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Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition
in binary immiscible fluids

Nélido González-Segredo*
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We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, incompressible, athermal
fluids in three dimensions to simulate the coarsening of domains following a deep quench below the spinodal
point from a symmetric and homogeneous mixture into a two-phase configuration. The model is derivable from
a continuous-time Boltzmann-BGK equation in the presence of an intercomponent body force. We find the
average domain size grows with time astg, where g increases in the range 0.54560.014,g,0.717
60.002, consistent with a crossover between diffusivet1/3 and hydrodynamic viscous,t1.0, behavior. We find
good collapse onto a single scaling function, yet the domain growth exponents differ from previous results for
similar values of the unique characteristic lengthL0 and timeT0 that can be constructed out of the fluid’s
parameters. This rebuts claims of universality for the dynamical scaling hypothesis. For Re52.7 and small
wave numbersq we also find aq2↔q4 crossover in the scaled structure function, which disappears when the
dynamical scaling reasonably improves at later stages (Re537). This excludes noise as the cause for aq2

behavior, as analytically derived from Yeung and proposed by Appertet al.and Loveet al.on the basis of their
lattice-gas simulations. We also observe exponential temporal growth of the structure function during the initial
stages of the dynamics and for wave numbers less than a threshold value, in accordance with the diffusive
Cahn-Hilliard ModelB. However, this exponential growth is also present in regimes proscribed by that model.
There is no evidence that regions of parameter space for which the scheme is numerically stable become
unstable as the simulations proceed, in agreement with finite-difference relaxational models and in contradis-
tinction with an unconditionally unstable lattice-BGK free-energy model previously reported. Those numerical
instabilities that do arise in this model are the result of large intercomponent forces which turn the equilibrium
distribution negative.

DOI: 10.1103/PhysRevE.67.046304 PACS number~s!: 47.55.Kf, 47.11.1j, 83.10.Bb, 05.90.1m
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I. INTRODUCTION

Homogeneous binary fluid mixtures segregate into t
phases with different compositions when quenched into th
modynamically unstable regions of their phase diagram
process also called spinodal decomposition. This is achie
by lowering the temperature well below the so called sp
odal temperature. For incompressible, 50:50 mixtures, a
called critical or symmetric mixtures, these phases form
terconnected domains, which at late times produce a bic
tinuous structure with sharp, well developed interfaces.
asymmetric mixtures~phases with different densities! there
is a phase transition at early times from an interpenetra
‘‘bicontinuous’’ structure to the so-called ‘‘droplet phase
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which in turn undergoes subsequent coarsening via coa
cence@1#. The composition of a binary immiscible fluid i
one of the variables affecting its dynamics. Fields whe
spinodal decomposition is of industrial relevance compr
the metallurgical, oil, food, paints, and coatings industri
Polymer blends and gels immersed in a solvent are also
tentially important applications, where phase separation
curs and needs to be controlled@2,3#.

Spinodal decomposition has been extensively studied
experimental@4#, analytical@5,6#, and numerical@7–16# ap-
proaches. The fact that it entails a variety of mechanisms
can act concurrently and at different length and time sca
has made it a testbed for complex fluid simulation metho
Among the latter are hydrodynamic lattice gases@17#, the
lattice Boltzmann equation@18#, and dissipative particle dy
namics@19#.

Despite all the interest attracted by the subject, how
mechanisms responsible for domain separation act rem
on unsettled grounds. In particular, the dynamics of the
time, true asymptotic growth is unclear. Also, the dynami
scale invariance hypothesis~to be explained later on in this

s:
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paper!, which is treated almost as canonical by analytical a
numerical approaches to solving the continuum, loc
thermodynamic Cahn-Hilliard equations, has been prove
fail experimentally at least under certain conditions@20#.

Numerical studies on spinodal decomposition inclu
methods at themacroscopic scale, based on the numerica
solution of either the Navier-Stokes@21,22# or the Cahn-
Hilliard equations@23,7,24#, the mesoscopic scale, where
lattice-Boltzmann~LB! methods@25,26#, lattice gases@9,10#,
dissipative particle dynamics@27#, and Ising@28# approaches
are examples, and themicroscopic scale, with classical mo-
lecular dynamics@14#.

Fluid dynamical methods in the mesoscopic scale cam
light as a way to grasp the relevant thermohydrodyna
behavior with as little computational effort as possible. T
is achieved by evolving a microworld in which the usual va
number of molecular degrees of freedom and character
tion have been drastically reduced, based on the fact tha
enough from critical points, a fluid’s macrostate is large
insensitive to many of its microscopic properties. Some
gard the Cahn-Hilliard equations to be within the mesosco
scale. They derive from the van der Waals’ formulation
quasilocal thermodynamics@29#, extended by Cahn and Hil
liard @23#, and aim at solving a Langevin-like diffusion equ
tion for the conserved order parameter. This equation
volves a chemical potential derived from
phenomenological, Ginzburg-Landau expansion for the f
energy, and leads to phase segregation if the temperatu
below a critical value. The scheme commonly used for
study of phase segregation in immiscible fluids is term
Cahn-Hilliard Model H @30#; hydrodynamics is included by
introducing mass currents, which couple the diffusion eq
tion with the Navier-Stokes equation. Thermal effects
sometimes included in the dynamics by the addition o
noise term satisfying a fluctuation-dissipation theorem.

Cahn-Hilliard equations have been applied to model
segregation dynamics of deep and sudden thermal quen
of fluid mixtures. Such quenches are usually chosen to
sudden to avoid thermal noise effects and set up an in
condition that quickly leads to a state of steep domain w
and where diffusion is negligible compared with hydrod
namic effects, thus leaving the conditions that the dynam
scaling hypothesis requires. However, local equilibrium c
not be guaranteed for a mixture undergoing a sudden que
which puts the existence of a free energy and the equilibr
states modeled by it on rather shaky grounds.

