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Landau damping and coherent structures in narrow-banded H1 deep water gravity waves
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We study the modulational instability in surface gravity waves with random phase spectra. Starting from the
nonlinear Schrdinger equation and using the Wigner-Moyal transform, we study the stability of the narrow-
banded approximation of a typical wind-wave spectrum, i.e., the JONSWAP spectrum. By performing numeri-
cal simulations of the nonlinear Scliinger equation we show that in the unstable regime, the nonlinear stage
of the modulational instability is responsible for the formation of coherent structures. Furthermore, a Landau-
type damping, due to the incoherence of the waves, whose role is to provide a stabilizing effect against the
modulational instability, is both analytically and numerically discussed.
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[. INTRODUCTION of the major hypothesis required to derive the kinetic equa-
tion is that of homogeneity, i.e{A(k)A*(k"))=n(k) s(k
In many different fields of nonlinear physics, local non- —k’), whereA is a complex wave amplitude describing the
linear effects such as the modulational instabi(ityi) have  envelope of the wave trailk,andk’ are wave numbersy(k)
played a very important rolgl]. In plasmas, in the large- is the spectral density function, and brackets indicate en-
amplitude regime a nonlinear coupling between high-semble averages. According to the kinetic equation, the en-
frequency Langmuir and low-frequency ion-acoustic wavesergy is transferred in an irreversible manner only when four
takes placd?2]. Under suitable physical conditions, the dy- waves interact resonantly. Unfortunately, the Hasselmann-
namics can be described by a nonlinear Sdimger (NLS) Zakharov theory is not able to predict the modulational in-
equation and the modulational instabilitiyil) can be ana- stability because the latter results from a correlation between
lyzed directly with this equatioh3]. In nonlinear optics, the the carrier wave and the sideband perturbations and, more-
propagation of large amplitude electromagnetic waves proever, it is not the result of an exact resonance. Nevertheless,
duces a modification of the refractive index which, in turn,if the hypothesis of homogeneity of the system is relaxed
affects the propagation itself and makes possible the formacorrelation between different wave numbers is alloyvedh
tion of wave envelopes. In the slowly varying amplitude ap-improved kinetic equation can be derived which is able to
proximation, this propagation is governed again by suitableshow a random version of the Benjamin-Feir instability. For
NLS equationg4] and the MI plays a very important role surface gravity waves, this improvement is contained in the
[5]. The charged-particle beam dynamics in high-energy cirpioneering work by Albef18], followed by the works of
cular accelerating machines has been suitably described @rawford et al. [19] and Janssef20-22. Independent of
terms of NLS for a complex wave function whose squaredhese work§18-20, a similar approach has been developed
modulus is proportional to the beam dengi®y. In this con- for the large-amplitude electromagnetic wave-envelope
text, the so-called “coherent instability” due to the collective propagation in nonlinear medja4], for the quantumlike de-
interaction of the beam with the surroundifgg, has been scription of the longitudinal charged-particle beam dynamics
recently interpreted as the MI of the NLS equat[&. in high-energy accelerating machings] and for the reso-
For ocean gravity waves, the subject of this paper, the Mhant interaction between an instantaneously produced distur-
(also known as the Benjamin-Feir instabi)ithas been dis- bance and a partially incoherent Langmuir w26]. In all
covered independently by Benjamin and H&f and by Za- the above approaches, the basic idea is to transit from the
kharov[9] in the 1960s. The instability predicts that in deep configuration space, where the NLS equation governs the
water a monochromatic wave is unstable under suitablevave-envelope propagation, to the phase space, where an
small perturbations. This instability is well described by theappropriate kinetic equation is able to show a random ver-
NLS equation and has been recently addressed as responsiblen of the MI. This has been done by using the mathemati-
for the formation of freak wavell0-13. cal tool provided by the Wigner-Moyal transforf&7]. Con-
While the role of the modulational instability for a mono- senquently, the governing kinetic equation is nothing but a
chromatic wave has been widely studied, its role in a convon Neumann-Weyl-like equatior28].
tinuous wave spectrum characterized by random phases has In this paper, we outline the approach formulated in Refs.
deserved less attention. In order to approach statistically, thel8—20 and discuss the modulational instability for random
nonlinear energy transfer processes involved, one is intewave spectra. In particular, we identify the values of the
ested in finding a suitablkinetic equationAs far as ocean parameters of the JONSWAP spectrysee, for example,
waves are concerned, this kinetic equation has been deriveRief. [14]) for which the spectrum itself is unstable. Further-
independently by Hasselmanii4,15 and by Zakharov more, within the framework of the theory developed in Refs.
[9,16]. Besides the quasi-Gaussian approximafibr], one  [18-20, we show that a phenomenon similar to the Landau
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damping [29] can be predicted for ocean gravity wavesA;=A(x+Yy/2) andA,=A(x—y/2)], therefore, a new vari-
whose role is to provide a stabilizing mechanism against thable is introduced. In order to proceed in the calculation, a
MI. In particular, we show, both analytically and numeri- closure that relates fourth- and second-order correlators
cally, that this phenomenon is due to the incoherence of thenust be introduced. This closure is achieved by intro-
background solutiotrandom wave spectraBy performing  ducing the quasi-Gaussian approximatigi,AT A;A%)
numerical simulations of the NLS equation, we show that in= 2(A,A%)Y(A,AT). The fourth-order correlator can be split
the unstable regime coherent structures naturally appear @s the product of the sum of second-order correlators, dis-
the space-time plane. We stress that our focus herein is not t@rding the fourth-order cumulants. This procedure is well
attempt to model ocean waves but instead to study leadingnown for the statistical description of water wayé$] and
order effects USing the Simplest Weakly nonlinear and diSperof many other fields such as p|asma phyigﬁ;l The result-

