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Fully and partially non-neutral plasma equilibria in a variable-electrode-radius
Malmberg-Penning trap
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Two types of plasma equilibria are self-consistently computed for a three-electrode Malmberg-Penning trap
that has an increase in the radius of a section of the center electrode. When a single species, fully non-neutral
plasma is confined within the trap, equilibria are predicted in which the plasma produces a three-dimensional
electric potential well. Partially non-neutral plasma equilibria are predicted to be possible by confining a
second, oppositely signed plasma species within the three-dimensional well produced by the first plasma
species. Conditions that are necessary for partially non-neutral plasma equilibria to be self-consistently pos-
sible are reported. A partially non-neutral plasma formed of electrons and singly charged xenon ions is then
specifically considered, first with the ions confined within a three-dimensional well produced by the electrons
and next with the electrons confined within a three-dimensional well produced by the ions.
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A Malmberg-Penning trap is a plasma confinement appaand a radius ,,, for z;<|z|<z;. Each of the two end elec-
ratus that produces an electric field using at least three cylirtrodes, which extend axially far;<|z| <z, , has an applied
drical electrodes, which are placed end to end and alignegotentialV, and a radiug,,,. A uniform magnetic field is
with a uniform magnetic field1]. In a common mode of present, which is aligned with theaxis. For confining an
operation, a one-dimensional electric potential well is generelectron plasma, the end electrodes would be biased negative
ated by the electrodes. The electric potential well can provid&vith respect to the center electrodfig<V,,.
axial confinement of a fully non-neutral plasma, which is a Before considering the effect that a change in radius of
plasma comprised of particles having the same charge sigi€ center electrode in Fig. 1 would have on a trapped elec-
Radial confinement in the other two dimensions is providedron plasma, it is helpful to consider a cylindrical electron
by the magnetic field. There also exists a “nested” mode ofPlasma of radius, that is confined within a cylindrical elec-
operation in which nested electric potential wells are appliedode of inner radius,, . Assuming a uniform plasma density
using a sequence of at least five electrodes. The nested moaémd a plasma I§ngth that. is much _Iarger than th_e Inner wall
of operation can provide simultaneous axial confinement o ﬁdlusr_w, Gaus; I"’.IW provides a suitable approximation fqr
oppositely signed plasma species, and the interaction b he radial elect_rlc field strength at any axial p<?5|t|on that is

. . . .. far from the axial edges of the plasma. Gauss’ law giZges
tween those species can be studied. Various plasma equmbr@_em/(z‘E ) for r<r, andE, — —enr2/(2eor) for ro<r
for nested Malmberg-Penning traps have been theoreticall)é h OE ) th\ Pd. I r Ft’ ftk? | tp\f' Id
predicted [2,3], and experimental studies using nested fw, WNETEL, IS In€ radial component of the electric Tield,

Malmberg-Penning traps have been reported involving pro? is the unit charge, and, is the permittivity of free space.

tons and electronB], and positrons and antiprotof&—8] The difference in the electric potential between the center of

A th tical studv i ted h that is divided i tthe plasma at=0 and the electrode inner surface atr,, is
eoretical study 1S presented nhere that IS divided INtoyaine by integrating the radial electric field. Defining the
two parts. The first part consists of an investigation of th

e . .
electric potential to be zero at the electra@eér=r,,), the
effect that a change in radius of the center electrode of b o )

otential atr=0 is V(,_g=—enr[1+2In(r,/r,)]/(4e).

- i i (r=0) p Tw/Tp 0/:
threg e[ectrode Malmberg-Penning trap would have on th ote the dependence thdf, ) has on the inner wall radius
equilibrium of a fully non-neutral plasma. Although an elec-

. ) ) w-
tron plasma is referred to, the analysis also applies to a Now consider a cylindrical electron plasma of radiys

plasma of singly charged positive particles if the charge an A ) ; -
electrode-voltage signs are changed. The second part of tg%apped within the electrode configuration shown in Fig. 1,

study consists of an exploration regarding the possibility of

confining a partially non-neutral plasma as a result of simul- "

taneously trapping two oppositely signed plasma species 2 rw2 Vo

within a variable-electrode-radius Malmberg-Penning trap. V4 V4
The electrode configuration considered is illustrated in Fig. —_ 2rwo ——
1. A cylindrical coordinate system is defined such thatzhe L