The lattice-Boltzmann method we use in this work is t
Shan-Chen lattice-BGK scheme for binary immiscible a
incompressible fluid flow@25#. The equilibrium state for
each pure fluid is chosen to be a local isothermal Maxw
ian, and Shan and Chen’s contribution to the lattice-BG
scheme comes through the phase separation prescrip
This is incorporated via intercomponent repulsive mean-fi
forces between fluid elements~meant to be at a mesoscop
scale! which alter the local equilibrium, rather than through
local equilibrium reproducing a chemical potential deriv
from a free-energy functional. The Shan-Chen method
been used by Martys and Douglas@31# to qualitatively simu-
late spinodal decomposition for critical and off-critic
04630
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quenches in 3D~three dimensions!. There have been recen
quantitative studies in 2D using this method for critical sp
odal decomposition@32,33#. An early study on critical 2D
and 3D spinodal decomposition was put forward by Ale
ander, Chen and Grunau@34# using the lattice-Boltzmann
method proposed by Gunstensenet al. @35#.

Lattice-BGK methods based on a Ginzburg-Landau fr
energy functional@26# achieve multiphase behavior by usin
two separate distribution functions: one for the mass den
and one for the order parameter, this being defined as
difference between the phases’ densities. Higher-order ve
ity moments of these distributions are imposed to coinc
with thermomechanical quantities obtained from the free
ergy. The term ‘‘top-down’’ is used in the literature to ad
dress this type of approach, whereas we shall use ‘‘botto
up’’ in the remainder to signify fully mesoscopic method
Some criticisms of top-down approaches@36# include their
frequent lack of Galilean invariance~although Inamuro@37#
presented a model that does exhibit this property!, and their
phenomenological character. Studies of spinodal decomp
tion using these methods are described in the works of W
ner and Yeomans@12,38#, Kendonet al. @11#, and Cateset al.
@39#.

Numerical instabilities are a great cause for concern
lattice-Boltzmann methods, a study of which will be a
dressed for the lattice-BGK method we employ in this wo
Their sources are two-fold:~a! the finite-difference, discrete
velocity scheme used to solve the BGK-Boltzmann equat
prevents the existence of anH theorem, and~b! the approxi-
mations used for the equilibrium distribution do not guara
tee its positivity, and hence that of the nonequilibrium dist
bution. Linear stability analyses have been applied to
lattice-BGK model by Sterling@40#, and in more detail by
Lallemand and Luo@41# comparing a lattice-BGK model to a
generalized LB model with a different relaxation time f
each physical flux. Qian, d’Humie`res, and Lallemand@42#
gave conditions for the Mach number and the shear visco
such that the lattice-BGK scheme produces positive m
densities. New approaches to unconditionally stable latt
Boltzmann models have recently appeared too@43–46#.
They prove the existence of functionals satisfying anH theo-
rem.

Our objective in this work is to present a bottom-u
lattice-BGK method for the study of scaling laws in the sp
odal decomposition of critical fluid mixtures in three dime
sions. This method has certain advantages over lattice-B
methods based on a free-energy functional, namely, a sm
number of free parameters to tune, Galilean invariance g
anteed, and a simpler equilibrium distribution. Moreover
refuses to inject macroscopic information into the mes
copic dynamics as the top-down methods do, on the grou
that for lattice-BGK methods there is noH theorem available
that guarantees an unconditional approach to a given equ
rium. Indeed, in the context of general complex fluid app
cations, an expression for the free-energy itself may be
known, and/or its validity be questioned for regimes f
enough from local equilibrium, making a top down approa
not even viable.

The remainder of the paper is structured as follows.
Sec. II we discuss the dynamical scaling hypothesis, wh
4-2
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asserts that after the quench all length scales in the mix
share the same growth law with time. The modified Sh
Chen model we use is explained in Sec. III; Sec. IV int
duces the method we use to measure surface tension, w
in Sec. V we describe the simulations performed and
growth laws and scaling functions drawn from them, whi
allow to test the validity of the dynamical scaling hypothes
Finally, we present our conclusions in Sec. VII.

II. SPINODAL DECOMPOSITION

After domain walls have achieved their thinnest config
ration via diffusion, the time evolution of the bicontinuou
structure that is produced in the phase segregation pro
that symmetric mixtures undergo presents geometrical s
similarity to the initial stages of such a process when
structure is viewed at increasing magnification. This leads
to thedynamical scaling hypothesis, which states that at late
times, when diffusive effects have died out, there is a uni
characteristic length scaleL which grows with time such tha
the geometrical structure of domains is~in a statistical sense!
independent of time when lengths are scaled byL @47#. This
amounts to saying that all length scales have the same
evolution. Such a characteristic length scale must be uni
sal for all fluids with the same shear viscosityh, densityr,
and surface tensions, provided that no mechanisms are i
volved in their late stage growth other than viscous dissi
tion, fluid inertia, and capillary forces, respectively. This
so because, as we shall see later on, only one length scal
be constructed out of the fluid’s parametersh, r, and s,
these being the only ones present in a hydrodynamic des
tion of the mixture via the Navier-Stokes equations.

The characteristic length scale is usually measured
looking at the first zero crossing of the equal-time pa
correlation function of the order parameter fluctuations@2#,

C~r ,T![^f8~x1r ,T!f8~x,T!&, ~1!

where, on the lattice,̂&[(x§/V, V is the spatial volume,§
is the volume of the lattice’s unit cell~henceV/§ is the
number of nodes in the lattice!, T is the time parameter in
time steps,r andx are spatial vectors, andf8[f2^f& are
the order parameter fluctuations, wheref(x)[rR(x)
2rB(x) is the order parameter for our binary fluid@say, a
mixture of red~R! and blue~B! phases#. The units ofC(r ,T)
are squared mass density. In the remainder, ‘‘lattice un
will mean unity for the mass, length, and time units, resp
tively, in an arbitrary unit system. The Fourier transform
C(r ,T), called the structure function, is

S~k,T!5
§

V
ufk8~T!u2. ~2!

