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Response maxima in modulated turbulence
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Isotropic and homogeneous turbulence driven by an energy input modulated in time is studied within a
variable range mean-field theory. The response of the system, observed in the second-order moment of the
large-scale velocity differenceD(L,t)5 ^̂ (u(x1L)2u(x))2&&}Re2(t), is calculated for varying modulation
frequenciesv and weak modulation amplitudes. For low frequencies the system follows the modulation of the
driving with almost constant amplitude, whereas for higher driving frequencies the amplitude of the response
decreases on average}1/v. In addition, at certain frequencies the amplitude of the response either almost
vanishes or is strongly enhanced. These frequencies are connected with the frequency scale of the energy
cascade and multiples thereof.
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I. INTRODUCTION

Many turbulent flows are characterized by time-depend
forcing. For example, the atmosphere of the earth is dri
by the heating through the radiation from the sun, the blo
flow in the arteries by the heart beats, etc. Also techn
flows like the flow in the intake of a combustion engine a
periodically forced. Another example are estuaries and a
cent coastal waters, where tidal straining leads to a perio
alternation of stratification and turbulent mixing of salin
and fresh water@1#. This results in a periodically varying
energy dissipation in the upper water layers with a 12
period.

The effect of a periodically increasing and decreasing
ergy input on turbulent flow depends on the frequency of
driving. This has been studied in Ref.@2# for a turbulent
channel flow where the modulations of the input rate
generated near the wall. It was found that for high frequ
cies these oscillations are strongly damped with dista
from the walls, such that they do not reach the inner par
the logarithmic boundary layer. Another example
Rayleigh-Benard convection: the interaction between
large-scale circulating flow and the thermal plumes deta
ing from the upper and the lower boundary layers acts a
stochastically influenced time-dependent forcing on the
bulent flow in the inner region of the cell, as recently sho
in Refs. @3–5#. In a von Kármán flow between two coaxia
corotating disks@6,7#, the energy input rate is not a consta
if the disks are kept rotating at constant speed, but is p
odically varying with a geometry-dependent frequency d
to a coherent vortex precessing around the axis of rotation
this case it was also shown, that the statistical propertie
the turbulent fluctuations are affected by the time dep
dence of the mean flow. However, the averaged velo
power spectrum still shows Kolmogorov scaling over
broad frequency range, in addition to a low frequency pe
corresponding to the oscillation of the mean flow.

These results raise the question how global quantities
turbulent flow, such as, e.g., the total energy or the Reyno
number, respond to a time-dependent energy input. T
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problem is the subject of the present paper. From a m
fundamental point of view, studying modulated turbulen
will give more insight into the time scales in particular of th
turbulent energy cascade.

In a previous study@8#, the time evolution of the Rey-
nolds number in a periodically kicked flow was analyzed.
the kicking strength and the kicking frequency are lar
enough, the Reynolds number grows and saturates on a l
which depends on the frequency and the kicking streng
The theoretical results from Ref.@8# have later been verified
numerically in Ref.@9#.

In this present paper, we study a related type of forci
Rather than periodically kicking the boundary conditions
homogeneous, isotropic turbulence as in Ref.@8#, we force
the flow through a time-dependent modulation of the ene
input rateein(t) on the outer length scaleL,

ein~ t !5e0„11e sin~vt !…. ~1!

This means that the flow is stationarily stirred (}e0) to
maintain the turbulent flow and, in addition, a tim
dependent modulation of the forcing (}e0e) is applied, 0
<e<1. The response of the system to the time-depend
stirring can be observed e.g. in the second-order velo
structure function of the flow field, in particular at the out
scaleL, D(L,t)5 ^̂ @u(x1L,t)2u(x,t)#2&&. This D(L,t) is
equivalent to a Reynolds number, which we define as
5u1,rmsL/n. Here,u1,rms(t) is the rms of one component o
the velocity, varying with timet. Then, disregarding correla
tions on scaleL,

D~L,t !52^̂ u2&&56u1,rms
2 ~ t !5

6n2Re~ t !2

L2
. ~2!

The energy put into the system at timet will travel down
the energy cascade towards smaller scales and will, on a
age, be dissipated at timet1t, i.e., with a mean time delay
t. In other words, the dissipation at timet depends on how
much energy has been in the large scales at timet2t. We
©2003 The American Physical Society08-1
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approximately describe the relevant time scalet for the cas-
cade process by the large eddy turnover timetL at that time
t2t,

t.tL5
L

u1,rms~ t2t!
5

L

AD~L,t2t!/6
. ~3!

More accurately, the time scale of the energy cascad
given by the sum over the eddy turnover times on all de
steps,t.(ntn . In this sum, the largest contribution is th
largest eddy turnover timetL . For K41 scaling the smalle
eddiesr n /L5dn, where 0,d,1, have turnover timestn
5tLd2n/3. Thus t5tL(nd2n/3[tLa. The common choice
d51/2 impliesa.2.7. Putting into intermittency correction
gives slightly smaller values ofa. In this present paper we
shall discuss the influence ofa by comparing the limiting
casesa52.7 anda51. Experimentally, in principle the pa
rametera could be measured by analyzing the positio
heights and widths of the response maxima, thus giving
formation about the energy cascade time.

If the external modulation periodv21 is much larger than
this intrinsic time scalet, vt!1, the turbulent flow will
have time to adjust and will follow the periodic variations
the stirring. If, on the other hand,v21 is decreased and be
comes much smaller thant, the system can follow less an
less, and feels, at small scales, an average time-indepen
energy input.

