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We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, incompressible, athermal
fluids in three dimensions to simulate the coarsening of domains following a deep quench below the spinodal
point from a symmetric and homogeneous mixture into a two-phase configuration. The model is derivable from
a continuous-time Boltzmann-BGK equation in the presence of an intercomponent body force. We find the
average domain size grows with time &5 where y increases in the range 0.548.014<y<0.717
+0.002, consistent with a crossover between diffusiand hydrodynamic viscous'®, behavior. We find
good collapse onto a single scaling function, yet the domain growth exponents differ from previous results for
similar values of the unique characteristic length and timeT, that can be constructed out of the fluid’s
parameters. This rebuts claims of universality for the dynamical scaling hypothesis. E&.Rand small
wave numbers) we also find ag?—q* crossover in the scaled structure function, which disappears when the
dynamical scaling reasonably improves at later stages=@¥¢. This excludes noise as the cause far’a
behavior, as analytically derived from Yeung and proposed by Agpert and Loveet al. on the basis of their
lattice-gas simulations. We also observe exponential temporal growth of the structure function during the initial
stages of the dynamics and for wave numbers less than a threshold value, in accordance with the diffusive
Cahn-Hilliard ModelB. However, this exponential growth is also present in regimes proscribed by that model.
There is no evidence that regions of parameter space for which the scheme is numerically stable become
unstable as the simulations proceed, in agreement with finite-difference relaxational models and in contradis-
tinction with an unconditionally unstable lattice-BGK free-energy model previously reported. Those numerical
instabilities that do arise in this model are the result of large intercomponent forces which turn the equilibrium
distribution negative.
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I. INTRODUCTION which in turn undergoes subsequent coarsening via coales-
cence[1l]. The composition of a binary immiscible fluid is
Homogeneous binary fluid mixtures segregate into twoone of the variables affecting its dynamics. Fields where
phases with different compositions when quenched into therspinodal decomposition is of industrial relevance comprise
modynamically unstable regions of their phase diagram, ghe metallurgical, oil, food, paints, and coatings industries.
process also called spinodal decomposition. This is achievedolymer blends and gels immersed in a solvent are also po-
by lowering the temperature well below the so called spintentially important applications, where phase separation oc-
odal temperature. For incompressible, 50:50 mixtures, alsours and needs to be controllg2i3].
called critical or symmetric mixtures, these phases form in- Spinodal decomposition has been extensively studied by
terconnected domains, which at late times produce a bicorexperimental4], analytical[5,6], and numerical7—16] ap-
tinuous structure with sharp, well developed interfaces. Foproaches. The fact that it entails a variety of mechanisms that
asymmetric mixturegphases with different densitiethere  can act concurrently and at different length and time scales
is a phase transition at early times from an interpenetratingjas made it a testbed for complex fluid simulation methods.
“bicontinuous” structure to the so-called “droplet phase,” Among the latter are hydrodynamic lattice ga$&g], the
lattice Boltzmann equatiofl 8], and dissipative particle dy-

namics[19].

*Also at Grup de Rica Estaditica, Universitat Autooma de Despite all the interest attracted by the subject, how the
Barcelona, 08193 Bellaterra, Barcelona, Spain. Email addressnechanisms responsible for domain separation act remains
n.gonzalez-segredo@ucl.ac.uk on unsettled grounds. In particular, the dynamics of the late
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papej, which is treated almost as canonical by analytical andqjuenches in 30three dimensions There have been recent
numerical approaches to solving the continuum, local-quantitative studies in 2D using this method for critical spin-
thermodynamic Cahn-Hilliard equations, has been proven t@dal decompositior{32,33. An early study on critical 2D

fail experimentally at least under certain conditig@s]. and 3D spinodal decomposition was put forward by Alex-

Numerical studies on spinodal decomposition include®"der, Chen and Grund84] using the lattice-Boltzmann

methods at thenacroscopic scalebased on the numerical Method proposed by Gunstensemnal. [35].
solution of either the Ngvier-Stloke[Ql 29 or the Cahn- Lattice-BGK methods based on a Ginzburg-Landau free-

- : . energy functiona]26] achieve multiphase behavior by usin
Hilliard equations[23,7,24, the mesoscopic scalewhere sggparate diz\{rib]ution functionsl:oone for the masg densgity
lattice-Boltzmann(LB) methodd 25,26, lattice gase$9,10,  and one for the order parameter, this being defined as the
dissipative particle dynamid27], and Ising[28] approaches jfference between the phases’ densities. Higher-order veloc-
are examples, and thmicroscopic scalewith classical mo- ity moments of these distributions are imposed to coincide
lecular dynamicg14]. with thermomechanical quantities obtained from the free en-
Fluid dynamical methods in the mesoscopic scale came tergy. The term “top-down” is used in the literature to ad-
light as a way to grasp the relevant thermohydrodynamiaress this type of approach, whereas we shall use “bottom-
behavior with as little computational effort as possible. Thisup” in the remainder to signify fully mesoscopic methods.
is achieved by evolving a microworld in which the usual vastSome criticisms of top-down approacheg$] include their
number of molecular degrees of freedom and characterizdrequent lack of Galilean invariandalthough Inamurg37]
tion have been drastically reduced, based on the fact that, faresented a model that does exhibit this propeewnd their
enough from critical points, a fluid’'s macrostate is largelyphenomenological character. Studies of spinodal decomposi-
insensitive to many of its microscopic properties. Some retion using these methods are described in the works of Wag-
gard the Cahn-Hilliard equations to be within the mesoscopimer and Yeomansl 2,38, Kendonet al.[11], and Catet al.
scale. They derive from the van der Waals’ formulation of[39].
quasilocal thermodynami¢29], extended by Cahn and Hil- Numerical instabilities are a great cause for concern in
liard [23], and aim at solving a Langevin-like diffusion equa- lattice-Boltzmann methods, a study of which will be ad-
tion for the conserved order parameter. This equation indressed for the lattice-BGK method we employ in this work.
volves a chemical potential derived from a Their sources are two-folda) the finite-difference, discrete-
phenomenological, Ginzburg-Landau expansion for the freeelocity scheme used to solve the BGK-Boltzmann equation
energy, and leads to phase segregation if the temperature psevents the existence of &htheorem, andb) the approxi-
below a critical value. The scheme commonly used for thenations used for the equilibrium distribution do not guaran-
study of phase segregation in immiscible fluids is termedee its positivity, and hence that of the nonequilibrium distri-
Cahn-Hilliard Model H [30]; hydrodynamics is included by bution. Linear stability analyses have been applied to the
introducing mass currents, which couple the diffusion equalattice-BGK model by Sterlind40], and in more detail by
tion with the Navier-Stokes equation. Thermal effects ard.allemand and Lu$41] comparing a lattice-BGK model to a
sometimes included in the dynamics by the addition of ageneralized LB model with a different relaxation time for
noise term satisfying a fluctuation-dissipation theorem. each physical flux. Qian, d’Humies, and Lallemand42]
Cahn-Hilliard equations have been applied to model thegave conditions for the Mach number and the shear viscosity,
segregation dynamics of deep and sudden thermal quenchssch that the lattice-BGK scheme produces positive mass
of fluid mixtures. Such quenches are usually chosen to bdensities. New approaches to unconditionally stable lattice-
sudden to avoid thermal noise effects and set up an initiaBoltzmann models have recently appeared {d8-—4§.
condition that quickly leads to a state of steep domain wallsThey prove the existence of functionals satisfying-atheo-
and where diffusion is negligible compared with hydrody-rem.
namic effects, thus leaving the conditions that the dynamical Our objective in this work is to present a bottom-up
scaling hypothesis requires. However, local equilibrium caniattice-BGK method for the study of scaling laws in the spin-
not be guaranteed for a mixture undergoing a sudden quencbdal decomposition of critical fluid mixtures in three dimen-
which puts the existence of a free energy and the equilibriunsions. This method has certain advantages over lattice-BGK
states modeled by it on rather shaky grounds. methods based on a free-energy functional, namely, a smaller
The lattice-Boltzmann method we use in this work is thenumber of free parameters to tune, Galilean invariance guar-
Shan-Chen lattice-BGK scheme for binary immiscible andanteed, and a simpler equilibrium distribution. Moreover, it
incompressible fluid flow[25]. The equilibrium state for refuses to inject macroscopic information into the mesos-
each pure fluid is chosen to be a local isothermal Maxwell-copic dynamics as the top-down methods do, on the grounds
ian, and Shan and Chen’s contribution to the lattice-BGKthat for lattice-BGK methods there is hbtheorem available
scheme comes through the phase separation prescriptiainat guarantees an unconditional approach to a given equilib-
This is incorporated via intercomponent repulsive mean-fieldium. Indeed, in the context of general complex fluid appli-
forces between fluid elementsmeant to be at a mesoscopic cations, an expression for the free-energy itself may be un-
scalg which alter the local equilibrium, rather than through aknown, and/or its validity be questioned for regimes far
local equilibrium reproducing a chemical potential derivedenough from local equilibrium, making a top down approach
from a free-energy functional. The Shan-Chen method hagot even viable.
been used by Martys and Douglal] to qualitatively simu- The remainder of the paper is structured as follows. In
late spinodal decomposition for critical and off-critical Sec. Il we discuss the dynamical scaling hypothesis, which
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asserts that after the quench all length scales in the mixture <

share the same growth law with time. The modified Shan- — > Sk, T)=1, S(k=0,T)=0,

