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Fully and partially non-neutral plasma equilibria in a variable-electrode-radius
Malmberg-Penning trap
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Two types of plasma equilibria are self-consistently computed for a three-electrode Malmberg-Penning trap
that has an increase in the radius of a section of the center electrode. When a single species, fully non-neutral
plasma is confined within the trap, equilibria are predicted in which the plasma produces a three-dimensional
electric potential well. Partially non-neutral plasma equilibria are predicted to be possible by confining a
second, oppositely signed plasma species within the three-dimensional well produced by the first plasma
species. Conditions that are necessary for partially non-neutral plasma equilibria to be self-consistently pos-
sible are reported. A partially non-neutral plasma formed of electrons and singly charged xenon ions is then
specifically considered, first with the ions confined within a three-dimensional well produced by the electrons
and next with the electrons confined within a three-dimensional well produced by the ions.
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A Malmberg-Penning trap is a plasma confinement ap
ratus that produces an electric field using at least three cy
drical electrodes, which are placed end to end and alig
with a uniform magnetic field@1#. In a common mode of
operation, a one-dimensional electric potential well is gen
ated by the electrodes. The electric potential well can prov
axial confinement of a fully non-neutral plasma, which is
plasma comprised of particles having the same charge s
Radial confinement in the other two dimensions is provid
by the magnetic field. There also exists a ‘‘nested’’ mode
operation in which nested electric potential wells are app
using a sequence of at least five electrodes. The nested m
of operation can provide simultaneous axial confinemen
oppositely signed plasma species, and the interaction
tween those species can be studied. Various plasma equi
for nested Malmberg-Penning traps have been theoretic
predicted @2,3#, and experimental studies using nest
Malmberg-Penning traps have been reported involving p
tons and electrons@4#, and positrons and antiprotons@5–8#.

A theoretical study is presented here that is divided i
two parts. The first part consists of an investigation of
effect that a change in radius of the center electrode o
three-electrode Malmberg-Penning trap would have on
equilibrium of a fully non-neutral plasma. Although an ele
tron plasma is referred to, the analysis also applies t
plasma of singly charged positive particles if the charge
electrode-voltage signs are changed. The second part o
study consists of an exploration regarding the possibility
confining a partially non-neutral plasma as a result of sim
taneously trapping two oppositely signed plasma spe
within a variable-electrode-radius Malmberg-Penning tr
The electrode configuration considered is illustrated in F
1. A cylindrical coordinate system is defined such that thz
axis coincides with the axis of symmetry of the configu
tion. Because the configuration is azimuthally symme
about thez axis, only the radial and axial coordinates (r ,z)
need to be referred to. The configuration is also symme
about thez50 midplane. The center electrode has an app
electric potential denoted byV0, a radiusr w0 for uzu,z1,
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and a radiusr w2 for z1,uzu,z3. Each of the two end elec
trodes, which extend axially forz3,uzu,zw , has an applied
potentialV4 and a radiusr w2. A uniform magnetic field is
present, which is aligned with thez axis. For confining an
electron plasma, the end electrodes would be biased neg
with respect to the center electrodeV4,V0.

Before considering the effect that a change in radius
the center electrode in Fig. 1 would have on a trapped e
tron plasma, it is helpful to consider a cylindrical electro
plasma of radiusr p that is confined within a cylindrical elec
trode of inner radiusr w . Assuming a uniform plasma densit
n and a plasma length that is much larger than the inner w
radiusr w , Gauss’ law provides a suitable approximation f
the radial electric field strength at any axial position that
far from the axial edges of the plasma. Gauss’ law givesEr

52enr/(2e0) for r<r p and Er52enrp
2/(2e0r ) for r p<r

,r w , whereEr is the radial component of the electric field
e is the unit charge, ande0 is the permittivity of free space
The difference in the electric potential between the cente
the plasma atr 50 and the electrode inner surface atr 5r w is
obtained by integrating the radial electric field. Defining t
electric potential to be zero at the electrode~at r 5r w), the
potential at r 50 is V(r 50)52enrp

2@112 ln(rw /rp)#/(4e0).
Note the dependence thatV(r 50) has on the inner wall radius
r w .

