (33). In Eq. (34), Y refers to
system. Fork=3, the situation changes and HS curve be-yykawa and WB to Wallenborn and Ba[#5].

comes closer to OCP curve; note then that the whole refer- However, Saigo and HamagudHi2] proposed recently a
ence systems give roughly the same and good estimate of thfferent analytical formula to fit their MD calculations of
Yukawa self-diffusion coefficient. The situation has changedshear viscosity for Yukawa system that can be used for OCP

better estimate of the Yukawa self-diffusion coefficient over

the entireT* range. The situation is enhanced if we go to b
higher values off* (not shown here As expected to$43], 7 =a,T*+ —: +cC,, (35
the whole models converge to the same limit when we ap- T
proach the liquid-solid phase boundary. To be complete, GBI

. . )
approach predicts a competition between OCP and HS sy _hkereT IS thgtnormallﬁed Lempstrgturg Sefm?ﬁ aboveb@s
tems, but the difference between the corresponding GBI exyuKawa viscosity may thus be obtained from this new

cess free energy is indeed tiny. The calculation of self/esult as

diffusion confirms this competition, which has a stronger b

) . 0

impact on physical results. 7T k) =agT + 2+ co, (36)
eff

B. Viscosity where T =T /To;; with T.=171.8 as for the self-
The shear viscosity will be denoted by, to distinguish it diffusion coefficient. In Eq(36), Y refers to Yukawa and SH
from the HS packing fractiony. The definitions of normal- to Saigo and Hamaguchi2].
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As for HS system, Enskog’s theory for hard sphere is 06
remarkably accurate when compared to simulations, i.e., fo
n<7p/5 [41], except near the liquid-solid phase boundary
of the HS system, where the discrepancy may reach a facto
of 2[15,47]. Furthermore, the Stokes relation with slip con-
ditions, i.e.,.D n,=kgT/(27 o), has been found to be remar- o4
quably precisei.e., for 7> 7,/5) [47]. Unfortunately, we
do not have more recent MD calculations and neither any
analytical expression for the HS shear viscosity. As a conse® 03 N
guence, since we know the self-diffusion coefficient for HS
system with high precisiof1,44], one solution would be to
estimate the HS viscosity using the Stokes relation #or
> n¢p/5 and simply Enskog’s result fay< .,/5, i.e., in the
gas phase. However, in order to avoid discontinuity or treat o.1
the delicate joining question by a smoooth interpolation be-
tween both domains, we propose to use a fit to the correc
tions to Enskog, as obtained from the simulations for the %4 10 100
hard-sphere fluid47]. The Yukawa diffusion may thus be T
obtained from the HS result as

02

FIG. 9. Shear viscosity hormalized in terms of the Einstein fre-
qguency * vs normalized temperatur€* of the Yukawa system

7T k)= Hs _ Hs TE nLaS, (37)  Wwith x<=1. MD, SH, WB, and HS are the MD calculations of Saigo

Nef Ne 7Tgas 7ef and Hamaguchii12], the effective OCP using the fit of Saigo and

Hamaguch{12], the effective OCP using the fit of Wallenborn and

where Baus [45], and the effective HS using an analytic formula
[15,41,47.

S _ (1+2.5502)— 23.0082%+ 44.1238;°),

e near the liquid-solid phase boundaf¢8]. Note that this
3 competition has an impact on the location of the viscosity
(1=7) +0_80C(477)+0.761(477)2(1_ 7/2) min_imum_ T; too. Wh_e_nK inc_reases, the OGRS)-like vis-
(1-7/2) (1-7) cosity minimum positionT}, increasegdecreasesand be-
comes distantclose) to the MD Ty,. Finally, we can ob-
Ngas 5 \/} 020561590 serve a strong dispersion of the curves ab®dVe- 10.
B .

=—— 38
Net 48\/§ 7 (38

e

Mgas

0.6

Here, 74as and ng are the result for a dilute gas and En-
skog’s result, respectively. Note that the CS equation of state
for the radial pair distribution function at contact has been
used(see Appendix B In Eq. (37), 7 is the effective hard- \
sphere packing fraction of the Yukawa system determined by o4 |
the GBI variational method. In Eq37), Y refers to Yukawa
and HS to hard sphere.