Chen model we use is explained in Sec. lll; Sec. IV intro- V'K

duces the method we use to measure surface tension, while ) . ) ]

in Sec. V we describe the simulations performed and th&/heres’ |53the unit cesll volume in reciprocal space, and
growth laws and scaling functions drawn from them, whichV' = (27/L)*V/s=(2m)"/s is the reciprocal space volume;
allow to test the validity of the dynamical scaling hypothesis.in fact, s’/V'=s/V. Although Eqs.(1) and(2) are numeri-

Finally, we present our conclusions in Sec. VIL. cally equivalent, the intensity of x ray and neutron scattering
is directly proportional to the structure function, which is

hence easily measurable; it is thus this quantity that we pre-

Il. SPINODAL DECOMPOSITION fer to use to measure the system’s characteristic length
After domain walls have achieved their thinnest confi u_scales. ) . S
ration via diffusion, the time evolution of the bicontinuo?Js We'defme thetime-dependepicharacteristic sizé of the
structure that is produced in the phase segregation proceggm"’“nS as
that symmetric mixtures undergo presents geometrical self- 2
similarity to the initial stages of such a process when the L(T)= , ®)
structure is viewed at increasing magnification. This leads us ka(T)

to thedynamical scaling hypothesighich states that at late
times, when diffusive effects have died out, there is a uniqu
characteristic length scalewhich grows with time such that
the geometrical structure of domaingiis a statistical senge 2 kS(k,T)
independent of time when lengths are scaled_j¢7]. This K (T)= k
amounts to saying that all length scales have the same time 1(T)= '
evolution. Such a characteristic length scale must be univer- zk: S(k,T)
sal for all fluids with the same shear viscosify densityp,

and surface tensioa, provided that no mechanisms are in- ¢ he spherically averaged structure functis(k,T), de-
volved in their late stage growth other than viscous dissipajned by

tion, fluid inertia, and capillary forces, respectively. This is

so because, as we shall see later on, only one length scale can

én lattice units, wherék,(T) is the first momentmean,

4

be constructed out of the fluid’s parameteys p, and o, > S(Kk,T)
these being the only ones present in a hydrodynamic descrip- Sk, T)= k (5)
tion of the mixture via the Navier-Stokes equations. ' '

The characteristic length scale is usually measured by % 1

looking at the first zero crossing of the equal-time pair-

correlation function of the order parameter fluctuatip®k where k indicates the set of wave vectors contained in a

spherical shell of thickness or@ reciprocal-space lattice
C(r,T)=(¢'(x+r,T)¢'(x,T)), (1) unity centered aroundt, i.e., such than—i<(V¥¥2m)k
<n+3, n being an integerk is the modulus ok which is
smaller than the Nyquist critical frequenky= 7 to prevent
aliasing. In the limit of short distances and large momenta,
scaling arguments ledd7] to the relation

where, on the lattice()==,s/V, V is the spatial volumes
is the volume of the lattice’s unit cellhenceV/s is the
number of nodes in the lattigeT is the time parameter in
time stepsr andx are spatial vectors, andl’=¢—(¢) are
the order parameter fluctuations, wheré(x)=pR(x) Sk, T)~
—pB(x) is the order parameter for our binary fluiday, a ' LkP*1
mixture of red(R) and blue(B) phase$ The units ofC(r,T)
are squared mass density. In the remainder, “lattice units¥alid for kL>1, also known as Porod’s law, whekeis the
will mean unity for the mass, length, and time units, respecspatial dimension. Short distances here medre <L,
tively, in an arbitrary unit system. The Fourier transform of where¢ is the interface thickness.
C(r,T), called the structure function, is Other measures have also been used for the system’s char-
acteristic length scale, namely, the position of the structure
s function’s maximum, and the structure function’s second
S(k,T)= v|¢(<(T)|2. (2 momentk, [2]. We chose to use the first momeaqtas it is
the simplest quantity among the aforementioned. Appert
et al. [48] found that the structure function’s maximum'’s
The units for the structure function are the same as those fawave number provided a length evolving similarly, although
the correlation function, and, is the Fourier transform of in a noisier fashion, to that derived from the first moment.
the fluctuations. Functior{2) is volume normalized, and Mathematically, the dynamical scaling hypothesis can be
gives no power spectrum for infinite lengths, i.e., written as

(6)
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C(r,T)=f(r/L), (7) where v is the kinematic viscosity of the fluid mixture, as
defined in the following section, aridis the time derivative
or di/dt.
There is also experiment@20] and 2D simulation12]
S(k,T)=LPg(kL), (8)  evidence of breakdown of scale invariance in symmetric bi-

nary immiscible quenches. In those experiments, the break-
whereL=L(T) is a function of time, andj is the Fourier down of scale invariance occufg0] for symmetric binary
transform off, both of which are the same for any late time mixtures in confined geometries under the influence of wet-
slice. ting, and a universality has been reported to hold. The pro-
Using methods introduced by Kendenal.[11], there are  cess consists of a hydrodynamic coarsening occurring faster
unique length and time units that can be defined from thehan mass diffusion, leaving the system with macroscopic
fluid’s density, shear viscosity, and surface tenspny, and  domains whose concentrations are near to but not at the co-

o, respectively, as follows: existing equilibrium ones. Metastability or instability of the
domains then causes a secondary phase separation to kick in
7? 7 via diffusion. Scale invariance and self-similarity have also
Lo= oo’ TOEP- (9 been recently found to break down for viscoelastic binary

fluid mixtures[50]. Finally, there is simulation evidence of
breakdown of scale invariance coming from free-energy
Sased, lattice-BGK simulations in 2D. The rationale for this
ns the coexistence of competing mechanisms at all times in
Mhe mixture: diffusion, hydrodynamic modes, and surface
tension, giving rise to length scales with different growth
exponentg12].

We can think of these as a wavelength and a period asso
ated with the system’s fluctuations, respectively, althoug
they do not necessarily have to refer to actual fluctuatio
averages. We can define the dimensionless variables

[=L/L,, t=(T—Ti)/To, (10

which serve to express the universal character of the dynami- lll. OUR LATTICE-BOLTZMANN MODEL
cal scaling hypothesis. ParameTgy; is an offset that allows

one to account for early time diffusional transients and latticqattice-gas automaton method for fluid flow simulation. the

effects. Due to the finite resolution of the lattice the initial | 51t-mann model can also be interoreted as a finite
condition is not an infinitely fine-grained thorough mixture y.cc. oo <owver for the Bhatnagar-Gross—Igrc(tﬁlGK) ap-
(¢.:O) but there is a non-negligiblt_e do”_‘ai” si_ze_ measure(groximation to the Boltzmann transport equat[d8]. From
fT_t_t'(r)neT:O' Wedhavci the? tt(_)t'speufy a gme origin prior 1o |5 ice gases it inherits a particulate, mesoscopic character, as
=5, corrésponding 1o a Tictitious zero domain size. their particles can be assimilated to any physical size which
_ For a cr_|t|cal binary |mm|SC|_bIe mixture in three dimen- is negligible at a hydrodynamic scale; moreover, unlike
sions, scaling argumer)ts applied to the terms of f[he Cahr]'attice—gas automata, no fluctuations are present within the
Hilliard MOd.el'.H equations ;how that Eq7) holds in the scheme[51]. From the simplicity of the Boltzmann-BGK
asymptotic limit[47], or, equivalently, that collision term the LB method gains algorithmic efficiency in
simulating fluid flow over solving the incompressible
Navier-Stokes equations. When extended to multiphase
flows, these features are especially valuable in looking at the

where y=1 and y=2/3 for the cases when hydrodynamic . mpjicated domain interfaces that arise in the coarsening of
viscosity and inertia dominate the dynamics, respectlvelybinary mixtures.