We calculate the time dependence of the respo
D(L,t)2D0(L) to a periodically modulated energy inpu
rate, Eq.~1!, within a variable scale mean-field theory@10#
for various driving frequenciesv. Here, D0(L) is the
second-order structure function for a stationary energy in
ratee0. In general, the energy flow rate through the system
an intermittently fluctuating quantity. Therefore, the casca
time as well as the response of the system are fluctua
These fluctuations are neglected by the mean-field theor
the present study. However, on average these fluctuat
result in a mean downscale transport of energy which c
trols the overall properties of the flow. Therefore, we belie
that within this mean-field approach we can grasp the m
features of the flow correctly.

The method is explained in the following section. T
behavior of the response as a function of the driving f
quencyv in the case of weak modulations of the ener
input rate is analyzed in Sec. III. In Sec. IV we discuss
alternative way to introduce time dependence into the s
tem. The slightly different case of a modulated driving for
instead of a modulated energy input rate is presented in
V. We summarize our results in Sec. VI.

II. METHOD AND MODEL

In Ref. @10# an energy balance equation for the seco
order velocity structure function D(r )5 ^̂ @u(x1r)
2u(x)#2&& for stationary, homogeneous, and isotropic turb
lence has been derived within a variable range mean-fi
theory. Here,u is the velocity and the brackets^̂ •••&& denote
the ensemble average. One of the essentials of this theo
to divide the velocity field into a~spatially averaged! super-
04630
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scalevelocity u(r ) and a~strongly fluctuating! subscaleve-
locity ũ(r ). The spatial average is performed over a sphere
variable radiusr, and will be denoted asu(r )(x)[^u(x
1y)&y

(r )[3/(4pr 3)* uyu<rd
3yu(x1y).

The energy input rateein , which in the statistically sta-
tionary situation equals the total energy dissipation ratee, is
balanced in accordance with the superscale and subscal
composition by the energy dissipation rate on all sca
larger thanr complemented by the energy transfer acro
scaler from the superscales to the subscales ofr. In a sim-
plified version the derived energy balance equation read

ein5e5
3

2 S n1
@D~r !#2

b3e
D 1

r

d

dr
D~r !, ~4!

wheren is the kinematic viscosity andb is the Kolmogorov
constant. In the viscous subrange, wherer is smaller than the
Kolmogorov length scaleh, r ,h, the dissipation term, i.e.
the first term on the rhs of Eq.~4!, is dominating, and there
fore the solution of Eq.~4! is D(r )5er 2/(3n). In the inertial
subrange~ISR!, instead, whereh!r !L, most of the energy
of the eddies is transfered down scale. This energy tran
rateEt , which is given by the second term on the rhs of E
~4!, is determined by the decorrelation rateG̃(r ) of the sub-
scale eddies, which itself is mainly governed by the ene
dissipation ratee, see Ref.@10# for details. Note again that in
the stationary case the energy dissipation rate equals the
ergy input rate,e5ein . In the ISR the second term on the rh
is the leading one. Then the solution of Eq.~4! is D(r )
5b(er )2/3. The full energy rate balance equation~4! inter-
polates between these two limits. The Kolmogorov const
b can be calculated within this theory to beb56.3 which is
consistent with the experimental value@11–14#.

In our case the flow is not stationary but experience
modulated energy input rateein(t). Therefore,ein , the struc-
ture functionD(r ), and the dissipation ratee in Eq. ~4! will
depend on time. Furthermore, an additional term on the
of Eq. ~4! appears, taking into account the nonstationarity
the flow

ein~ t !5
3

2 S n1
D~r ,t !2

b3e~ t !
D 1

r

]

]r
D~r ,t !

1
1

2

]

]t
^̂ u(r )~x,t !•u(r )~x,t !&&. ~5!

The correlation of the superscale velocities can
written as ^̂ u(r )(x,t)•u(r )(x,t)&&5 ^̂ u2(x,t)&&2 1

2 ^^D(y1

1y2 ,t)&y1

(r )&y2

(r ) . Following the arguments in Ref.@10# for the

derivation of Eq.~4!, we neglect multiple spatial averaging
i.e., ^^D(y11y2 ,t)&y1

(r )&y2

(r ).^D(y,t)&y
(r ) .

In the stationary case the energy dissipation ratee
5n^̂ (]ui /]xj )(]ui /]xj )&& can be related to the large sca
quantities by

e5ce

u1,rms
3

L
5ce„D~L !…

@D~L !#3/2

63/2L
. ~6!
8-2
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Extending this expression to the time-dependent case,
have to take into account that the energy which is fed into
system on large scales at a timet will be dissipated on smal
scales at a later timet1t. We model this as follows: The
energy dissipation rate at timet is assumed to depend on th
large-scale quantities at timet2t:

e~ t !5ce„D~L,t2t!…
@D~L,t2t!#3/2

63/2L
. ~7!

ce is a dimensionless function which is approximately co
stant (.1) for very large Reynolds numbers@15,16#. In
Refs.@17–19# it was shown that in generalce depends on the
Reynolds number, and therefore onD(L). We here use an
approximation of the expression derived in Ref.@17# for high
Reynolds numbers,

ce„D~L !…5
9

Re
1AS 6

bD 3

1S 9

ReD
2

.S 6

bD 3/2

1
9

Re

5S 6

bD 3/2

19
n

L
A 6

D~L !
. ~8!

The delay timet is determined by the implicit time-dela
equation~3!. Assuming that the solution of Eq.~4! in the
ISR, D(r )5b(er )2/3, is valid up to r 5L, we can write
D(r )5(r /L)2/3D(L). Within our model, where we connec
small- and large-scale quantities at different times, the st
ture function on scaler ,L at time t will depend on the
large-scale structure function at an earlier timet2t, i.e., we
introduce D(r ,t)5(r /L)2/3D(L,t2t) into Eq. ~5!. After
multiplying with r, Eq. ~5! can be integrated fromr 50 up to
the outer length scaler 5L:

1

4

d

dt
„D~L,t !2aD~L,t2t!…52

@D~L,t2t!#3/2

Lb3/2

2
3nD~L,t2t!