Results are plotted in Figs. 9, 10, and 11, where the shea® ®3 {
viscosity »*, normalized in terms of Einstein frequency, is \
plotted in function of normalized temperatu® for « 02 L
=1,3,5, respectively. The range of variation™f is taken
from Ref.[12] and covers the strongly and weakly coupled
Yukawa systems. First, we see that the analytic fit of Wallen- 0.1 |
born and Baus is not good enough to reproduce the MD data
The general feature of the curves is wrong and the viscosity . .
minimum is located too higiflow) in T*(I") space in any 1 10 100
case, even for the OCP syst¢dA6]. Second, the competition ™
between the OCP and HS systems is clearly visible. The £ 10, shear viscosity normalized in terms of Einstein fre-
Yukawa shear viscosity is better estimated using the OCByency 5* vs normalized temperatufg* of the Yukawa system
system[Eq. (35)] than using the HS systefiEq. (37)] for  with k=3. MD, SH, WB, and HS are the MD calculations of Saigo
xk=1. The opposite is found fok=3. For k=5, we can  and Hamaguchi12], the effective OCP using the fit of Saigo and
attribute the shift in amplitude between the HS and MDHamaguch{12], the effective OCP using the fit of Wallenborn and
curves at lowT* either to our approximate formula for HS Baus [45], and the effective HS using an analytic formula
viscosity or to the known property of viscosity to diverge [15,41,47.

05 |
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FIG. 11. Shear viscosity normalized in terms of the Einstein
frequencyn* vs normalized temperatuf@ of the Yukawa system
with k=5. MD, SH, WB, and HS are the MD calculations of Saigo
and Hamaguchii12], the effective OCP using the fit of Saigo and
Hamaguch{12], the effective OCP using the fit of Wallenborn and
Baus [45], and the effective HS using an analytic formula
[15,41,417.

We give in Table IV a comparison with the MD data of
Salin and Caillol[13] for the shear viscosity;’ normalized
in terms of the plasma frequency. For the cases considere

PHYSICAL REVIEW E 67, 046404 (2003

where Apf:kBPiwpa\%vs’ )‘ef:kBPi\/gwea\zNS' and Ay
=p?%g\kgT/m. Here, A is the macroscopic thermal
conductivity [40—43. Note that\*=\" when k=0. The
normalization used fox* may be considered to be a natural
extension ofA’ of the OCP in finite screening.

To our knowledge, no systematic MD calculations over a
wide range of the system paramet¢ls «} have been car-
ried out[46,13,49 . We have thus decided to fit the most
recent and accurate MD data for the OCP system of Donko
and Nyiri [46] by the same form selected by Saigo and
Hamaguchi for shear viscosifit2]. Thus, the Yukawa ther-
mal conductivity can be simply represented for eachy

1
Moy T, k)=0.011767% + +0.1655, (39)

*
eff

where T4 =T /T ¢t with I'c=171.8, as above. From the
work of Hamaguchi and co-workers about self-diffusion and
shear viscosity, we can assume a quasiuniversal behavior and

calculate the Yukawa thermal conductivity from

0.881
\*(T,x)=0.01176* + - +0.1655,  (40)

where T* is the normalized temperature already encoun-
tered. In Eq.(39), Y refers to Yukawa and SH to Saigo and
glamaguchi12].

the coupling is weak but the competition between the HS and  The situation is less dramatic for the HS system, because

OCP systems is again confirmed. Ro=0,1(k=2,3,4) the
OCRHS)-like viscosity gives a better estimate of the
Yukawa viscosity than the HOCP-like viscosity. Note that
forI'=2 andxk=0,1,2 (x=3), T* corresponds to the upper
limit of (is outside the interval used by Saigo and Hamagu-
chi [12] to obtain their fit. Furthermore, fdr=2,10 andk

the deviations of MD calculations from Enskog'’s expression
have been proven to be barely perceptible within the few
percent accuracy of the dafd7]. As a consequence, once
obtained the effective hard-sphere packing fractipof the
Yukawa system using the GBI variational method, the
Yukawa thermal conductivity normalized in terms ®f;

=4, no fit was proposed and an average formula corresponaenay be estimated from the HS reshltg as
ing roughly to a universal curve is employed. This means

that the values given in Table IV for MDand OCP should
be considered with caution.

C. Thermal conduction

The thermal conductivity will be denoted by The defi-
nitions of normalized thermal conductivities are given by
N'=N g [15], N*=N/Ner, and N'=N/\p [40-43,

)\_HS:)\HS Ae Agas

ANopdT )= -~ : (41)
YHS( )\ef )\E )\gas )\ef
where
A
Mis_ g
Ng

TABLE IV. Shear viscosity normalized in terms of plasma frequentyor a few thermodynamics states. MICMD®, OCP, and HS are

given by the MD calculations of Salin and Caill@gl6,13], the MD calculations of Saigo and Hamaguh?], the effective OCP using the
fit of Saigo and HamaguciL2], and the effective HS using an analytic form{il&,41,47, respectivelyT* is the normalized temperature.