sive model in deep water, i.e., the NLS equation. The resultfg kinetic equation is the following von Neumann-Weyl-
obtained are very similar to the ones recently given in thejke equation:

literature that have shown the existence of a Landau-type

damping in the dynamics of small perturbations on a par- gn(x,k,t) an(x,k,t) - (—1)m
tially incoherent background, consisting of a constant ampli- +2uk X +4v ) (2mt 1)122m L
tude and a stochastically varying phase, in nonlinear optics m=0 (2m+1)!
[24],.|n charged-particle beam dynamif®5] and plasma P UAGCD|2) 2™ In(xk )
physics[26]. X =0, (4)
(9X2m+1 §k2m+l
II. STATISTICAL DESCRIPTION OF THE NLS EQUATION with
FOR WATER WAVES

The NLS equation for water waves in infinite depth was Alx.1)|2)= an x k. )dk 5

derived under the hypothesis of small steepness and narrow- {[ACD) — (x.k,tydk ®)

banded spectra for the first time by Zakharov in 1968
While this equation is not appropriate for describing the dy-lf only the first term in the infinite sum is considered, the
namics in the tail of the spectrum or in the inertial range€quation reduces to the Vlasov-Poisson equation in plasma
(exact four-wave resonant interactions are forbiddeén  physics that is well known to describe the Landau damping
should describe with satisfactory accuracy the dynamic®henomenoi29]. This damping is due to the interactions of
around the spectral peak. In dimensional form, in a frame ofesonant electrons of the system,; the theory predicts that the
reference moving with the group velocity, the equation readsate of decay of the wave energy is proportional to the first
derivative of the equilibrium distribution function of the

IA 92A electrons.
— +ip—+iv|A]?A=0, (1)
ot (9)(2 .
A. Stability of wave spectra
where in deep watet = wy/8k3 and v= wk3/2 with w, the In order to study the stability of wave spectra, a standard

carrier angular frequency arlg the respective wave num- linear stability analysis of the von Neumann-Weyl-like equa-
ber. The free surface elevatidifx,t) is related to the com- tion is performed: we let the distribution functior(x,k,t)
plex envelopeA(x,t) in the following way: be expressed in terms of an equilibrium distributiag(k)
o) plus a small perturbation,
X,t)=Rg A(x,t)e'“o*~ @l 2