2L2

1ein~ t !, ~9!

wherea5 27
44 originates from the integration. In Ref.@10# it

has been shown that, in the isotropic and homogenous c
ein is independent of the scaler as the forcing is assumed t
act on the largest scaleL only. In the stationary case the lh
of Eq. ~9! vanishes, and together with Eqs.~7! and ~8!, Eq.
~9! corresponds toe5ein . Equation~9! contains only large-
scale quantities. Effects of fluctuations in the energy in
rate on the statistical properties of the turbulent flow as
served in Ref.@6# would influence the scaling behavior o
D(r ,t) on intermediate scalesr, and therefore lead to differ
ent values of the factora, but the structure of Eq.~9! would
remain the same.

Using Eq.~2!, we express the second-order structure fu
tion D(L,t) in Eq. ~9! in terms of the Reynolds numbe
Re(t):
04630
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d

dt
~Re2~ t !2aRe2~ t2t!!52

2

3S 6

bD 3/2

@Re2~ t2t!#3/2

26Re2~ t2t!

1
2

3

e0L4

n3
~11e sinvt !.

~10!

Here, we have inserted the time-dependent energy input
Eq. ~1!. In the case a of constant energy input rate, i.e.e
50, Eq. ~10! simplifies to

052
2

3 S 6

bD 3/2

Re0
326Re0

21
2

3

L4

n3
e0 , ~11!

relating the stationary Reynolds number Re0 to the stationary
input rate,L4e0(Re0)/n35ce(Re0)Re0

3. Introducing the re-
duced Reynolds number R(t)[Re(t)/Re0 and the nondi-
mensional timet/tL

0 ast ~analogously fort andv), Eq. ~10!
becomes

d@R2~ t !2aR2~ t2t!#

dt
52

2

3 S 6

bD 3/2

@R2~ t2t!#3/2

2
6

Re0
R2~ t2t!

1F2

3S 6

bD 3/2

1
6

Re0
G~11e sinvt !.

~12!

Here, tL
05L/u1,rms

0 is the large eddy turnover time of th
stationary flow. R(t) is of order one. The delay timet in
units of the time scaletL

0 is given by

t5
a

R~ t2t!
. ~13!

Equation~12! describes the time evolution of R2(t), which is
the square of the Reynolds number of a flow exposed t
modulated energy input rate@Eq. ~1!#, normalized by the
square of the Reynolds number of a flow where only a c
stant, time-independent, forcing is applied.

III. RESPONSE OF TURBULENT FLOW TO ENERGY
INPUT RATE MODULATIONS

A. General trend

In the present study we shall restrict ourselves to the c
of weak amplitude modulation, i.e.,e in Eq. ~1! is small.
Then we expect that also the oscillating response

D~ t ![R2~ t !21 ~14!

has a small amplitude, and we can linearize Eq.~12!. The
time delayt is approximated by a time-independent const
which in our time unitstL

0 is simplya. This approximation is
justified as long asuDu!1. In Sec. III C we shall discuss th
limits of this approximation. We first considera51 which
8-3
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means that the cascade timet is taken as the large edd
turnover timetL

0 . The resulting equation of motion for th
responseD(t),

d

dt
@D~ t !2aD~ t2t!#52F S 6

bD 3/2

1
6

Re0
GD~ t2t!

1F2

3 S 6

bD 3/2

1
6

Re0
Ge sinvt,

~15!
e

er

.

n-
e

.

ia
es

s.

r

o

-
e-

04630
can be solved analytically. The solution to linear equat
~15! can be calculated using the ansatz

D~ t !5eA~v!sin~vt1f!. ~16!

Here,A(v) is the amplitude, andf is the phase shift of the
response which also depends onv. Inserting this expression
into Eq.~15! gives the explicit solution of the linear respon
equation~15!,
D~ t !5e
S 2

3S 6

bD 3/2

1
6

Re0
D

v

F2cosvt1a cos@v~ t1t!#1

S 6

bD 3/2

1
6

Re0

v
sin@v~ t1t!#G

F 11a21S S 6

bD 3/2

1
6

Re0

v
D 2

22a cosvt22
S 6

bD 3/2

1
6

Re0

v
sinvtG

. ~17!
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In the following, we set the Kolmogorov constantb56 for
simplicity, which is near to the calculated value 6.3@10# and
to the experimental value in the range 6–9@11–14#. To re-
cover the expressions for a generalb one has to replace in th

following results the terms (116/Re0) and (2
3 16/Re0) by

@(6/b)3/216/Re0# and @ 2
3 (6/b)3/216/Re0#, respectively. The

mean amplitude of the response is determined by the en

input rate (23 16/Re0)e, i.e., the last term on the rhs of Eq
~15!. The time derivative on the lhs of Eq.~15! leads to a
mean decrease of the amplitude as 1/v. Due to the two terms
in Eq. ~15! containing the time delayt5a, corresponding
terms in the second fraction of solution~17! appear,}a and
}(116/Re0)/v, respectively, which, by the periodic depe
dence onvt induce a periodic variation of the amplitud
with the frequencyv. For low frequencies the terms}(1
16/Re0)/v, originating from the first term on the rhs of Eq
~15!, dominate, whereas for high frequencies the terms}a,
due to the second term on the lhs of Eq.~15!, become more
important. The latter, in particular, lead to a periodic var
tion of the response amplitude up to very high frequenci

The linear responseD(t)}e of the flow ~with Re05104)
is plotted in Fig. 1 for four different modulation frequencie
Also the modulation of the energy input rate,ein(t)/e021 is
plotted in Fig. 1.

