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Response maxima in modulated turbulence
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Isotropic and homogeneous turbulence driven by an energy input modulated in time is studied within a
variable range mean-field theory. The response of the system, observed in the second-order moment of the
large-scale velocity differencB(L,t) ={(u(x+L)—u(x))2)=Re(t), is calculated for varying modulation
frequencies» and weak modulation amplitudes. For low frequencies the system follows the modulation of the
driving with almost constant amplitude, whereas for higher driving frequencies the amplitude of the response
decreases on averagel/w. In addition, at certain frequencies the amplitude of the response either almost
vanishes or is strongly enhanced. These frequencies are connected with the frequency scale of the energy
cascade and multiples thereof.
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[. INTRODUCTION problem is the subject of the present paper. From a more
fundamental point of view, studying modulated turbulence
Many turbulent flows are characterized by time-dependentvill give more insight into the time scales in particular of the
forcing. For example, the atmosphere of the earth is drivedurbulent energy cascade.
by the heating through the radiation from the sun, the blood In a previous study8], the time evolution of the Rey-
flow in the arteries by the heart beats, etc. Also technicalolds number in a periodically kicked flow was analyzed. If
flows like the flow in the intake of a combustion engine arethe kicking strength and the kicking frequency are large
periodically forced. Another example are estuaries and adjs&nough, the Reynolds number grows and saturates on a level,
cent coastal waters, where tidal straining leads to a periodi@hich depends on the frequency and the kicking strength.
alternation of stratification and turbulent mixing of saline The theoretical results from R¢B] have later been verified
and fresh watef1]. This results in a periodically varying numerically in Ref[9]. .
energy dissipation in the upper water layers with a 12 h In this present paper, we study a related type of forcing.
period. Rather than periodically kicking the boundary conditions of
The effect of a periodically increasing and decreasing enbomogeneous, isotropic turbulence as in R8f, we force
ergy input on turbulent flow depends on the frequency of théhe flow through a time-dependent modulation of the energy
driving. This has been studied in Rd®] for a turbulent input ratee;,(t) on the outer length scale,
channel flow where the modulations of the input rate are
generated near the wall. It was found that for high frequen- €in(t) =eg(1+esin(wt)). (1)
cies these oscillations are strongly damped with distance
from the walls, such that they do not reach the inner part offhis means that the flow is stationarily stirred€p) to
the logarithmic boundary layer. Another example ismaintain the turbulent flow and, in addition, a time-
Rayleigh-Benard convection: the interaction between th&lependent modulation of the forcing:é,e) is applied, O
large-scale circulating flow and the thermal plumes detach=e<1. The response of the system to the time-dependent
ing from the upper and the lower boundary layers acts as atirring can be observed e.g. in the second-order velocity
stochastically influenced time-dependent forcing on the turstructure function of the flow field, in particular at the outer
bulent flow in the inner region of the cell, as recently shownscaleL, D(L,t)={[u(x+L,t)—u(x,t)]?). This D(L,t) is
in Refs.[3-5]. In a von Kaman flow between two coaxial equivalent to a Reynolds number, which we define as Re
corotating diskg6,7], the energy input rate is not a constant =uy ,,sL/v. Here,u; () is the rms of one component of
if the disks are kept rotating at constant speed, but is perithe velocity, varying with time. Then, disregarding correla-
odically varying with a geometry-dependent frequency dueions on scald.,
to a coherent vortex precessing around the axis of rotation. In

this case it was also shown, that the statistical properties of 61°Re(t)?
the turbulent fluctuations are affected by the time depen- D(L,t):2<<u2)>=6uirms(t):—2. (2
dence of the mean flow. However, the averaged velocity L

power spectrum still shows Kolmogorov scaling over a

broad frequency range, in addition to a low frequency peak The energy put into the system at tirhwill travel down

corresponding to the oscillation of the mean flow. the energy cascade towards smaller scales and will, on aver-
These results raise the question how global quantities of age, be dissipated at time- 7, i.e., with a mean time delay

turbulent flow, such as, e.g., the total energy or the Reynolds. In other words, the dissipation at timalepends on how

number, respond to a time-dependent energy input. Thismuch energy has been in the large scales at time. We
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approximately describe the relevant time scafer the cas-  scalevelocity u" and a(strongly fluctuatiny subscaleve-
cade process by the large eddy turnover timet that time  |ocity u("). The spatial average is performed over a sphere of

t=m, variable radiusr, and will be denoted asi"(x)=(u(x
+Y))§ =31 (413 [y < dPyu(x+y).
e L L 3 The energy input rate;,, which in the statistically sta-

L Urrms(t—7)  D(L,t— 7-)/6' tionary situation equals the total energy dissipation eatis
balanced in accordance with the superscale and subscale de-

More accurately, the time scale of the energy cascade isomposition by the energy dissipation rate on all scales
given by the sum over the eddy turnover times on all decayarger thanr complemented by the energy transfer across
steps,7=2,7,. In this sum, the largest contribution is the scaler from the superscales to the subscales.dh a sim-
largest eddy turnover time_. For K41 scaling the smaller plified version the derived energy balance equation reads
eddiesr,/L= 4", where 0<6<1, have turnover times,
=7.6°". Thus r=7,.2,6°"®*=r,a. The common choice 3 [D(r)]1?\1 d
8=1/2 impliesa=2.7. Putting into intermittency corrections En=€e=35|V T3 T ED(”’ )
gives slightly smaller values dd. In this present paper we
shall discuss the influence af by comparing the limiting  \yhere is the kinematic viscosity and is the Kolmogorov
casesa=2.7 anda=1. Experimentally, in principle the pa- constant. In the viscous subrange, wheigsmaller than the
rametera could be measured by analyzing the positions koimogorov length scaley, r< 7, the dissipation term, i.e.,
heights and widths of the response maxima, thus giving inghe first term on the rhs of E¢4), is dominating, and there-
formation about the energy casgad? time. fore the solution of Eq(4) is D(r)=er?/(3v). In the inertial

If the external modulation period is much larger than - gybrangdISR), instead, wherey<r <L, most of the energy
this intrinsic time scaler, wr<1, the turbulent flow will ¢ the eddies is transfered down scale. This energy transfer
have time to adjust and will follow the periodic variations of 4t E,, which is given by the second term on the rhs of Eq.