axis coincides with the axis of symmetry of the configura- '_0 Lo

tion. Because the configuration is azimuthally symmetric 7= Ao iw

about thez axis, only the radial and axial coordinatesz) FIG. 1. A cylindrically symmetric electrode configuration hav-
need to be referred to. The configuration is also symmetrigng a variable-radius center electrode. Also shown is the orientation
about thez=0 midplane. The center electrode has an appliedf a cylindrical coordinate system. A uniform magnetic field is
electric potential denoted by,, a radiusr,q for |z|<z;,  present that is aligned with theaxis.
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and assume;>r,, andz;—z,>r,,. According to the func-  density at (,z,), ns_ equals the electron density at £5),
tional dependence 0¥ _,, if the electron plasma has a h_(r) is a function that specifies the radial profile of the
uniform density within a cylindrical volume, which is of ra- electron plasma at, with h_(0)=1, andT_ is the electron
diusr, and approximate lengthzZ, then a minimum would temperature, which is assumed to be radially uniform. A
exist In the electric potential afr (z)=(0,0). However, the plasma that follows the Boltzmann density relation axially
plasma density distributes itself self-consistently, which re-along each field line of a uniform magnetic fidld.g., Eq.
sults in Debye shielding of macroscopic electric field com-(1)] has been referred to as being in “local thermal equilib-
ponents that are parallel to the magnetic field. In the limitrium” [9,10].
that the ratio of the plasma diameter to the plasma Debye To self-consistently determine the electric potential within
length is infinite, no axial minimum would be expected tothe electrode configuration in Fig. 1, Poisson’s equation
occur. However, if the plasma diameter is only a few timesV2¢=f must be solved, wheré(r,z)=(e/ex)n_(r,z). A
larger than the plasma Debye length, then the plasma rdinite-differences computational approach, which has been
sponse must be taken into account self-consistently in ordarsed to predict plasma equilibria in nested well and single-
to predict whether an electric potential minimum would well Malmberg-Penning traps3,11], is used to numerically
occur. solve Poisson’s equation with the electron density given by
The Boltzmann density relation describes how a relaxedq. (1). The choice made for the radial electron density pro-
plasma distributes itself in the presence of a macroscopifile at z, is one similar to profiles commonly observed for
electric field. The Boltzmann density relation is briefly de-relaxed plasmas in Malmberg-Penning traps. A profile of the
rived here in order to indicate a basic assumption associatddrm h_(r)=[1—(r/rp)*]10O(r,—r) is used with a=
with its use. Suppose an unmagnetized, collisionless, single-2.3/In(1-\ps_/rp), which causes the electron density to
species, steady-state plasma is free of particle sources adécrease near the plasma edge primarily within one Debye
sinks. The phase-space distribution functicim,v) for the  length. Here,a is a coefficient that determines how broad
plasma must satisfy the time-independent Vlasov equatioflarge «) or narrow (small «) the profile is, A\ps_
mv-Vi(r,v)=qV¢(r)-V,f(r,v), wherem andq are the =[¢,T_/(e?ns_)]"?is the electron Debye length at £§),
mass and charge of a plasma particldr) is the electric and @ is the Heaviside step function. In order to define a
potential at positiorr, andV, denotes gradient in velocity closed computation region, the separation between the center
space. Assume the plasma’s velocity distribution function aklectrode and each end electrode is set equal to the grid spac-
a location denoted by is Maxwellian. A Maxwellian veloc-  ing, and a vertical electrode wall is considered that caps each
ity distribution function at rg is written as f¢(v) end electrode diz| =z, and that has an applied potenti4).
=nJm/(27T)]%¥2 exd —mw?(2T)], wherens=n(r) is the  The boundary conditions used are a zero radial electric field
plasma density atg, and T is the plasma temperature. component at the axis due to azimuthal symmetry, a zero
(Plasma temperature is in energy units througholihe  axial electric field component at=0 due to symmetry about
time-independent Vlasov equation is then satisfied by thehe midplane, and the chosen potentials along the electrode
Maxwell-Boltzmann  phase-space distributionf (r,v) walls. By way of example, the following parameter values
=ng[m/(27T)]¥2 exp[—mu?(2T)] exp(—a[ #(1) — p(rs)]/  are selected: ng_=8.4x10?m3% T_=05eV, r,
T), which is written such that it reduces gtto the Max- =0.5cm,r,,=2 cm, r,,,=0.5cm, z;=4 cm, z,=6 cm,
wellian  velocity distribution: f(rg,v)=fs(v). Inte- z3=8 cm, z,=10cm,V,=0 V, andV,=—15V. The re-
grating the Maxwell-Boltzmann phase-space distributionsulting numerical solution indicates that a local minimum in
over velocity space providesn(r)=ngexp(—q[ ¢(r) the electric potential does indeed occur at (0,0), and an as-
— ¢(rs)1/T), which is the Boltzmann density relation. sociated three-dimensional electric potential well is self-
The Boltzmann density relation is now applied to a cylin- consistently produced. In Fig. 2, plots are shown of the nor-
drical electron plasma of radius, trapped within the elec- malized potentiaky=e¢/T_ . The formation of axial and
trode configuration shown in Fig. 1. The symlolill con-  radial electric potential wells are apparent. Also note that two
tinue to represent the radial coordinate of the cylindricalmaxima occur in the plot ofy_(0,z). The maxima occur at
coordinate systemHence,r does not represent the magni- approximatelyz= *z,= * 0.6z,, and correspond to potential
tude of the position vectar.) To take into account the pres- energy minima for electrons along tlzeaxis. The potential
ence of a uniform magnetic field, the electron plasma isnergy minima are at the bottom of an axial potential energy
treated in the guiding-center approximation with the assumpwell that provides axial electron confinement. The top of the
tion that the electron cyclotron radius is much smaller tharaxial potential energy well is located at= *+z,), and the
the radial length scales associated with electric potential andepth of the axial potential energy well can be controlled by
electron density gradients. When applied in the axial dimenthe value chosen fo¥,. The depth of the axial potential
sion at a guiding-center radial coordinatethe Boltzmann energy well at each radial coordinatés more than an order

