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Linear magnetohydrodynamic Taylor-Couette instability for liquid sodium
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The linear stability of MHD Taylor-Couette flow of infinite vertical extension is considered for liquid
sodium with its small magnetic Prandtl number Pm of order®.0The calculations are performed for a
container withR,,= 2R;,, with an axial uniform magnetic field and with boundary conditions for both vacuum
and perfect conductions. For resting outer cylinder subcritical excitation in comparison to the hydrodynamical
case occurs for large Pm but it disappears for small Pm. For rotating outer cylinder the Rayleigh line plays an
exceptional role. The hydromagnetic instability exists with Reynolds numbers exactly scaling witt? Bm
that the moderate values of order*1or Pm=10""5) result. For the smallest step beyond the Rayleigh line,
however, the Reynolds numbers scale as 1/Pm leading to much higher values of Srd&€hdi it is the
magneticReynolds number Rm that directs the excitation of the instability. It results as lower for insulating
than for conducting walls. The magnetic Reynolds number has to exceed here values of order 10 leading to
frequencies of about 20 Hz for the rotation of the inner cylinder if containers (gék) 10 cm radius are
considered. With vacuum boundary conditions the excitation of nonaxisymmetric modes is always more dif-
ficult than the excitation of axisymmetric modes. For conducting walls, however, crossovers of the lines of
marginal stability exist for both resting and rotating outer cylinders, and this might be essential for future
dynamo experiments. In this case the instability also can onset as an overstability.
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[. INTRODUCTION wherea andb are two constants related to the angular ve-
locities Q;, and Q4 with which the inner and the outer
The longstanding problem of the generation of turbulencecylinders are rotating, and is the distance from the rotation
in various hydrodynamically stable situations has found aaxis. If Ry, and Ry; (Roue>Rin) are the radii of the two
solution in recent years with the MHDmagnetohydrody- cylinders then
namicg shear flow instability, also called magnetorotational

instability (MRI), in which the presence of a magnetic field w— 17> , 1—p

has a destabilizing effect on a differentially rotating flow a= ﬁﬂin and bzRianin 2
with the angular velocity decreasing outwards. The MRI has K K

been formulated decades ago for the ideal Taylor-Couettgith the geometry ratio¢Fig. 1)

flow [1,2], but its importance as the source of turbulence in

accretion discs with differentidKepleriar) rotation was first ~ Quu ~ Ry

recognized by Balbus and Hawl¢g]. pw=q_ and n=g—. 3
However, the MRI has never been observed in the labo- n out

ratory, see Refq5-8]. After Goodman and Ji Ref9] the  Fojlowing the Rayleigh stability criterion,

absence of MRI is due to the small magnetic Prandtl number

approximation used in Ref2]. The magnetic Prandtl num- d(R?Q)?

ber Pm is very small under laboratory conditions indeed T>O’ (4)

(~10 ° and smaller, see Table.|

A proper understanding of this phenomenon is very im_rotation laws are hydrodynamically stable far-0, i.e.,,&

portant for possible future experiments including the Taylor-_ -, . . .
Couette flow dynamo experiments. The simple model of” 7" They should, in particular, be stable for resting inner

uniform-density fluid contained between two vertically infi- cylinder, i.e.,u—c. Richard and Zahii10] focused atten-
nite rotating cylinders is used with constant magnetic fieldtion on the experimental results of Wer(dtl] who found
parallel to the rotation axis. For viscous flows the most genhonlinearinstability for this case for Reynolds numbers of

eral form of the rotation lavf)(R) in the fluid is order 16 (see Ref[12]). The finite-amplitude instability of
TABLE |. Parameters of the fluids suitable for MHD experi-
b ments, taken from Ref$2] and[4].
Q(R)=a+ =, ()
p (glen?) v (cné/s) 7 (cnéls) Pm
Sodium 0.92 7.X1078 810 0.88<10°°
*Electronic address: gruediger@aip.de Gallium 6.0 3.%10°3 2060 1.5¢10°°
TPermanent address: A.F. loffe Institute for Physics and TechnolMercury 5.4 1.X10° 3 7600 1.4<10°7

ogy, 194021, St. Petersburg, Russia.
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FIG. 3. Marginal stability lines for axisymmetric modes with
FIG. 1. Cylinder geometry of the Taylor-Couette flow with axial resting outer cylinder from conducting material fgr=0.5. The
magnetic field. shaded area denotes subcritical excitations of unstable axisymmet-
ric modes by the external magnetic field.