. . 71 . _ -
the stirring. If, on the other handy ™~ is decreased and be (4), is determined by the decorrelation rdter) of the sub-

comes much smaller than the system can fOI.IOW _Iess and scale eddies, which itself is mainly governed by the energy
less, and feels, at small scales, an average tlme-mdependedqt oo ; : .
energy input iSsipation rate, see Ref[10] for details. Note again that in

We calculate the time dependence of the responsghe stationary case the energy dissipation rate equals the en-

D(L.t)~Dyo(L) to a periodically modulated energy input ergy input ratee=¢€;, . In the ISR the second term on the rhs

s ) . is the leading one. Then the solution of Ed) is D(r)
rate, Eq.(1), within a variable scale mean-field thedriQ] - 23 i
for various driving frequenciesv. Here, Dy(L) is the =Db(er)=". The full energy rate balance equatiof) inter

) . . E)olates between these two limits. The Kolmogorov constant
second-order structure function for a stationary energy inpu

ratee~. In aeneral. the enerayv flow rate throuah the svstem iSb can be calculated within this theory to be= 6.3 which is
0-NY ' 9y 9 y consistent with the experimental val{l-14.

an intermittently fluctuating quantity. Therefore, the cascade In our case the flow is not stationary but experiences a

time as well as the response of the system are ﬂucwatinghodulated energy input rags,(t). Thereforeg, , the struc-
. n:»

These fluctuations are neglected by the mean-field theory i : W ; :

the present study. However, on average these quctuationP eregrlfgcémm)’Fﬁﬂﬂet?riggs'ggtfdnd{tﬁg} tEecE.rrgélc))r\lNltlkI\e ths
result in a mean downscale transport of energy which con(—)fE @ a ea.rs taking into ,account the nonstationarity of
trols the overall properties of the flow. Therefore, we believe d- P ’ 9 ty

that within this mean-field approach we can grasp the mairIihe flow

features of the flow correctly. 3 D(r2\1 g
The method is explained in the following section. The en(t)==| v+ (r.v = —D(r,t)
behavior of the response as a function of the driving fre- 2 b3e(t) | I or

guency w in the case of weak modulations of the energy
input rate is analyzed in Sec. Ill. In Sec. IV we discuss an Ei Q) (r
. X . . + Cui?(x,t) -ut(x,1) ). (5)
alternative way to introduce time dependence into the sys- 2 9t
tem. The slightly different case of a modulated driving force ) N
instead of a modulated energy input rate is presented in Se¢he correlation of the superscale velocities can be

V. We summarize our results in Sec. VI. written as  (u(”(x,t) - u(x,t) )= (uA(x,t) h— 3 ((D(y4
+y2,t)>(y’1))§,’2). Following the arguments in Reff10] for the
Il. METHOD AND MODEL derivation of Eq.(4), we neglect multiple spatial averaging,

ie, ((D(y1 Y2, ) =(D(y, 1)

In the stationary case the energy dissipation rate
_=v{(au;/9x;)(du;19x;)) can be related to the large scale
guantities by

In Ref. [10] an energy balance equation for the second
order velocity structure function D(r)={[u(x+r)
—u(x)]?) for stationary, homogeneous, and isotropic turbu
lence has been derived within a variable range mean-fiel

theory. Hereyp is the velocity and the brackefs - - )) denote 4 [D(L)]¥2
the ensemble average. One of the essentials of this theory is e=c, ”mS:CE(D(L))(—_ (6)
to divide the velocity field into dspatially averagedsuper- L 6%
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Extending this expression to the time-dependent case, we | 2 ¢ 3/2

have to take into account that the energy which is fed into the —- &(Rez(t) —aR&(t—17))=— §< 5) [RE(t—17)]3?
system on large scales at a timwill be dissipated on small

scales at a later time+ 7. We model this as follows: The —BRE(t— 1)

energy dissipation rate at tintes assumed to depend on the

large-scal ntiti i : eol? .
arge-scale qual tities at tine- 03 (1+esmwt).
14

2
"3
[D(L,t—7)]3"?

e(t)=c(D(L,t—17)) 632

(7) (10)
Here, we have inserted the time-dependent energy input rate,

c. is a dimensionless function which is approximately con-Ed: (1)- In the case a of constant energy input rate, ge.,
stant (=1) for very large Reynolds numbefd5,16. In =0, Eq.(10) simplifies to

Refs.[17-19 it was shown that in general depends on the 6\ 32 o L4

Reynolds number, and therefore &{L). We here use an 0=—— _) Re-6Re&+- —ep, (11)
approximation of the expression derived in Héf7] for high 3\b 348

Reynolds numbers,

relating the stationary Reynolds numberRethe stationary

9 6'3 /9.2 (6\32 o input rate,L4eo(Rq))/v3=cE(RQ))Reg. Introducing the re-
c.(D(L)=—=+ _) +(_) :(_> — duced Reynolds number B&ERe(t)/Re, and the nondi-
Re b Re b Re mensional time/ 7 ast (analogously forr andw), Eq.(10)
6372 v\/T becomes
:<B) CNoy ® R -aRAt-1] 2(6 o
The delay timer is determined by the implicit time-delay
equation(3). Assuming that the solution of Ed4) in the _ iRZ(t—T)
ISR, D(r)=b(er)??, is valid up tor=L, we can write Rey
D(r)=(r/L)?*D(L). Within our model, where we connect 2632
small- and large-scale quantities at different times, the struc- + {_(_ +—|(1+esinwt).
ture function on scale<L at timet will depend on the 3\b Re
large-scale structure function at an earlier titrer, i.e., we (12)

introduce D(r,t)=(r/L)?®*D(L,t—17) into Eq. (5). After

multiplying with r, Eq. (5) can be integrated from=0 up to ~ Here, 7{=L/uf ¢ is the large eddy turnover time of the

the outer length scale=L: stationary flow. R() is of order one. The delay time in
units of the time scale? is given by