From the Cahn-Hilliard ModeB, which is a Langevin dif- The method we use is a modification of the multicompo-
fusion equation without noise conserving the order parametetant immiscible fluid LB scheme of Shan and CHes]

[30], an exponent ofy=1/3 is derived, identical to that ob- \yhich will be explained in detail in Sec. Ill B. The Shan-
tained from the Lifshitz-Slyozov theory for the growth of @ chen | B model employs an expansion in Mach number of a
minority phase whose volume fraction is negligible, and iSyaywellian equilibrium distribution. Phase-segregating in-
expected to appear at diffusive stages, before hydrodynamiggactions are introduced by means of a self-consistently gen-
kicks in. Scaling theories do not give any prediction for theg aeq mean-field force between particles. The inclusion of
crossovers’ positions in time other than that they are “ofihis force gives rise to a nonideal gas equation of state

order unity” [49]. through the Navier-Stokes equation, which is reproduced via

Using a free-energy based, lattice-BGK method, Categne (jsyal multiscale Chapman-Ensk§§2] or moment
et al.[39] reached the viscous reggrpbx(t) forLo~5.9and  (Grag [53] expansion of the distribution function. No ther-
Re<0.1, and the inertial regime ¢t ) for Ly=~0.0003 and ~ mohydrodynamic behavior is imposed on the equilibrium
Re<350. The Reynolds number is defined in this domain-yistribution, as aforementioned free-energy based, lattice-

Initially introduced as a coarse grained version of the

|oct?, (11

coarsening context as BGK methods dd26], partly because none of the lattice-
Boltzmann implementations reported in the literature so far
Re—= E d_'-:” (12) exhibit anH theorem ensuring the existence of an asymptote
v dT ’ towards a prescribed equilibrium, and partly because a

046304-4



THREE-DIMENSIONAL LATTICE-BOLTZMANN . . . PHYSICAL REVIEW E 67, 046304 (2003

purely mesoscopic, mean-field approach is preferred hergerm couples the different velocitieg, and is a function of
The coefficients of the equilibrium distribution expansion arex andt. Also, n“(x,t) is the local particle density for theth

determined by the conservation of mass and momentum, ﬂ@)mponent, defined a8,nZ(x,t).
property that Galilean invariance holds, and an isotropic The judicious choice of the coefficients in the expansion

pressure tensor. ) ) of the equilibrium distributior(15) allows for mass and mo-
In this work we employ a pseudo-four-dimensional lat- mentum to be conserved,

tice, which is the projection onto 3D of the D4Q24 face-

centered hypercubidFCHO), single-speed lattice, where the " N

notation implies the spatial dimensio#) and the number of EK Qi =0, ; ma; k{2 =0. (16)
vectors linking a site to its nearest neighbd). The

FCHC lattice guarantees isotropic behavior for the macrosg;omentum conservation requires the fluid’s macroscopic ve-

opic momentum balance equatiptv]. B locity u to be defined in terms of the macroscopic velocity
In the following sections we introduce our modified Shan- a ¢, componenta

Chen model, first by looking at a noninteracting mixture of
gases, and second including the mean-field force term that

gives rise to a nonideal gas equation of state. Then, we Ne(x,Hue= >, nE(x,t)c, (17)
modify the collision term such that the Shan-Chen scheme is k

consistent with that derived from a Boltzmann-BGK equa-

S as the solution of the three equations
tion in the presence of a force.

E(u)=v, (18
A. Mixture of ideal gases

The finite-difference, finite-velocity fully-Lagrangidd0] where

scheme for the numerical solution of the multicomponent

Boltzmann equation, Ei(u)=(2-3u%)u;+3uP+ 3uiuf , + UL, (19)

NE(X+ G, t+1) — né(x, 1) = Q¢ (13 wit.h the Qartesian indek rgnging in theimod3 set, and/
being defined as the special average,

governs the time evolution of tHeh velocity’s particle num-

ber densityng for the fluid speciesx in a noninteracting VEZ pu® 2 P_a (20
mixture of gases. The lattice-BGK collision term is a7 L
N nﬁ(x,t)—n,ﬁ’(e“)(x,t) Based on previous experience with lower orders, our
Q(x )=~ w ' (14) choice of a third-order Taylor expansion in Mach number for

T the Maxwellian equilibrium distribution is an attempt to im-

where the time increment and lattice spacing are both unit)}grove the.grl)_?ro?mtatlon flor velocities A’V?'Ch' Vﬁ'thm.t:]he Itnh-
cc is one of the 24 discrete velocity vectors plus one nu”d?rtT:iFE)retSiSIn 'f'%’ tlimrll ,bare marg: entci)\;Jg ; '?h marrer?rll tﬁr xe
velocity, x is a point of the underlying Bravais lattice, and stribution function become negative or the erro € ex

a=R,B [e.g., oil (R) or water B)]. The parameter* de- pansion too large.
fines a single relaxation rate towards equilibrium for compo-
nent a. The functionn®¥(x,t) is the discretisation of a
third-order expansion in Mach number of a local Maxwellian  In order to deal with nonideal gases, in particular, fluid
[54], mixtures whose volume elements interact among themselves,
each fluid is forced to relax to a local equilibrium which is

B. Mixture of interacting, nonideal gases

a(eq) . 1 1 5 5 modified by the presence of its surrounding volume ele-
N (%) =on“(x, )| 1+ 26 U+F(Ck' u) YL ments. The mean-field force density felt by phasat sitex
s s s and timet from its surroundings is defined as
1 s 1, _
e G W UG W, (19 FD= =g (002 Gaas #(X DX =X), (2D)
S S a x’

where wy are the coefficients resulting from the velocity \whereg,; (>0 for immiscible fluid$ is a coupling matrix
space discretisation, angi is the speed of sound, both of whose nondiagonal elements control interfacial tension, and
which are determined by the choice of the lattice. For they« is the so-calleceffective masswhich serves as a func-
projected-D4Q24 lattice we use, the speed of soundsis tional parameter and can have a general form for modeling
=1/{3, and w,=1/3 for the speedc,=0 and 1/36 for various types of fluids. For simplicity in our implementation,
speeds, = 1,\2 [42]. (The projection from 4D to 3D puts an we have chosen/®(x,t)=n“(x,t) [32] and only allowed
additional speed into play/2.) In Eq. (15), u is the macro- nearest-neighbor interactions,=x+c,. Other choices for
scopic velocity of the mixture, through which the collision ¢ have also been made5].
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Shan and Chef25] incorporated the above force term in ne pZ pZ
the collision substep of the LB dynamics by adding the in- §aa=——/ Z —, (27)
crement n“r/ o 7

W where we have made use of the condition E2) below.
Au= T (22)  The second term arising in E€R5) accounts for interparticle
P interactions other than the binary collisions implicit in the

to the velocityu that enters the second-order expansion OiBoItzmannMEolllsmr? term{) [56]. Th_'s |nFIudes f"‘ collision
the equilibrium distribution function. We perform the same operatorA;* resulting from mean-field interactions among

procedure for our third-order expansiib), obtaining addi- ~ different fluid component$32], which gives rise to phase

tional terms separation for immiscible multicomponent systems.
The inclusion of a mean-field force in the Shan-Chen
ngCu+Au®)=ng(u) model leads to the breakdown of the local momentum con-
servation that holds for noninteracting ideal gases, cf. Sec.
G—Uu (2¢;-u—u?) IIIA. However, the forces felt by neighboring portions of
+ on® 2 + ot C|-a“T" fluid follow an action-reaction mechanism that leads to glo-
s s bal momentum conservatiofi.e., over the whole lattige
1 a®-a® (g-a%)? This was numerically confirmed for our third-order-
. k R -
+§wkn“ PR equilibrium, modified Shan-Cher! model too.
Cs Cs It can be shown that the condition for momentum conser-
vation in the absence of interactions, Ef8), leads to that
(- u)(-a")? (792 needed when using a second-order expansion of the equilib-
cg T rium distribution, namely
+$mkn“(ck-a“r“)3, (23 U=V, (28)