=2 r=10

K T* MD?2 MDP OoCP HS T* MD? MDP oCP HS

0 85.9 ~0.5 0.42 0.42 0.47 17.18 ~0.1 0.09 0.09 0.22

1 108.7 0.496 0.43 0.51 0.66 21.74 0.112 0.11 0.10 0.19
2 220.05 0.991 0.61 0.63 1.01 44.01 0.145 0.13 0.12 0.21
3 592. 1.282 0.85 0.61 1.45 118.5 0.198 0.19 0.13 0.27
4 1918. 1.935 1.48 0.46 1.98 383.7 0.306 0.29 0.11 0.35
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TABLE V. Thermal conductivity normalized in terms of plasma frequen¢yor a few thermodynamics
states. M@, MDP, OCP, and HS are given by the MD calculations of Salin and C4#i6]13, the Yukawa
estimation using a fit form of Saigo and Hamaguct], the effective OCP using a fit form of Saigo and
Hamaguch{12], and the effective HS using an analytic form{ii&,41,47, respectivelyT* is the normal-
ized temperature.

=2 r=10

K T MD2  MDP® OCP HS T* MD®  MD®  OCP  HS

0 859 ~1.2 1.19 1.19 1.86 17.18~0.40 0.42 0.42 1.07

1 108.7 2.42 1.18 1.37 2.48 21.74 0.570 0.38 0.40 0.84

2 220.05 2.89 1.49 1.59 3.73 44.01 0.644 0.38 0.40 0.82

3 5920 5.36 2.20 1.50 540 1185 0.841 0.48 0.38 1.00

4 1918.0 7.18 3.583 1.13 7.37 383.7 1.239 0.72 0.29 1.31
A { (1-7)3 (1— 7/2) cosity, and.thermal co_nducti\{ity from t.he equa;ion of state of
—=|———+1.20047)+0.7554 )2 ——|, monoatomic fluids with arbitrary pair potentials. In sum-
Ngas | (1= 7/2) (1-7) mary, one realizes all the benefits of the Rosenfeld approach

to estimate transport coefficients knowing only the excess
Ngas_ 25 \/E 0.2058:15% (42 entropy of the system of interest. This method is as useful as
Nef 64\/57;2’3 r ' Enskog’s original recipe relating transport coefficients to
thermal pressurgsl].

Here, Ngas and A are the results for a dilute gas and En- Let us consider a one-component fluid with a reduced
skog’s result, respectively. Note that the CS equation of statéxcess entropg=—S/(Nkg), whereSis the entropy of the
for the radial pair distribution function at contact has beensystem of interest composed Nfparticles in the volumé)
used. In Eq(41), Y refers to Yukawa and HS to hard sphere. at temperaturdl. In short,s is equal to minus the reduced
We give in Table V a comparison with the MD data of €xcess or configurational entropy over the ideal-gas value.
Salin and Caillol[13] for the thermal conductivity normal- The quasiuniversal behavior for the transport coefficients has
ized in terms of the plasma frequenay. As above, the been derived either from many S|rr_1ulat|on_s for dense fluids
coupling is weak but the competition between the HS and40l, or from Enskog's theory for dilute fluidgt1] by con-
OCP systems is clearly visible, even if the values given bysidering, i.e., normalized self-diffusidd’, normalized shear
MDP are too low by a factor of nearly 2 for above one. For Viscosity 7", and normalized thermal conductivity. Keep-
k=0 (k=1,2,3,4) the OCRHS)-like viscosity gives a better NG the aforementioned no_rmallza_t|on in terms of the Ein-
estimate of the Yukawa viscosity than the (@€P-like vis-  Stein frequency to be consistent with the MD of Hamaguchi
cosity. Furthermore, these comparisons seem to justify out al. the Rosenfeld scaling entropy transport coefficients of
method and the use of Eq&9) and (41), waiting for MD  self-diffusion D}.., shear viscosityp’.., and thermal con-
simulations in a wider range of the parameter space to productivity A3 for Yukawa fluid are given by
pose a better fit and to confirm the competition between HS

o D
and OCP systems for thermal conductivity. ss=D' Dmd,
ef
D. Rosenfeld approach I .
A semiempirical “universal” corresponding-states rela- esc_ 7 —
tionship, for the dimensionless transport coefficients of dense
fluids as functions of the reduced configurational entropy, mtc

has been proposed by Rosenfpi@], extended to dilute flu- esc N (43
ids by the same authd41], and established by many simu-
lations[40,50. This approach is invaluable for four reasons.where
First, an accurate, theoretically based, approach to dense-
fluid transport coefficients is still lacking. Second, no con- Dind = ”mv = Amtc
vergent perturbation theory of transport coefficients has been D_ef =3 % =\3 Ner Jr
established. Third, the brute-force computer methods can be

used. to estimate transport coeffjcients, but these methods ¥ dense fluid$41],

considerably too time consuming, for the same accuracy,

than those designed to measure equilibrium properties and D'~0.6e7 9%,
cannot be considered as black-box routines that generate data