1 d(D(Lt) DLt ) [D(L,t—7)]%? a
A+ H - L T e — —
4 dt L 32 T= R(—7)" (13
3vD(L,t—17) Equation(12) describes the time evolution ofR), which is
B 2] 2 the square of the Reynolds number of a flow exposed to a
modulated energy input ratéeq. (1)], normalized by the
+e,(t), (9)  square of the Reynolds number of a flow where only a con-

stant, time-independent, forcing is applied.

where o= 2. originates from the integration. In R4f10] it
has been shown that, in the isotropic and homogenous case, I RESPONSE OF TURBULENT FLOW TO ENERGY
e, is independent of the scateas the forcing is assumed to INPUT RATE MODULATIONS
act on the largest scaleonly. In the stationary case the lhs A. General trend
of Eqg. (9) vanishes, and together with Eq¥) and (8), Eq.
(9) corresponds te=eg;, . Equation(9) contains only large-
scale quantities. Effects of fluctuations in the energy inpu
rate on the statistical properties of the turbulent flow as ob-
served in _Ref.[6] V\_/ould influence the scaling behavi_or of AM)=RA(t)—1 (14)
D(r,t) on intermediate scales and therefore lead to differ-
ent values of the factaw, but the structure of Eq9) would  has a small amplitude, and we can linearize E). The
remain the same. time delayr is approximated by a time-independent constant

Using Eq.(2), we express the second-order structure funcwhich in our time unitSrE is simplya. This approximation is
tion D(L,t) in Eq. (9) in terms of the Reynolds number justified as long agA|<1. In Sec. lll C we shall discuss the
Ref(t): limits of this approximation. We first consider=1 which

In the present study we shall restrict ourselves to the case
f weak amplitude modulation, i.eg in Eq. (1) is small.
hen we expect that also the oscillating response
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means that the cascade timeis taken as the large eddy can be solved analytically. The solution to linear equation

turnover timeTE. The resulting equation of motion for the
response\(t),

(15) can be calculated using the ansatz

d 6\%2 6 A(t)=eA(w)sin(wt+ ¢). (16)
a[A(t)—aA(t_T)]——[(B) +@}A(t—7)
216132 6 Here,A(w) is the amplitude, and@ is the phase shift of the
+ 3lp +R— esinot, response which also depends @ninserting this expression
® into Eq.(15) gives the explicit solution of the linear response
(15  equation(15),
|
6 3/2 6
2(6\%2 6 Re
= = —-— —coswt+acod w(t+7)]+ sifw(t+7)]
3\b Rey
A(t)=e > (6 3/2+ 612 (6)3/2+ 6 17
b/ " Re b/ "Re
1+ a’+ TQ) —2acoswT—2 " Q)Sian

In the following, we set the Kolmogorov constant 6 for
simplicity, which is near to the calculated value §18] and
to the experimental value in the range 6H49—14. To re-
cover the expressions for a gendvaine has to replace in the

following results the terms (£6/Rg) and ¢+ 6/Reg) by
[(6/b)%?+6/Re] and[2(6/b)%?+6/Rg)], respectively. The

Figure 2a) shows the amplitud&(w) as a function of the
driving frequency for Rg=10*. For low frequencies the am-
plitude remains constant, and is two-thirds, whereas for large
frequencies the amplitude of the responsg) decreases
«1/w. In addition to this decrease we note certain frequen-
cies for which the response amplitude becomes large or very
small. The distance between two maxima or two minima of

mean amplitude of the response is determined by the energyq amplitude is nearly constant, see the inset of Fig). 2

input rate € +6/Rgy)e, i.e., the last term on the rhs of Eq.
(15). The time derivative on the Ihs of E4L5) leads to a
mean decrease of the amplitude as.1Due to the two terms

in Eq. (15 containing the time delay=a, corresponding
terms in the second fraction of solutioh7) appearxa and
«(1+6/Re)/ w, respectively, which, by the periodic depen-
dence onwr induce a periodic variation of the amplitude
with the frequencyw. For low frequencies the ternms(1
+6/Re)/w, originating from the first term on the rhs of Eq.
(15), dominate, whereas for high frequencies the terms
due to the second term on the lhs of Ef5), become more
important. The latter, in particular, lead to a periodic varia-
tion of the response amplitude up to very high frequencies.

The linear responsa(t) e of the flow (with Re,=10%
is plotted in Fig. 1 for four different modulation frequencies.
Also the modulation of the energy input ragg,(t)/e;—1 is
plotted in Fig. 1.

The deviation of the Reynolds number from its stationar
value Rg, A(t)=[Ré(t)—Re&]/Re;, oscillates with the
same frequency as the driving, for all frequencies The
amplitudeA of this oscillation depends on the frequency. For
the two small modulation frequenciesy=10"3 and w
=101, the amplitude of the responsk(t) is nearly the
same, about two-thirds of the amplitudef the driving. For
higher frequencies, the amplitud& of the response de-
creases. In the case af=10 we observe a phase shift be-
tween the forcing and the resulting response.

04630

This periodic behavior in the dependence of the response
amplitude is due to the time delay We shall explain this in
the following section.
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FIG. 1. Responsd (t) (solid lineg for four different modula-
tion frequencieso, the time-dependent part of the energy input rate,
ein(t)/eg—1 (dotted lines. The modulation amplitude is 10% of
the constant input ratee=0.1, and the Reynolds number of the
stationary system is chosen as,RA0". (8) w0=10"3, (b) w7’
=0.1, (¢ wTE=10, (d) w7’E=100.
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1 T

@ We concludeA=2/3, while the phas&=wr is linear inw
a

for small frequencies.

ol 23 If, on the other hand, the modulation frequency becomes
very large, i.e, the time scale of the driving is much smaller
, . . than 1, we see from Ed17) that the amplitude ofA de-
z-1r ' creases as l/w:
S 4t
< —
e [ £ 2 6
2l 0 — 4 —
L 2 Aar, A) 3 Re/ {—coswt+acofw(t+7)]}
=e .
] | ] | | | | 1+a2—2aCOSwT
B30 ' o (19)
0 10 , 20
wy

The mean trend

2 6)
3 Rey 2

oC ~ —
w 3w

of this high frequency limit is also plotted in Fig(&. The
crossover between the regimes of E@E3) and (19) takes
place atw¢oss=1. This can be seen in Fig(&. The cross-
over frequency is not changed by taking into account the
cascade timer=a# 1, as can be seen in Fig(l® which
shows the response amplitude as a function of frequency for
a=2.7.