S
only in the limit of creeping flows to second order, i.e.,
wherea*=F*/p“.
Luo [36] and Martys, Shan, and Chgb5] expanded both
the velocity space gradient in the BGK-Boltzmann equation
force term,

u?~0. (29

We therefore implemented the computation of the velocity
a-Vgn, (24) according to Eq(28) rather than Eq(18). The condition Eq.
(29) is satisfied, as global momentum would not be con-

and the equilibrium distribution in Hermite polynomials in served otherwise. In addition, we confirmed in our simula-
the lattice velocities. Then they rearranged the acceleration tions that the fluid velocity was kept under 28% of the speed
such that it explicitly modifies the macroscopic velocity in Of sound by 67% of the lattice nodes. This means squared
the equilibrium distribution, leaving a term linear @ If ~ Mach numbers under 0.08. This purports to show that the
only linear terms were to appear in E3), the Shan-Chen €xpansion to third order, implemented in this model to ex-
prescription for an interparticle force would then coincidetend the parameter space for which the equilibrium distribu-
with the way it is included in the continuum BGK- tion remains positive, for momentum conservation at least
Boltzmann equation, as pointed out by Luo and Magyal. ~ adds very little.

To this end, fo”owing Nekoveet al. [32]’ we S|mp|y drop - In our LB model, the kinematic ViSCOSity of the mixture is
from Eq. (23) any term nonlinear in the acceleratianWe  given by

thus obtain a modified Shan-Chen collision term, which is

why our model is termed modified Shan-Chen. The modified n 1
Shan-Chen collision term is v=17=C (2 XaTa™ 5)’ (30
Qﬁ“EQ?"'Z El Aini’s (29 wherec_ ?=3 for our lattice,r, is the relaxation time of the

ath component and,, is its mass concentration defined as

where p.!p [25]. For a region of purexth component

. 1 Cy- G 1 1
A= 01 5 (0aaC— Laa®) T faa— 5 G| -a"7" (26) v=3|7 3] (31)
c c

S S

and which also holds for our case of a 50:50 mixture, for which
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TABLE |. Model parameters studied, including the surface ten-
D X =T, X,=T (32 sion o(p,7,9) measured for a planar interface on &4x128
@ @ lattice, and the characteristic lendth and timeT, for each param-
eter set. The existence of the latter two is based on the validity of
the dynamical scaling hypothesis, and that diffusive currents are
negligible with respect to hydrodynamic currents and capillary
IV. THE SURFACE TENSION forces.

since all relaxation times are the same.

The surface tensionr arises as an emergent effect due to Parameter set p

. : . . . VT Lo(p,7,9) Tolp,,
intercomponent interactions. It is calculated by measuring T 9 opm9) Lolp.m9) Tolp.70)

the components of the pressure terBer{P;;} across a pla- I 0.8 2.000 0.06 0.002059  97.1 18870
nar interface perpendicular to tizeaxis through the formula I 0.8 1.500 0.06 0.004777  18.6 1038.8
Il 0.8 1.000 0.06 0.010292 2.16 28.0

+ oo
U:f ‘[PZZ(Z)—PXX(Z)]dZ, (33 v 0.8 0.625 0.05 0.017458 0.0796 0.152

— o0

wherePj; is the flux of theith component of the momentum tions, and metastability is not uncommon. Nucleation is
across a surface perpendicular to jiie cartesian axis. This hence a more complex phenomenon which is usually consid-

pressure tensor, consistent with the force &), is ered after an initial study in spinodal decomposition has been
performed.
o 1 _ o o We aim at reproducing the early time diffusive and later
P(X)_Ea: Ek: Pk(X) GGt 4 %gaa;‘ L4097 (x") time viscous and inertial regimes predicted by carrying out
_ ’ scaling analyses on the Cahn-Hilliard Mod¢l-equations
+ () P (X") ] (x—x") (x—X"), (34)  [2,47). Growth laws predicted for those aret’s, I=t, and

|<t?"® respectively. Under the assumptions of the dynamical
with X" =x+ ¢ in this study. This leads to the same expres-scaling hypothesis made in the introduction, those regimes
sion for the scalar pressure as that in the momentum balanege uniquely characterized by the length and time
equation obtained by multiplying the LB equatiB) using
the collision term Eq(25) by ¢, and summing ovek. Here, 1\2 p? 13
pr(X) is the mass density of speciaswith velocity ¢, at the T— 5) , Toz—z( T— 5) ,
site x. Equation(34) contains &kinetic termdue to the free 2N a(p,7.9)]
streaming of particles corresponding to an ideal gas contri- (36)
bution, plus gpotentialor virial term due to the momentum
transfer among particles of equal and distinct color, throug
the interparticle forcg52].

As previously noted, the surface tension in the modifie
Shan-Chen model is an emergent, hence not directly tunab
guantity, in contradistinction to the situation with free-energy
based lattice-Boltzmann models. It depends on the depsity
the couplingg, and the relaxation time,, and has to be :
determined by simulation. We computed its dependence or?
these parameters to be as follows: a

_ P
L= 50(p.m.0)

ipbtained by inserting Eq31) into Eg. (9).

Having in mind keeping simulation time at a minimum,
Ahe values op, 7, andg must be such as to allow the fluids
f@ be immiscible and approach equilibrium quickly whilst
ensuring numerical stability and positive shear viscosity.
This amounts to keeping as high as possible; close to
1/2, andg as large as allowed by the onset of numerical
stabilities which set in when the forcing term is too large. A
rge g allows for the early time transient, dominated by
diffusion, to be of short duration. Finally, seeking the diffu-
do Jo do sive regime means looking at very early times, which is at-
—>0, —>0, —<O0. (35  tained for large values ofF,. Conversely, the hydrodynamic
ap o] aT . . . . .
inertial behavior requires as small valuesTgfas possible.

This behavior is useful when steering through the parameter In Table | we present the pafametefs selected n this study,
space in search of specific valueslof and To. Numerical along with the measured surface tension. We also include the
results on the surface tension are reported in the followingjiength and time sca}les associated with them, .Wh'Ch are used
section. o compute dimensionless lengths and times in the model.
The initial condition used for all the simulations was a

thorough mixture of the two phases, with randomly distrib-
V. SIMULATIONS uted fluctuations. To realize this, each velocity directioat

We restrict ourselves to criticdb0:50 mixtures, which ~ €ach lattice site was populated with one densif{(x,t)
are the type of configurations leading to a spinodal decom=m“ny(x,t) for each speciesx=R,B as a white-noise,
position process as opposed to nucleation. Experimentallgseudorandom floating point number between 0.0 and 0.8,
spinodal decomposition is characterized by long-wavelengthvherem® are the particle masses, all set to unity. Note that
infinitesimal density perturbations which are unstable afteithe densityp in Table | is defined as the lattice average
the quench, hence favoring the segregation, whereas nucle-
ation generally presents short wavelength, finite perturba- p={(pR(x,1)+ pB(x,1)), (37
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wherep®(x,t)==2p,(X,t), and due to the critical composi- a2=o.1, andagzl.o. The tolerance for these fits was set to
tion we use, amounts to the maximum value of either of thel0™°, this being defined as the unsigned incrementy®f

summands. between two consecutive iterations, divided by the number
Lattice sizes used were 128@nd then 258to check for  of degrees of freedom.
finite size effects. Simulations for 128ystems were run for Uncertainties in parameters are also taken care of. Be-