hydrodynamically staple rota_tion laws must therefore rfam""iqnetric and nonaxisymmetric modes is shown for Hartmann
in the astrophysical discussion. However, later experiments , mbers of about 40[15,16]

by Schultz-Grunow{13] with very similar Taylor-Couette
flows for resting inner cylinder demonstrated the results o
Wendt as due to rather imperfect container constructions anb-‘
the flow remained laminar even for Reynolds numbers of th
same order.

One of Fhe targets in the present paper is the axisymmetrxetiC Prandtl numbers Pm.
of the_ exuted modes. We have sho_wn n RéH] that for . The equations, therefore, are solved here mainly for the
containers with conducting boundaries it happens for suffi;

) g : small magnetic Prandtl number Rm0 ° very close to the
c[ently strong magnetic fields that the mode_W|th the Io.WeS(/alue for liquid sodium(see Table)L The aspect ratio of the
eigenvalue(i.e., the lowest Reynolds numbeds a nonaxi-

. ! . i container walls radii in the present paper is almost always
symmetric mode. As an impressive example, in Fig. 2 for P pap y

Despite of its general meaning this behavior is only
own so far for conducting walls and for magnetic Prandtl
umbers not smaller than 18. For possible laboratory ex-
?)eriments we have to extend, however, the computations to
insulating boundarieg$vacuum and to much smaller mag-

Pm=0.01 the crossover of the instability lines for axisym- fixed to 7=0.5.
II. BASIC EQUATIONS

15000 ' ' ' ‘ Q
S /L The MHD equations that have to be solved are
L /
P au 1
o 100001 y T —+(u-V)u=——-Vp+rvAu+IXB (5)
z ot p
a /’/ and
5 5000} ]
z B |
& E curl(uxB)+ n»AB, (6)
12 p

0 * ‘ ' ‘ with the electric current
0 100 200 300 400 500
HARTMANN NUMBER J=curlB/uo (7)

FIG. 2. Instability lines for axisymmetri¢solid) and nonaxi- and divu=divB=0. They are considered in cylindrical ge-
symmetric modesro=1, dashed lingfor conducting walls and ometry with R, ¢, and z as the coordinates. A viscous
Pm=0.01 (3=0.5). electric-conducting incompressible fluid between two rotat-
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ing infinite cylinders in the presence of a uniform magnetic H= \/m (9)
field parallel to the rotation axis leads to the basic solution
Ur=U,=Bg=B,=0, B,=By=const, andU ,=aR+b/R,
with U as the flow andB as the magnetic field. We are
interested in the stability of this solution. The perturbed state
of the flow may be described by, uy, u;, Bg, By, B;,
p’ with p’ as the pressure perturbation.

Here only the linear stability problem is considered. By
analyzing the disturbances into normal modes the solutions
of the linearized hydromagnetic equations are of the form Pm= (10)

as the unit of length, the/H as the unit of velocity, an&
as the unit of the magnetic field, and work with the magnetic
Prandtl number

B = B( R)ei(m(bJrkZ* wt),

u’ =u(R)el(mgrkz=ot), 8 . . o .
(R) ® with v as the kinematic viscosity ang as the magnetic