intensively over an industrialized scale. Fourth, this analyti- 7' ~0.26%%,

cal relation between transport coefficients and excess entropy

allows us to estimate, for instance, self-diffusion, shear vis- A~1.5e0%, (45

e0.2058<1-590 A\ 13
?) . (49
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FIG. 12. Self-diffusion coefficient normalized in terms of the  FiG. 14. Self-diffusion coefficient normalized in terms of the
Einstein frequencyD* vs normalized temperaturd” of the  Ejnstein frequencyD* vs normalized temperatur@* of the
Yukawa system withc=1. The quasiuniversal entropy scaling for- yykawa system withc=5. The quasiuniversal entropy scaling for-
mulas for dilute and dense fluids proposed by Rose#dd4l are  mylas for dilute and dense fluids proposed by Roserif#d1] are
compared to MD calculations of Ohta and Hamagudhi. HS and  compared to MD calculations of Ohta and Hamaguttij. HS and

OCP reference systems are considered. OCP reference systems are considered.
whereas for dilute fluid$41], we obtain for HS 0.405- 42
.0
D'=0.3% %%, B 2\
Inj1+| —
—2/3 3s
7'=0.27%" ",
15 r 0.35% 43
)\rzznr, (46) 7]_| . 2>2 1 )
: 3s 3s)?
and for OCP 1+l =
10° N 15 r .
’/ - Z 7] * ( 7)
l’t/’
10’ < o . . .
The quasiuniversal behavior for dense fluids, which holds
also for the OCP case, is replaced by two different behaviors
el = | that depend on the inverse power law of the pair potential for
___________________ dilute fluids[41].

The elegant and deep method proposed by Rosenfeld re-
lates the transport coefficients to the equation of state via the
Gibbs-Bogolyubov inequality. We have thus used the GBI

==== Dilute Fluid (OCP)

7 Dense Fluid ocp reduced excess entropy for HS and OCP systems to see how
1o — —- Dilute Fiuid (HS) ] the predictions of Eq945), (46), and(47) for self-diffusion
=~ - Dense Fluid (HS) and shear viscosity compare to MD simulations. Results are
plotted on Figs. 1@5), 13(16), and 1417), where the self-
10 ‘ . diffusion coefficientD* (the shear viscosityy*), normal-
10° 10’ 10° 10’ ized in terms of the Einstein frequency, is plotted in a func-
™ tion of normalized temperatureT* for «=1,3,5,

FIG. 13. Self-diffusion coefficient normalized in terms of the '€spectively. The quasiuniversal entropy scaling formulas for
Einstein frequencyD* vs normalized temperaturd* of the dilute and dense fluids proposed by Rosenf&d 41 are
Yukawa system withc=3. The quasiuniversal entropy scaling for- compared to MD calculations of Oht&aigg and Hamagu-
mulas for dilute and dense fluids proposed by Roseri## are  chi for self-diffusion coefficientshear viscosity[11] ( [12]).
compared to MD calculations of Ohta and Hamagui¢ii. HS and HS and OCP reference systems are explicitely considered.
OCP reference systems are considered. First of all, the difference between HS and OCP systems
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10? T T 10 . .