700 or 1400 time steps, and for 200 or 250 time steps focause standard errof\, S} are incurred in the structure
256° systems, depending on the parameter set. Followinunction spherical averagin(p), these transmit down ta
prescription of Kendort al.to keep finite size effects at bay and |, and tot through the determination of;,. In this
[11], we neglected domain sizes larger than a quarter of thetudy, however, errors in the abcissae are disregarded as they
lattice side size. There is no reasarpriori to choose this do not depend on time, and therefore represent equal weights
particular threshold. As we shall see, this allows the generafor data points in the least-squares functional to minimize.
tion of a domain size range broad enough for data acquisi- We performed the simulations using a nhumber of proces-
tion; furthermore, finite size effects were quantified by usingsors ranging from 32 to 128 on a Cray T3E-1200E and on
the two aforementioned lattice sizes. SGI Origin2000 and Origin3800 supercomputers. The code
Surface tension was measured oixX4X128 and 16 is an implementation in Fortran90 using the message passing
X 16X 128 lattices, allowing plenty of room along the interface(MPI) as parallelization protocol, and it shows scal-
nonisotropic directiorz for the fluid’s physical quantitites to ing with the number of processors between 50% to 90% of
achieve values characteristic of the bulk before being aflinearity on the Cray T3E platfori58] up to 64 PEs, and
fected by the second interface with periodic boundary conbetter behavior on SGI Origin platforms. CPU times used up
ditions imposed. We found that the surface tension did noto run a 128 lattice for 1400 time steps, or a 25@ittice for
vary by more than 1% when the length along #hdirection 250 time steps, took ut6 h per parallel process.
was doubled, which is the only direction where we would An important issue in dealing with the lattice sizes em-
expect any variation as translational symmetry is broken. ployed here is to have access to massive disk storage. For our
To compute the average domain size, B3), we perform  largest lattices, 1.9 Gbytes of measurements were dumped
discrete Fourier transforms. The sampling theorf®@]  onto disk at each measurement time step. A lattice of 256
warns us to ensure that our fluid mixture does not exhibissites run for 700 time steps, measuring every 25, requires 40
spatial frequencies larger than the Nyquist critical frequencyGbytes to store the order parameter, the density fields for
f., defined as half the sampling frequency. This is not beingeach phase, momenta, and checkpoint files, the latter being
the case, the power spectrum in the intef\@af.] is altered needed if we wish to restart the simulation at the point where
by frequencies larger thaf as a result of aliasing. Because it stops. To that we need to add some additional working
the sampling frequency on the lattice is one, the maximunspace for converting the dumped binary data into machine-
frequency any relevant quantity of our fluid mixture is al- portable XDR formaf59]. For this work we required 200
lowed to have according to the sampling theorem is 1/2, i.e Gbytes on disk, plus tape storage to free up space when
of wavelength two. This means that any spatial variation isequired. XDR files were visualized using the commercial
bound to happen between two contiguous lattice sites, whichackage AV 60].
is something we already knew: the resolution of the lattice is It is worth noting that our results did not undergo a pro-
finite and dictated by the lattice size. We used the FFT roueess of lattice size reduction, in the sense of averaging over
tine rlft3() for real, 3D data setfb7]. nearest-neighboring sites in order to deal with limited com-
Calculation of the reduced timerequires an assessment putational resources, as was done in previous studies on 3D
of Tyt Tine SEIVes to redefine the time such that the domainspinodal decompositiofd9,61. Hence, we benefitted from
have zero size at the time origin, which is not the case in theneasuring and visualizing all data output from our simula-
actual simulations. Depending on the regime reached by thi#gons. Current limitations in computing resources prevented
parameter set employed, domains may start to grow immess from simulating lattices of 522or 1024 sizes, which
diately after time step zero, completely avoiding the diffu-would otherwise be desirable in order to decrease the fluid's
sive stage. minimum Knudsen number, helpful in reaching the thermo-
We asses3,, in the following way. We first compute the hydrodynamic limit as a multiscale Chapman-Enskog expan-
intersection with the abscissae of a linear fit interpolating allsion procedure shows. However, this situation is bound to
data starting after the initial purely diffusive transient is com-change soon with the advent of terascale computing capabili-
pleted, that is, for which interfaces are thin enough (@)  ties (see http://www.RealityGrid.ojg
just starts to grow. The intercept is used as an initial guess
for a; in a Levenberg-Marquardt nonlinear least-squares fit
of the form A. Growth exponents
Figure 1 shows the average domain size in lattice units as
obtained straight from the simulations, for all parameter sets
(cf. Table ). Reynolds numbers achieved for each of these
OnceT;, is computed, and the data sets are normalized bwre Re=0.18, 0.49, 2.7, and 37. For parameter set |, we can
Lo andTy, hence becomingt(l) data pairs, we perform fits see that after a transient during which there is a rapid mass
to the function Eq.(38) to determine the growth exponent convection to nearest neighbors, domain growth flattens out
a,. Initial guesses for the fitting coefficients as§=1.0,  and starts growing at aboiit=400. We will look at this in

y=ap(x—a)*. (39)
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45 - - the dynamical scaling hypothesis.
. By looking at Fig. 2 from a grazing angle one can easily
°l 2 o Paramen set ] see that a simple, algebraic interpolating curve is not obtain-
35| K  Parameter set I il able here. Kendont al.[11,49 and Pagonabarraga, Wagner,
kS and Cate$15,62 used a method to improve this curve. They
30 - K 8 left T,,; as an adjustable fitting parameter such that there is a
AA‘" reasonable collapse onto a simple, single algebraic curve for
a7 K Lo | all parameter sets simulated; from this they obtained a win-
i 20 | . vt E,Emamgmwwm | dow of T, in which collapse is reasonable. Then they
At oo™ 4oeme%° ZS,ZZ@@@,@@%@@@@@@@@ checked whether the different values My, from each indi-
15 | P B@@@@nggggom@@@@ 1 vidual parameter set lay within such a window. Quoting Ken-
®®®®i®®§§§§ggg§@9 donet al. (cf. Sec. IX C in Ref[49]), “although this[proce-
10 Wigs‘*ﬁm 1 durg] is capable of falsifying the scaling hypothesis -],
5 jf ] its nonfalsificatior - - - ] may not represent persuasive proof
p that the scaling is true.” We adhere to this comment and
o ‘ . ‘ ‘ . ‘ prefer not to manipulate the data sets in such a way.
1] 200 400 600 800 1000 1200 1400
T

FIG. 1. Evolution of the average domain size for parameter sets B. Structure function

I, 1, 1, and IV (cf. Table ) with the time step. Error bars are For parameter set (cf. Table ) we show in Fig. 3 a
included and represent the uncertainty transmitted from the standafgmily of spherically-averaged structure functions versus
error of the structure function spherical average. Lattice size igygye numbers, corresponding to time steps 200, 400, 600,
128. All quantities are reported in lattice units. 800, 1000, 1200, and 1400, from right to left. Just as in
scattering cross-section measuremdi2is we observe the
further detail; for now it can be seen that the breadth of thepeaks to grow and approach small wave numbers as time
plateau decreases with the Reynolds number. Finally in Figevolves. In Figs. 4 and 5 we show the same family of curves
2 we show the same curves after rescaled gand T, in using time steps as abscissas and wave numbers as param-
reduced units. eters. Regions of linear growth with time on such a logarith-
Fits to the modely=agy(x—a;)?2 for Fig. 2 are given in  mic scale indicate that a diffusive process is dominating the
Table II, and they proved to be quite sensitive to the numbedynamics. In fact, an exponential time growth for the struc-
of points fitted. Domain growth shows an increasing segreture function shortly after the quench below the spinodal
gation speedt®545, 10593 0623 andt%717 with increasing curve was predicted from the linearised Cahn-Hilliard
Reynolds number. These data sets correspond to characterddodel-B equations without noisg2], which although incor-
tic lengths and times in the ranges 0.0¥96,<97.1 and porating order-parameter conservation, does not include hy-
0.152T;<18870. These contain the values for which Ken-drodynamics. This Cahn-Hilliard equation might be appli-
donet al. [11] observed a viscous linear exponeng=5.9  cable to regimes in our fluid where hydrodynamic effects
and To=71. This, therefore, invalidates the universality of were unimportant, as in the initial stages. Assuming linear
perturbationsp’ to the order parameter, Cahn predicted that

1000 , , , , , for fluctuations of small amplitude and long wavelength
e there is an instability of the form
100 | LT S(k,t)=S(k,0)e 20t (39
10l 1 for k<k., wherek, depends on the diffusion constant. Here,
,f'/ tis the time,w(k) <0, andS(k,t) (| #.(t)|?), the brackets
- . denoting averaging in reciprocal space over a shell of radius

di - 1«

Exponential growth occurs in our simulations, as can be

o1l =~ _ seen from Figs. 4 and 5 for about the first 350 time steps for
. most of the wave numbers, indicating its transient character.