We have considered here only the case, where the Kol-
mogorov constanb=6. For a generab, the crossover fre-
quency is atwg,s<=(6/b)%? as can be seen from solution
(17). This means, that the crossover from the regime of con-
log,,(01,%) stant amplitude to the regime ofd/decay takes place at a
smaller frequency ib is larger. The positions of the response
maxima, however, are only slightly shifted by a differént

In conclusion, as long as the modulation frequency of the
energy input rate is smaller than 1, i.e., the large eddy turn-
over time is shorter than the period of the forcing, the system
has time to follow the periodic modulations with an almost
constant amplitude. For higher frequencies instead, the oscil-
frequency. The small arrows indicate the frequenaigsin units of ?atlons become too fast for the system to follow, and there-
TE) of the response extrema calculated from the extrema of théor,e’ the response becomes Wegker and weaker, and phase
denominator in Eq(17). The horizontal arrow denotes the fre- shifted. Then the system experiences the fas_t modulation
quency distancé » (in units of 7°) between two frequencies for more a_nd more as a constant average energy Ir)put, and the
which the amplitude is maximabr minima). It is Aw=2m/7 for  OSCillations of the response vanish as1/This high fre-
high frequencies(b) Same aga) but with a cascade time scale ~ qUENCY behavior has also been found for spin systems driven
=a=2.7 different from the large eddy-turnover timf. Note the by an oscillating magnetic fiel20].
shift of the response maxima, the less pronounced height and
greater width of the first, and the more pronounced second response B. Response maxima
peak.

log,,A(w)

FIG. 2. (a) Amplitude A of the responsé (t) as a function of
the driving frequencyw (log-log scale for weak modulations €
=0.1) of the input ratee;,, and Rg=10". The time scale of the
energy cascade is sette=a=1. The dashed line denotes the low
frequency limit of the oscillation amplitude, 2/3, and the dotted line
corresponds to the mean trend of the high frequency limit,
2/(3er). Inset, linear-scale plot of the response amplitude versu

In Fig. 2 we have seen that there are certain frequencies
) ) ] for which the amplitude of the response becomes large or

There are three time scales in the solutid) of Eq. very small. Mathematically, these response extrema originate
(15): The large eddy-turnover time, by definition 1, the time f,om the minima and maxima of the denominator in Ex),
delay 7=a, which represents the cascade time, and the time

scale of the external modulationdl/ If the modulation time 6 \?
scale is much larger than the large eddy turnover time, 1/ 1+ @
>1, i.e., if the driving frequency is very small, then solution N(w)=o| 1+ a?+ —2aCoSwT
(17) can be approximated by @
6
2_ " Re,_
A()=ezsiMo(t+7)]. (18 -2 sinwT|. (20)
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We calculate the extrema &f( w) numerically. The first few 2 - - - - -
of them are indicated by the small arrows in Figa)2 The 1.max - 2.max
lowest frequency is near t©,,=m/(37)=1. There, the first

| | | | |
and strongest maximum of the response can be observe( /\ /\ /\ /\
where the amplitude becomes as highAas4.2. Note, that 3n/2
this frequency is nearly equal to the crossover frequency \/ \/ \/ \/
w¢ross Detween the low and high frequency regimes of Egs. I I I I I
(18) and(19) only in this particular case, wheee=1. If we
assume an energy cascade tinrea= 2.7 the frequencies of
the maxima are shifted towards smaller frequencies. The
height of the first maximum is decreased, i.&=1.2,
whereas the height of the following maxima is slightly in-
creased, see Fig.(®. For very large frequenciesy>1, w2
we can estimate the frequencies of the response extrem
also analytically. Then the two terms in the denominator
«[1+(6/Rg)]/w can be neglected, and the extrema of . . . . . .

N(w) can be approximated by the extrema of cos 0 5 10 15, 20 25 30
ot

1.min

ki

d(w)

wr(n)znz, n=0,+1,+2,.... (21 FIG. 3. (a) Phase shiftp(w) as a function of the modulation
T frequencyw for weak modulation strengte=0.1, and Rg=10"
) . . . The upper(lower) arrows indicate the frequencies of maximum
Now the amplitude ofA is at maximum for frequencies (minimum) amplitude of the response. For small the phase
o.(n) with evenn, and at minimum forw,(n) with odd n. #(w)xwr behaves linearly.
The distance between two maximui@r minimum ampli-

tudes is 2r/7 as indicated by the horizontal arrow in the (averagg time which the input energy needs before it is dis-

inset of Fig. 2. For the first maxima and minima at moderatejnated at small scales. In the case of maximum amplitude of
frequencies this estimate is an approximation only; also theif,o response the time delayis a multiplejT of the period

djstances are not yet constant as they are for high frequeR—»./,, of the forcing, whereas for the frequencies of
cles. . . . minimum amplitude the delayr has an additionalT/2.

In the high frequency limit, the oscillation of the responseperefore, at the extrema of the response, the energy dissi-
at the frequenme@r of maximum or minimum amplitude is pation rate and the response are either in pliaxima or
phase shifted by (m)=(2m+1)@/2, m==*1,%3,...: antiphase(minima). In the latter case the oscillation of the