The units for the structure function are the same as those
the correlation function, andfk8 is the Fourier transform o
the fluctuations. Function~2! is volume normalized, and
gives no power spectrum for infinite lengths, i.e.,
04630
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S~k,T!51, S~kÄ0,T!50,

where §8 is the unit cell volume in reciprocal space, an
V85(2p/L)3V/§5(2p)3/§ is the reciprocal space volume
in fact, §8/V85§/V. Although Eqs.~1! and ~2! are numeri-
cally equivalent, the intensity of x ray and neutron scatter
is directly proportional to the structure function, which
hence easily measurable; it is thus this quantity that we p
fer to use to measure the system’s characteristic len
scales.

We define the~time-dependent! characteristic sizeL of the
domains as

L~T![
2p

k1~T!
, ~3!

in lattice units, wherek1(T) is the first moment~mean!,

k1~T![

(
k

kS~k,T!

(
k

S~k,T!

, ~4!

of the spherically averaged structure functionS(k,T), de-
fined by

S~k,T![

(
k̂

S~k,T!

(
k̂

1

, ~5!

where k̂ indicates the set of wave vectors contained in
spherical shell of thickness one~in reciprocal-space lattice
units! centered aroundk, i.e., such thatn2 1

2 <(V1/3/2p)k
<n1 1

2 , n being an integer.k is the modulus ofk which is
smaller than the Nyquist critical frequencykc5p to prevent
aliasing. In the limit of short distances and large momen
scaling arguments lead@47# to the relation

S~k,T!;
1

LkD11
~6!

valid for kL@1, also known as Porod’s law, whereD is the
spatial dimension. Short distances here meansj!r !L,
wherej is the interface thickness.

Other measures have also been used for the system’s
acteristic length scale, namely, the position of the struct
function’s maximum, and the structure function’s seco
moment,k2 @2#. We chose to use the first momentk1 as it is
the simplest quantity among the aforementioned. App
et al. @48# found that the structure function’s maximum
wave number provided a length evolving similarly, althou
in a noisier fashion, to that derived from the first momen

Mathematically, the dynamical scaling hypothesis can
written as
4-3
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C~r ,T!5 f ~r /L !, ~7!

or

S~k,T!5LDg~kL!, ~8!

whereL5L(T) is a function of time, andg is the Fourier
transform off, both of which are the same for any late tim
slice.

Using methods introduced by Kendonet al. @11#, there are
unique length and time units that can be defined from
fluid’s density, shear viscosity, and surface tension,r, h, and
s, respectively, as follows:

L0[
h2

rs
, T0[

h3

rs2
. ~9!

We can think of these as a wavelength and a period ass
ated with the system’s fluctuations, respectively, althou
they do not necessarily have to refer to actual fluctuat
averages. We can define the dimensionless variables

l[L/L0 , t[~T2Tint!/T0 , ~10!

which serve to express the universal character of the dyna
cal scaling hypothesis. ParameterTint is an offset that allows
one to account for early time diffusional transients and latt
effects. Due to the finite resolution of the lattice the init
condition is not an infinitely fine-grained thorough mixtu
(f50) but there is a non-negligible domain size measu
at timeT50. We have then to specify a time origin prior
T50, corresponding to a fictitious zero domain size.

For a critical binary immiscible mixture in three dimen
sions, scaling arguments applied to the terms of the Ca
Hilliard Model-H equations show that Eq.~7! holds in the
asymptotic limit@47#, or, equivalently, that

l}tg, ~11!

whereg51 andg52/3 for the cases when hydrodynam
viscosity and inertia dominate the dynamics, respectiv
From the Cahn-Hilliard ModelB, which is a Langevin dif-
fusion equation without noise conserving the order param
@30#, an exponent ofg51/3 is derived, identical to that ob
tained from the Lifshitz-Slyozov theory for the growth of
minority phase whose volume fraction is negligible, and
expected to appear at diffusive stages, before hydrodyna
kicks in. Scaling theories do not give any prediction for t
crossovers’ positions in time other than that they are
order unity’’ @49#.

Using a free-energy based, lattice-BGK method, Ca
et al. @39# reached the viscous regime (l}t) for L0'5.9 and
Re,0.1, and the inertial regime (l}t2/3) for L0'0.0003 and
Re,350. The Reynolds number is defined in this doma
coarsening context as

Re[
L

n

dL

dT
5 l l̇ , ~12!
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wheren is the kinematic viscosity of the fluid mixture, a
defined in the following section, andl̇ is the time derivative
dl /dt.

There is also experimental@20# and 2D simulation@12#
evidence of breakdown of scale invariance in symmetric
nary immiscible quenches. In those experiments, the bre
down of scale invariance occurs@20# for symmetric binary
mixtures in confined geometries under the influence of w
ting, and a universality has been reported to hold. The p
cess consists of a hydrodynamic coarsening occurring fa
than mass diffusion, leaving the system with macrosco
domains whose concentrations are near to but not at the
existing equilibrium ones. Metastability or instability of th
domains then causes a secondary phase separation to k
via diffusion. Scale invariance and self-similarity have al
been recently found to break down for viscoelastic bina
fluid mixtures @50#. Finally, there is simulation evidence o
breakdown of scale invariance coming from free-ene
based, lattice-BGK simulations in 2D. The rationale for th
is the coexistence of competing mechanisms at all time
the mixture: diffusion, hydrodynamic modes, and surfa
tension, giving rise to length scales with different grow
exponents@12#.