The deviation of the Reynolds number from its stationa
value Re0 , D(t)5@Re2(t)2Re0

2#/Re0
2, oscillates with the

same frequency as the driving, for all frequenciesv. The
amplitudeA of this oscillation depends on the frequency. F
the two small modulation frequencies,v51023 and v
51021, the amplitude of the responseD(t) is nearly the
same, about two-thirds of the amplitudee of the driving. For
higher frequencies, the amplitudeA of the response de
creases. In the case ofv510 we observe a phase shift b
tween the forcing and the resulting response.
gy

-
.

y

r

Figure 2~a! shows the amplitudeA(v) as a function of the
driving frequency for Re05104. For low frequencies the am
plitude remains constant, and is two-thirds, whereas for la
frequencies the amplitude of the responseD(t) decreases
}1/v. In addition to this decrease we note certain frequ
cies for which the response amplitude becomes large or v
small. The distance between two maxima or two minima
the amplitude is nearly constant, see the inset of Fig. 2~a!.
This periodic behavior in thev dependence of the respons
amplitude is due to the time delayt. We shall explain this in
the following section.

FIG. 1. ResponseD(t) ~solid lines! for four different modula-
tion frequenciesv, the time-dependent part of the energy input ra
ein(t)/e021 ~dotted lines!. The modulation amplitude is 10% o
the constant input rate,e50.1, and the Reynolds number of th
stationary system is chosen as Re05104. ~a! vtL

051023, ~b! vtL
0

50.1, ~c! vtL
0510, ~d! vtL

05100.
8-4
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There are three time scales in the solution~17! of Eq.
~15!: The large eddy-turnover time, by definition 1, the tim
delayt5a, which represents the cascade time, and the t
scale of the external modulation 1/v. If the modulation time
scale is much larger than the large eddy turnover time,v
@1, i.e., if the driving frequency is very small, then solutio
~17! can be approximated by

D~ t !.e
2

3
sin@v~ t1t!#. ~18!

FIG. 2. ~a! Amplitude A of the responseD(t) as a function of
the driving frequencyv ~log-log scale! for weak modulations (e
50.1) of the input rateein , and Re05104. The time scale of the
energy cascade is set tot5a51. The dashed line denotes the lo
frequency limit of the oscillation amplitude, 2/3, and the dotted l
corresponds to the mean trend of the high frequency lim
2/(3vtL

0). Inset, linear-scale plot of the response amplitude ver
frequency. The small arrows indicate the frequenciesv r ~in units of
tL

0) of the response extrema calculated from the extrema of
denominator in Eq.~17!. The horizontal arrow denotes the fre
quency distanceDv ~in units of tL

0) between two frequencies fo
which the amplitude is maximal~or minimal!. It is Dv.2p/t for
high frequencies.~b! Same as~a! but with a cascade time scalet
5a52.7 different from the large eddy-turnover timetL

0 . Note the
shift of the response maxima, the less pronounced height
greater width of the first, and the more pronounced second resp
peak.
04630
e

We concludeA52/3, while the phasef5vt is linear inv
for small frequencies.

If, on the other hand, the modulation frequency becom
very large, i.e, the time scale of the driving is much smal
than 1, we see from Eq.~17! that the amplitude ofD de-
creases as}1/v:

D~ t !.e
S 2

3
1

6

Re0
D

v

$2cosvt1a cos@v~ t1t!#%

11a222a cosvt
.

~19!

The mean trend

}

S 2

3
1

6

Re0
D

v
.

2

3v

of this high frequency limit is also plotted in Fig. 2~a!. The
crossover between the regimes of Eqs.~18! and ~19! takes
place atvcross.1. This can be seen in Fig. 2~a!. The cross-
over frequency is not changed by taking into account
cascade timet5aÞ1, as can be seen in Fig. 2~b! which
shows the response amplitude as a function of frequency
a52.7.

We have considered here only the case, where the K
mogorov constantb56. For a generalb, the crossover fre-
quency is atvcross.(6/b)3/2, as can be seen from solutio
~17!. This means, that the crossover from the regime of c
stant amplitude to the regime of 1/v decay takes place at
smaller frequency ifb is larger. The positions of the respons
maxima, however, are only slightly shifted by a differentb.

In conclusion, as long as the modulation frequency of
energy input rate is smaller than 1, i.e., the large eddy tu
over time is shorter than the period of the forcing, the syst
has time to follow the periodic modulations with an almo
constant amplitude. For higher frequencies instead, the o
lations become too fast for the system to follow, and the
fore, the response becomes weaker and weaker, and p
shifted. Then the system experiences the fast modula
more and more as a constant average energy input, and
oscillations of the response vanish as 1/v. This high fre-
quency behavior has also been found for spin systems dr
by an oscillating magnetic field@20#.

B. Response maxima

In Fig. 2 we have seen that there are certain frequen
for which the amplitude of the response becomes large
very small. Mathematically, these response extrema origin
from the minima and maxima of the denominator in Eq.~17!,

N~v!5vF 11a21S 11
6

Re0

v
D 2

22a cosvt

22

11
6

Re0

v
sinvtG . ~20!

t,
s

e

nd
se
8-5



v

nc
qs

f
Th

n-

em
to
o

s

e
at
he
ue

se

-

h

um
n

th

e
e

is-
e of

of

issi-

e

m

t

t

von der HEYDT, GROSSMANN, AND LOHSE PHYSICAL REVIEW E67, 046308 ~2003!
We calculate the extrema ofN(v) numerically. The first few
of them are indicated by the small arrows in Fig. 2~a!. The
lowest frequency is near tov r1.p/(3t).1. There, the first
and strongest maximum of the response can be obser
where the amplitude becomes as high asA.4.2. Note, that
this frequency is nearly equal to the crossover freque
vcross between the low and high frequency regimes of E
~18! and~19! only in this particular case, wherea51. If we
assume an energy cascade timet5a52.7 the frequencies o
the maxima are shifted towards smaller frequencies.
height of the first maximum is decreased, i.e.,A.1.2,
whereas the height of the following maxima is slightly i
creased, see Fig. 2~b!. For very large frequencies,v@1,
we can estimate the frequencies of the response extr
also analytically. Then the two terms in the denomina
}@11(6/Re0)#/v can be neglected, and the extrema
N(v) can be approximated by the extrema of cosvt,

v r~n!.n
p

t
, n50,61,62, . . . . ~21!