density relation can be written as of magnitude larger than the electron temperature. With an
axial potential energy well that is much deeper than the elec-
n_(r,z)=ng_h_(r)ed¢ra-¢rz2)IT_ (1)  tron temperature, electron loss regions in velocity space are

negligibly small at the bottom of the well, which is consis-
by assuming that the electron velocity distribution is Max-tent with the assumption that the electrons have an essen-
wellian atz=z, at eachr. Here,n_(r,z) denotes electron tially full Maxwellian velocity distribution atz=z, at each
density at ¢,z), the productng_h_(r) equals the electron radial coordinate.
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FIG. 2. Normalized electric potential along tleaxis (a) and FIG. 3. Normalized electron density along thexis (a) and at

along the midplandb). Note thatz, /z,,=0.4, z,/2,=0.6, z3/z, two axial coordinategb). Note that for(b), the scale of the radial
=0.8, andr /1 yo="r,2/Two=0.25. Also, the normalized potential axis is different from that in Fig. ®), with the radial axis only

of the end electrodes is given BV, /T_=—30 and is off the  extending tor/ryo=r,/Iyo="rw2/Iwo=0.25.
scale.
) ~ing dimensionless parametersR,o=rwo/Aps—, Ruo
Plots are shown of the normalized electron density—y ,/\_._, Z:=7;/\ps_, Z3=23/\ps_ Z

v_(r,z)=n_(r,z)/ng_ in Fig. 3. Note that the electron den- =z,\ps—, ¥_(Ryo0)=€Vo/T_, and _(Ry2.Zy)

sity changes substantially nez+ *z,=+0.4z,, where the  —g\,/T_ . Consequently, the problem can be expressed en-
change in electrode radius occurs. The electron density drely in terms of the dimensionless quantitigs , R, Z, Ry,
(0,0) is 4710 m~%, which is about half that at (8). R, ., R,y, Z1, Zo, Zs, Zu» & (Ryo,0), andir (Ryz,Zy),