From hereon all dashes have been omitted from the notatioriffusivity. Note H™* also as the unit of wave numbers and
of fluctuating quantities. Only marginal stability will be con- »/H? as the unit of frequencies. After elimination of both
sidered hence the imaginary partefi.e.,Z(w), always pressure fluctuations and the fluctuations of the vertical mag-
vanishes. We use netic field B, the linearized equations are

dug Ug Iim

ﬁ+ﬁ+ﬁu¢+ikuz=0, (12)
Uy  1auy, Uy, m+k2 RQ +2|m Rl& RZQ
R TRIR R\ Re K Uemi| mREq o Uyt o Ur— Reg SRI RTg - Ur
m[1¢%u, 1 du, [m? u Q u] m [1 aBR Br| i m?
2 z z 2 —
—g[ﬁﬁJF@ﬁ_(? S mReQ—in ® E+EHa2§ R +kHa2 2 TK?|By=0, (12)
<93uZ 16%u, 1 du, [m? &uz 2m? Q au, J(Q
s —=—=3—=—| oz +k? u,—i| MRe=——w —imRe| =—|u
TR RR R RIRW Qi JR IR\ Q) 2
#Br 1Br Br , im dB, im [Pug Loug ug [, mP Q
“HE SRR TR KB R R e K GRE TR R R | KT Re/UR| K| MReg o ug
2K~ 2ikRes 1,0 13
re o 2ikReg U, =0, (19
#Bgr 1dBg Br (M* 2im _ Q _
W_{—ﬁﬁ_@_ RZ +k —?B(ﬁ—lp mRe(T—w BR'HkUR:O, (14)
n

7By 1By By (M el 2™ ipn{ mRel — w8, iku,+ PmReR g 15
R TRR R\ R Bet g BrrIPI{mRey m o [By kU, PMRRT5RTBR=0. (19
|
Here the Reynolds number Re and the Hartmann number Ha (Rou— Rin) R
are defined as Ha=B, W' (17
0

- (Rout— Rin) RinQin . .

e= ” (16) For the given Hartmann number and the magnetic Prandtl
number we shall compute with a linear theory of the critical
Reynolds number of the rotation of the inner cylinder, also

and for various mode numbens.
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I1l. BOUNDARY CONDITIONS, NUMERICS 200 T T T T
—_ -1
An appropriate set of ten boundary conditions is needed Pm=10
to solve system&11)—(15). Always no-slip conditions for the
velocity on the walls are used, i.e., 4
W
m 4
Ur=Ug=—5 =0. )
dR >
The boundary conditions for the magnetic field depend on 8 100
the electrical properties of the walls. The tangential currents ._1
and the radial component of the magnetic field vanish on %
conducting walls hence a—J
14
dB, By
ﬁ'l‘E:BR:O. (19 Pm=10
These boundary conditions hold for bo®R=R;, and R 0 ' ' ' :
=Rout. 0 10 20 30 40 50
The homogeneous set of equatiofis)—(15) together HARTMANN NUMBER
with the boundary conditions determine the eigenvalue prob-
lem of the form FIG. 4. The same as in Fig. 3 but for cylinder walls of insulating
material.
L(k,m,Re,HaR(w))=0 (20
iB, [m
for given Pm. The real part @b, i.e., R(w), describes a drift Brt I m(kR) (@I m(kR)+1 m“(kR)) =0 (2

of the pattern along the azimuth which only exists for non-
axisymmetric flows. For axisymmetric flows&0) the real  for R=R;, and
part of w, i.e., R(w), is zero for stationary patterns of flow ,
and field and it is nonzero for oscillating solutions, which are Bo+ 1B,
called overstabilityL is a complex quantity, both its real part R
and its imaginary part must vanish for the critical Reynolds N ]
number. The latter is minimized by the choice of the wavefor R=Rot. Im and K, are the modified Bessel functions
numberk. For a fixed Hartmann number, a fixed Prandtl (With different behavior aBR— 0 andR— ). One can elimi-
number and a given vertical wave numberwe find the — nate with diB=0 the vertical componeri, of the magnetic
eigenvalues of the equation system. They are always minfield in boundary condition$21)—(23).