Now consider a cylindrical electron plasma of radiusr p
trapped within the electrode configuration shown in Fig.

FIG. 1. A cylindrically symmetric electrode configuration ha
ing a variable-radius center electrode. Also shown is the orienta
of a cylindrical coordinate system. A uniform magnetic field
present that is aligned with thez axis.
©2003 The American Physical Society01-1



a
-

re
m

by
to
e
r

rd
ld

xe
p

e-
at
g
a

tio

a

.

th

io

in-

ca
i-
-
i
p

a
an
en

x

e

A
lly

ib-

in
ion

een
le-

by
ro-
or
the

to
bye
d

a
nter
pac-
ach

eld
ro
t
rode
es

in
as-
lf-
or-

wo

l

rgy
he

by
l
r
an

lec-
are

s-
sen-
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and assumez1@r w0 andz32z1@r w2. According to the func-
tional dependence ofV(r 50) , if the electron plasma has
uniform density within a cylindrical volume, which is of ra
dius r p and approximate length 2z3, then a minimum would
exist in the electric potential at (r ,z)5(0,0). However, the
plasma density distributes itself self-consistently, which
sults in Debye shielding of macroscopic electric field co
ponents that are parallel to the magnetic field. In the lim
that the ratio of the plasma diameter to the plasma De
length is infinite, no axial minimum would be expected
occur. However, if the plasma diameter is only a few tim
larger than the plasma Debye length, then the plasma
sponse must be taken into account self-consistently in o
to predict whether an electric potential minimum wou
occur.

The Boltzmann density relation describes how a rela
plasma distributes itself in the presence of a macrosco
electric field. The Boltzmann density relation is briefly d
rived here in order to indicate a basic assumption associ
with its use. Suppose an unmagnetized, collisionless, sin
species, steady-state plasma is free of particle sources
sinks. The phase-space distribution functionf (r,v) for the
plasma must satisfy the time-independent Vlasov equa
mv•“ f (r,v)5q“f(r)•“v f (r,v), wherem and q are the
mass and charge of a plasma particle,f(r) is the electric
potential at positionr, and“v denotes gradient in velocity
space. Assume the plasma’s velocity distribution function
a location denoted byrs is Maxwellian. A Maxwellian veloc-
ity distribution function at rs is written as f s(v)
5ns@m/(2pT)#3/2 exp@2mv2/(2T)#, wherens5n(rs) is the
plasma density atrs , and T is the plasma temperature
~Plasma temperature is in energy units throughout.! The
time-independent Vlasov equation is then satisfied by
Maxwell-Boltzmann phase-space distributionf (r,v)
5ns@m/(2pT)#3/2 exp@2mv2/(2T)# exp„2q@f(r)2f(rs)#/
T…, which is written such that it reduces atrs to the Max-
wellian velocity distribution: f (rs ,v)5 f s(v). Inte-
grating the Maxwell-Boltzmann phase-space distribut
over velocity space providesn(r)5ns exp„2q@f(r)
2f(rs)#/T…, which is the Boltzmann density relation.

The Boltzmann density relation is now applied to a cyl
drical electron plasma of radiusr p trapped within the elec-
trode configuration shown in Fig. 1. The symbolr will con-
tinue to represent the radial coordinate of the cylindri
coordinate system.~Hence,r does not represent the magn
tude of the position vectorr.! To take into account the pres
ence of a uniform magnetic field, the electron plasma
treated in the guiding-center approximation with the assum
tion that the electron cyclotron radius is much smaller th
the radial length scales associated with electric potential
electron density gradients. When applied in the axial dim
sion at a guiding-center radial coordinater, the Boltzmann
density relation can be written as

n2~r ,z!5ns2h2~r !ee[f(r ,z)2f(r ,z2)]/T2, ~1!