(D=RAADCY ] @ n(x,k,t)=ng(k)+n(x,k,t) (6)
Equation(1) is the starting point for deriving the required . o .
kinetic equation. Following Albef18], the Wigner-Moyal ~ With n1(X,k,t)<no(k). After substituting Eq(6) into Eq.(4)
transform[27] can be applied directly to the NLS equation. and Ilneanzmg we obtain the following equation for the per-
This transform allows one to give a representation of a functurbation:

tion A.(x,t) both in configurationx and in wave numbek n(x.k.t) any(xkt) o (—1ym
Space. +2uk 4y y —
at m=0 (2m+1)122m*1
1 [+= .
_ —ik
n(x,k,t)= ﬂf_w (A* (x+yl2P)A(x—y/2t))e "Vdy. ML AX,D[Z) 2™ ng(K) L ,
(3) X ox2m+1 gk2m+1 R @

n(x,k,t) is a second-order correlator. In order to derive amp/e then look for solutions of the form

evolution equation fon(x,k,t), we take the time-derivative

of Eg. (3) and use the NLS equation to remove the time ny(X,Kk,t) =ny(k)e'Kx—2, 8
derivative of the complex envelop®in the right-hand side

of Eg. (3). The nonlinear term in NLS will generate a fourth- After standard algebra, the following implicit form of the
order correlatorfa term of the form(A;ATA;A%) where dispersion relation is obtaingdee also, Ref§24—-26):
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v [ no(k+Ki2)—no(k—K/2) 0
Ef Kk—Ql(zpK))  9k=0  © @

0.05

whereng(k) is the homogeneous envelope spectrum. Once i
the equilibrium solutiom, is given, Eq.(9) represents the 0.04 [y INSTABILITY
dispersion for the perturbation. . S :
We now look for an equilibrium solution, for sea sur- 0.0
face gravity waves. According to experimental works con-
ducted more than 25 years a(gee, for example, Ref14]), 0.02 | kN .
it has been found that the spectrum for the free surface el- STABILTY e
evation{ is well approximated by the JONSWAP spectrum 0.01 [ .
(we give its form in wave-number space using the dispersion _
relation in infinite water deptiw=/gh): Q

e

i,

o /
P(k)= Fe_(3/2)[k0/k]2ye"p[_("ﬁ_ Ko?25%0l (1) FIG. 1. Instability diagram in the-y plane.a and y are non-

dimensional variables.

with «, v, andé constants § is usually set to 0.07, while
and y depend on the state of the ocgaAs « and y are
increased, the wave amplitude and, therefore, the nonlineat- >
ity of the wave train increasesy rules also the spectral ONS.WAB spgctrum. lfp>|m[‘/+K2/4_.HSV/.(4'“)] th(.a
width: for large values ofy the spectrum becomes more dampmgzdommates the MI, Fhe opposite will occurpf
narrow banded. Since we are interested in the dynamics ML VK“/4—Hgv/(4u)]. In Fig. 1 we show the marginal
around the peak of the spectrum, as is done in fRdfl, we st_ab|I|t_y curve in thex-y plane in the limit _oﬂ<—>0. Spectra
consider a second-order Taylor expansio@k) around the ~ With higher values ofx and y are more likely to show the
peakk,. It turns out that the spectrum in Ré10) reduces to MI. In the following section, we will perform numerical

ponential growth and damping of the perturbation that de-
ends on the parameteis and y of the Lorenzian(or

the following Lorentzian one: simulations of the NLS equation in order verify the result
from the dispersion relatiofil3) and study the effect of the
H§ p instability in physical space.
P(k)= 72— (11)