001 . . . . _ The plateau of Fig. 1, set I, lasts during the first 400 time
~0.01 0.1 1 10 100 1000 10000 steps, and we can see, Fig. 3, that up to 400 time steps the

t peak in the structure factor varies in height and very little in

FIG. 2. Log-log plot of reduced length versus reduced time forwave number, and is located at 0.4@attice unitg. This
the 128-lattice data sets. Error bars are included. The four data set¢ads us to think that at these early stages the dynamics is
correspond to parameter sets I, I, 11, and (8f. Table ), from left ~ mainly making walls thinner while average domain sizes
to right. Viewed from a grazing angle, one can see that a simplebarely change. In addition, visual inspection of the order
algebraic interpolating curve is not truly obtainable here. The firstparameter confirms the latter and suggests that hydrody-
few points of each set correspond to diffusive, zero-growth stagesiamic currents are weak, leaving diffusion as the mechanism
The units on both axes are dimensionless. leading the phase segregation process. When we check the
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TABLE II. Levenberg-Marquardt nonlinear least-squares fitsl ofs t data to model(38), for each
parameter set attempted. The first line for each set belongs thdk28, the second line to 25@lata, the
latter being unavailable for set I. Fitting parameters are given, plus the weighted sum of squared residuals
(x?) divided by the fit's number of degrees of freedom. Weights are the inverses of squared uncertainties.
Note thaty?/ndf, also referred to as the variance of residuals, is expected to approach unity. Values larger
than 1.0 may be due to an insufficient number of data points, data errors not normally distributed, or an
incorrect model function. Values smaller than 1.0 may be the result of too large error bars, or too general a
model function.

Parameter set ag a; a, x2Indf
| 0.644+0.014 —2x105+0.002 0.54%0.014 0.46

Il 0.924+0.004 6<10 ©+0.007 0.607%0.006 1.23
0.922+0.003 —2x%10°5+0.007 0.59% 0.007 0.48

1 1.248+0.031 —0.007+0.100 0.65@:0.007 2.71
1.362+-0.010 —1x10 4*0.03 0.6230.002 0.68

\Y) 0.941+0.019 0.03%3.9 0.743-0.002 0.10
1.139+0.017 -0.01+3.6 0.717:0.002 0.14

structure function temporal evolution, Figs. 4 and 5, for themain sizesi\wave numbers larger than 0.73fr time steps
curves at and arourkl=0.491, we see that up to exactly 400 well advanced in the coarsening dynamics, after 600 time
time steps do they show exponential growth, as the Cahrsteps. These wave numbers are close to and above the ex-
Hilliard Model B predicts for a diffusive scenario. Also, ex- pected ModeB upper cutoff for exponential growth, set by
ponential growth does not hold for all wave numbers, butthe change in slope from positive to negative in Fig. 5. These
only for those smaller than about 0.7, in agreement with thelepartures from ModeB’s predictions hold nonetheless for
existence of an upper cutoff for the validity of E¢9),  domain sizes far from the first moment of the structure fac-
predicted from ModeB. tor, which is close to its peak and is our average domain size
However, not all the wave numbers follow ModBls measure. It would be desirable in future works to investigate
predictions, namely, that exponential growth is a transientliffusional processes &< 0.245 for all of the simulation
and occurs up to a threshold wave number. In fact, exponeriime, andk>0.736 at late times: according to the Cahn-
tial growth holds for all the time steps of the simulation for
the larger length scalgsvave numbers up to about 0.245
suggesting that diffusion never ceases to dominate their dy
namics. Also, exponential growth is seen for very small do-

1000 T T T T T T

200 T T T T T T T

180

160

140

120

S(K)
g

0 200 400 600 800 1000 1200 1400
Time step, T

60

40
FIG. 4. Evolution of the spherically averaged structure function
with the time step for parameter set | and a ¥28ttice, on a
logarithmic scale. When observed along the ordirgte200, the
curves correspond to wave numbé&rs0.147, 0.196, 0.245, 0.295,
0.344, 0.393, and 0.442 from bottom to top, respectively. Error bars
FIG. 3. Spherically averaged structure function versus waveaepresent the standard error of the structure function spherical av-
number, for parameter set(¢f. Table ). 128 lattice. Error bars  erage. Regions of linear growth are those for which the exponential
represent the standard error of the structure function spherical awbehavior Eq.(39) holds. For wave numbers up to 0.2 exponential
erage. Time slices shown are time step 200, 400, 600, 800, 100@nd therefore diffusive behavior is seen for all the simulation time.
1200, and 1400 from right to left. All quantities are reported in For larger wave number@nd hence smaller domain sizeffu-
lattice units. sion occurs as a transient. All quantities are reported in lattice units.

20

075 0.875 1
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FIG. 5. Similar to Fig. 4, but the curves correspond to wave FIG. 7. Spherically averaged structure function for parameter set
numbersk=0.491, 0.540, 0.589, 0.638, 0.687, 0.736, 0.785, and!l (cf. Table ). 128 lattice. Error bars represent the standard error
0.834 from top to bottom, respectively. We can see that lineaof the structure function spherical average. Time slices shown are
growth ceases to hold for wave numbers larger than about 0.736, ifime step 100, 200, 300, 400, 500, 600, and 700 from right to left.
accordance with existence of an upper cutoff for the validity of Eq.All quantities are reported in lattice units.

(39). All quantities are reported in lattice units.
Figure 9 shows the collapsenatching of the structure

functions corresponding to parameter set(¢fl Table |), for

a 128 lattice size and time steps from 450 to 700, when they
are scaled by E(8), the abscissas being rescaled by a factor
of (27r) "1, and the ordinates by the peak’s maximum. Ear-
ier times are represented in Fig. 8 by empty symbols, and
ater times by filled symbols. There is good collapse, and,
therefore, scaling according to the scaling hypothesis, in the
region fromq=0.4 to aboutg~3, whereq=KkL is dimen-
sionless. The middle of the region<ig<2 follows aq~°
behavior, in accordance with Tomita’s prediction of an expo-
nent—6 or more negativg63].

Hilliard linearized ModelB, for these cases diffusion is neg-
ligible or forbidden, respectively.

Analogous behavior to Fig. 3 is exhibited for parameter
sets Il, lll, and IV(cf. Table ) in Figs. 6, 7, and 8, respec- |
tively. For the last two time slices taken in Fig. 9, the peaksI
seem no longer to drift to the left, as a result of finite size
effects (arrest of domain growbh Regarding regions of ex-
ponential growth with time, the three data sets confirm Eq
(39), with an upper bound fok.

480 | 7
5000 | | I I
440 - —
400 _ : _
360 — : _
: | 3500 4
280 —
=z 3000 7
@ 240 | _ |
5 2500 _
200 — |
: | 2000 i
120 _ : _
. | 1000 _
40 ﬂ _
0 e B _
0 0.75 0.875 k "o E B}

0 0.125  0.25 0.375 0.5 0.625 0.75 0.875 1

FIG. 6. Spherically averaged structure function versus wave
number, for parameter set (tf. Table ). 128 lattice. Error bars FIG. 8. Spherically averaged structure function versus wave
represent the standard error of the structure function spherical anumber, for parameter set Ii¢f. Table ). 128 lattice. Error bars
erage. Time slices shown are time step 200, 400, 600, 800, 100@epresent the standard error of the structure function spherical av-
1200, and 1400 from right to left. All quantities are reported in erage. Time steps shown are 100, 200, 300, 400, 500, 600, and 675,
lattice units. from right to left. All quantities are reported in lattice units.
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FIG. 9. Scaled spherically averaged structure function for pa- FIG. 10. Scaled spherically averaged structure function for pa-
rameter set Ill(cf. Table ), as defined by Eq(8). Lattice size is rameter set IV(cf. Table )), as defined by Eq(8). Lattice size is
128, Time steps are as shown in the legend. Earlier times corre12&®. Time steps shown are from 450 up to 675, every 25. Earlier
spond to the empty symbols; later times to the filled symbols. Errotimes correspond to the innermost lines; later times to the outermost
bars are smaller than the size of the symbols. Straight lines serve #iaes. Error bars are smaller than the size of the symbols, except for

slope guides to the reader only, and represent power tgws*, the two leftmost, detached data sets, for which they are slightly
g~°, and Porod’s lawg™*, from left to right, respectively, withy larger. Straight lines serve as slope guides to the reader only, and
=kL. All quantities are reported in lattice units. represent power lawg®, g%, q 8 g7, and the fit to the large-

tail, g~ 3%, from left to right, respectively, witg=kL. All quan-

Close tog~3 we observe the presence of a shoulder, a&lies are reported in lattice units.

has been reported in experimef€!] and numerical simu-
lations[48,65. Most strikingly, the shape of our larggtail
is very reminiscent of that of Fig. 4 in Rd#48] and that of

Figure 10 shows similar curves for parameter set(d¥/
Table ), where only time steps 450 to 675 are displayed and
we have also normalized the curve such that the peak is

Fig. 3 in Ref.[65]: (1) there is still a time dependence indi- . .
; ) located at(1,1). We have again neglected early time steps
cating that interfaces have not yet been fully resoliwee are cause of poor collapse. A fit to the tail in<2j< 10 gives

. e : . CPe
probing the smallest scales, where diffusion still exists and ~ 3 g5 : ) .