by assuming that the electron velocity distribution is Ma
wellian at z5z2 at eachr. Here,n2(r ,z) denotes electron
density at (r ,z), the productns2h2(r ) equals the electron
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density at (r ,z2), ns2 equals the electron density at (0,z2),
h2(r ) is a function that specifies the radial profile of th
electron plasma atz2 with h2(0)51, andT2 is the electron
temperature, which is assumed to be radially uniform.
plasma that follows the Boltzmann density relation axia
along each field line of a uniform magnetic field@e.g., Eq.
~1!# has been referred to as being in ‘‘local thermal equil
rium’’ @9,10#.

To self-consistently determine the electric potential with
the electrode configuration in Fig. 1, Poisson’s equat
¹2f5 f must be solved, wheref (r ,z)5(e/e0)n2(r ,z). A
finite-differences computational approach, which has b
used to predict plasma equilibria in nested well and sing
well Malmberg-Penning traps@3,11#, is used to numerically
solve Poisson’s equation with the electron density given
Eq. ~1!. The choice made for the radial electron density p
file at z2 is one similar to profiles commonly observed f
relaxed plasmas in Malmberg-Penning traps. A profile of
form h2(r )5@12(r /r p)a#Q(r p2r ) is used with a5
22.3/ln(12lDs2 /rp), which causes the electron density
decrease near the plasma edge primarily within one De
length. Here,a is a coefficient that determines how broa
~large a) or narrow ~small a) the profile is, lDs2

5@e0T2 /(e2ns2)#1/2 is the electron Debye length at (0,z2),
and Q is the Heaviside step function. In order to define
closed computation region, the separation between the ce
electrode and each end electrode is set equal to the grid s
ing, and a vertical electrode wall is considered that caps e
end electrode atuzu5zw and that has an applied potentialV4.
The boundary conditions used are a zero radial electric fi
component at thez axis due to azimuthal symmetry, a ze
axial electric field component atz50 due to symmetry abou
the midplane, and the chosen potentials along the elect
walls. By way of example, the following parameter valu
are selected: ns258.431012 m23, T250.5 eV, r p
50.5 cm, r w052 cm, r w250.5 cm, z154 cm, z256 cm,
z358 cm, zw510 cm, V050 V, andV45215 V. The re-
sulting numerical solution indicates that a local minimum
the electric potential does indeed occur at (0,0), and an
sociated three-dimensional electric potential well is se
consistently produced. In Fig. 2, plots are shown of the n
malized potentialc25ef/T2 . The formation of axial and
radial electric potential wells are apparent. Also note that t
maxima occur in the plot ofc2(0,z). The maxima occur at
approximatelyz56z2560.6zw and correspond to potentia
energy minima for electrons along thez axis. The potential
energy minima are at the bottom of an axial potential ene
well that provides axial electron confinement. The top of t
axial potential energy well is located at (z56zw), and the
depth of the axial potential energy well can be controlled
the value chosen forV4. The depth of the axial potentia
energy well at each radial coordinater is more than an orde
of magnitude larger than the electron temperature. With
axial potential energy well that is much deeper than the e
tron temperature, electron loss regions in velocity space
negligibly small at the bottom of the well, which is consi
tent with the assumption that the electrons have an es
tially full Maxwellian velocity distribution atz5z2 at each
radial coordinate.
1-2
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Plots are shown of the normalized electron dens
n2(r ,z)5n2(r ,z)/ns2 in Fig. 3. Note that the electron den
sity changes substantially nearz56z1560.4zw , where the
change in electrode radius occurs. The electron densit
(0,0) is 4.731012 m23, which is about half that at (0,z2).
The ratio of the plasma diameter to the electron Deb
length is 5.5 if the Debye length calculated at (0,z2) and 4.1
if the Debye length calculated at (0,0). It can be conclud
that a macroscopic electric field component that is paralle
the magnetic field can be self-consistently produced by
electron plasma as a result of a change in electrode radiu
least if the diameter of the electron plasma is only a f
times larger than the Debye length associated with the e
tron plasma.