The ratio of the plasma diameter to the electron Debyegnd a solution in terms of these dimensionless quantities ap-
length is 5.5 if the Debye length calculated atz0,and 4.1  plies for any set of chosen parameter values provided the
if the Debye length calculated at (0,0). It can be CO”C|Ude‘£imensionIess parameteRs,, Ryo, Ruz, Z1, Z2, Z3, Zy,

that a macroscopic electric field component that is parallel 1Q_(Ry0,0), andy_(Ry,,Z,,) remain unchanged. Note that
the magnetic field can be self-consistently produced by thehe results in Figs. 2 and 3 are in terms of , z/z,
electron plasma as a result of a change in electrode radius, atz;z ~~ r/r, =R/R,, and, by Eq. (1), v_

least if the diameter of the electron plasma is only a few_p, (R)e#-(R2)~¥-(RZ) Thys, the results in Figs. 2 and 3

times larger than the Debye length associated with the elegygq apply, for example, for the following parameter values:

tron plasma. o _Ng_=4.2x10%m™3, T_=1eV, rp=1cm, ry=4 cm,
To obtain a broader applicability for the results shown Ny =1 cm, z,=8 cm, z,=12 cm, z;=16 cm, z,,= 20 cm,

Figs. 2 and 3, Eq(1) is substituted into Poisson’s equation, V=0V, andV,=—30 V.

ano! an expression ir_l te_rms of dimensionless quantities is A parameter study was carried out to determine the effect

derived. The expression is that changing certain parameters would have on the electric
) B v (RZ)-v_(RZy) potential We_II shown in Fig. 2. In ea(_:h case, the axial well

V(R Z)=h_(R)e" ™ 2 2 depth remained smaller than the radial well depth, and only

the effect on the normalized axial well depth),,,_ = _(r
where the normalized potentigl_ is written in terms of the =0z~z,)—¢_(r=0z=0) is reported. Herey_(r=0z

normalized coordinateR=r/\ps- andZ=z/\ps_, and the  ~z,) is the maximum normalized potential along thexis.
Laplacian is with respect t&R and Z. Also, h_(R)=[1  To carry out the parameter study, a number of computations
—(R/IRp)“1®(R,—R), a= —2.3/In(1—R;1), Ry were done that were the same as the computation that pro-

=r,/N\ps—, and Z,=2z,/\ps— . The boundary conditions duced the results shown in Figs. 2 anth@reafter referred to
for the problem can be specified in terms of the follow- as the “single-species base cageéxcept with a change in
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one or more of the adjustable parameters. For the single- 157 (@)
species base case, the value X, is 0.58. When the
value fora was varied from its base case value of 5.1 with-
out changingR,, Ay, was found to increase monotoni- 14
cally with «. In the limit «@— o, which corresponds to a step v4(0.2)
function radial density profilé_(r)—©(r,—r), Ay, in-

creased by 12% relative to its base case value. For a para- 051
bolic profile («=2), the value ofA ,,_ decreased by 8.9%
relative to its base case value. The valueRgpf Ryo, Ruz,

Zy, Z,, Z3, andZ,,, were simultaneously changed in a self- 0 — ' —_—
similar fashion by changings_ . Ay, had a maximum -1 -0.8 -0.6 -04 0 04 06 08 1
value whenng_ had its base case valuby design. The 2z

length of each electrode sectip@z,, z3—2z;, andz,— z53]

was individually varied, while keeping the lengths of the 15+ (b)

other electrode sections unchanged and also keepihglf-
way betweerz,; andz;. The results indicate that any increase

inZ,, Z3—2, or Z,,—Z5 causes less than a 1% change in 14
Ay,—, while a decrease i@, causes a decrease M, Ve (r,0)
that can be larger than 1%. The effect of decreagiigz, is

not reported because decreasiyg-z; could cause the lo- 05+

cations of each potential energy minima to no longer be suit-

ably approximated as being &t + 3(z;+z3). The effect of
decreasing,,— z3 is also not reported because the effect may 0
not be the same for a configuration that does not have verti-

cal electrode walls capping each end electrode=at-z,, . rirw0
The values ofr,,o and z; were simultaneously changed in
proportion with each other such that the base case value f%e
7,11, remained the same, while keepieg—z,, z,— 23,

and z,=3(z;+23) unchanged. The results indicate that ) ) o
for Z,/R,o kept at its base case value of &y,,_ in-  an electric potential well capable of confining ions and zero
creases withR,o/R,, with an approximate dependence otherwise. A self-consistent equilibrium is computed as de-

0.25

=

FIG. 4. Normalized ion density along tleaxis (a) and along
midplangb).