: . . q , close to being a Porod’s law. It is when we probe the
&/L is not small enough and (2) the tail decreases with an finest length scales, at~10 that it ceases to apply, due to
exponent which is in fact more negative than that of the 9 ' PRI,

. . . lattice discretization effects.
Porod tail, Eq(6), desp_lte what these authdrs, 69 claim. The behavior at intermediate wave numbers is between
For g<0.4, data points do not seem to collapse onto the_ _

8 -7 in ; o
same curve of those far>0.4. This is similar to, but with q "andq ', again in agreement with Tomita's thedi§a],

more data than, the results of Koga and Kawa$é%]. Our and close tog * as computed using a dissipative particle

results show an exponent growing with time: the slope of a?ynamics method by Jurgt al. [13] and a lattice-gas au-
line (not shown joining the first two empty circles T omaton by Love, Coveney, and Boghos|ai

— 450) is 1.61, while the slope of a lir@ot shown joining For small momentélarge domainswe found a behavior

the last two filled downward triangle§ & 700) is 2.12. This close tog, in agreement with the_ nur_nerlcal results pf Love,
; Coveney, and Boghosid®] and in disagreement with Ye-
resembles the temporal growth cited by Appetral.[48] on ) -
the results of Alexander, Chen, and Gruri&4]; nonethe- ung’s predictiond 6.
. ’ ! ) Lo " The most notable difference between Figs. 9 and 10 is the
less, we consider the amount of data in the latter msufﬁuen%ehavior abova~15. Figure 10 shows a neat Porod tail
to draw firm conclusions. Given that the pointsTat 700 are &= L0. Hg '

closer to the asymptotic regime, we take such a slope as OL\th'Ch bends down dramatically fay>10, whereas Fig. 9

best approximation to the asymptotic regime Shows either a poor Porod tail in the regiorc§<5, or a
In the smallg region, Yeund 66] predicted a':|4 behavior minute one in the region 1£q<3. A condition as_sumed n
for the asymptotic Iimif (<o, or at late times Addition- the derivation of Porod’s la7] is that the sampling length

. . 2 r satisfiesé<r <L, which in wave numbers means
ally, at earlier stages, a term proportionaltoq“ caused by
thermal noise would also come into play. Now, the estimate 1L <k<1/¢. (40)
of Appertet al.[48] applies well for our results: such a qua-
dratic term is less dominant than the quartic one onlycfor By “eyeball” inspection of the system'’s order parameter we
>0.4, given that the largest value b{T) for which there found that interface widths naturally shrink with an increas-
are no finite size effects is also about 25. This happens to hieg number of time steps, going from about 5 or 6 lattice unit
the region where we find thg?—q* crossover. spacings at 200 time steps down to about 3 at 675 time steps,
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TABLE Ill. Model parameters leading to numerical instability,
including the surface tensiom(p,7,g) generated some time steps
before the instability sets in, and the associated characteristic time.
The lattice used wasX4x 128, and the instability sets in before

4000 ts.
P T g U(p!T7g) TO
0.5 0.5625 0.06 0.0115 0.0169
0.5 0.5625 0.03 0.0052 0.0122
0.3 0.5625 0.10 0.0068 0.0174
0.3 0.5500 0.08 0.0061 0.0112

tail obtained is only close to being a Porod tail. This is in
agreement with the fact E¢40) is necessary but not suffi-
cient for a Porod tail to hold.
Finally, it is worth noting in Fig. 12 that the existence of
nested domains and droplets much smaller than the average
FIG. 11. Order parametep{— p?) snapshot at time step 200 domain size.
for parameter set I\(cf. Table ). We show a 256256x40 slab of

the lattice. VI. NUMERICAL STABILITY OF OUR
LATTICE-BOLTZMANN ALGORITHM

regardless of the data set, Il or I\¢f. Table ). Simulations ) )
for a 256 lattice size revealed similar widths, and snapshots AS is well known, owing to the lack of aH theorem, an

of the order parameter at 200 and 700 time steps are shov@PProach to equilibrium is not guaranteed in all lattice-
in Figs. 11 and 12. With these widths in mind, assumingBeltzmann models to date; recent theoretical developments

domain sizes of a quarter of the lattice side lengihe (0 @ddress and solve this have been mde-4§. For
threshold imposed by our prescription for eliminating finite Single-phase lattice-Boltzmann models, equilibrium  states

size effects, and a 128 lattice, condition(40) becomes are well defined in the collision term; if the automaton does
relax to these, the pertinent macroscopic momentand
1<q=<10, (41) sometimes energybalance equations are reproduced in the

low-Knudsen number limit. Interacting, multicomponent

. . . . . lattice-Boltzmann models exhibit the same situation in the
which contains our_largq— region. Despite t.h's’ we do not bulk of pure fluid regions where intercomponent interactions
observe a Porod tail for data set Ill, or, as in data set 1V, the-are negligible. For regions where they are not, there is not
even a well-established thermohydrodynamic theory which
could provide equilibria to which the automaton could relax
to, or with which to compare the stationary state to which it
can evolve. Whether dealing with a single or multiphase sys-
tem, lattice-BGK stationary regimes ought to be treated with
caution and contrasted with experiment.

Numerical instabilities are the reflection of the lack of an
H theorem, which is a direct consequence of space and time
discretization on the BGK-Boltzmann equation and the free-
dom in the choice of the equilibrium distribution function
[45,46. These instabilities can be defined as follows. As is
generally the case for a finite difference method with a single
relaxation parameter, such as our lattice-BGK model for a
zero phase-coupling constafd2], linear stability occurs
within a finite interval of such a parameter. If multicompo-
nent interactions are introduced, additional parameters may
influence the stability: density, intercomponent coupling
strength, and even composition. The mechanism is simple:
certain choices of parameters can turn the lattice-BGK colli-
sion term positivetherefore increasing the mass densfor
long enough to generate floating-point numbers larger than

FIG. 12. Order parametepl—p®) snapshot at time step 700 the largest the machine can deal with, hence causing an over-
for parameter set I\(cf. Table ). We show a 256256x64 slab of ~ flow signal. Numerical instabilities are defined in this work
the lattice. as the generation of such floating-point numbers. We con-
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0 5§ 10 15 20 25 30 35 40 45 50 FIG. 14. Evolution of the maximum speex,,, with the time
T step on a 32 lattice for parameters{p=0.3, g=0.06, 7
=0.5125. The interpolating curve serves as a guide to the eye

FIG. 13. Evolution of the collision term maximum absolute i . . .
only. All quantities are in lattice units.

value, 6, Eq.(42), with the time step on a 32attice for parameters
{p=0.3,9=0.06, 7=0.5128. All quantities are in lattice units.
cates that at the time steps immediately prior to the onset of
sider it crucial to be able to map out regions in the model'sthe instability the lattice gets more and more populated with
parameter space leading to unstable configurations, and {acreasing speeds until in two or three time steps they grow
report them alongside any lattice-BGK simulations. by ten or more orders of magnitude. That the population of
Using the same initial conditions as explained in Sec. Vjattice sites with rapidly increasing speeds over time is small
we found our algorithm to be unstable for regimes with thecompared to the lattice volume can be concluded from con-

smallest length and time scalds, and To, which coincide  (55ting the time variation in the standard erfone sigma
with those of the largest Mach numbers. In Table Il we _— . . — .
f u to the time variation ofi, Fig. 15. The same parameter

show some of the paramaters leading to numerical instabilit)}.) ) ) . .
The dependence of the surface tension on the model param¢t Fun on a 12Blattice seems to make the instability set in

eters, as given in Sec. IV, should be taken into consideratiof"Uch auicker, as it occurs during the first 10 time steps. As a
as a guide to steering through the parameter space. Note tHital check, we ran a 128attice with parameter set (cf.

all values ofAt included are larger than that for parameter Table ) for 20000 time steps and found no instabilities. The
set IV. time evolution of#, u, andu is shown in Figs. 16-18, re-

We then investigated the nature of our instabilities, asspectively. We conclude that the occurrence of instabilities
others have done. The group of Cates found troublesomenly depends on the set of parameters used, regardless of the
numerical instabilities with their free-energy based, lattice-number of time steps simulated.