III. OUR LATTICE-BOLTZMANN MODEL

Initially introduced as a coarse grained version of t
lattice-gas automaton method for fluid flow simulation, t
lattice-Boltzmann model can also be interpreted as a fi
difference solver for the Bhatnagar-Gross-Krook~BGK! ap-
proximation to the Boltzmann transport equation@18#. From
lattice gases it inherits a particulate, mesoscopic characte
their particles can be assimilated to any physical size wh
is negligible at a hydrodynamic scale; moreover, unli
lattice-gas automata, no fluctuations are present within
scheme@51#. From the simplicity of the Boltzmann-BGK
collision term the LB method gains algorithmic efficiency
simulating fluid flow over solving the incompressib
Navier-Stokes equations. When extended to multiph
flows, these features are especially valuable in looking at
complicated domain interfaces that arise in the coarsenin
binary mixtures.

The method we use is a modification of the multicomp
nent, immiscible fluid LB scheme of Shan and Chen@25#,
which will be explained in detail in Sec. III B. The Shan
Chen LB model employs an expansion in Mach number o
Maxwellian equilibrium distribution. Phase-segregating
teractions are introduced by means of a self-consistently g
erated mean-field force between particles. The inclusion
this force gives rise to a nonideal gas equation of st
through the Navier-Stokes equation, which is reproduced
the usual multiscale Chapman-Enskog@52# or moment
~Grad! @53# expansion of the distribution function. No the
mohydrodynamic behavior is imposed on the equilibriu
distribution, as aforementioned free-energy based, latt
BGK methods do@26#, partly because none of the lattice
Boltzmann implementations reported in the literature so
exhibit anH theorem ensuring the existence of an asympt
towards a prescribed equilibrium, and partly because
4-4



er
re

, t
pi

t-
e-
e

o

n
o
th
w

e
a

en

it
u
d

o

an

ty
f

th

n

n

ion
-

ve-
ity

ur
for
-
-

he
x-

id
ves,
is
le-

and
-
ling
n,
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purely mesoscopic, mean-field approach is preferred h
The coefficients of the equilibrium distribution expansion a
determined by the conservation of mass and momentum
property that Galilean invariance holds, and an isotro
pressure tensor.

In this work we employ a pseudo-four-dimensional la
tice, which is the projection onto 3D of the D4Q24 fac
centered hypercubic~FCHC!, single-speed lattice, where th
notation implies the spatial dimension~4! and the number of
vectors linking a site to its nearest neighbors~24!. The
FCHC lattice guarantees isotropic behavior for the macr
opic momentum balance equation@17#.

In the following sections we introduce our modified Sha
Chen model, first by looking at a noninteracting mixture
gases, and second including the mean-field force term
gives rise to a nonideal gas equation of state. Then,
modify the collision term such that the Shan-Chen schem
consistent with that derived from a Boltzmann-BGK equ
tion in the presence of a force.

A. Mixture of ideal gases

The finite-difference, finite-velocity fully-Lagrangian@40#
scheme for the numerical solution of the multicompon
Boltzmann equation,

nk
a~x1ck ,t11!2nk

a~x,t !5Vk
a , ~13!

governs the time evolution of thekth velocity’s particle num-
ber densitynk

a for the fluid speciesa in a noninteracting
mixture of gases. The lattice-BGK collision term is

Vk
a~x,t ![2

nk
a~x,t !2nk

a(eq)~x,t !

ta
, ~14!

where the time increment and lattice spacing are both un
ck is one of the 24 discrete velocity vectors plus one n
velocity, x is a point of the underlying Bravais lattice, an
a5R,B @e.g., oil ~R! or water (B)]. The parameterta de-
fines a single relaxation rate towards equilibrium for comp
nent a. The functionnk

a(eq)(x,t) is the discretisation of a
third-order expansion in Mach number of a local Maxwelli
@54#,

nk
a(eq)~x,t !5vkn

a~x,t !F11
1

cs
2

ck•u1
1

2cs
4 ~ck•u!22

1

2cs
2

u2

1
1

6cs
6 ~ck•u!32

1

2cs
4

u2~ck•u!G , ~15!

where vk are the coefficients resulting from the veloci
space discretisation, andcs is the speed of sound, both o
which are determined by the choice of the lattice. For
projected-D4Q24 lattice we use, the speed of sound iscs

51/A3, and vk51/3 for the speedck50 and 1/36 for
speedsck51,A2 @42#. ~The projection from 4D to 3D puts a
additional speed into play,A2.! In Eq. ~15!, u is the macro-
scopic velocity of the mixture, through which the collisio
04630
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term couples the different velocitiesck , and is a function of
x andt. Also, na(x,t) is the local particle density for theath
component, defined as(knk

a(x,t).
The judicious choice of the coefficients in the expans

of the equilibrium distribution~15! allows for mass and mo
mentum to be conserved,

(
k

Vk
a50, (

a
ma(

k
ckVk

a50. ~16!

Momentum conservation requires the fluid’s macroscopic
locity u to be defined in terms of the macroscopic veloc
ua for componenta,

na~x,t !ua[(
k

nk
a~x,t !ck , ~17!

as the solution of the three equations

J~u!5v, ~18!

where

J i~u![~223u2!ui13ui
313uiui 11

2 13uiui 12
2 , ~19!

with the Cartesian indexi ranging in theimod3 set, andv
being defined as the special average,

v[(
a

raua

ta Y (
a

ra

ta
. ~20!

Based on previous experience with lower orders, o
choice of a third-order Taylor expansion in Mach number
the Maxwellian equilibrium distribution is an attempt to im
prove the approximation for velocities which, within the in
compressibility limit, are large enough to make either t
distribution function become negative or the error in the e
pansion too large.