2 6 , . ,
(§+ @) (—1*a)cosw,t 105 @ 2001 ] [P or’=108 ]S
A(t)=e xSin(w, t+ ¢,).
e LAALAAAL
(22 OE'_' 1 ,l ,l 1l tl ] \ 1
The prefactor -1+ «) is always negative, i.e., at the re- U v V
sponse extrema we haug(t)x—cosw,t=sin(w,t+d¢,). In . . .
Fig. 3 the phase shifp(w), calculated from solutiofi17), is 0954 3009 6000 0 30, 50"°
shown as a function of the driving frequenayfor all fre- vu | Vi 1001
qguencies. As the phase shift starts wilfo=0)=0 and (©) °_10 @  ».°=100
changes continuously with increasing frequency, we find tha on = -
only m=1 is possible for the phase shifi, at the response /\ /\ /\ /\ I’\ [\ /\ [\ /\ ] AAA /\" /\‘ /\ {‘ A n [
extrema. The frequencies of the maximum and minimun’e { RYRYI 1 ’ 3 il
amplitudes ofA are indicated by arrows. The only exception v v V V \} V U \} V V \II “ v U V U v v b v
is the first maximum, where the approximation foy, Eq. J
(21) does not yet hold. There, the phase shift is near/ . . ‘ 0,000

corresponding tan=0. 0 3, 6 0 03 0.6

Another phase shift in this model is the one between the vn va
response&(t) and t.he.ene.rgy d'ss'.pat'on ra‘tet?' Accord- FIG. 4. Successive approximations of the delay timeFirst,
ing to Eq.(7) the dissipation rate is phase shifted Yo7 ¢onstant approximation,=a (solid lines; second, time-dependent
with respect to the responsgg(t), i.e., this shift is linearly  gpproximationr, (dotted lineg; third, approximationr, (dashed
growing with increasing frequency». At the response |iney); fourth, approximationr; (dashed dotted lingdor the delay
maxima and minima the phase shiftdsw, 7= —nr. time 7, see Eqs(23) and (24). (a) w7?=0.01. (b) @7)=1.06. (c)

The physics behind these response extrema can be ex~’=10. (d) o’=1F. In (a), (c), and (d) the time-dependent
plained as follows: The time delaycan be regarded as the 7 (t) for i=1,2,3 are indistinguishable.
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TABLE |. Relative errorssy, 8, according to Eqsi25) and(26)  check a posteriori the quality of this approximation. The
made in the two relevant terms of E(L5) by using the constant = solution (17) of linearized equatiori15) is used to compute
time delayo=a instead of the higher order approximation¢t)  the “correct” delay timer step by step: The next approxi-

for 7. mation for r is
61(11) 61(72) 91(73)
()= —, 23
w°=0.01 2.9x10°* 2.9x10°* 2.9x10°* 1(t) Tra0 (23
w7=1.06 0.15 0.22 0.23
wr=10 0.016 0.016 0.016 where the delay in Eq13) is still neglected. Further steps
070=100 0.046 0.046 0.046 are
95(11) 55(72) 95(73) a
wr0=0.01 17x10°% 17104 1.7x10°* (1) = AtA(t—1)
w7 =1.06 0.22 0.11 0.12 (24)
wr=10 0.013 0.013 0.013 a
07=100 0.036 0.036 0.036 () e a—
V1I+A(t—15)

response is strongly reduced. If, on the other hand, the drivf(-artg' L:gnlzcli% 547-'2;2’:616172’ tﬁgd d:%:rr:ngftgeeci\:’zr d|ffe;ent

ing frequency is such that the response and the dissipation quet Lo R o e, 72
: anhdrs is not visible. The variation of the (t), (i=1,2,3), is

rate are in phase, the transport of energy throu_gh _the SySterQrgest at the frequency where the amplitudeofs maxi-

is very effective and leads to an enhanced oscillation. At the um. ie. aiw=1/m. For all other frequencies. including at

response maxima as well as at the minima the phase sh'@ & Q= Lo R : Y

i ) . .
: . the response maxima, the variation of thgt) is much
ween energy in r ndr nse,i 2. T
between energy input rate and responseis 3/ smaller thanry and 1. At these frequencies it seems rea-

sonable to approximate by the constantg=a. In Eq. (15
the delayr enters into two terms, i d;A(t— 7) on the lhs,

In the above calculations we made an approximation foand in=<A(t— 7) on the rhs. We calculate the relative error
the time scaler of the cascade process. In the linearizedof these terms ifr= 7, instead ofr=r (i=1,2,3) is em-
model, we assumed to be a constantr=7,=a. Now we  ployed, using solutiori17) for A:

C. Quiality of the approximation for the delay =

fzqﬂw{cos{w(t— 7o)+ ¢]—cog w(t— 7))+ ]} 2dt
0
o1(7i)= 2o (25
f cog w(t— 7o) + ¢]dt
0
for the term on the lhs, and
27w
f {sifw(t—71p)+ d]—siMw(t— 1)+ q’)]}zdt
0
8y(r)= — (26)
sirf[w(t— 79) + ¢]dt

0

for the term on the rhs. The errofis and §, are summarized frequencies and the values of the amplitudes at the response
in Table | for the four chosen frequencies of Fig. 4. As ex-maxima. Namely, in the mean-field approach the effects of
pected, the errors are largest for the frequency with maxithe fluctuations on the structure function are neglected.

mum response amplitudey=1.06, where it becomes up to  Therefore we believe that even with this approximation
23%. Forow=10 and beyond it is between 1 and 5%. If onefor the delay timer we can qualitatively predict the basic
would allow for a time dependence of in Eq. (15) the features of the system, which are the decrease of the ampli-
response maxima would probably become broader, possiblyide of the response for high modulation frequencies, and the
less pronounced. However, within this mean-field theory weexistence of response maxima at certain frequencies due to
anyhow can make only approximate statements about thime finite time needed by the energy cascade process.
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The validity of the approximation for will improve for 1 - -
smaller amplitudese of the modulation. However, for
smaller e the total amplitudee A of the response will de-
crease as well and finally the amplitude of the respons: o
maxima and minima will become so small that, in experi-
ments or numerical simulations, the fluctuations will be

larger than the maxima and minima. 1L
6
g
IV. AN ALTERNATIVE ARGUMENT TO INTRODUCE THE c?
TIME DELAY 2 2t

A(w)