167 p2+ (k—ko)?' i .
B. Analogy with plasma physics

where Let us now present some remarks about the physical ori-

o gin of the Landau-type damping predicted above. In plasma
B 8kpd R ayp physics, this damping, for instance, is caused by resonant
P" N 2as2 iy 0 T EPT=rry interactions between a plasma wave and the electrons. By

(12) denoting withv the single-particle velocity and witl and«
the frequency and wave number of the electron plasma wave,
H, is the significant wave height calculated as four times theespectively, the Landau theory, based on the Vlasov kinetic
standard deviation of the wave field apdcorresponds ex- equation, clearly shows that the decay rate of the wave en-
actly to the half-width at half-maximum of the spectrum. ergy is proportional to the first derivative of the equilibrium
Note that the spectrum in Ed11) or in Eq. (10) is the distribution functionpy(v) of the electrons. Typically, the
spectrum for the free surfageand not for the envelopd.  shape ofpy(v) is such thatpy(v = w/«)/dv <0, which im-
Nevertheless, it can be shoi9] that for a symmetric spec- plies that there are more particles with< w/« (which gain
trum P(k) of the surface elevation, the spectrum for theenergy from the wavethan withv > w/ « (which give energy
complex envelope is given hyy(k) =4P(k+kg), therefore, to the wave. This statistical circumstance leads to a net
a factor of 4 must be taken into account. Solving &y .with damping of the plasma wave. This is usually referred as to
respect to), we obtain the following dispersion relation: ~ “weak Landau damping.” Additionally, as the thermal dis-
persion of the electrons of the plasma becomes negligible
Q=K(VK?u2—HZvu—2iup). (13)  (for example, the equilibrium distribution becomes more and
more sharp the Landau damping becomes more and more
Positive complex roots of Eq13) result in a growing insta- weak. In principle, a cold plasma, whose thermal distribution
bility of the perturbation: iK?< Hgv/,u, the first term on the corresponds to &-function, does not exhibit the phenom-
right-hand side is responsible for the Niote that in the enon of Landau damping.
limit as p—0, the dispersion relation13) gives the On the other hand, we observe that, in the limiting case
Benjamin-Feir instability. The last term on the right-hand for K<k dispersion relatior{9) becomes
side has a stabilizing effect and plays the same role played
by the Landau damping in plasma phydi29], i.e., a damp- 14 ﬂf dno/dk dk=0 (14)
ing of the perturbation. There is a competition between ex- n) k=Q/(2uK) '
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where we have used the approximation

No(k+K/2)—ng(k—K/2)  dng
K T dk

Given the full similarity between the dispersion relatidd)
and the one found by Land4g9], the physical origin of the
stabilizing effect predicted in the present paper may be de-
scribed by using an analogy with the phenomenon of Landau
damping. In fact, the above stabilizing effect can be attrib-
uted to the “nonmonochromatic” character of the Wigner
spectrum of the surface gravity waves. Similar to the stan-
dard Landau damping, where the electrons interact individu-
ally with a linear plasma wave and statistically produce a net
transfer of energy from the wave to the particles, the gravity
wave train interacts with the perturbation and produces a gg, 2. |A(x,t)| from numerical simulation of the NLS. The
transfer of energy between wave numbers which is MOrgitial condition is characterized by a Lorenzian spectrum with
significant aroundk= Q/2uK. =3.5 anda=0.03. A coherent structure is evident in the plane.
Furthermore, it is worth noting that, on the basis of thESpace and time have been scaled, respectively, ljtand wg
above physical interpretation, the stabilizing effects that=./gk,.
come out also from the more general dispersion rela®n
may be thought of as an extension, to arbitrary wave numstable case, we have considened 3.5 anda=0.03 and for
bers, of the Landau-type damping of an ensemble of incothe stable one we have takers=1.5 anda=0.005
herent surface gravity waves. However, this effect is not the We now start the discussion of the numerical results by
analog of the weak Landau damping and cannot be predicteshowing in Fig. 2 the evolution dfA(x,t)| in the x-t plane
with a Vlasov-like equation. In fact, for arbitraly, and for  for the unstable case. How is this instability manifested?
the broad-band spectrurfll), all the terms of the von From Fig. 2, we note the presence of a “coherent structure,”
Neumann-Wey! kinetic-like equatiofd) contribute to the i.e., a structurgoblique darker zones in thet plang that