-
~——
-
——~—
-
-
~——n
~—
~———

-
-
~~~~~~~

D*

o ---- Dilute Fluid (OCP) - ---- Dilute Fluid (OCP)
- - --- Dense Fluid (OCP) P ---- Dense Fluid (OCP)
- - NI.D . - -~ MD
0o |- —=- Dilue Fluid (HS) | w02 b ——- Dilute Fluid (HS) |
e — — - Dense Fluid (HS) — —- Dense Fluid (HS)
10° : : 10° s .
1 10 100 1000 10° 10 10° 10°

T T*

FIG. 15. Shear viscosity normalized in terms of the Einstein £, 17. Shear viscosity normalized in terms of the Einstein
frequencyz* vs normalized temperatuf@ of the Yukawa system  fraquencys* vs normalized temperatufé of the Yukawa system
with k=1. The quasiuniversal entropy scaling formulas for dilute yith «=5. The quasiuniversal entropy scaling formulas for dilute
and dense fluids proposed by Rosenf40,41] are compared t0  531q dense fluids proposed by Rosenfgld,41] are compared to
MD calculations of Saigo and Hamagu¢h®]. HS and OCP refer-  \p calculations of Saigo and Hamagugh]. HS and OCP refer-
ence systems are considered. ence systems are considered.

decreases with increasingfor dense fluids; fox=3, one
can use one or the other, whatever may be. The same
tendency is found for dilute fluids except that must be
greater than 100, which corresponds roughly to GBI reduce
excess entropy below one, i.e., to the uncoupled Yukawa

systems as expected. Second, the competition between HS V. CONCLUSIONS
and OCP systems is again confirmees; 3 being the border-
line. Third, the most important result is that MD calculations
nicely interpolate between dilute fluid at higif and dense
fluid at low T*, the transition between both regimes being

located betwee* =10 andT* =100. One could even pre-
dict a minimum for shear viscosity, as already enhanced by
(I;Qosenfelc[43].

The Gibbs-Boglyubov inequality is used to map the
Yukawa system to either the hard-sphere or the one-
component reference systems. This method is very powerful
to calculate equation of state quantities, i.e., pressure, inter-
10 ' . nal energy, free energy, and entropy. It has been shown that
this method can also be very efficient to estimate transport
coefficients, i.e., self-diffusion, shear viscosity, and thermal
conductivity. One can employ either the known transport co-
efficients of the reference systems or the quasiuniversal en-
tropy scaling of Rosenfeld based on a correspondence be-
tween transport coefficients and reduced excess entropy.
Extensive comparisons are made with simulation results over
a wide range of the Yukawa system parameférsc}. It has
been proven that the hard-sphere reference system yields a

10

10

‘r‘*

107

- --=- Dilute Fiuid (OCP) lower upper bound of the Yukawa Helmholtz free energy and
7 ---- Dense Fluid (OCP) a better estimate of the Yukawa transport coefficients for
. /// - “D‘iﬂmmm HS) sufficiently strong screening.
107 p~ ——- Dense Fluid (HS) E The method presented here is easily extended to other

systems and to other properties for which expressions are
known for the hard-sphere and one-component systems. Be-
107 10° cause of the simplicity of the theory, the same method can be
T applied to mixtures.

10

FIG. 16. Shear viscosity normalized in terms of the Einstein
frequencyn* vs normalized temperatu® of the Yukawa system ACKNOWLEDGMENTS
with k=3. The quasiuniversal entropy scaling formulas for dilute
and dense fluids proposed by Rosenfet@,41 are compared to One of the author$G.F) thanks P. Dallot for providing
MD calculations of Saigo and Hamagudh2]. HS and OCP refer- his HNC code, adapted from a program originally developed
ence systems are considered. by R. Cauble to calculate static correlations for a two-
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component plasméons and electronsn the HNC approxi- 1 ) 5
mation[52]. HYZEE z Ua(|ri_rj|)_2 fd rpeZv o (|r=ril)

1#]

APPENDIX A: YUKAWA FLUID EQUATION OF STATE
FROM THE GIBBS-BOGOLYUBOV INEQUALITY

In this appendix, we derive first Eq12) from EQ.(9).  \yhere v(lr)=e% */r andi,j=1,...N. In the right-
Second, we calculate various thermodynamic quantities fromgnd side of Eq(A7), the first term is the particle-particle
Eq.(12) and apply the results to the one-component Yukawanteraction, the second one is the particle-background inter-
system case. _ action, the third one is the background-background interac-

Starting from Eq(9) and using{,=(H,),, we get tion, whereas the last term fixes the zero of energy with