The energy balance equatigd) and the expression for
the energy dissipation rate, Eq. (6), hold for stationary
systems. The time dependence of the quantities in thes
equations in Sec. Il has been introducegosterioriby ar-
guments based on the picture of the energy cascade. It wi
not derived from the Navier Stokes equation, but is a mod ) ;
eling ansatz. Therefore, there are several arguments to intr log,(w1.)
duce this time dependence. We want to discuss here another ) )
way of arguments which leads to a slightly different equation F!G. 5. AmplitudeA of the responsaé(t) as a function of the
for the response. The idea is to start from an equation that {&1ving frequency » (log-log scal¢ for weak modulations ¢

already integrated over all scales, i.e., does not depend on the?-L) Of the input rate;, , and Re=10" calculated from Eq(29)

scaler any more in contrast to Eq4) in Sec. II. The total in linear approximation. The dashed line denotes the low frequency

. . . limit of the oscillation amplitude, 2/3, and the dotted line corre-
2 , ,
energy per unit mass of the flow I'sz3ulyrm5/2. It is basi- sponds to the mean trend of the high frequency |imm3wrﬁ).

cally determined by the energy of the large scales. Thg,set jinear-scale plot of the response amplitude versus frequency.

change with time of this energy equals the dissipation ratehe small arrows indicate the frequencies of maximum amplitude
and the energy input rate o, (in units of 7°) calculated from the minima of the denominator
in Eq. (30). The horizontal arrow denotes the frequency distance
d Aw (in units of 77) between two frequencies for which the ampli-
giEO=—e(t) +ein(t). (27)  tude is maximalor minimal. It is Aw=2/7 for high frequencies.

-3t

1
-

As the energy needs a timeto travel down the eddy cas- The only difference between this equation and the previous
cade before it is dissipated at timet may be expressed with one, derived in Sec. I[Eq. (12)], is that here the term
Eq.(7) andE=3D(L) by the total energ at timet— r: «dR2(t— 7)/dt is missing.

If we solve Eq.(29) within the same linear approximation
2\32[E(t—7)]3? as employed in Sec. Ill for Eq12), we find the same fea-
§) — ] tures for the response, see Fig. 5. The solution of the linear-

ized equation obtained from E(R9) reads

e(t)=c(E(t—17))

Together with the approximation far,, Eqg. (8), we get

6
1+ —
2 6 &
d 4E(t—1)]¥? || - i
—E(t)=—[ (t—=7)] 6 E(t—n+e(t). 3+ coswt + sifo(t+7)]
dt b32L L2 A(t)=e .
w 6 6
(28) 14+ — 14+ —
Re Re
As in Sec. Il we express the enerfyby the Reynolds num- 1+ ® —2 ® siher
ber,E=3v Re?/(2L?), write the energy input in terms of the (30)

stationary Reynolds number ReEq. (11), and introduce the

reduced Reynolds number, fRE Re(t)/Re,. Then, in time  Here, we have again sét=6 for simplicity. The response

units of TE maxima are also observed, but they are less pronounced and
slightly shifted. The amplitude at the firéand strongegt
maximum has only a value oAg=1.6. In the linear re-

3/2
ERZ t=——|— R2(t— 1)132— iRZ t— sponse solutiorf17) of the previous model the terms origi-
(t) [RE(t—17)] (t—7) .
dt 3\b Re nating from the second term on the lhs of E45) were
5 32 responsible for the strong variation of the amplitude at high
+ _<_) +—1|(1+esinwt). (29  frequencies. These terms are missing in the present model.
3\b Re Therefore, we observe weaker amplitude maxima and
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minima at high frequencies in this model, cf. Fig. 5. If we what differences we expect in these two different response

take the extended cascade time a>1 into acount, e.ga  functions.

=2.7, the response maxima are shifted towards smaller fre- The derivation of Eq(9) for the response of the system in

qguencies as discussed in Sec. Il B. However, in this modelkerms of the structure functioD(L,t) remains the same as

the heights of all maxima including the first one is thenexplained in Sec. Il. The energy input ragg,(t) in that

slightly increased. At the response maxima the energy cagquation is given bye;,(t)=(u'”(x,t)f{)(x,t))). To intro-

cade time scale and the period of the driving modulation duce a modulated forcing instead of a modulated energy in-

are not multiples of each other as they are in the previouput rate, we therefore assume

model, i.e., the response and the energy dissipation rate are

not exactly in phase. If one would observe the response e, (t)=D(L,t)Y?f(t)=D(L,t)Y%f o(1+essinwt).

maxima in experiments or numerical simulations, one could (31

distinguish between the two models by studying the ratio ] ) . )

between the frequencies of the response maxima and the cddere. fo is the strength of thestationary forcing andey is

cade time scale~. The phase shifip between the energy the amplitude of the modulation. As has been discussed in

input rate and the response becomes negative and oscillate§C- Il we express the response in terms of the Reynolds

around —7/2 for higher frequencies. At the response ex-number Re() and relate the stationary Reynolds numbeg Re

trema it is near tog,~— /2. Note that in the previous with the stf_;monary forcing strengthy, similar to Eq.(11).

model the phase shift was always positive. Then we introduce the reduced Re~ynolds numbet) R(
The two arguments to introduce the time delay are similar=Re(t)/Re, and the dimensionless tithect/rE. The tilde

and are based on the same physical idea of a finite time lapse dropped in the following. The analogous equatior{1®)

of the cascade process. However, we tend to prefer the firstecomes

one, Sec. ll, because it introduces the time dependence at an

earlier stage. Equatiof#) still resolves the scalesand itis ~ d(R*(t)—aR*(t—1))

2 6
- 3[R Rt )

therefore closer to the Navier-Stokes equation than(£q. dt
V. RESPONSE OF TURBULENT FLOW TO A +[R2(t)]l/2 E+ i)
MODULATED DRIVING FORCE 3 Rg
In the previous sections we have studied the effect of a X (1+essinwt), (32

modulated energy input rate on turbulent flow. However, the

energy input rate may not be a quantity that can be easilyhereb is set tob=6. We again assume small modulation
controlled in experiments. In some experiments it is moreamplitudes, i.e.,e;<1, and linearize Eq.32) in A(t)
convenient to modulate the driving force instead. Then the=R?(t)—1. As before, the time delay is approximated by
resulting energy input rate as well as the total energy of th¢he time-independent constaat With the same ansatz Eqg.
system can be considered as a response of the system. The(®6) as in Sec. Ill A for modulated energy input rate, the
fore, in this section, we show how to treat this slightly modi- linearized equation can be solved analytically, and the solu-
fied case within the variable range mean-field theory andion reads