To obtain a broader applicability for the results shown
Figs. 2 and 3, Eq.~1! is substituted into Poisson’s equatio
and an expression in terms of dimensionless quantitie
derived. The expression is

¹2c2~R,Z!5h2~R!ec2(R,Z)2c2(R,Z2), ~2!

where the normalized potentialc2 is written in terms of the
normalized coordinatesR5r /lDs2 andZ5z/lDs2 , and the
Laplacian is with respect toR and Z. Also, h2(R)5@1
2(R/Rp)a#Q(Rp2R), a522.3/ln(12Rp

21), Rp

5r p /lDs2 , and Z25z2 /lDs2 . The boundary conditions
for the problem can be specified in terms of the follo

FIG. 2. Normalized electric potential along thez axis ~a! and
along the midplane~b!. Note thatz1 /zw50.4, z2 /zw50.6, z3 /zw

50.8, andr p /r w05r w2 /r w050.25. Also, the normalized potentia
of the end electrodes is given byeV4 /T25230 and is off the
scale.
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ing dimensionless parameters:Rw05r w0 /lDs2 , Rw2
5r w2 /lDs2 , Z15z1 /lDs2 , Z35z3 /lDs2 , Zw
5zw /lDs2 , c2(Rw0,0)5eV0 /T2 , and c2(Rw2 ,Zw)
5eV4 /T2 . Consequently, the problem can be expressed
tirely in terms of the dimensionless quantitiesc2 , R, Z, Rp ,
Rw0 , Rw2 , Z1 , Z2 , Z3 , Zw , c2(Rw0,0), andc2(Rw2 ,Zw),
and a solution in terms of these dimensionless quantities
plies for any set of chosen parameter values provided
dimensionless parametersRp , Rw0 , Rw2 , Z1 , Z2 , Z3 , Zw ,
c2(Rw0,0), andc2(Rw2 ,Zw) remain unchanged. Note tha
the results in Figs. 2 and 3 are in terms ofc2 , z/zw
5Z/Zw , r /r w05R/Rw0, and, by Eq. ~1!, n2

5h2(R)ec2(R,Z)2c2(R,Z2). Thus, the results in Figs. 2 and
also apply, for example, for the following parameter valu
ns254.231012 m23, T251 eV, r p51 cm, r w054 cm,
r w251 cm, z158 cm, z2512 cm, z3516 cm, zw520 cm,
V050 V, andV45230 V.

A parameter study was carried out to determine the ef
that changing certain parameters would have on the ele
potential well shown in Fig. 2. In each case, the axial w
depth remained smaller than the radial well depth, and o
the effect on the normalized axial well depthDcm25c2(r
50,z'z2)2c2(r 50,z50) is reported. Here,c2(r 50,z
'z2) is the maximum normalized potential along thez axis.
To carry out the parameter study, a number of computati
were done that were the same as the computation that
duced the results shown in Figs. 2 and 3~hereafter referred to
as the ‘‘single-species base case’’!, except with a change in

FIG. 3. Normalized electron density along thez axis ~a! and at
two axial coordinates~b!. Note that for~b!, the scale of the radia
axis is different from that in Fig. 2~b!, with the radial axis only
extending tor /r w05r p /r w05r w2 /r w050.25.
1-3
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C. A. ORDONEZ PHYSICAL REVIEW E67, 046401 ~2003!
one or more of the adjustable parameters. For the sin
species base case, the value ofDcm2 is 0.58. When the
value fora was varied from its base case value of 5.1 wi
out changingRp , Dcm2 was found to increase monoton
cally with a. In the limit a→`, which corresponds to a ste
function radial density profileh2(r )→Q(r p2r ), Dcm2 in-
creased by 12% relative to its base case value. For a p
bolic profile (a52), the value ofDcm2 decreased by 8.9%
relative to its base case value. The values ofRp , Rw0 , Rw2 ,
Z1 , Z2 , Z3, andZw , were simultaneously changed in a se
similar fashion by changingns2 . Dcm2 had a maximum
value whenns2 had its base case value~by design!. The
length of each electrode section@2z1 , z32z1, andzw2z3]
was individually varied, while keeping the lengths of th
other electrode sections unchanged and also keepingz2 half-
way betweenz1 andz3. The results indicate that any increa
in Z1 , Z32Z1 or Zw2Z3 causes less than a 1% change
Dcm2 , while a decrease inZ1 causes a decrease inDcm2