Now the amplitude ofD is at maximum for frequencie
v r(n) with evenn, and at minimum forv r(n) with odd n.
The distance between two maximum~or minimum! ampli-
tudes is 2p/t as indicated by the horizontal arrow in th
inset of Fig. 2. For the first maxima and minima at moder
frequencies this estimate is an approximation only; also t
distances are not yet constant as they are for high freq
cies.

In the high frequency limit, the oscillation of the respon
at the frequenciesv r of maximum or minimum amplitude is
phase shifted byf r(m)5(2m11)p/2, m561,63, . . . :

D~ t !5e
S 2

3
1

6

Re0
D

v r

~216a!cosv r t

~17a!2
}sin~v r t1f r !.

~22!

The prefactor (216a) is always negative, i.e., at the re
sponse extrema we haveD(t)}2cosvrt5sin(vrt1fr). In
Fig. 3 the phase shiftf(v), calculated from solution~17!, is
shown as a function of the driving frequencyv for all fre-
quencies. As the phase shift starts withf(v50)50 and
changes continuously with increasing frequency, we find t
only m51 is possible for the phase shiftf r at the response
extrema. The frequencies of the maximum and minim
amplitudes ofD are indicated by arrows. The only exceptio
is the first maximum, where the approximation forv r , Eq.
~21! does not yet hold. There, the phase shift is near top/2,
corresponding tom50.

Another phase shift in this model is the one between
responseD(t) and the energy dissipation ratee(t). Accord-
ing to Eq. ~7! the dissipation rate is phase shifted by2vt
with respect to the responseD(t), i.e., this shift is linearly
growing with increasing frequencyv. At the response
maxima and minima the phase shift is2v rt.2np.

The physics behind these response extrema can be
plained as follows: The time delayt can be regarded as th
04630
ed,

y
.

e

a
r
f

e
ir
n-

at

e

x-

~average! time which the input energy needs before it is d
sipated at small scales. In the case of maximum amplitud
the response the time delayt is a multiple jT of the period
T52p/v of the forcing, whereas for the frequencies
minimum amplitude the delayt has an additionalT/2.
Therefore, at the extrema of the response, the energy d
pation rate and the response are either in phase~maxima! or
antiphase~minima!. In the latter case the oscillation of th

FIG. 3. ~a! Phase shiftf(v) as a function of the modulation
frequencyv for weak modulation strengthe50.1, and Re05104.
The upper~lower! arrows indicate the frequencies of maximu
~minimum! amplitude of the response. For smallv the phase
f(v)}vt behaves linearly.

FIG. 4. Successive approximations of the delay timet: First,
constant approximationt05a ~solid lines!; second, time-dependen
approximationt1 ~dotted lines!; third, approximationt2 ~dashed
lines!; fourth, approximationt3 ~dashed dotted lines! for the delay
time t, see Eqs.~23! and ~24!. ~a! vtL

050.01. ~b! vtL
051.06. ~c!

vtL
0510. ~d! vtL

05102. In ~a!, ~c!, and ~d! the time-dependen
t i(t) for i 51,2,3 are indistinguishable.
8-6
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response is strongly reduced. If, on the other hand, the d
ing frequency is such that the response and the dissipa
rate are in phase, the transport of energy through the sys
is very effective and leads to an enhanced oscillation. At
response maxima as well as at the minima the phase
between energy input rate and response isf r53p/2.

C. Quality of the approximation for the delay t

In the above calculations we made an approximation
the time scalet of the cascade process. In the lineariz
model, we assumedt to be a constant,t5t05a. Now we

TABLE I. Relative errorsd1 , d2 according to Eqs.~25! and~26!
made in the two relevant terms of Eq.~15! by using the constan
time delayt05a instead of the higher order approximationst i(t)
for t.

d1(t1) d1(t2) d1(t3)

vtL
050.01 2.931024 2.931024 2.931024

vtL
051.06 0.15 0.22 0.23

vtL
0510 0.016 0.016 0.016

vtL
05100 0.046 0.046 0.046

d2(t1) d2(t2) d2(t3)

vtL
050.01 1.731024 1.731024 1.731024

vtL
051.06 0.22 0.11 0.12

vtL
0510 0.013 0.013 0.013

vtL
05100 0.036 0.036 0.036
x
x

o
ne

ib
w
t
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check a posteriori the quality of this approximation. The
solution ~17! of linearized equation~15! is used to compute
the ‘‘correct’’ delay timet step by step: The next approx
mation fort is

t1~ t !5
a

A11D~ t !
, ~23!

where the delay in Eq.~13! is still neglected. Further step
are

t2~ t !5
a

A11D~ t2t1!
,

~24!

t3~ t !5
a

A11D~ t2t2!
,

etc. In Fig. 4t05a, t1 , t2, andt3 are plotted for different
frequencies. Forv50.01, the difference betweent1 , t2,
andt3 is not visible. The variation of thet i(t), (i 51,2,3), is
largest at the frequency where the amplitude ofD is maxi-
mum, i.e., atv.1/t0. For all other frequencies, including a
the response maxima, the variation of thet i(t) is much
smaller thant0 and 1/v. At these frequencies it seems re
sonable to approximatet by the constantt05a. In Eq. ~15!
the delayt enters into two terms, in}] tD(t2t) on the lhs,
and in}D(t2t) on the rhs. We calculate the relative err
of these terms ift5t0 instead oft5t i ( i 51,2,3) is em-
ployed, using solution~17! for D:
d1~t i !5AE
0