mal for a certain wave number which by itself defines the

marginally unstable mode. The corresponding eigenvalue is IV. RESULTS

the desired Reynolds numbét(w) is the second quantity
which is fixed by eigenequatiof20).

m
Km(KR) (ﬁKm(kR)— Km+1(kR)> =0 (23

The following results concern different aspects of the
The system is approximated by finite differences WithMHD Taylor-Couette problem for small magnetic Prandtl

; ; : . ; ; number Pm. In Sec. A the realization of the caseO (here
typically 200 radial grid points. The resulting determinant ] ) i A ) )
takes the value zero if and only if the values Re o)  With resting outer cylinder, i.e,=0) is considered. There
are the eigenvalues. We can also stress that the results dfe@" instability even without magnetic fields so that the in-
numerically robust as an increase of the number of grihtaPility lines start at thg-axis. In Sec. B the special case
points does not change the results. a=0 is considered with surprising results. Section C pre-
The situation changes for insulating walls. The magneticsents the results for the two experiments with-0 and u
field must match the external magnetic field for vacuum. It is=0.33 with respect to the azimuthal symmetry of the eigen-
known for this case that the boundary conditions for axisym-mnodes. In Sec. D the existence of oscillating modes is dis-
metric solutions strongly differ from those for nonaxisym- cussed, i.e., the existence of overstability for small magnetic
metric solutions(see Ref[17]). The condition cugB=0 in  Prandtl numbers.
vacuum immediately provides

A. Subcritical excitation for large Pm (a<0)

B ZEB (22) Figure 3 shows the stability lines for axisymmetric modes
for containers with conducting walls and with resting outer
cylinder for fluids of the various magnetic Prandtl numbers.

at R=R;, and R=R,;;. From the solution of the potential In Fig. 4 the same is shown for containers with insulating
equationA =0 one finds walls (“vacuum”). Only the vicinity of the classical hydro-
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dynamic solution with Re=68.2 is shown. There is a strong B. The Rayleigh linea=0 (j= 7%
difference of the geometry of the bifurcation lines for Pm There is a universal scaling on Pm for the special case
=1 and Pm<L1. In the latter case, i.e., for fluids with low

. P . : . ~_ 2
electrical conductivity the magnetic field only suppresses th with a=0 in the basic flow profilg1), i.e. for u=»". Then

. e . he term withd(R?Q)/4R in Eq. (12) vanishes and fom
instability so that all the critical Reynolds numbers exceet?_w:0 one finds that the quantitiess, u,, Bg, andB, are

the value 68, and this the more the stronger the magneti‘gjCaling as PmY2 while u. B. k and Ha scale as Fm
field is. g g :

. ... __Then also the Reynolds number for the axisymmetric modes
For small magnetic Prandtl number the stability lines

. S N . . ~~scales as
hardly differ, which is the situation already considered within
the small-gap approximation by Chandrasekid} and RexPm 2, (25)
Kurzweg [18,19 without any indication of magnetorota- _ N
tional instability. The scaling does not depend on the boundary conditions as