B. Mixture of interacting, nonideal gases

In order to deal with nonideal gases, in particular, flu
mixtures whose volume elements interact among themsel
each fluid is forced to relax to a local equilibrium which
modified by the presence of its surrounding volume e
ments. The mean-field force density felt by phasea at sitex
and timet from its surroundings is defined as

Fa~x,t ![2ca~x,t !(
ā

gaā(
x8

cā~x8,t !~x82x!, ~21!

wheregaā (.0 for immiscible fluids! is a coupling matrix
whose nondiagonal elements control interfacial tension,
ca is the so-calledeffective mass, which serves as a func
tional parameter and can have a general form for mode
various types of fluids. For simplicity in our implementatio
we have chosenca(x,t)[na(x,t) @32# and only allowed
nearest-neighbor interactions,x8[x1ck . Other choices for
c have also been made@25#.
4-5
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Shan and Chen@25# incorporated the above force term
the collision substep of the LB dynamics by adding the
crement

Dua[
Fa

ra
ta ~22!

to the velocityu that enters the second-order expansion
the equilibrium distribution function. We perform the sam
procedure for our third-order expansion~15!, obtaining addi-
tional terms

nk
a(eq)~u1Dua!5nk

a(eq)~u!

1vkn
aF ck2u

cs
2

1
~2ck•u2u2!

2cs
4

ckG•aata

1
1

2
vkn

aFaa
•aa

cs
2

2
~ck•aa!2

cs
4

1
~ck•u!~ck•aa!2

cs
6 G ~ta!2

1
1

6cs
6
vkn

a~ck•aata!3, ~23!

whereaa[Fa/ra.
Luo @36# and Martys, Shan, and Chen@55# expanded both

the velocity space gradient in the BGK-Boltzmann equat
force term,

a•¹jn, ~24!

and the equilibrium distribution in Hermite polynomials
the lattice velocities. Then they rearranged the acceleratioa
such that it explicitly modifies the macroscopic velocity
the equilibrium distribution, leaving a term linear ina. If
only linear terms were to appear in Eq.~23!, the Shan-Chen
prescription for an interparticle force would then coinci
with the way it is included in the continuum BGK
Boltzmann equation, as pointed out by Luo and Martyset al.
To this end, following Nekoveeet al. @32#, we simply drop
from Eq. ~23! any term nonlinear in the accelerationa. We
thus obtain a modified Shan-Chen collision term, which
why our model is termed modified Shan-Chen. The modifi
Shan-Chen collision term is

Vk8
a[Vk

a1(
ā

(
l

Lkl
aānl

ā , ~25!

where

Lkl
aā5vkF 1

cs
2 ~daāck2zaācl !1zaā

ck•cl

cs
4

ckG•aata ~26!

and
04630
-

f

n

s
d

zaā5
na

nā

rā

tāY (
ā

rā

tā
, ~27!

where we have made use of the condition Eq.~29! below.
The second term arising in Eq.~25! accounts for interparticle
interactions other than the binary collisions implicit in th
Boltzmann collision term,V @56#. This includes a collision

operatorLkl
aā resulting from mean-field interactions amon

different fluid components@32#, which gives rise to phase
separation for immiscible multicomponent systems.

The inclusion of a mean-field force in the Shan-Ch
model leads to the breakdown of the local momentum c
servation that holds for noninteracting ideal gases, cf. S
III A. However, the forces felt by neighboring portions o
fluid follow an action-reaction mechanism that leads to g
bal momentum conservation~i.e., over the whole lattice!.
This was numerically confirmed for our third-orde
equilibrium, modified Shan-Chen model too.

It can be shown that the condition for momentum cons
vation in the absence of interactions, Eq.~18!, leads to that
needed when using a second-order expansion of the equ
rium distribution, namely

u5v, ~28!

only in the limit of creeping flows to second order, i.e.,

u2'0. ~29!

We therefore implemented the computation of the veloc
according to Eq.~28! rather than Eq.~18!. The condition Eq.
~29! is satisfied, as global momentum would not be co
served otherwise. In addition, we confirmed in our simu
tions that the fluid velocity was kept under 28% of the spe
of sound by 67% of the lattice nodes. This means squa
Mach numbers under 0.08. This purports to show that
expansion to third order, implemented in this model to e
tend the parameter space for which the equilibrium distri
tion remains positive, for momentum conservation at le
adds very little.

In our LB model, the kinematic viscosity of the mixture
given by

n5
h

r
5cs

22S (
a

xata2
1

2D , ~30!

wherecs
2253 for our lattice,ta is the relaxation time of the

ath component andxa is its mass concentration defined
ra /r @25#. For a region of pureath component

n5
1

3 S t2
1

2D , ~31!

which also holds for our case of a 50:50 mixture, for whi
4-6
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(
a

xata5t(
a

xa5t ~32!

since all relaxation times are the same.

IV. THE SURFACE TENSION

The surface tensions arises as an emergent effect due
intercomponent interactions. It is calculated by measur
the components of the pressure tensorP5$Pi j % across a pla-
nar interface perpendicular to thez-axis through the formula

s5E
2`

1`

@Pzz~z!2Pxx~z!#dz, ~33!

wherePi j is the flux of thei th component of the momentum
across a surface perpendicular to thej th cartesian axis. This
pressure tensor, consistent with the force Eq.~21!, is

P~x!5(
a

(
k

rk
a~x!ckck1

1

4 (
a,ā

gaā(
x8

@ca~x!cā~x8!

1cā~x!ca~x8!#~x2x8!~x2x8!, ~34!

with x8[x1ck in this study. This leads to the same expre
sion for the scalar pressure as that in the momentum bal
equation obtained by multiplying the LB equation~13! using
the collision term Eq.~25! by ck and summing overk. Here,
rk

a(x) is the mass density of speciesa with velocity ck at the
site x. Equation~34! contains akinetic termdue to the free
streaming of particles corresponding to an ideal gas con
bution, plus apotentialor virial term due to the momentum
transfer among particles of equal and distinct color, throu
the interparticle force@52#.

As previously noted, the surface tension in the modifi
Shan-Chen model is an emergent, hence not directly tun
quantity, in contradistinction to the situation with free-ener
based lattice-Boltzmann models. It depends on the densitr,
the couplingg, and the relaxation timet, and has to be
determined by simulation. We computed its dependence
these parameters to be as follows:

]s

]r
.0,

]s

]g
.0,

]s

]t
,0. ~35!

This behavior is useful when steering through the param
space in search of specific values ofL0 and T0. Numerical
results on the surface tension are reported in the follow
section.