2p/v

$cos@v~ t2t0!1f#2cos@v~ t2t i !1f#%2dt

E
0

2p/v

cos2@v~ t2t0!1f#dt

~25!

for the term on the lhs, and

d2~t i !5AE
0

2p/v

$sin@v~ t2t0!1f#2sin@v~ t2t i !1f#%2dt

E
0

2p/v

sin2@v~ t2t0!1f#dt

~26!
onse
of

on
c
pli-
the
e to
for the term on the rhs. The errorsd1 andd2 are summarized
in Table I for the four chosen frequencies of Fig. 4. As e
pected, the errors are largest for the frequency with ma
mum response amplitude,v51.06, where it becomes up t
23%. Forv510 and beyond it is between 1 and 5%. If o
would allow for a time dependence oft in Eq. ~15! the
response maxima would probably become broader, poss
less pronounced. However, within this mean-field theory
anyhow can make only approximate statements about
-
i-

ly
e
he

frequencies and the values of the amplitudes at the resp
maxima. Namely, in the mean-field approach the effects
the fluctuations on the structure function are neglected.

Therefore we believe that even with this approximati
for the delay timet we can qualitatively predict the basi
features of the system, which are the decrease of the am
tude of the response for high modulation frequencies, and
existence of response maxima at certain frequencies du
the finite time needed by the energy cascade process.
8-7
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von der HEYDT, GROSSMANN, AND LOHSE PHYSICAL REVIEW E67, 046308 ~2003!
The validity of the approximation fort will improve for
smaller amplitudese of the modulation. However, fo
smaller e the total amplitudeeA of the response will de-
crease as well and finally the amplitude of the respo
maxima and minima will become so small that, in expe
ments or numerical simulations, the fluctuations will
larger than the maxima and minima.

IV. AN ALTERNATIVE ARGUMENT TO INTRODUCE THE
TIME DELAY

The energy balance equation~4! and the expression fo
the energy dissipation ratee, Eq. ~6!, hold for stationary
systems. The time dependence of the quantities in th
equations in Sec. II has been introduceda posterioriby ar-
guments based on the picture of the energy cascade. It
not derived from the Navier Stokes equation, but is a m
eling ansatz. Therefore, there are several arguments to i
duce this time dependence. We want to discuss here ano
way of arguments which leads to a slightly different equat
for the response. The idea is to start from an equation th
already integrated over all scales, i.e., does not depend o
scaler any more in contrast to Eq.~4! in Sec. II. The total
energy per unit mass of the flow isE.3u1,rms

2 /2. It is basi-
cally determined by the energy of the large scales. T
change with time of this energy equals the dissipation r
and the energy input rate

d

dt
E~ t !52e~ t !1ein~ t !. ~27!

As the energy needs a timet to travel down the eddy cas
cade before it is dissipated,e at timet may be expressed with
Eq. ~7! andE5 1

4 D(L) by the total energyE at time t2t:

e~ t !5ce„E~ t2t!…S 2

3D 3/2@E~ t2t!#3/2

L
.

Together with the approximation force , Eq. ~8!, we get

d

dt
E~ t !52

@4E~ t2t!#3/2

b3/2L
26

n

L2
E~ t2t!1ein~ t !.

~28!

As in Sec. II we express the energyE by the Reynolds num-
ber,E53n Re2/(2L2), write the energy input in terms of th
stationary Reynolds number Re0, Eq. ~11!, and introduce the
reduced Reynolds number, R(t)5Re(t)/Re0. Then, in time
units of tL

0

d

dt
R2~ t !52

2

3 S 6

bD 3/2

@R2~ t2t!#3/22
6

Re0
R2~ t2t!

1F2

3 S 6

bD 3/2

1
6

Re0
G~11e sinvt !. ~29!
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The only difference between this equation and the previ
one, derived in Sec. II@Eq. ~12!#, is that here the term
}dR2(t2t)/dt is missing.

If we solve Eq.~29! within the same linear approximatio
as employed in Sec. III for Eq.~12!, we find the same fea
tures for the response, see Fig. 5. The solution of the lin
ized equation obtained from Eq.~29! reads

D~ t !5e
S 2

3
1

6

Re0
D

v

F2cosvt1

11
6

Re0

v
sin@v~ t1t!#G

11S 11
6

Re0

v
D 2

22

11
6

Re0

v
sinvt

.

~30!

Here, we have again setb56 for simplicity. The response
maxima are also observed, but they are less pronounced
slightly shifted. The amplitude at the first~and strongest!
maximum has only a value ofAE.1.6. In the linear re-
sponse solution~17! of the previous model the terms orig
nating from the second term on the lhs of Eq.~15! were
responsible for the strong variation of the amplitude at h
frequencies. These terms are missing in the present mo
Therefore, we observe weaker amplitude maxima a

FIG. 5. AmplitudeA of the responseD(t) as a function of the
driving frequency v ~log-log scale! for weak modulations (e
50.1) of the input rateein , and Re05104 calculated from Eq.~29!
in linear approximation. The dashed line denotes the low freque
limit of the oscillation amplitude, 2/3, and the dotted line corr
sponds to the mean trend of the high frequency limit,2/(3vtL

0).
Inset, linear-scale plot of the response amplitude versus freque
The small arrows indicate the frequencies of maximum amplitu
v r ~in units of tL

0) calculated from the minima of the denominat
in Eq. ~30!. The horizontal arrow denotes the frequency distan
Dv ~in units of tL

0) between two frequencies for which the amp
tude is maximal~or minimal!. It is Dv.2p/t for high frequencies.
8-8
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RESPONSE MAXIMA IN MODULATED TURBULENCE PHYSICAL REVIEW E67, 046308 ~2003!
minima at high frequencies in this model, cf. Fig. 5. If w
take the extended cascade timet5a.1 into acount, e.g.a
52.7, the response maxima are shifted towards smaller
quencies as discussed in Sec. III B. However, in this mo
the heights of all maxima including the first one is th
slightly increased. At the response maxima the energy
cade time scalet and the period of the driving modulatio
are not multiples of each other as they are in the previ
model, i.e., the response and the energy dissipation rate
not exactly in phase. If one would observe the respo
maxima in experiments or numerical simulations, one co
distinguish between the two models by studying the ra
between the frequencies of the response maxima and the
cade time scalet. The phase shiftf between the energy
input rate and the response becomes negative and osci
around 2p/2 for higher frequencies. At the response e
trema it is near tof r.2p/2. Note that in the previous
model the phase shift was always positive.