respect to the self-energy of a bare Coulomb charge

1
+§J d3rjd3r’p§va(|r—r’|)+N5, (A7)

stfp—uer(HY)p (A1)
1
— __|j 2 _ =2
or &= ij[z va([r))—Z%o(|r 1. (A8)
FI<FH Ul +(Hy),, (A2)  Let us now multiply Eq(A7) by B/N. Using Eq.(2) and the

system being isotropic and homogeneous,
by subtracting to both sides the ideal free eneffy[15]

BHy 1 f
=55 Z% (Iri—=1iD—pi | drz2Bv(Ir
FO= +NKkgT[In(p+3In(A)—1],  (A3) N 2N & AP Bolr)
1

and the ideal internal enerdy® [15] + Epif d3rZ?Bv (|r])+ BE, (A9)

uOZENkBT (A4) e easily obtain

5 )
BHy 1 3r r

Here, A is the de Broglie thermal wavelength, defined as N 2N ;J Boy(|ri=ri)— 2_:<2+ RE (A10)

_ 27h?\ 12 A The excess internal energy per parti¢igsy /N), is simply

C\mkgT (AS) given by

The excess parts contain all the contributions to the free and B_HY :i S g (ri-rih) - £ £
internal energies that arise from the interactions between par- N 2N\ Z OvitiT 22 2 )

ticles. A similar division into ideal and excess parts can be (A11)
made for any thermodynamic function obtained by differen-

tiation of the free energy with respect to the temperaflire since(1),=1. Finally, let us introduce the two-particle den-
and the volume) of the system assumed to be in thermo-sity [15] 6®)(r,r")

dynamic equilibrium. In order to work with dimensionless

guantities per particle, we rather consider reduced free en- S(r p7 _2 slr—r 8l — AL2
ergy fi=BF/N and internal energyu’=pgU’N [p (rr )_i j (Ir=riha(r'=r;h, (A12)
=Y,0CPHS, ... and=0,(ex), ...]. Wethus get

BTty _ . 3 J 3.7 / (2) /
N P
3 «I'
Note thatf(®¥ and ul® are often called abusively excess 02 2 (A13)
free and internal energies per particle.
The main point is to calculate the thermal average of thé=or isotropic and homogeneous system,
configurational energy of our modelSHy/N),, which is
constituted of a neutral classical plasma mad&l adentical (8@(r,r)),=pfg,(Ir—r')),
point chargesZ (ions) immersed in a uniform neutralizing
background(electron$ of volume Q) and charge density =pi2[hp(|r—r’|)+1], (A14)

—pe=—Zp;. The effective interaction between ions due to
the polarization background of electrort, may be ex- whereg, and h, are the radial pair-distribution and pair-
pressed as followgl0], correlation functions associated to the given phase space
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densityp, respectively. Consequently, the excess internal enof the ideal reduced free energ9=BF°/N, internal energy
ergy per particle due to interaction is simply given by u®=BuUON, entropy s°=S8%(Nkg), and pressurep®
=BPOp,. From Eq.(A3), we easily have

H i r
<BNY> 2 [ @rpoirhn (-5 a19

- 2
p

3 3 (27h
f°:|n(pi)+§|n(3)+§|n( )—1, (A20)

m
Note that we would have obtained the same @&d.5) aver-
aging Eq.(A7) and using the one-particle densit®y*)(r),  and thus

with (8)(r)),=p; for isotropic and homogeneous system

[15]. In the right-hand side of EGA15), the first term is the ofo
expected quadrature formula and the second term is a correc- Pi (9_p- =1,
tion coming from the zero of energl,, appears instead of ‘'8
g, due to background. Equatida?) results combining Egs. 0 3
(A6) and (A15). B—| ==. (AZ].)
Now, let us calculate excess internal energ{f® B o 2
=BUPIIN, excess pressume® =8Py /p;—1, and excess
entropys{$? = S{#/(Nkg) from Eq.(12). By definition, Then, makingF{¥=0 in Eq.(A16) and using Eqs(A19),
(A20), and(A21), we get
. dFy
a0 T’ 0:&1}&_fO
B pil
S oFy
YT o1 ’ 0
N S%=Nk ( L —fo)
B aﬁ L
dFy|  ABF g
Uy=Fy— | = (BFy) (A16)
ITlg 9B g N of°
=2B =l (A22)
at fixed particle numbeN. We know thatFy, can always be BB P
divided into an ideal par#° and an excess pa#{?, i.e.,
or
Fy=F+FEY. (AL7) .
po=1,
The expression af° is given in Eq.(A3). We have the same
additive splitting for entropy, internal energy, and pressure, . 3
ie., u =5
Py=P°+P¢?,
v v 0= (U0 f9). (A23)
Sy=8%+5{¥,

(X

One can check that EA4) is recovered. Finallyuy
Uy=UO+ U (a18)  PY?, ands{™ are simply obtained by keeping the term
F& in Eq.(A16) and following the same procedure. We get

Since our system of interest is in thermodynamic equilibrium

at fixed particle numbeN, we can employ inverse tempera- pi &(f°+f§f"))
ture B and particle numbep; as state variables instead of 73Y:El‘)i ap; '
temperatureT and volume(). The chain rules for partial p
differentiation are thus simply given by a(foJrfg(ex)) o o

5 5 Sy=Nkg| f——5—— —(F+1¢)],

a0, P
N[ Pil 5
N a(fo+f{) a20

J J Y=o |

—| =—B— . (A19) B B o