V. SIMULATIONS

We restrict ourselves to critical~50:50! mixtures, which
are the type of configurations leading to a spinodal deco
position process as opposed to nucleation. Experiment
spinodal decomposition is characterized by long-wavelen
infinitesimal density perturbations which are unstable a
the quench, hence favoring the segregation, whereas n
ation generally presents short wavelength, finite pertur
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tions, and metastability is not uncommon. Nucleation
hence a more complex phenomenon which is usually con
ered after an initial study in spinodal decomposition has b
performed.

We aim at reproducing the early time diffusive and la
time viscous and inertial regimes predicted by carrying
scaling analyses on the Cahn-Hilliard Model-H equations
@2,47#. Growth laws predicted for those arel}t1/3, l}t, and
l}t2/3, respectively. Under the assumptions of the dynam
scaling hypothesis made in the introduction, those regim
are uniquely characterized by the length and time

L05
r

9s~r,t,g! S t2
1

2D 2

, T05
r2

27@s~r,t,g!#2 S t2
1

2D 3

,

~36!

obtained by inserting Eq.~31! into Eq. ~9!.
Having in mind keeping simulation time at a minimum

the values ofr, t, andg must be such as to allow the fluid
to be immiscible and approach equilibrium quickly whil
ensuring numerical stability and positive shear viscos
This amounts to keepingr as high as possible,t close to
1/2, andg as large as allowed by the onset of numeric
instabilities which set in when the forcing term is too large
large g allows for the early time transient, dominated b
diffusion, to be of short duration. Finally, seeking the diff
sive regime means looking at very early times, which is
tained for large values ofT0. Conversely, the hydrodynami
inertial behavior requires as small values ofT0 as possible.

In Table I we present the parameters selected in this st
along with the measured surface tension. We also include
length and time scales associated with them, which are u
to compute dimensionless lengths and times in the mode

The initial condition used for all the simulations was
thorough mixture of the two phases, with randomly distr
uted fluctuations. To realize this, each velocity directionk at
each lattice site was populated with one densityrk

a(x,t)
[mank

a(x,t) for each speciesa5R,B as a white-noise,
pseudorandom floating point number between 0.0 and
wherema are the particle masses, all set to unity. Note t
the densityr in Table I is defined as the lattice average

r[^rR~x,t !1rB~x,t !&, ~37!

TABLE I. Model parameters studied, including the surface te
sion s(r,t,g) measured for a planar interface on a 4343128
lattice, and the characteristic lengthL0 and timeT0 for each param-
eter set. The existence of the latter two is based on the validit
the dynamical scaling hypothesis, and that diffusive currents
negligible with respect to hydrodynamic currents and capilla
forces.

Parameter set r t g s(r,t,g) L0(r,t,g) T0(r,t,g)

I 0.8 2.000 0.06 0.002 059 97.1 18 870
II 0.8 1.500 0.06 0.004 777 18.6 1038.8
III 0.8 1.000 0.06 0.010 292 2.16 28.0
IV 0.8 0.625 0.05 0.017 458 0.0796 0.152
4-7
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wherera(x,t)[(krk
a(x,t), and due to the critical compos

tion we use, amounts to the maximum value of either of
summands.

Lattice sizes used were 1283 and then 2563 to check for
finite size effects. Simulations for 1283 systems were run fo
700 or 1400 time steps, and for 200 or 250 time steps
2563 systems, depending on the parameter set. Follow
prescription of Kendonet al. to keep finite size effects at ba
@11#, we neglected domain sizes larger than a quarter of
lattice side size. There is no reasona priori to choose this
particular threshold. As we shall see, this allows the gen
tion of a domain size range broad enough for data acqu
tion; furthermore, finite size effects were quantified by us
the two aforementioned lattice sizes.

Surface tension was measured on 4343128 and 16
3163128 lattices, allowing plenty of room along th
nonisotropic directionz for the fluid’s physical quantitites to
achieve values characteristic of the bulk before being
fected by the second interface with periodic boundary c
ditions imposed. We found that the surface tension did
vary by more than 1% when the length along thez direction
was doubled, which is the only direction where we wou
expect any variation as translational symmetry is broken

To compute the average domain size, Eq.~3!, we perform
discrete Fourier transforms. The sampling theorem@57#
warns us to ensure that our fluid mixture does not exh
spatial frequencies larger than the Nyquist critical freque
f c , defined as half the sampling frequency. This is not be
the case, the power spectrum in the interval@0,f c# is altered
by frequencies larger thanf c as a result of aliasing. Becaus
the sampling frequency on the lattice is one, the maxim
frequency any relevant quantity of our fluid mixture is a
lowed to have according to the sampling theorem is 1/2,
of wavelength two. This means that any spatial variation
bound to happen between two contiguous lattice sites, wh
is something we already knew: the resolution of the lattice
finite and dictated by the lattice size. We used the FFT r
tine rlft3~! for real, 3D data sets@57#.

Calculation of the reduced timet requires an assessme
of Tint . Tint serves to redefine the time such that the doma
have zero size at the time origin, which is not the case in
actual simulations. Depending on the regime reached by
parameter set employed, domains may start to grow im
diately after time step zero, completely avoiding the diff
sive stage.

We assessTint in the following way. We first compute the
intersection with the abscissae of a linear fit interpolating
data starting after the initial purely diffusive transient is co
pleted, that is, for which interfaces are thin enough andL(T)
just starts to grow. The intercept is used as an initial gu
for a1 in a Levenberg-Marquardt nonlinear least-squares
of the form

y5a0~x2a1!a2. ~38!

OnceTint is computed, and the data sets are normalized
L0 andT0, hence becoming (t,l ) data pairs, we perform fits
to the function Eq.~38! to determine the growth exponen
a2. Initial guesses for the fitting coefficients area0

051.0,
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051.0. The tolerance for these fits was set
1025, this being defined as the unsigned increment ofx2

between two consecutive iterations, divided by the num
of degrees of freedom.