The two arguments to introduce the time delay are sim
and are based on the same physical idea of a finite time l
of the cascade process. However, we tend to prefer the
one, Sec. II, because it introduces the time dependence
earlier stage. Equation~4! still resolves the scalesr and it is
therefore closer to the Navier-Stokes equation than Eq.~27!.

V. RESPONSE OF TURBULENT FLOW TO A
MODULATED DRIVING FORCE

In the previous sections we have studied the effect o
modulated energy input rate on turbulent flow. However,
energy input rate may not be a quantity that can be ea
controlled in experiments. In some experiments it is m
convenient to modulate the driving force instead. Then
resulting energy input rate as well as the total energy of
system can be considered as a response of the system. T
fore, in this section, we show how to treat this slightly mo
fied case within the variable range mean-field theory a
i
on
ns

04630
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what differences we expect in these two different respo
functions.

The derivation of Eq.~9! for the response of the system
terms of the structure functionD(L,t) remains the same a
explained in Sec. II. The energy input rateein(t) in that
equation is given byein(t)5 ^̂ ui

(r )(x,t) f i
(r )(x,t)&&. To intro-

duce a modulated forcing instead of a modulated energy
put rate, we therefore assume

ein~ t !.D~L,t !1/2f ~ t !5D~L,t !1/2f 0~11efsinvt !.
~31!

Here, f 0 is the strength of the~stationary! forcing andef is
the amplitude of the modulation. As has been discusse
Sec. II, we express the response in terms of the Reyn
number Re(t) and relate the stationary Reynolds number R0
with the stationary forcing strengthf 0, similar to Eq.~11!.
Then we introduce the reduced Reynolds number Rt)
5Re(t)/Re0 and the dimensionless timet̃ 5t/tL

0 . The tilde
is dropped in the following. The analogous equation to~12!
becomes

d„R2~ t !2aR2~ t2t!…

dt
52

2

3
@R2~ t2t!#3/22

6

Re0
R2~ t2t!

1@R2~ t !#1/2S 2

3
1

6

Re0
D

3~11efsinvt !, ~32!

whereb is set tob56. We again assume small modulatio
amplitudes, i.e.,ef!1, and linearize Eq.~32! in D(t)
[R2(t)21. As before, the time delayt is approximated by
the time-independent constanta. With the same ansatz Eq
~16! as in Sec. III A for modulated energy input rate, th
linearized equation can be solved analytically, and the so
tion reads
D~ t !5ef

S 2

3
1

6

Re0
D

v
F2cosvt1a cos@v~ t1t!#1

11
6

Re0

v
sin@v~ t1t!#2

S 2

3
1

6

Re0
D

2v
sinvtG

3F 11a21S 11
6

Re0

v
D 2

1S S 2

3
1

6

Re0
D

2v
D 2

22a cosvt22

11
6

Re0

v
sinvt

1

S 2

3
1

6

Re0
D

v
S a sinvt2

11
6

Re0

v
cosvtD G21

. ~33!
re-

ima
This solution is very similar to solution~17! for a modulated
energy input rate, but it contains some additional terms
both the numerator and the denominator. These terms
slightly modify the frequency dependence of the respo
D(t).
n
ly
e

In Fig. 6 the amplitudeA(v) of the responseD is plotted
as a function of driving frequency for Re05104. As for the
modulated energy input rate we note that the amplitude
mains constant for low frequencies and decreases as}1/v
for high frequencies. Also the response maxima and min
8-9
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can be observed. Quantitatively, the low frequency limit fo
modulated forcing is different from the modulated ener
input rate case. For low driving frequencies,v!1/t, we can
approximate Eq.~33! by

D~ t !.ef

2

3v S 1

v
sin@v~ t1t!#2

1

3v
sinvt D

S 1

v D 2

1S 1

3v D 2

2
2

3v2 cosvt

. ~34!

The terms 6/Re0!1 have been omitted here for simplicity. I
the limit vt→0, with sinvt→0 and cosvt→1, the ampli-
tude A of the response@cf. Eq. ~16!# becomes equal to on
instead of two thirds@cf. Eq. ~18!# for a modulated energy
input rate. The frequencies of the reponse maxima
minima are determined by the extrema of the denominato
solution ~33!. They are slightly shifted as compared to t
case with modulated energy input rate@Eq. ~17!#. The ampli-
tude at the first maximum is smaller than in the case w
modulated energy input rate, namely,AE.2.7. However, in
the limit of very high driving frequencies,v@1/t, Eq. ~33!
can be approximated by Eq.~19!, i.e., the response ampl
tudes of both cases become identical.