(fit to within a few percent given by Ay, Scribed above, except withf(r,z)=(e/ep)[n_(r,2)
~0.5(Ry0/Ruz) “21N(R,0/Ryp) for 1<Ryo/Ry»=10. For  —Z+Nn.(r,2)], wheren.(r,z) is given by Eq.(3). By way
example, the value ak ¢, equals 0.82 foR,,=10R,». of example, the following parameter values are selected for a

Suppose an electron plasma produces a three-dimension&Vo-Species base caseZ, =1, ng, =4.3x 10" m~2, and
electric potential well as a result of being trapped within anT+=300 K. All of the other parameter values are the same
electrode configuration similar to that shown in Fig. 1. The@s for the single-species base case. For the parameter values
possibility of forming a partially non-neutral plasma by con- chosen, the electric potential and electron density are essen-
fining positive ions within the well is now explored by as- tially the same as shown in Figs. 2 and 3. Plots of the nor-
suming that the ions would follow the Boltzmann density Malized ion densityv. (r,z)=n.(r,z)/ns, are shown in
relation in all three dimensions within the well. The ions may Fig. 4. The ion Debye length at (0,0) is equal to the electron
follow the Boltzmann density relation in all three dimensionsDebye length at (@). Also, the full width at half maximum
if, for example, the effect of the magnetic field on the ions isfor the axial ion density profile that is plotted in Figa#is
negligible as a result of the ion cyclotron radius being large30 times larger than the ion Debye length at (0,0), and the
than the ion plasma radius. Even if the ion cyclotron radius idull width at half maximum for the radial ion density profile
smaller than the ion plasma radius, radial ion diffusion maythat is plotted in Fig. &) is 10% larger than the ion Debye
cause the ion plasma to relax to a Boltzmann density distrilength at (0,0). In every direction away from the well's mini-
bution in three dimensions. When applied in three dimenmum at (0,0), the ion potential energy increases by an
sions using cylindrical coordinates and assuming azimuthadmount that is at least an order of magnitude larger than the

symmetry, the Boltzmann density relation can be written asion temperature. With a potential energy well depth that is
much larger than the ion temperature, the ion loss regions in

n,(r,z)=ng e 2+ -¢00IT: @ (3)  velocity space are negligibly small at the bottom of the well,

which is consistent with the assumption that the ions have an
where it is assumed that the ion velocity distribution is Max-essentially full Maxwellian velocity distribution at (0,0).
wellian at (0,0). Heren(r,z) denotes ion density at (z), The two-species equilibrium problem solved here can be
ns. equals the ion density at (0,0%, is the ion charge stated using equatiorige., Poisson’s equation and Ed4)
state, andl .. is the ion temperature. The teré, is included and(3)] and boundary conditions that are expressed in terms
to take into account the fact that ion confinement may nobf the dimensionless quanttiesy_, R Z, 7
take place. The value @, is defined to be unity only within  =ng_/(Z,ng,), 7=Z,T_/T,, Ry, Ruo, Rwa, Z1, Z2,
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Z3, Zy, ¥_(Ryo,0), andy_(Ry»,Z,). The parameter;  the two-species base case, and the ions are considered to be
defines the degree of partial neutralization at (0,0). In thesingly charged xenon ions. If a 0.03 T magnetic field is as-
limit of charge neutrality at (0,0)p— 1, while a fully non-  sumed, then the ion cyclotron radius would be 26% larger
neutral plasma corresponds 4#o-. A solution of the two-  than the radius of the electron plasma and thus larger than
species equilibrium problem in terms of the dimensionlesshe radius of the ion plasma. In contrast, the electron cyclo-
quantities applies for any set of chosen parameter values pré-on radius would be about two orders of magnitude smaller
vided the dimensionless parametersr Ry, Ryo, Ryz2, Z1, than the radius of the electron plasma. Consequently, it is
Zy, Z3, Zy, ¥_(Ry0o,0), and ¢_(R,,Z,) remain un- reasonable to expect the ion density to follow E).and the
changed. The results in Fig. 4 are in termsztk, =Z/Z,,, electron density to follow Eq1), at least in the limit that the
r/rywo=R/Ryo, and, by Eq.(3), v, =e 1¥-(R2=4_(00)] interaction between thel two spgcies can be n_eglected. How-
Thus, the results in Fig. 4 also apply, for example, for the€Ver, ;he effects associated W!th the interaction o.f _the two
parameter valuesZ,=19.23, ng, =2.2x10°m 3, and OPPositely signed plasma species may not be negligible, and
T,=0.5 eV, if all of the other parameter values are the samé“Ch effects could be studied. One effect would _be that the
as for the single-species base case. Note that the ion tempet3" and elecfcr(_)n temperatures would tend to equilibrate as a
ture can equal the electron temperatufe,=T_=0.5 eV, result of collisions between ions and electrons. Suppose the
because&Z, andn,, are changed such thatand » remain electrons are externally hea_ted and fueled such that the e!ec-
+ st tron temperature and density remain constant. Then, using
unchanged. . . .. the plasma parameters at (0,0) and E#S) and(16) of Ref.
A parameter study was carried out if"mEd a_t determlnm%l the two-temperature equilibration time scale is calcu-
the range of values fow and 7 for which partially non-