Uncertainties in parameters are also taken care of.
cause standard errors$DkS% are incurred in the structure
function spherical averaging~5!, these transmit down toL
and l, and to t through the determination ofTint . In this
study, however, errors in the abcissae are disregarded as
do not depend on time, and therefore represent equal wei
for data points in the least-squares functional to minimize

We performed the simulations using a number of proc
sors ranging from 32 to 128 on a Cray T3E-1200E and
SGI Origin2000 and Origin3800 supercomputers. The co
is an implementation in Fortran90 using the message pas
interface~MPI! as parallelization protocol, and it shows sca
ing with the number of processors between 50% to 90%
linearity on the Cray T3E platform@58# up to 64 PEs, and
better behavior on SGI Origin platforms. CPU times used
to run a 1283 lattice for 1400 time steps, or a 2563 lattice for
250 time steps, took up to 6 h per parallel process.

An important issue in dealing with the lattice sizes e
ployed here is to have access to massive disk storage. Fo
largest lattices, 1.9 Gbytes of measurements were dum
onto disk at each measurement time step. A lattice of 23

sites run for 700 time steps, measuring every 25, requires
Gbytes to store the order parameter, the density fields
each phase, momenta, and checkpoint files, the latter b
needed if we wish to restart the simulation at the point wh
it stops. To that we need to add some additional work
space for converting the dumped binary data into mach
portable XDR format@59#. For this work we required 200
Gbytes on disk, plus tape storage to free up space w
required. XDR files were visualized using the commerc
package AVS@60#.

It is worth noting that our results did not undergo a pr
cess of lattice size reduction, in the sense of averaging o
nearest-neighboring sites in order to deal with limited co
putational resources, as was done in previous studies on
spinodal decomposition@49,61#. Hence, we benefitted from
measuring and visualizing all data output from our simu
tions. Current limitations in computing resources preven
us from simulating lattices of 5123 or 10243 sizes, which
would otherwise be desirable in order to decrease the flu
minimum Knudsen number, helpful in reaching the therm
hydrodynamic limit as a multiscale Chapman-Enskog exp
sion procedure shows. However, this situation is bound
change soon with the advent of terascale computing capa
ties ~see http://www.RealityGrid.org!.

A. Growth exponents

Figure 1 shows the average domain size in lattice units
obtained straight from the simulations, for all parameter s
~cf. Table I!. Reynolds numbers achieved for each of the
are Re50.18, 0.49, 2.7, and 37. For parameter set I, we
see that after a transient during which there is a rapid m
convection to nearest neighbors, domain growth flattens
and starts growing at aboutT5400. We will look at this in
4-8
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further detail; for now it can be seen that the breadth of
plateau decreases with the Reynolds number. Finally in
2 we show the same curves after rescaled toL0 and T0, in
reduced units.

Fits to the modely5a0(x2a1)a2 for Fig. 2 are given in
Table II, and they proved to be quite sensitive to the num
of points fitted. Domain growth shows an increasing seg
gation speed,t0.545, t0.593, t0.623, and t0.717, with increasing
Reynolds number. These data sets correspond to charac
tic lengths and times in the ranges 0.0796,L0,97.1 and
0.152,T0,18 870. These contain the values for which Ke
don et al. @11# observed a viscous linear exponent,L055.9
and T0571. This, therefore, invalidates the universality

FIG. 1. Evolution of the average domain size for parameter
I, II, III, and IV ~cf. Table I! with the time step. Error bars ar
included and represent the uncertainty transmitted from the stan
error of the structure function spherical average. Lattice size
1283. All quantities are reported in lattice units.

FIG. 2. Log-log plot of reduced length versus reduced time
the 1283-lattice data sets. Error bars are included. The four data
correspond to parameter sets I, II, III, and IV~cf. Table I!, from left
to right. Viewed from a grazing angle, one can see that a sim
algebraic interpolating curve is not truly obtainable here. The fi
few points of each set correspond to diffusive, zero-growth sta
The units on both axes are dimensionless.
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the dynamical scaling hypothesis.
By looking at Fig. 2 from a grazing angle one can eas

see that a simple, algebraic interpolating curve is not obta
able here. Kendonet al. @11,49# and Pagonabarraga, Wagne
and Cates@15,62# used a method to improve this curve. The
left Tint as an adjustable fitting parameter such that there
reasonable collapse onto a simple, single algebraic curve
all parameter sets simulated; from this they obtained a w
dow of Tint in which collapse is reasonable. Then th
checked whether the different values forTint from each indi-
vidual parameter set lay within such a window. Quoting Ke
donet al. ~cf. Sec. IX C in Ref.@49#!, ‘‘although this@proce-
dure# is capable of falsifying the scaling hypothesis@•••#,
its nonfalsification@•••# may not represent persuasive pro
that the scaling is true.’’ We adhere to this comment a
prefer not to manipulate the data sets in such a way.

B. Structure function

For parameter set I~cf. Table I! we show in Fig. 3 a
family of spherically-averaged structure functions vers
wave numbers, corresponding to time steps 200, 400, 6
800, 1000, 1200, and 1400, from right to left. Just as
scattering cross-section measurements@2#, we observe the
peaks to grow and approach small wave numbers as
evolves. In Figs. 4 and 5 we show the same family of cur
using time steps as abscissas and wave numbers as pa
eters. Regions of linear growth with time on such a logari
mic scale indicate that a diffusive process is dominating
dynamics. In fact, an exponential time growth for the stru
ture function shortly after the quench below the spino
curve was predicted from the linearised Cahn-Hillia
Model-B equations without noise@2#, which although incor-
porating order-parameter conservation, does not include
drodynamics. This Cahn-Hilliard equation might be app
cable to regimes in our fluid where hydrodynamic effe
were unimportant, as in the initial stages. Assuming lin
perturbationsf8 to the order parameter, Cahn predicted th
for fluctuations of small amplitude and long waveleng
there is an instability of the form

S~k,t !5S~k,0!e22v(k)t ~39!

for k,kc , wherekc depends on the diffusion constant. Her
t is the time,v(k),0, andS(k,t)}^ufk8(t)u

2&, the brackets
denoting averaging in reciprocal space over a shell of rad
k.