Time

dispersion relatiori13). persists in the presence of nonlinear interactions and main-
tains statistically its shape and velocity during propagation
I1l. NUMERICAL SIMULATIONS AND DISCUSSION (note that periodic boundary conditions are ys&ery ran-

dom realization with the same values af and y shows
Numerical simulations of Eq(1) have been computed similar results even though the resulting coherent structures
using a standard pseudospectral Fourier method. Initial cof'@y have different velocity and amplitude. If nonlinearity is
ditions for the free surface elevatiaifx,0) have been con- Increased, more than one coherent structure may appear in

structed as the following random procé&d]; the x-t plane. The npnlinear stage of Ml is therefore_ respon-
sible for the formation of such coherent structures inxke

N plane. Indeed it is possible to show that the NLS equation
{(x,00= >, C,cogk.x— o), (15)  has periodic solutions such as breathers or unstable modes
n=1 [13,32. These solutions, which are the result of a linear in-
stability, are nevertheless very robust. Moreover they can
where ¢, are uniformly distributed random numbers on thegrow up to more than three times the initial unperturbed
interval (0,27), and C;=+2P(k;)Ak;, whereP(k;) is the  solution and, therefore, have also been addressed as simple
discretized spectrum given in EG.1). The Hilbert transform  models for freak wavegl0—13. In contrast to solitons that
is used in order to convert the free surface the complex have constant amplitude in time, these unstable modes are
envelope variablé\ of the NLS. The spectrum of the com- characterized by a continuous exchange of energy among the
plex envelopéA is nothing other than the unperturbed homo- Fourier modes. The energy is transferred from one mode to
geneous solutiony(k). The dominant wave number for the another and back again: the process is completely reversible
numerical simulation was selected to kg=0.1 m™ . This  and, therefore, coherent structures persist in physical space.
last choice is not restrictive: the parameters that rule the dywe stress that these kinds of solutions appear naturally from
namics of the spectrum are its width and the steepnessitial conditions with random phases. The striking result
which, oncek, is fixed, are univocally determined by here is that even if initial conditions are completely random,
and y. the nonlinear interactions generate a strong correlation
In order to investigate the effects of the instability, we among wave numbers resulting in coherent structures em-
have chosen two different initial conditions characterized bybedded in a random wave field.
values ofa andy such that the dispersion relati¢h3) pre- We now consider the stable case. We again show the
dicts, respectively, instability and stability. We have consid-space-time evolution ofA(x,t)| in Fig. 3. Thex-t plane
ered values in thex-y plane that are far away from the appears as a random field and there is no evidence of any
marginal stability curvegsee crosses in Fig.)1For the un-  structure that survives for long periods of time. Numerical
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a implies larger wavegthe steepness is increageand,
therefore, an increase in nonlinearity of the initial conditions.
The effect of nonlinearity is such that the uncorrelated wave
numbers at timé=0 sec develop some correlations and as a
result coherent structures naturally are formed. As we in-
creasea, Figs. 4c) and 4d), coherent structures become
more and more well defined.