2+ 6 1+ 6 2+ 6
A(t)= Re t+ Rag 3 Ral
(t)=¢; ” coswt+ a cos[ w(t+7)]+ ” siMw(t+7)] Tsmwt
1+ 6\° (2+ 0 i 1+ 0
Re 3 Re Re
x| 1+ a®+ @ AL A —2a CcoswT—2 Q)Sinwr
1) 2w
2+ 6 . 6 -1
3 Re , Re
” aSinwT— coswT . (33
|
This solution is very similar to solutiofl7) for a modulated In Fig. 6 the amplitudé\(w) of the responsa is plotted

energy input rate, but it contains some additional terms iras a function of driving frequency for e 10°. As for the
both the numerator and the denominator. These terms oniyodulated energy input rate we note that the amplitude re-
slightly modify the frequency dependence of the responsenains constant for low frequencies and decreases lde
A(t). for high frequencies. Also the response maxima and minima
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It was pointed out in the beginning of this section that, if
we modulate the driving force, the energy input rate is not a
controlled quantity, but can be considered as well as a re-
sponse of the system. This has been measured in a recent
experimental study by Cadet al. [21]. Within the mean-
field theory the energy input rate for a modulated driving
force can be calculated as

ein(t) =J1+A(t)(1+esinwt), (35

€in,0

wheree;, o= {(D{'5fo)) is the stationary energy input rate for
constant forcing without modulation. In order to extract the
amplitude of the energy input rate, we fit it by a function of
the formey, (t)/ e, o=1+ efAeinsir[w(tJr ¢)]. This is justified
as long as the modulation amplitude is small, i.e.,e;
<1, because theA(t) is of the same order of magnitude as
e; and Eq. (35 can be approximated bg,(t)/ej,o—1

FIG. 6. AmplitudeA of the response (t) as a function of the = 3A(t) +esinwt+0(A?). The amplitudeA, of the energy
driving frequencyw (log-log scal¢ for weak modulations & input rate is included in Fig. 6 as a dashed-dotted line. For
=0.1) of the driving forcef, and Rg=_10". The time scale of the |ow driving frequenciesp<1/r, the amplitude?, is nearly

ferre‘engngaslfggeoﬁﬁ:toziﬁ;;h -::ﬁ ?i?jggdlhn:n(;etr;::atedsog]eedl(l)i\rllve constant and is 3/2, whereas for high frequencies it decreases
q y P C ._.~and finally saturates at one. Also the response maxima can be

corresponds to the mean trend of the high frequency limit, . . . .
observed in the energy input rate: At the same frequencies,

2/(3er). The dashed-dotted line represents the amplitude of the h th <& sh litud . b
resulting energy input rate,,(t). Inset, linear-scale plot of the re- where the responst shows amplitude maxima, we observe

sponse amplitudgsolid line) and the energy input amplitude a maximum dlrectl)_/ followed by a minimum in the ampli-
(dashed-dotted lineversus frequency. The small arrows indicate thetude of the eﬂerg}’ Input r‘_"‘t_e' .
frequenciesw, (in units of %) of the response extrema calculated N conclusion, if the driving force instead of the energy
from the extrema of the denominator in E@3). The horizontal ~ INPUt rate is modulated, the general behavior of the response
arrow denotes the frequency distanke (in units of 7%) between in terms of the second-order structure function on the large
two frequencies for which the amplitude is maxinial minima). It scale remains the same, including the response maxima and
is Aw=21/7 for high frequencies. minima. For low driving frequencies, the amplitude of the
response becomes equal to the amplitude of the forcing. In
addition, the energy input rate can be regarded as a different
can be observed. Quantitatively, the low frequency limit for ameasure for the response of the system, which also shows the
modulated forcing is different from the modulated energyresponse maxima at frequencies connected with the energy
input rate case. For low driving frequencies<1/7, we can  cascade time scale
approximate Eq(33) by

VI. CONCLUSIONS

1 1
%(ZSH w(t+ T)]—Qsinwt) We calculated the response of isotropic and homogeneous
A(t)=eq 5 5 (34)  turbulence to a weak modulation of the energy input egte
(i +(i —icowr within a mean-field theory. For low frequencies the system
) 3w 3w? follows the input rate modulation whereas for high frequen-

cies the amplitude of the response decreastk. Due to
The terms 6/Rg<1 have been omitted here for simplicity. In the intrinsic time scale of the system, the eddy-turnover time
the limit w7—0, with sinor—0 and cossm—1, the ampli- 7, which also characterizes the energy transport time down
tude A of the responsécf. Eq. (16)] becomes equal to one the eddy cascade, there are certain frequencies,
instead of two thirdgcf. Eq. (18)] for a modulated energy =n(w/7), where the amplitude of the response is either in-
input rate. The frequencies of the reponse maxima andreased or decreased. At these frequencies the phaseshift
minima are determined by the extrema of the denominator dfetween the energy input rate and the responsep,is
solution (33). They are slightly shifted as compared to the=3#x/2. The response extrema occur when the eddy-
case with modulated energy input r@keg. (17)]. The ampli-  turnover time is an even or odd multiple of half the modula-
tude at the first maximum is smaller than in the case withtion periodT/2= 7/ w, respectively. In the case of response
modulated energy input rate, namef\;=2.7. However, in  maxima, the energy dissipation rate and the response of the
the limit of very high driving frequenciesy>1/7, Eq. (33) system are in phase. This can be understood as a very effec-
can be approximated by E@L9), i.e., the response ampli- tive transport of energy through the system. At the amplitude
tudes of both cases become identical. minima, instead, the response of the system is strongly re-
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duced. Then, the energy dissipation rate and the response areAlso a recent experimental study of modulated turbulence
exactly antiphased. by Cadotet al.[21] showed evidence for the existence of the
In the mean-field approach the fluctuations of the energyesponse maxima. This experiment may be comparable with
flow rate through the system and of the large eddy turnoveour study of a modulated driving force as discussed in Sec.
time are neglected. In experiment or numerical simulatiorlV. The response maxima were measured in the amplitude of
the fluctuations are, however, present. They may lead tthe energy input rate. In addition, a constant response ampli-
broader and less pronounced response maxima, i.e., partlyde for low driving frequencies and ad-decay of the ve-
wash out the response maxima and minima. locity response amplitude for large frequencies has been ob-
With increasing modulation amplitudeof the energy in-  served. This is in agreement with thewldlecay of the
put rate the response maxima are expected to become mogeergy response amplitude which we have found in the
significant due to the better signal to fluctuation ratio. Butmean-field model. The velocity responge(t)—ug]/ug
remember that for higher modulation amplitudeghe time = A (t), whereu(t) is the measured velocity modulus and
scale of the eddy cascade, which enters into our model as#, the(stationary mean velocity, is connected to the energy
time delay, becomes time dependent. This as well could leagksponseA(t) that we have calculated in this paper by 1
to less pronounced response maxima as discussed in SepA(t)=u(t)Z/u§=[1+Au(t)]2z1+2Au(t)+O(Aﬁ). As
I c. only small modulation amplitudes are considered, the term
A way to check if the characteristic feature of the re- + O(A2) will be negligible becausé ,<1. Therefore, the
sponse maxima and minima can still be well identified undegyperimentally measuredd/decay of the amplituda, of
the influence of fluctuations, would be to perform numericalihe velocity response is just what one would expect from our
simulations of the Navier Stokes equation with a modulateqneoretical prediction = 1/w for the amplitude of the energy
driving. However, as not only high Reynolds numbers argesponse.
needed to achieve fully developed, isotropic and homoge- \ye hope that the present work will stimulate even more