that can be larger than 1%. The effect of decreasingz32z1 is
not reported because decreasingz32z1 could cause the lo-
cations of each potential energy minima to no longer be s
ably approximated as being atz56 1

2 (z11z3). The effect of
decreasingzw2z3 is also not reported because the effect m
not be the same for a configuration that does not have v
cal electrode walls capping each end electrode atz56zw .
The values ofr w0 and z1 were simultaneously changed
proportion with each other such that the base case value
z1 /r w0 remained the same, while keepingz32z1 , zw2z3,
and z25 1

2 (z11z3) unchanged. The results indicate th
for Z1 /Rw0 kept at its base case value of 2,Dcm2 in-
creases withRw0 /Rw2 with an approximate dependenc
~fit to within a few percent! given by Dcm2

'0.5(Rw0 /Rw2)20.15ln(Rw0 /Rw2) for 1,Rw0 /Rw2&10. For
example, the value ofDcm2 equals 0.82 forRw0510Rw2.

Suppose an electron plasma produces a three-dimens
electric potential well as a result of being trapped within
electrode configuration similar to that shown in Fig. 1. T
possibility of forming a partially non-neutral plasma by co
fining positive ions within the well is now explored by a
suming that the ions would follow the Boltzmann dens
relation in all three dimensions within the well. The ions m
follow the Boltzmann density relation in all three dimensio
if, for example, the effect of the magnetic field on the ions
negligible as a result of the ion cyclotron radius being lar
than the ion plasma radius. Even if the ion cyclotron radiu
smaller than the ion plasma radius, radial ion diffusion m
cause the ion plasma to relax to a Boltzmann density dis
bution in three dimensions. When applied in three dim
sions using cylindrical coordinates and assuming azimu
symmetry, the Boltzmann density relation can be written

n1~r ,z!5ns1e2Z1e[f(r ,z)2f(0,0)]/T1Qz , ~3!

where it is assumed that the ion velocity distribution is Ma
wellian at (0,0). Here,n1(r ,z) denotes ion density at (r ,z),
ns1 equals the ion density at (0,0),Z1 is the ion charge
state, andT1 is the ion temperature. The termQz is included
to take into account the fact that ion confinement may
take place. The value ofQz is defined to be unity only within
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an electric potential well capable of confining ions and ze
otherwise. A self-consistent equilibrium is computed as
scribed above, except with f (r ,z)5(e/e0)@n2(r ,z)
2Z1n1(r ,z)#, wheren1(r ,z) is given by Eq.~3!. By way
of example, the following parameter values are selected f
‘‘two-species base case:’’Z151, ns154.331011 m23, and
T15300 K. All of the other parameter values are the sa
as for the single-species base case. For the parameter v
chosen, the electric potential and electron density are es
tially the same as shown in Figs. 2 and 3. Plots of the n
malized ion densityn1(r ,z)5n1(r ,z)/ns1 are shown in
Fig. 4. The ion Debye length at (0,0) is equal to the elect
Debye length at (0,z2). Also, the full width at half maximum
for the axial ion density profile that is plotted in Fig. 4~a! is
30 times larger than the ion Debye length at (0,0), and
full width at half maximum for the radial ion density profil
that is plotted in Fig. 4~b! is 10% larger than the ion Deby
length at (0,0). In every direction away from the well’s min
mum at (0,0), the ion potential energy increases by
amount that is at least an order of magnitude larger than
ion temperature. With a potential energy well depth that
much larger than the ion temperature, the ion loss region
velocity space are negligibly small at the bottom of the we
which is consistent with the assumption that the ions have
essentially full Maxwellian velocity distribution at (0,0).