The opposite is true for Pm1. Note that in Figs. 3 and 4 these form=0 also comply with the relations. .
for fluids with high electrical conductivity the resulting criti- _ R€SUlt (25 has numerically been found by Willis and
cal Reynolds numbers are smaller than=F&8. Magnetic B.arenghl for vacuum boundary COPd'“PZO]- However, R
fields with small Hartmann number support instability pat-diger and Shalybkof21] for a>0 (u> 7?) found the much
terns rather than to suppress them. This effect becomes mop&eeper scaling
effective for increasing Pm, but it vanishes for stronger mag-
netic fields[20,21]. Obviously, the MRI only exists for weak
magnetic fields and high enough electrical conductivityresulting in the surprisingly simple relation
and/or molecular viscositywhen the fields can be consid-
ered as frozen in and/or enough viscosity prevents the action Rme:const (27)
of the Taylor-Proudman theorgnEven within the small-gap .
approximation, such a subcritical excitation exists for veryfor the magnetic Reynolds number
Bir?]i\iiscosity, i.e., for P 1 [18], but it did not appear for . (Rou— Rin) RinQin
Note that the subcritical excitation of Taylor vortices only
works for weak magnetic fields. The upper limits of the pos-gq
sible Hartmann numbers can be observed for the magnetic
Prandtl numbers 1 and 10 in Figs. 3 and 4. After our com- Haoc Pm~ 12 (29
putations, the subcritical excitation of Taylor vortices for
weak magnetic fields requires rather high magnetic Prandfiesulting in
numbers. The microscopic values for Pm are orders of mag-
nitude smaller than unitysee Table), so that there should
be no chance to _realize the subcritical excitation of Taylorfor the Lundquist number
vortices by experiments. However, the speculation may be
allowed whether really the microscopic Pm is the basic in- (R R)R
put. The scenario is also interesting whether possible finite- Ha* =B, L out Thin/7Tin (32)
amplitude hydrodynamic instabilities provide some kind of oP 7°
background turbulence which can be considered as modify-
ing the value of the magnetic Prandtl nump4}. The turbu- [21]. In case of small magnetic Prandtl number the exact
lence influences both the viscosity values and the magnetigalue of the microscopic viscosity is totally unimportant for

RexPm 1, (26)

(28)
n

Ha* «const (30

diffusivity values so that the excitation of the instability. In consequence, however, the
corresponding Reynolds numbers for the MRI seem to differ
vtvr  vp by 2 orders of magnitude, i.e., 4@nd 16. Insofar, experi-
Pm—Pmy= =— (24 Y s
n+tnr U ments withu= %~ seem to look much more promising than

experiments withu > 7.
This challenging possibility, however, does not exist. The

with v+ and 1 as the eddy viscosity and the eddy diffusivity, critical Reynolds number fop.= 72 and Pm=1 as a func-
respectively. Because of the existence of the pressure term {n

the momentum equation, both quantities are not identical"©" of 7is g|v_en n F'g;s' The total minimum of the Rey-
We do not have precise knowledge about the effective turbudolds number is 54.4 fop=0.27 so that after Eq25) one
lent magnetic Prandtl number, but it has been demonstrate@Pects the value 110" for the Reynolds number for
that values of order 0.1 or somewhat larger should not b&m=10"°. Figure 6 shows the behavior of this result in the
unlikely [22,23. Insofar, if such speculations are not too far vicinity of = 72. There is a vertical jump from fto 1P
from the reality, it is not completely clear that the subcriticalin an extremely small interval of the abscissa. This sharp
excitation of Taylor vortices which we have presented intransition does not exist for Pal, it is only due to the very
Figs. 3 and 4 is unobservable in general. small value of Pm. For this case in Fig. 5 the coexistence of
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TABLE II. Coordinates of the absolute minima in Figs. 7 and 8 5

! a T AadRAss biad sans sanssans nons T Ranaznasss raass sanss pass:
for rotating outer cylinder §=0.5u=0.33)

Conducting walls  Insulating walls 10
Reynolds number 2.12810° 1.42x<10° ¥ g
Mag. Reynolds number 21 14 g g ol
Hartmann number 1100 1400 2 2
Lundquist number 3.47 4.42 @ 4