> T - ! lated to be 5 min. For the calculation, the maximum impact
neutral plasma equilibria are self-consistently possible. To)3rameter for a binary collision is set equal to the electron

carry out the parameter study, a number of computationgyciotron radius(which is smaller than the ion cyclotron
were done that were the same as the computation that preagiys. the electron Debye length, and the ion Debye léngth
duced the results for the two-species base case, except Withydq the center-of-mass energy for a binary collision is ap-
change img, and/orT.. . The charge staté. was notvar-  nproximated as being equal to the electron temperature. The
ied because the same effect grand = could be obtained by  cajculated time scale is very large because of the effect that
simultaneously changings, and T, . It was found that gisparate masses have on the two-temperature equilibration

Ay increases withy. Thus, the fit expression fakym—  time scale. If the singly charged xenon ions are replaced by
obtained in the parameter study without the ions present pryositrons of the same density and temperature, then the two-
vides the following condition with the ions presedi/y,-  temperature equilibration time scale is calculated to be 1 ms.

<0.5(Ruo/Ruz) "> IN(Ryo/R,p). At this point, it is helpful  For calculating the two-temperature equilibration time scale
to define Ay =7AYm-=Z,e[p(r=02~2,)—¢(r=02z  using positrons instead of xenon ions, the maximum impact
=0)])/T., which is the ratio of the axial depth of the ion parameter is set equal to the positron cyclotron radius, and
potential energy well to the ion temperature. A necessaryhe center-of-mass energy is set equal to twice the electron
condition for ion loss regions in velocity space to be negli-temperature. It is also interesting to consider that it may be
gibly small at the bottom of the well id ¢,,,>1. For this  possible to keep the temperatures of the two species from
reason, partially non-neutral plasma equilibria are notequilibrating. For example, if the electrons are externally
considered possible if the conditioA,,>1 does not heated, a cold buffer gas could be introduced that cools the
hold. The conditions oM ¢, and A, can be com- jons by collisions.
bined to yield the condition, 7 =T, /(Z.T_) So far, a positive plasma species has been considered to
<0.5(Ryo/Ru2) "% In(R,0/Ry»)=<1. This is not a general be trapped within a three-dimensional electric potential well
condition, but one specific to the parameter study carried outhat is produced by a negative plasma species. A specific
(e.g., for I<R,0/Ry2=10). Nevertheless, based on this equilibrium in which the roles of the positive and negative
condition, it appears likely that, for singly charged ions to bespecies are reversed is now considered. Suppose a singly
confined within a three-dimensional well produced by eleccharged xenon plasma is trapped with the parameters chosen
trons, the ion temperature must be smaller than the electrofor the single-species base case, except with a change of the
temperature. sign ofV,. For an equilibrium comparable to the two-species
To determine the range of values fgrfor which partially ~ base case, an electron plasma would be trapped within the
non-neutral plasma equilibria are possible, various equilibrighree-dimensional well with a density and temperature of
were obtained withr>1. For each value of considered, it 4.3x10'"m~2 and 300 K, respectively, at (0,0). Assume
was found thaty had an approximate minimum value for that a 5 T magnetic field is present, that the ions are exter-
which the conditionA ¢, >1 was valid. Although the re- nally heated and fueled such that the ion temperature and
sults obtained are specific to the parameter study carried oudensity remain constant, and that the electrode structure that
the results are consistent with the requirement that the iosurrounds the partially non-neutral plasma is at room tem-
charge density be less than the electron charge density for gerature. For the parameters considered, the two-temperature
ion-confining three-dimensional well to form. equilibration time scale is calculated to be about 30 s. For the
Two specific equilibria are now considered, which are de-calculation, the maximum impact parameter is set equal to
scribable by the results shown in Figs. 2, 3, and 4. For thehe electron cyclotron radius and the center-of-mass energy
first equilibrium, the parameters are the same as chosen fig set equal to the electron temperature. The two-temperature
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equilibration time scale is more than two orders of magni-produced by the other species. Various parameter studies
tude larger than the electron cyclotron radiation time scalewere done and indicate that, if each plasma species is com-
Thus, the electron temperature should not equilibrate wittprised of singly charged particles and<R,,/R,,=10,
the ion temperature. Instead, the electron temperature shoul@en the species confined within the three-dimensional well
remain near that of the surrounding electrode structure. ~ Must have a density and a temperature that are each smaller
In summary, two types of plasma equilibria have beerthan the density and temperature, respectively, of the other
predicted for a variable-electrode-radius Malmberg-Penning/a@Sma species. Two specific partially non-neutral plasma
trap with an electrode configuration similar to that illustrated®auilibria were considered, one with singly charged xenon
in Fig. 1. The first type was for confinement of a single-1°nS confined within a three-dimensional well produced by
species, fully non-neutral plasma. It was found that such &/ectrons and the other with electrons confined within a
plasma could self-consistently produce a three-dimension Iogie-dlmensmnal well produced by singly charged xenon
electric potential well, at least if the diameter of the plasmais™ ™
only a few times larger than the Debye length associated This material is based upon work supported by the Na-
with the plasma. The second type was for confinement of @ional Science Foundation under Grant No. PHY-0099617
two species, partially non-neutral plasma. One of the plasmand the Texas Advanced Research Program under Grant No.
species would be confined within a three-dimensional well3594-0003-2001.