aTl, Bl

or

This choice is consistent with the thermodynamic limit im-
plicitly assumed in the en@.e., N—x, —o, N/Q=p;) Pracy
and is well adapted to the calculation of reduced thermody- p{#)=p, Y ,
namic functions. As an illustration, let us find the expression Ipi B
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(ex)
u(ex) . B &fY
B
s =u{P—£( (A25)

Of course, the left-hand side of E{.2) is unknown, but the
GBI allows us to minimize the right-hand side of H42),
ie.,

A=y (94 fd3r3vY(|r|)hp(|r|)—
(A26)

with respect to the given set of parametgag} characteriz-
ing the reference systenh’ §p for OCP andy for HS). The
minimum value ofAf(peX),

Affjex),OEAffleX)hag} , (A27)

where the optimum parametefa’} satisfy the equations

a[Af<eX>]
({aph) = (A28)
serves as an approximation 6. But it can be used to
estimate various thermodynamic quantities, suchu$d
(ex) (ex) .
py”, andsy™:

(ex),0
v ' dpi P '
AT
(eX)NIB
B '

Pi

Sg(ex)% ug(ex) _ Af’(JeX)’O.

(A29)

Now, for the Yukawa system, the whole variables of interest
depend oI, «}. It is thus convenient to express all lengths
in unit of the Wigner-Seitz radiua,sto have dimensionless

guantities. EquationéA26) and (A29) read

3 © KF
A= | arruton 0
2)o 2
(A30)
and
(ex),0 (eX),0
pipr DT ] AT
VT3 ar RPN
(ex),0 (ex),0
(EX)NI‘— +Ba_K % ’
ar IiBl, 9Kk Iy
S(#~ (0 — Af;ex)ﬂ, (A31)
using
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| T
pl 0~,pl p 37

ar

—| =T, (A32)

and the most general case, in whighdepends both op;

and 8. When calculatmgp(e") and u{ from Eq. (A31),

only explicit differentiation with respect tb and « are kept
due to the GBI variational principle. One simply finds

1(= JK
[ — 2 _ R
Py 2]0 drrh,(r)| —1+3p; o

r K+ Jk

2 3 Pi <9p| 8 ’

ulEd~ jdrrzh (r)(l ﬁa,B r)uy(r)

r)uy(r)
B

r

( oK
- 5| ktB—

B

) (A33)

In our case, the Yukawa system is supposed to be given and
no assumptions are done concerning the physical processes
that create the screening. The inverse screening length is
constant; this means that

s K
A (A34)
aB ) ’

One thus recovers the standard formula$] to calculate
excess pressure and excess internal energy, with the addi-
tional term due to the zero of energy:

P~ — %f d3rhp(r)rﬁv\,(("),

i r
ulf~ %f d3rh,(r)Buy(r)— 7K (A35)

The radial pair-correlation function is calculated with the op-
timum set of parameter§a®}. It is by now clear that we
cannot use the excess pressure and the excess internal energy
of the reference system. The situation is more complicated in
the general case whet+ k(p; ,B). As for entropy, the situ-

ation is very simple and opposite to what just encountered,
becauses( may be approximated by the entropy of the
reference systerﬁ(ex) O—ule00,
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TABLE VI. Compressibility factorz as a function of the HS packing fractiop proposed by Carnahan and Starliiig] (CS and by
Erpenbeck and Wood53] (EW). V-PY and C-PY are the virial and the compressibility expressions issuing from the Percus-Yevick
approximation[15].

Model V-PY C-PY cs EW
2(n) 1+27+397 1+ 9+ 1+ 9+ 77—7° " 4+0.89085%+ 0.8924486,°+ 0.3430298;°
i/ AR /AN ”
(1—7)? 1-n? (1-7)° ’ 1-2.277287%+ 1.32624187

APPENDIX B: GBI EQUATIONS USING HS REFERENCE an empirical formula for expressing the bridge function in
SYSTEM FOR YUKAWA SYSTEM terms of interparticle separation and density has been pre-

sented that is fully consistent with the best computer-
mize the right-hand side of E6L2) with respect toy at fixed S|mulathn thermodynamlcs gnd structural da_ta for HS in the
fluid region at the timg54], i.e., the expression of Erpen-

{T",x}. This is equivalent of finding the minimum of function 4 :
n—AFCB!( 1) defined in Eq.(14) at fixed{T',«}. The ap- beck and Wood53]. We give in Table VI the various rela-
L« ) tions for the HS equations of state, i.e., the ratio of the pres-

proximations concern the two basic points of the theory, ’ e
namely, the equation of state and the radial distribution funcSUre o the ideal gas pressi#eP, (or compressibility factor
tion. In short, we extend the standard formulas originally?) as & function of the HS packing fraction

proposed for the one-component Coulomb System to the one- The HS radial distribution function taken in the Percus-
component Yukawa system. Yevick (PY) approximation is known to suffer from two ma-

A large number of theoretical and phenomenologicaljor defects[15]. On one hand, the value at contact is too