neous turbulence, but also the response as a function of timgnerimental and numercial studies on the role of the energy
for a wide range of frequencies has to be calculated, thgzscade time scale in modulated turbulence.

computational effort would be too high. Therefore, numerical

simulations within two dynamical cascade models of turbu-

lence, the GOY shell mod¢R2—-28 and the reduced wave ACKNOWLEDGMENTS

vector set approximatiofREWA) [29-31], were performed We thank R. Pandit and B. Eckhardt for very helpful dis-
[32]. These models take into account the fluctuations. Theussions. This work was part of the research program of the
basic trend of the frequency dependence of the response aiBtichting voor Fundamenteel Onderzoek der Maté&fi@M),
plitude as calculated within the mean-field model can be rewhich was financially supported by the Nederlandse Organi-
produced in both numerical models. We also clearly find thesatie voor Wetenschappelijk Onderzo@dWO). This re-
main maximum in both models although it is of coursesearch was also supported by the German-Israeli Foundation
washed out by the fluctuations. The higher maxima andGIF) and by the European Union under Contract No.
minima, however, seem to be completely washed out. HPRN-CT-2000-00162.

[1] T.P. Rippeth, N.R. Fisher, and J.H. Simpson, J. Phys. Ocear{-14] S.B. Pope,Turbulent Flows (Cambridge University Press,

ogr. 31, 2458(2001). Cambridge, 2000
[2] A. Scotti and U. Piomelli, Phys. Fluids3, 1367 (2001). [15] K.R. Sreenivasan, Phys. Flui@3, 1048(1984).
[3] X.L. Qiu, S.H. Yao, and P. Tong, Phys. Rev.@®, R6075 [16] K.R. Sreenivasan, Phys. Fluid§, 528(1998.

(2000. [17] D. Lohse, Phys. Rev. Let?3, 3223(1994.
[4] X.L. Qiu and P. Tong, Phys. Rev. &, 036304(2001). [18] S. Grossmann, Phys. Rev.5d, 6275(1995.
[5] X.L. Qiu and P. Tong, Phys. Rev. Le&7, 094501(2001. [19] G. Stolovitzky and K.R. Sreenivasan, Phys. Re\6ZE 3242
[6] R. Labbe J.F. Pinton, and S. Fauve, Phys. Fluigs 914 (1995.

(1996. [20] M. Rao, H. Krishnamurthy, and R. Pandit, Phys. Rev4B
[7] S. Aumatre, S. Fauve, and J.F. Pinton, Eur. Phys. 168563 856 (1990.

(2000. [21] O. Cadot, J.H. Titon, and D. Bonn, J. Fluid Mecto be pub-
[8] D. Lohse, Phys. Rev. B2, 4946(2000. lished.
[9] J.0. Hooghoudt, D. Lohse, and F. Toschi, Phys. Flui8s [22] E.B. Gledzer, Sov. Phys. Dokl8, 216 (1973.

2013(2002. [23] M. Yamada and K. Ohkitani, J. Phys. Soc. Jf&§, 4210
[10] H. Effinger and S. Grossmann, Z. Phys. B: Condens. Matter ~ (1987.

66, 289(1987). [24] M. Yamada and K. Ohkitani, Prog. Theor. Phy&, 1265
[11] A.S. Monin and A.M. Yaglom,Statistical Fluid Mechanics (1988.

(The MIT Press, Cambridge, Massachusetts, 1975 [25] K. Ohkitani and M. Yamada, Prog. Theor. Phy&l, 329
[12] K.R. Sreenivasan, Phys. Fluids 2778(1995. (1989.
[13] K.R. Sreenivasan and R.A. Antonia, Annu. Rev. Fluid Mech.[26] L. Kadanoff, D. Lohse, J. Wang, and R. Benzi, Phys. Flaids

29, 435(1997. 617 (1995.

046308-11



von der HEYDT, GROSSMANN, AND LOHSE PHYSICAL REVIEW E7, 046308 (2003

[27] L. Biferale, Annu. Rev. Fluid Mech35, 441 (2003. [30] J. Eggers and S. Grossmann, Phys. Fluidy A958(1991).

[28] M.H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rew3\ [31] S. Grossmann and D. Lohse, Z. Phys. B: Condens. M&ger
798 (199)). 11 (1992.

[29] S. Grossmann and D. Lohse, Phys. Flusd$11 (1994). [32] A. von der Heydt, S. Grossmann, and D. Loltsepublishegl

046308-12