[1] D.H.E. Dubin and T.M. O’'Neil, Rev. Mod. Phys71, 87 Filippini, K.S. Fine, A. Fontana, M.C. Fujiwara, R. Funakoshi,
(1999. P. Genova, J.S. Hangst, R.S. Hayano, M.H. Holzscheiter, L.V.
[2] C.A. Ordonez, Phys. Plasmds2313(1997). Jorgensen, V. Lagomarsino, R. Landua, D. Lindelof, E. Lodi
[3] C.A. Ordonez, D.D. Dolliver, Y. Chang, and J.R. Correa, Phys.  Rizzini, M. Macri, N. Madsen, G. Manuzio, M. Marchesotti, P.
Plasmas9, 3289(2002, and references therein. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A.
[4] D.S. Hall and G. Gabrielse, Phys. Rev. L&tt, 1962(1996. Rotondi, G. Rouleau, G. Testera, A. Variola, T.L. Watson, and

[5] G. Gabrielse, D.S. Hall, T. Roach, P. Yesley, A. Khabbaz, J.  p p van der Werf, Naturé_ondon 419, 456 (2002.
Estrada, C. Heimann, and H. Kalinowsky, Phys. Lett4%5, [8] G. Gabrielse, N.S. Bowden, P. Oxley, A. Speck, C.H. Storry,

311 (1999' J.N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T.
(6] g lGab_Itlellee, Jh Iés:_r'adsa, ‘]'N'MTaVr\'/' P. Ylesl\(]ey_,rN.Sngwderll(, P. Sefzick, J. Walz, H. Pittner, TW. Hansch, and E.A. Hessels,
xley, T. Roach, C.H. Storry, M. Wessels, J. Tan, D. Grzonka, Phys. Rev. Lett89, 213401(2002.

\(/:Vér ?,ZﬁrtlHGﬁui(r:r:?r)]irS’RT.KiﬁelefklUysvi-:.JB?F?ZI;T‘Z‘,' '\If: [9] C.F. Driscoll, J.H. Malmberg, and K.S. Fine, Phys. Rev. Lett.
gnelli, H. , R g9, R I o 60, 1290(1988.

Kalinowsky, C. Wesdorp, J. Walz, K.S.E. Eikema, and T.W. . .
Hansch, Phys. Lett. BO7, 1 (2001. [10] A.J. Peurrung and J. Fajans, Phys. Fluidg,B5593(1990.
[7] M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. [11] R.L. Spencer, S.N. Rasband, and R.R. Vanfleet, Phys. Fluids B

Carraro, C.L. Cesar, M. Charlton, M.J.T. Collier, M. Doser, V. 5, 4267(1993.

046401-6