equations have been proposed for the HS equation of stagmall. On the other hand, the later oscillations have the
(see for instance Ref53]). For simplicity, we have consid- wrong phase and are too weakly damped. Verlet and Weiss
ered the well-known formula found by Carnahan and Star{17] and then, Henderson and GrundKE8], proposed to
ling [16] and the expression proposed more recently by Ercorrect those defects. Both approaches are the same in their
penbeck and Woofb3]. Both are simple and match nearly spirit. The main assumption consist is writting the radial dis-
exactly the computer-generated equation of state. Moreovettibution functiongyg(r) as follows:

In this appendix, we derive practical formulas to mini-

0 if r<og

Ons(r) = (B1)

C .
go(rlog, mg) + (r/_(lr) exgd —Cy(r/loc—1)]co§ —C,(r/c—1)] otherwise,

wherego(r/og,n0) is the PY expression for the radial dis- are equal to the equation of state given by the function).
tribution function[55,56. o, and 7, are the corresponding The integral in Eq(B4) can be done analytically usirj§7]
HS diameter and packing fraction, respectivelyyq(
=7-rpiag/6); 70 is related ton by the empirical formula

- (70-4)(75+2)
[17.18 | axergoeng-11= 202 (g
0 24(1+27g)
7
=n— . B2
0= 16 B2 yield
The parameter€,; andC, are chosen so that the equations 1 1— )4 c
of state calculated from either the pressure equation, - (1= 70) ,7_1
2(79)+ 92(n) - (1+27p)? C,
2(n)=1+1(7)=1+4ngus(o), (B3) P o
or the compressibility equation, —247;0f(”/"°)ll3dxngo(x, 70).
1
dnz(m] _ 1 (B6)

5 ” , (B4
7 1+pif dramrgus(r)—1] | |
0 Equation(B3) determines the paramet€r,
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f(n)
Ci- flj’? ~gol (7l 70)™, mo],

(B7)

whereas the paramet€; is fixed by Eq.(B6).
Algebraic calculations are easier if we ugethe Laplace
transform ofx[ go(X, 70) — 1] [55,56)

foxdxxeiax[go(x, 70)—1]=G(a, m9) —a *=G(a, 1),

(B8)
where
xe *H(X, 79)
G(X,70)= ———— - . (B9
12n[e " "H(X, 70) +1(X, 70)]
with
H(X, 70) = 1290 X(1+ 7¢/2) + 279+ 1],
1(X, 70) = (1= 70) X3+ 6 770( 1 — 79) X2+ 1875X
—12n90(1+27), (B10)

and (i) the Wertheim analytical expression fgp(X, 70)
[55]. For our purpose, since<07,<1 for 0< <1, it is
sufficient to know this expression for<Ox<<1 only:

2

XQo(X, 70) = (1= 79) 2>, A1 D, (B11)
=0
where
1 2
A=5 X Hpi™, (B12)
3 m=o
and
]
Ho=1+ 3.
1 —1/2
Hi=—(4n9)* f2+§) X2 (1-3n—4n>)+x,
5
X 1—5772> ,
1 —1/2
Ho=(47)"1 f2+§) X2 (1-37p—47%) +x_
5
X 1—57;2 } (B13
Here j=e?™3  f=(3+39p—9)/(477), x.==*|f=(f?

+1/8)Y3Y3 andt,=27(—1+x,j'+x_j ") /(1— 7). Note
that the result concerning. is misprint in the origina[55],
as in other referenceb7-59, if not simply absent; it is

PHYSICAL REVIEW E 67, 046404 (2003

correctly given in this paper. The VW solution differs from
the HG approach by making good but irrelevant approxima-
tions. The parameterS; andC, are simple functions of,

3 75(1—0.71170— 0.11473)
=
4 (1— 10"

:24C1(1_ 70)°
2 (14 10/2)

but the formulas are restricted to the CS equation of state. In
summary, when an accurate equation of state is used, the
resulting radial distribution function obtained from those de-
velopments fits the “exact” computer-generatéilonte
Carlo or molecular dynamiggunctions to within one per-
cent for all » [15].

Using Egs(B1), (B6), and(B7), it is thus a simple task to
calculate p—AfE% (%) defined in Eq.(14). Since {52
= [Zdxf(x)/x andU/ (9 =0,

(B14)

7 f(X)
Af?,i'(n)zfo dx= =+ 61| 750, 7o)

,sC18™%(a+Cy)

(a+C,)%+Ch
(i)™, I«
_773/3,[1 " dxxe 2*go(X, 70) o
(B15)

whereao=275%« anda=27"3«. Note that this expression

is badly formatted for numerical purpose at small One

should rather use a Taylor expansion with respeat tand

ayp in this situation and make sure that the one-component

Coulomb system case is recovered when the CS equation of

state and the PY radial distribution function are uggél.
Expressions of excess entropgf"), excess internal en-

ergyu{® , and excess pressupé™ are easily derived from

Eq. (B15) using Appendix A,

1/3

(9= — f Tdxf(x)/x
Y Il
0

Cle_a(a-i- Cz)

(ex) _ 2/3 2/3
uy’=6I" G(ag, o)+
Y 7o 0:70) T 7 (a+C2)2+C§
/U3 K
_ 773/3j(7/ 70) dxxe “0*go(x, 70) | — 5
1
1 ul®
(ex)_ | (ex_ Y
PY"=3 ( Uy (B16)

Here, we only have to consider explicit differentiation with
respect tax due to the variational character of the equations.
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