FIG. 6. AmplitudeA of the responseD(t) as a function of the
driving frequencyv ~log-log scale! for weak modulations (ef

50.1) of the driving forcef, and Re05104. The time scale of the
energy cascade is set tot5a51. The dashed line denotes the lo
frequency limit of the oscillation amplitude, 1, and the dotted li
corresponds to the mean trend of the high frequency lim
2/(3vtL

0). The dashed-dotted line represents the amplitude of
resulting energy input rateein(t). Inset, linear-scale plot of the re
sponse amplitude~solid line! and the energy input amplitud
~dashed-dotted line! versus frequency. The small arrows indicate t
frequenciesv r ~in units of tL

0) of the response extrema calculate
from the extrema of the denominator in Eq.~33!. The horizontal
arrow denotes the frequency distanceDv ~in units of tL

0) between
two frequencies for which the amplitude is maximal~or minimal!. It
is Dv.2p/t for high frequencies.
04630
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It was pointed out in the beginning of this section that,
we modulate the driving force, the energy input rate is no
controlled quantity, but can be considered as well as a
sponse of the system. This has been measured in a re
experimental study by Cadotet al. @21#. Within the mean-
field theory the energy input rate for a modulated drivi
force can be calculated as

ein~ t !

ein,0
5A11D~ t !~11efsinvt !, ~35!

whereein,05 ^̂ DL,0
1/2f 0&& is the stationary energy input rate fo

constant forcing without modulation. In order to extract t
amplitude of the energy input rate, we fit it by a function
the formein(t)/ein,0511efAein

sin@v(t1f)#. This is justified

as long as the modulation amplitudeef is small, i.e.,ef
!1, because thenD(t) is of the same order of magnitude a
ef and Eq. ~35! can be approximated byein(t)/ein,021
. 1

2 D(t)1efsinvt1O(D2). The amplitudeAein
of the energy

input rate is included in Fig. 6 as a dashed-dotted line.
low driving frequencies,v!1/t, the amplitudeAein

is nearly

constant and is 3/2, whereas for high frequencies it decre
and finally saturates at one. Also the response maxima ca
observed in the energy input rate: At the same frequenc
where the responseD shows amplitude maxima, we observ
a maximum directly followed by a minimum in the ampl
tude of the energy input rate.

In conclusion, if the driving force instead of the energ
input rate is modulated, the general behavior of the respo
in terms of the second-order structure function on the la
scale remains the same, including the response maxima
minima. For low driving frequencies, the amplitude of th
response becomes equal to the amplitude of the forcing
addition, the energy input rate can be regarded as a diffe
measure for the response of the system, which also show
response maxima at frequencies connected with the en
cascade time scalet.

VI. CONCLUSIONS

We calculated the response of isotropic and homogene
turbulence to a weak modulation of the energy input rateein
within a mean-field theory. For low frequencies the syst
follows the input rate modulation whereas for high freque
cies the amplitude of the response decreases}1/v. Due to
the intrinsic time scale of the system, the eddy-turnover ti
t, which also characterizes the energy transport time do
the eddy cascade, there are certain frequencies,v r
.n(p/t), where the amplitude of the response is either
creased or decreased. At these frequencies the phase shf
between the energy input rate and the response isf r
.3p/2. The response extrema occur when the ed
turnover time is an even or odd multiple of half the modu
tion periodT/25p/v, respectively. In the case of respon
maxima, the energy dissipation rate and the response o
system are in phase. This can be understood as a very e
tive transport of energy through the system. At the amplitu
minima, instead, the response of the system is strongly

t,
e
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RESPONSE MAXIMA IN MODULATED TURBULENCE PHYSICAL REVIEW E67, 046308 ~2003!
duced. Then, the energy dissipation rate and the respons
exactly antiphased.

In the mean-field approach the fluctuations of the ene
flow rate through the system and of the large eddy turno
time are neglected. In experiment or numerical simulat
the fluctuations are, however, present. They may lead
broader and less pronounced response maxima, i.e., p
wash out the response maxima and minima.

With increasing modulation amplitudee of the energy in-
put rate the response maxima are expected to become
significant due to the better signal to fluctuation ratio. B
remember that for higher modulation amplitudese, the time
scale of the eddy cascade, which enters into our model
time delay, becomes time dependent. This as well could
to less pronounced response maxima as discussed in
III C.

A way to check if the characteristic feature of the r
sponse maxima and minima can still be well identified un
the influence of fluctuations, would be to perform numeri
simulations of the Navier Stokes equation with a modula
driving. However, as not only high Reynolds numbers
needed to achieve fully developed, isotropic and homo
neous turbulence, but also the response as a function of
for a wide range of frequencies has to be calculated,
computational effort would be too high. Therefore, numeri
simulations within two dynamical cascade models of turb
lence, the GOY shell model@22–28# and the reduced wav
vector set approximation~REWA! @29–31#, were performed
@32#. These models take into account the fluctuations. T
basic trend of the frequency dependence of the response
plitude as calculated within the mean-field model can be
produced in both numerical models. We also clearly find
main maximum in both models although it is of cour
washed out by the fluctuations. The higher maxima a
minima, however, seem to be completely washed out.
a

tte

h
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Also a recent experimental study of modulated turbulen
by Cadotet al. @21# showed evidence for the existence of t
response maxima. This experiment may be comparable
our study of a modulated driving force as discussed in S
V. The response maxima were measured in the amplitud
the energy input rate. In addition, a constant response am
tude for low driving frequencies and a 1/v-decay of the ve-
locity response amplitude for large frequencies has been
served. This is in agreement with the 1/v-decay of the
energy response amplitude which we have found in
mean-field model. The velocity response@u(t)2u0#/u0
5Du(t), whereu(t) is the measured velocity modulus an
u0, the~stationary! mean velocity, is connected to the ener
responseD(t) that we have calculated in this paper by
1D(t)5u(t)2/u0

25@11Du(t)#2.112Du(t)1O(Du
2). As

only small modulation amplitudes are considered, the te
1O(Du

2) will be negligible becauseDu!1. Therefore, the
experimentally measured 1/v decay of the amplitudeDu of
the velocity response is just what one would expect from
theoretical predictionD}1/v for the amplitude of the energy
response.

We hope that the present work will stimulate even mo
experimental and numercial studies on the role of the ene
cascade time scale in modulated turbulence.
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