BGK model in 3D in regions in which quiescent binary por-
tions of fluid go into a checkerboard stdtél]. They re- .
ported that their model is unconditionally unstalji9].
Nonetheless, by improving the way gradients were treatec osf
numerically they were able to considerably reduce this un-
physical behavior. For our model, we looked at the time
evolution of the quantity

0.6 |

04 |

o(t)=max|QL“(x,t)|V XV KV a}, (42

02

average speed

for parameter$p=0.3,g=0.06, 7=0.5123, where the col- ° {
lision term,Q,“, is defined in Eq(25). We also monitored
the maximum and average values of the fluid mixture’s

speedunac@ndu, respectively, on the lattice. We show these 04t
quantities for a 32 lattice in Figs. 13—-15. We see how o8
reverses its decreasing trend in a few time steps; after that,i — ° 5 1 18 220 % 3 3 4 4
blows up atT=52 time steps. We only show data up To
=49, asf(T=>51)~ 10" upay, blows up in similar style: at FIG. 15. Evolution of the speed averagewith the time step on
T=50, Una=7498, andfd~10?%; at T=51, Uy, has ex-  a 32 lattice for parameter§p=0.3, g=0.06, r=0.5125. Error
ceeded the maximum floating-point value that the computebars represent the standard error of the avefage sigma All
can deal with, and overflow signals are generated. This indiguantities are in lattice units.

02}
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0.08 -

0.04 -

0.02 -

average speed

-0.02 |-

o -0.04

-0.06

1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000
T

1 10 100 1000 10000 100000 ) - . )
T FIG. 18. Evolution of the speed averagevith the time step on

a 128 lattice for parameter set(tf. Table ). We can see a decreas-
ing trend of the average and its error. All quantities are in lattice
units.

FIG. 16. Evolution of the collision term maximum absolute
value, 8, Eq.(42), with the time step on a 138attice for parameter
set | (cf. Table ). We can see a decreasing trend for most of the
simulation, which accentuates after time step 10 000. The interpoviodel H. Owing to the significant amount of diffusion
lating curve serves as a guide to the eye only. All quantities are irpresent at low Reynolds number’ we do not consider our
lattice units. results to be indicative of a genuinely hydrodynamic inertial

2/ regime.
VII. CONCLUSIONS We observed exponential growth in the time dependence

We have presented a quantitative study of the phase Sepgf_ the structure function for wave numbers up to a threshold
ration dynamics in three dimensions for criti¢&D:50 fluid Vall.Je' n quahtat_lv_e agreement with predictions from the lin-
mixtures(spinodal decompositigrior a modified Shan-Chen earized Cahn-H|II|_ard MOdeB.' For small wave nu_mbe_rs,
lattice-BGK model of multicomponent, isothermal immis- such an (_axponentlal g_rqv_vth IS seen at all simulation times,
cible fluids ' whereas it is only an initial transient for larger wave num-

We found that, after a brief diffusional transient in which bers. These departures from Modg| predictions are for

interconnected regions of fluid species embedded into on ave'nur'nbers far from th? one charaqtenzmg the average
another are formed, the average size of such regions gro omain size. A natural continuation of this work would be to

with time asl «t”, wherey~2/3. The trend is for the value Investigate the nature of diffusion currents _for these cases.

to increase in the range 0.549.014< y<<0.717+0.002 as We have founq very good agreement with the dynamical
the Reynolds number increases. This increase is consiste (Eallng hypotheS|s in the form of a neat collapse of the struc-
with a crossover fromot' diffusive behavior to hydrody- ure function curves for Re2.7 and Re-37 when they are

T : g appropriately scaled according to E§). This collapse holds
namic viscous growth =t predicted by the Cahn-Hilliard roughly for the second half of the simulation time, as diffu-

sional transients act during the first. By looking at order pa-
rameter snapshots we observed the formation of nested do-
mains and smaller droplets for the largest Reynolds numbers
achieved, as Wagner and Yeomans also fdu2dl However,
unlike them, in our case these are transients rather than a
result of length scales growing at different speeds, as poor
collapse of the scaling functions would then occur due to
breakdown of scale invariance.

Yeung predicted & behavior at the smatlend of the
spectrum as the result of thermal effects at preasymptotic
stageq66]. Love, Coveney, and Boghosidf] conjectured
that ag? behavior, and a crossover 43, could be caused by
(a) lattice-gas noise, ofb) a poor scaling collapse, and that
their t?® domain growth, instead df might be justified by
o 2w wm e o ww  imw o the former. Appertet al. [48] ascribed theg? behavior and

T the crossover to not having reached the asymptotic limit,

FIG. 17. Behavior of the maximum speeg,, with the time ~ — (poor scaling collapse againOur noiseless model re-
step for a 128lattice with parameter set(tf. Table ). It shows an ~ produced theqz<—>q4 crossover at Re2.7 and did not at
overall decreasing trend. The interpolating curve serves as a guid@e= 37, for which there is better scaling collapse, and also
to the eye only. All quantities are in lattice units. produced a 2/3 domain growthrossover exponent. All this
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leads us to conclude that noise may not play as important &aon, be correctly described by our method. On the other
role as the lack of scaling collapse in explaining tffe-q*  hand, there is still scope to achieve Reynolds numbers
crossover, and is definitely not a requirement for the reprosmaller than Re 0.18 in search of the end of the crossover
duction of a 2/3 domain growth exponent.g& behavior is  to t13. Closeness to the miscibility threshold may make this
the only one experimentally observed by Kubetaal. [64]  endeavour difficult, as it is reached for characteristic times
for a mixture of isobutyric acid and water; they cite surfaceca. To=1.43<1C". . .
tension effects, measurement difficulties, multiple light scat- Our results clearly challenge the claim that a domain
tering, and even specificity to the mixture’s molecular Weightgrowth linear with time is universal for all models of phase

as reasons for not seeingjAbehavior, and definitely discard S€Parating fluids sharing similar values lof and Ty since
thermal noise. Not surprisingly, in his prediction Yeung as-We obtained excellent collapse of scaled structure functions

sumed a diffusive domain growth exponent of 1/3, which isyet our domain growth exponents are in the crossover region

rather seen in quenches of polymer mixtures and metal aPetween diffusive and hydrodynamic viscous regimes.
The properties of this binary immiscible fluid model are

loys. . S :
In the case Re 37, the spectrum showscg behavior in important for underpinning the more complex domain
growth observable in ternary amphiphilicoil/water/

the smallg limit, in disagreement with Yeung’s prediction. N . X .
In fact, his analysis is based on a Cahn-Hilliard model With-surbff_‘(:ta_nl fluids which we expect to report in forthcoming
publications.

out hydrodynamics.
The numerical instabilities seen in our runs are caused by
large speeds turning the equilibrium distribution negative for
long enough to incur floating-point overflows. This happens This work was supported by EPSRC Grant Nos. GR/
for characteristic timescf. Table ) below T;=0.0172, and M56234 and RealityGrid GR/R67699, which provided ac-
the population of lattice sites undergoing such a burst in theess to Cray T3E-1200E, SGI Origin2000, and SGI Ori-
fluid’s macroscopic speed is small compared to the latticgyin3800 supercomputers at Computer Services for Academic
volume. We found no evidence that an initially stable regimeResearc{CSAR), Manchester University, U.K., and by the
becomes unstable at later times, as typically happens in re&enter for Computational Science, Boston University,
laxational modelgsuch as is our model fay,,=0). Thisis  through a collaborative project to access their several SGI
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Cateset al. [61] in their spinodal decomposition studies us- Funding Council for EnglandHEFCE for our on-site 16-
ing a free-energy based, lattice-BGK model, who reportechode SGI Onyx2 graphical supercomputer. We wish to thank
their algorithm to be unconditionally unstable. Dr. Hudong Chen and Dr. Peter J. Love for useful discus-
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Reynolds numbers higher thanR87 faces two major prob- and Dr. Keir Novik for technical assistance. N.G.S. also
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