From the numerical simulations just shown, it seems that
coherent structures can appear from initial conditions char-
acterized by values ofr and y taken below the marginal
stability curve. This result is not so surprising: the marginal
stability curve has been recovered via a linear stability analy-
sis of the kinetic equation which is the result of a statistical
approach to the NLS equation. However, in the natural long-
time evolution of a nonlinear wave train, perturbations are in

FIG. 3. |A(x,t)| from numerical simulation of the NLS. The general not small. Consequgntly, perturbations_ LA SimUIa_
initial condition is characterized by a Lorenzian spectrum with tions should .evollve acc_ordmg t_o the governing equations.
= 1.5 anda=0.005. The field in the-t plane appears to be random Our _observatlon is consistent with some very recent results
without any evidence of coherent structure. Space and time hav/gPtained by Jansse22]; he was the first one to point out
been scaled, respectively, wiki and w= Vgko. that the broadening of the spectrum in numerical simulations
of the NLS and Zakharov equation starts for values of the

. . N i . steepness and spectral width that are lower with respect to
simulations with initial conditions characterized by the samgpe gne predicted by the nonhomgeneous thdeee also

values ofa andy but with different random phases are in Ref. [23]). In order to explain this result, he has proposed a
accordance with the results just shown and are not here renodification of the Hasselmann-Zakharov kinetic equation

ported. by taking into account also nonresonant interacti@g.
We will now answer to the following two natural ques-

tions: How sharp is the transition region in Fig. 1? How do

coherent structures develop from random phase initial con-
ditions? We have performed a number of numerical simula- In this paper, we have studied the stability of random
tions with initial conditions characterized by valuescoind ~ wave spectra for surface gravity waves inf{1) dimension.

y that are close to the marginal stability curve. In particular,Theoretical results from a Wigner approach on the NLS
here we report numerical simulations that have been obequation are compared with direct numerical simulations of
tained by settingy=3 anda=0.005, 0.01, 0.0153, and 0.02. the NLS equation. One interesting result of this study con-
Circles in Fig. 1 are located where these last numerical simuc€rns the effect of the instability in physical space: numerical
lations have been performed. As is clear from the figureSimulations show that, starting with a random wave field,

points are selected in order to cross the margial stabilipFOherent structures naturally develop as long as the initial
curve: we move accross the stability curve by changing th&onditions have sufficient energetidarge a) and are nar-

value of a. In Figs. 48—4(d) we show the evolution of row banded(large v). The theory developed by using the
IAGGD)| in the x-t plane, respectively, fory=3 and a Wigner-Moyal transform allows one to isolate the region in

- . the a-y plane where those structure are more likely to ap-
—O.(l)tOS% ?501’ O(I)lt53 a?(_j %OIZ' Fl%qt(éa)zang 4b) tart_a th§ b pear. The transition region predicted by the theory does not
reTu 0 f € ev(;) u |fon ohl_nlhlahconh tions ¢ ;rac erize bl yappear to be sharp. Coherent structures appear for values of
values ofa and y for which the theory predicts a stable , 54 |ower than predicted by the theory. Our numerical
regime, see Fig. 1. While in Fig.(d there is no clear evi-

I\ simulations are in one space dimension and moreover the
dence of a coherent structure, in Figb¥a darker coherent spectrum that we have used in the theory and numerical

region has already developed. We recall that larger value ofjmylations is a narrow-banded approximation of the

Time

IV. CONCLUSIONS AND REMARKS

Time

_ & -

R T e L e o

0 10 20 30 40 50 60 70 80 90 100 0 12 25 38 50 62 75 88 100
Space Space Space Space

FIG. 4. |A(x,t)| from numerical simulation of the NLS. The initial condition is characterized by a Lorenzian spectrurywihand
a=0.005(a), 0.01(b), 0.0153(c), and 0.02(d). Space and time have been scaled, respectively, kyitnd wy= gko.
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JONSWAP spectrum. Needless to say, the theory cannot beith the fully nonlinear Euler equations are also under con-
taken as quantitative. Nevertheless, the marginal stabilitgideration in order to extend the validity of these results.

curve could give a first qualitative indication of unstable
spectra in realistic conditions in infinite water degt#alues
of @ and y here considered are typical of ocean waves
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