2 3

both hydrodynamic and hydromagnetic instabilities is alsog wr E
presented. The jump profile for Pa10™° in Fig. 5(righty [ %i{ / | & «.
makes it clear that such experiments wijth= 72 are not ot
possible. Even the smallest excess from the condiﬁon
= 7? drastically changes the excitation condition. Fer e T ————
smaller than? (negative exce$she hydrodynamic instabil- -04-0200 ozﬁ 04 05 08 10 -1 -0 0.0;‘ 03 1013

ity sets in and foru slightly exceedings? (positive excess
the Reynolds number suddenly jumps by two orders of mag- FIG. 6. Critical Reynolds numbers for the Taylor-Couette flow
nitude. versusu for 7=0.27 and Pre 1 (left) and Pm= 1075 (right). The
curve for the hydrodynamic instability (Ha0) is dashed and the
hydromagnetic curve (Hao0) is solid. The dotted line denotes the

_ location of the Reynolds lineg= 7?).
Let us now concentrate on the small magnetic Prandtl

number for liquid sodium, i.e., Pm10~°. We start with the  influence of the boundary conditions is not as small as ex-
results for containers with insulating walls and outer cylin-pected. The main difference between the two sorts of bound-
ders at resfFig. 7(@)]. There are then linear instabilities even ary conditions, however, is the existence of crossovers of the
without magnetic fields. For Ha0 solutions form=0 (Re  jnstapility lines form=0 andm=1 in case of conducting
=68) andm=1 (Re=75) are known, see Refl4]. The  walls. For both resting and rotating outer cylinders, the criti-
axisymmetric mode possesses the lowest eigenvalue. This i&| Hartmann numbers exist above which the nonaxisymmet-
also true within the MHD regime; we do not find any cross-ric mode possesses a lower Reynolds number than the axi-
over of the instability lines for axisymmetric and nonaxisym- symmetric mode. We have already shown in Hé#] the
metric modes. The same is true for containers with rotatingyistence of such crossovers for conducting walls for 1
outer cylindef{Fig. 7(b)]. For growingu the Reynolds num-  <Pm<0.01. It is now clear that the occurrence of nonaxi-
ber for the hydrodynamic solution moves upwards, reachingymmetric solutions as the preferred modes is a rather gen-
infinity for z = 7%=0.25 (herd. The MRI is represented by eral phenomenon for containers with conducting walls which
can become important for the design of future dynamo ex-
periments(Cowling theorem

C. Excitation of nonaxisymmetric modes

characteristic minima, in our case far=0.33 at Hartmann
numbers of order f0and Reynolds numbers of order 0f®10
The exact coordinates of the minima are given in Table II. 7
The results for containers wittonducting wallsare given 8000 T 2x10 "
in Fig. 8. Note that the minimal Reynolds numbers given in a) b)
Fig. 8b) are higher than for insulating cylinder walls. The

400

4000 R 1x107

300

REYNOLDS NUMBER
REYNOLDS NUMBER

200

REYNOLDS NUMBER

- 0 1 0 I
0 S0 100 o 1x10* 2x10
HARTMANN NUMBER HARTMANN NUMBER

100

o.0 0.2 0.4 o8 0.8 1.0 FIG. 7. Insulating walls(vacuunm). Stability lines for axisym-

metric (m=0, solid line$ and nonaxisymmetric instability modes
FIG. 5. Critical Reynolds number versusfor n=7? and Pm ~ With m=1 (dashegl Left, resting outer cylinder, right, rotating
=1. outer cylinder withu=0.33.
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10000 - 8x10° 10000 '
a) E:J
& 1 & (il stationary /|
2 A > K
2 2 3
@ 5000 @ 4x10° z /
| ] n 5000 i 1
(@] o 0
Z Y zZ |
G 4 A %
14 b, 14 O
. /
’ L 2 oscillating
O 1 0 i 1 m ”
0 50 100 2000 6000 0 g
HARTMANN NUMBER HARTMANN NUMBER :
FIG. 8. The same as in Fig. 7 but for perfectly conducting walls. 0 50 100