The two-species equilibrium problem solved here can
stated using equations@i.e., Poisson’s equation and Eqs.~1!
and~3!# and boundary conditions that are expressed in te
of the dimensionless quantitiesc2 , R, Z, h
5ns2 /(Z1ns1), t5Z1T2 /T1 , Rp , Rw0 , Rw2 , Z1 , Z2 ,

FIG. 4. Normalized ion density along thez axis ~a! and along
the midplane~b!.
1-4
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Z3 , Zw , c2(Rw0,0), andc2(Rw2 ,Zw). The parameterh
defines the degree of partial neutralization at (0,0). In
limit of charge neutrality at (0,0),h→1, while a fully non-
neutral plasma corresponds toh→`. A solution of the two-
species equilibrium problem in terms of the dimensionl
quantities applies for any set of chosen parameter values
vided the dimensionless parametersh, t Rp , Rw0 , Rw2 , Z1 ,
Z2 , Z3 , Zw , c2(Rw0,0), and c2(Rw2 ,Zw) remain un-
changed. The results in Fig. 4 are in terms ofz/zw5Z/Zw ,
r /r w05R/Rw0, and, by Eq.~3!, n15e2t[c2(R,Z)2c2(0,0)].
Thus, the results in Fig. 4 also apply, for example, for
parameter values,Z1519.23, ns152.231010 m23, and
T150.5 eV, if all of the other parameter values are the sa
as for the single-species base case. Note that the ion tem
ture can equal the electron temperature,T15T250.5 eV,
becauseZ1 andns1 are changed such thatt andh remain
unchanged.

A parameter study was carried out aimed at determin
the range of values forh and t for which partially non-
neutral plasma equilibria are self-consistently possible.
carry out the parameter study, a number of computati
were done that were the same as the computation that
duced the results for the two-species base case, except w
change inns1 and/orT1 . The charge stateZ1 was not var-
ied because the same effect onh andt could be obtained by
simultaneously changingns1 and T1 . It was found that
Dcm2 increases withh. Thus, the fit expression forDcm2

obtained in the parameter study without the ions present
vides the following condition with the ions present:Dcm2

&0.5(Rw0 /Rw2)20.15 ln(Rw0 /Rw2). At this point, it is helpful
to defineDcm15tDcm25Z1e@f(r 50,z'z2)2f(r 50,z
50)#/T1 , which is the ratio of the axial depth of the io
potential energy well to the ion temperature. A necess
condition for ion loss regions in velocity space to be neg
gibly small at the bottom of the well isDcm1@1. For this
reason, partially non-neutral plasma equilibria are
considered possible if the conditionDcm1@1 does not
hold. The conditions onDcm2 and Dcm1 can be com-
bined to yield the condition, t215T1 /(Z1T2)
!0.5(Rw0 /Rw2)20.15 ln(Rw0 /Rw2)&1. This is not a genera
condition, but one specific to the parameter study carried
~e.g., for 1,Rw0 /Rw2&10). Nevertheless, based on th
condition, it appears likely that, for singly charged ions to
confined within a three-dimensional well produced by el
trons, the ion temperature must be smaller than the elec
temperature.

To determine the range of values forh for which partially
non-neutral plasma equilibria are possible, various equilib
were obtained witht@1. For each value oft considered, it
was found thath had an approximate minimum value fo
which the conditionDcm1@1 was valid. Although the re-
sults obtained are specific to the parameter study carried
the results are consistent with the requirement that the
charge density be less than the electron charge density fo
ion-confining three-dimensional well to form.

Two specific equilibria are now considered, which are d
scribable by the results shown in Figs. 2, 3, and 4. For
first equilibrium, the parameters are the same as chosen
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the two-species base case, and the ions are considered
singly charged xenon ions. If a 0.03 T magnetic field is
sumed, then the ion cyclotron radius would be 26% lar
than the radius of the electron plasma and thus larger t
the radius of the ion plasma. In contrast, the electron cyc
tron radius would be about two orders of magnitude sma
than the radius of the electron plasma. Consequently,
reasonable to expect the ion density to follow Eq.~3! and the
electron density to follow Eq.~1!, at least in the limit that the
interaction between the two species can be neglected. H
ever, the effects associated with the interaction of the t
oppositely signed plasma species may not be negligible,
such effects could be studied. One effect would be that
ion and electron temperatures would tend to equilibrate a
result of collisions between ions and electrons. Suppose
electrons are externally heated and fueled such that the e
tron temperature and density remain constant. Then, u
the plasma parameters at (0,0) and Eqs.~15! and~16! of Ref.
@3#, the two-temperature equilibration time scale is calc
lated to be 5 min. For the calculation, the maximum imp
parameter for a binary collision is set equal to the elect
cyclotron radius~which is smaller than the ion cyclotro
radius, the electron Debye length, and the ion Debye leng!,
and the center-of-mass energy for a binary collision is
proximated as being equal to the electron temperature.
calculated time scale is very large because of the effect
disparate masses have on the two-temperature equilibra
time scale. If the singly charged xenon ions are replaced
positrons of the same density and temperature, then the
temperature equilibration time scale is calculated to be 1
For calculating the two-temperature equilibration time sc
using positrons instead of xenon ions, the maximum imp
parameter is set equal to the positron cyclotron radius,
the center-of-mass energy is set equal to twice the elec
temperature. It is also interesting to consider that it may
possible to keep the temperatures of the two species f
equilibrating. For example, if the electrons are externa
heated, a cold buffer gas could be introduced that cools
ions by collisions.

So far, a positive plasma species has been considere
be trapped within a three-dimensional electric potential w
that is produced by a negative plasma species. A spe
equilibrium in which the roles of the positive and negati
species are reversed is now considered. Suppose a s
charged xenon plasma is trapped with the parameters ch
for the single-species base case, except with a change o
sign ofV4. For an equilibrium comparable to the two-speci
base case, an electron plasma would be trapped within
three-dimensional well with a density and temperature
4.331011 m23 and 300 K, respectively, at (0,0). Assum
that a 5 T magnetic field is present, that the ions are ex
nally heated and fueled such that the ion temperature
density remain constant, and that the electrode structure
surrounds the partially non-neutral plasma is at room te
perature. For the parameters considered, the two-temper
equilibration time scale is calculated to be about 30 s. For
calculation, the maximum impact parameter is set equa
the electron cyclotron radius and the center-of-mass ene
is set equal to the electron temperature. The two-tempera
1-5
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equilibration time scale is more than two orders of mag
tude larger than the electron cyclotron radiation time sc
Thus, the electron temperature should not equilibrate w
the ion temperature. Instead, the electron temperature sh
remain near that of the surrounding electrode structure.

In summary, two types of plasma equilibria have be
predicted for a variable-electrode-radius Malmberg-Penn
trap with an electrode configuration similar to that illustrat
in Fig. 1. The first type was for confinement of a sing
species, fully non-neutral plasma. It was found that suc
plasma could self-consistently produce a three-dimensio
electric potential well, at least if the diameter of the plasma
only a few times larger than the Debye length associa
with the plasma. The second type was for confinement o
two species, partially non-neutral plasma. One of the plas
species would be confined within a three-dimensional w
ys
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produced by the other species. Various parameter stu
were done and indicate that, if each plasma species is c
prised of singly charged particles and 1,Rw0 /Rw2&10,
then the species confined within the three-dimensional w
must have a density and a temperature that are each sm
than the density and temperature, respectively, of the o
plasma species. Two specific partially non-neutral plas
equilibria were considered, one with singly charged xen
ions confined within a three-dimensional well produced
electrons and the other with electrons confined within
three-dimensional well produced by singly charged xen
ions.
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