HARTMANN NUMBER

In order to characterize the Hartmann numbers note that FIG. 9. The same as in Fig(# but with the inclusion of oscil-
for liquid sodium, lating axisymmetric modeoverstability appearing here for lower
Reynolds numbers.
Ha
B=2. /10 cmG' (32 ~
ou The calculations are performed for a container witk 0.5
and with an axial uniform magnetic field excluding counter-
rotating cylinders. The sign of the constarin basic rotation
law (1) strongly influences the results. It is negative for rest-
ing outer cylinder. The main point here is that the subcritical
excitation that occurs for large Pm disappears for small Pm
f. =64 Hz (33) (cf. Figs. 3 and % The same is true for model computations
(Rou/10 cm)? within the small-gap approximation. Kurzwé¢fj8] extended
within the small-gap approximation the small-Pm computa-
for the frequency of the inner cylinder. Hence, a container ofions of Chandrasekhar to larger Pm, and indeed the subcriti-
insulating walls with an outer radius of 22 ofand an inner  cal excitation for weak magnetic fields appeared—but this
radius of 11 cmfilled with liquid sodium and embedded in effect seemed to be overlooked as an outstanding phenom-
vacuum requires #otation of aboutl9 Hz in order to find enon over decades.
the MRI. Following Eq.(32) the required magnetic field is For rotating outer cylinder the Rayleigh litiee.,a=0 or

about 1400 G. w= 77 plays an exceptional role. The hydrodynamic insta-
bility starts to disappear (Re«), while the hydromagnetic
D. Excitation of oscillating modes instability exists with minimal Reynolds numbers at certain
There are not only stationary patterns of flow and fieldHartmann numbers of the magnetic field. As one can show
possible but the instability can also onset in the form ofthese Reynolds numbers exactly scale with SP’ﬁlresultmg
oscillating solutions which effect is called overstability. In in moderate values of order 1Gor Pm=10"°. However,
case of rotating convection between two layers heated frorglready for the smallest positive value afthe Reynolds
below the onset of the instability in the form of oscillating "Umbers start to scale as 1/Pm leading to much higher values
solutions even possesses the lowest eigenvalues for certd®h order 16 for Pm=10"°. The surprising result is that for
Prandtl number§2]. We find a very similar behavior for the outer cylinders rotating faster than the linait=0, it is ex-
MHD Taylor-Couette flow between conducting cylinders for clusively themagneticReynolds number Rm that directs the
resting outer cylindefsee Fig. 9. It is a pair of waves trav- €xcitation of the instability. _
eling in positive and negative direction. Note that the cyl- The magnetic Reynolds numbers are resulting as lower
inder considered here has no bound in vertical direction. Ifor insulating walls(*vacuum”) than for conducting walls of
the cylinder is finite, however, the possibility exists that thethe container. Generally, the magnetic Reynolds numbers for

Table Il) leading to frequencies of about 20 Hz for the rota-

tion of the inner cylinder if containers witsay) 10 cm inner
radius are considered. Then the critical linear flow speed of
The linear stability of an MHD Taylor-Couette flow of the inner cylinder is about 12 m/s which is remarkably close
infinite vertical extension is considered for liquid sodium to the flow speeds of the current dynamo experiments with
with its small magnetic Prandtl number Pm of order 10  helicity. The required magnetic fields are about 1000 G.

Hence, forR,,~22 cm the magnetic field and the Hartmann
number have the same numerical values. Witk 10 2

cné/s and»=0.5 it follows from Eqs.(16) and (17),

Re/1¢

V. CONCLUSIONS
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Also nonaxisymmetric modes have been considered. Witlaxisymmetric patterns of flow and field, and the Reynolds
vacuum boundary conditions their excitation is always morenumbers of these solutions are lower than the Reynolds num-
difficult than the excitation of axisymmetric modes; we bers for the stationary solutions.
never observed a crossover of the lines of marginal stability.
For conducting walls, however, such crossovers exist for
both resting and rotating outer cylinders, and this might be
essential for future dynamo experiments. In this case, how- D.S. thanks the Deutsche Forschungsgemeinschatft for fi-
ever, the instability also can onset in the formastkillating  nancial support436 RUS 113
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