Exponential growth occurs in our simulations, as can
seen from Figs. 4 and 5 for about the first 350 time steps
most of the wave numbers, indicating its transient charac
The plateau of Fig. 1, set I, lasts during the first 400 tim
steps, and we can see, Fig. 3, that up to 400 time steps
peak in the structure factor varies in height and very little
wave number, and is located at 0.491~lattice units!. This
leads us to think that at these early stages the dynamic
mainly making walls thinner while average domain siz
barely change. In addition, visual inspection of the ord
parameter confirms the latter and suggests that hydro
namic currents are weak, leaving diffusion as the mechan
leading the phase segregation process. When we check
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r
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t
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TABLE II. Levenberg-Marquardt nonlinear least-squares fits ofl vs t data to model~38!, for each
parameter set attempted. The first line for each set belongs to 1283 data, the second line to 2563 data, the
latter being unavailable for set I. Fitting parameters are given, plus the weighted sum of squared re
(x2) divided by the fit’s number of degrees of freedom. Weights are the inverses of squared uncert
Note thatx2/ndf, also referred to as the variance of residuals, is expected to approach unity. Values
than 1.0 may be due to an insufficient number of data points, data errors not normally distributed,
incorrect model function. Values smaller than 1.0 may be the result of too large error bars, or too ge
model function.

Parameter set a0 a1 a2 x2/ndf

I 0.64460.014 223102560.002 0.54560.014 0.46
II 0.92460.004 63102660.007 0.60760.006 1.23

0.92260.003 223102560.007 0.59360.007 0.48
III 1.24860.031 20.00760.100 0.65060.007 2.71

1.36260.010 213102460.03 0.62360.002 0.68
IV 0.94160.019 0.0163.9 0.74360.002 0.10

1.13960.017 20.0163.6 0.71760.002 0.14
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structure function temporal evolution, Figs. 4 and 5, for t
curves at and aroundk50.491, we see that up to exactly 40
time steps do they show exponential growth, as the Ca
Hilliard Model B predicts for a diffusive scenario. Also, ex
ponential growth does not hold for all wave numbers, b
only for those smaller than about 0.7, in agreement with
existence of an upper cutoff for the validity of Eq.~39!,
predicted from ModelB.

However, not all the wave numbers follow ModelB’s
predictions, namely, that exponential growth is a transi
and occurs up to a threshold wave number. In fact, expon
tial growth holds for all the time steps of the simulation f
the larger length scales~wave numbers up to about 0.245!,
suggesting that diffusion never ceases to dominate their
namics. Also, exponential growth is seen for very small d

FIG. 3. Spherically averaged structure function versus w
number, for parameter set I~cf. Table I!. 1283 lattice. Error bars
represent the standard error of the structure function spherica
erage. Time slices shown are time step 200, 400, 600, 800, 1
1200, and 1400 from right to left. All quantities are reported
lattice units.
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main sizes~wave numbers larger than 0.736! for time steps
well advanced in the coarsening dynamics, after 600 ti
steps. These wave numbers are close to and above the
pected Model-B upper cutoff for exponential growth, set b
the change in slope from positive to negative in Fig. 5. Th
departures from ModelB’s predictions hold nonetheless fo
domain sizes far from the first moment of the structure f
tor, which is close to its peak and is our average domain s
measure. It would be desirable in future works to investig
diffusional processes atk,0.245 for all of the simulation
time, andk.0.736 at late times: according to the Cah

e

v-
0,

FIG. 4. Evolution of the spherically averaged structure funct
with the time step for parameter set I and a 1283 lattice, on a
logarithmic scale. When observed along the ordinateT5200, the
curves correspond to wave numbersk50.147, 0.196, 0.245, 0.295
0.344, 0.393, and 0.442 from bottom to top, respectively. Error b
represent the standard error of the structure function spherica
erage. Regions of linear growth are those for which the exponen
behavior Eq.~39! holds. For wave numbers up to 0.2 exponent
and therefore diffusive behavior is seen for all the simulation tim
For larger wave numbers~and hence smaller domain sizes! diffu-
sion occurs as a transient. All quantities are reported in lattice u
4-10
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THREE-DIMENSIONAL LATTICE-BOLTZMANN . . . PHYSICAL REVIEW E67, 046304 ~2003!
Hilliard linearized ModelB, for these cases diffusion is neg
ligible or forbidden, respectively.

Analogous behavior to Fig. 3 is exhibited for parame
sets II, III, and IV ~cf. Table I! in Figs. 6, 7, and 8, respec
tively. For the last two time slices taken in Fig. 9, the pea
seem no longer to drift to the left, as a result of finite s
effects~arrest of domain growth!. Regarding regions of ex
ponential growth with time, the three data sets confirm
~39!, with an upper bound fork.

FIG. 5. Similar to Fig. 4, but the curves correspond to wa
numbersk50.491, 0.540, 0.589, 0.638, 0.687, 0.736, 0.785, a
0.834 from top to bottom, respectively. We can see that lin
growth ceases to hold for wave numbers larger than about 0.73
accordance with existence of an upper cutoff for the validity of E
~39!. All quantities are reported in lattice units.

FIG. 6. Spherically averaged structure function versus w
number, for parameter set II~cf. Table I!. 1283 lattice. Error bars
represent the standard error of the structure function spherica
erage. Time slices shown are time step 200, 400, 600, 800, 1
1200, and 1400 from right to left. All quantities are reported
lattice units.
04630
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Figure 9 shows the collapse~matching! of the structure
functions corresponding to parameter set III~cf. Table I!, for
a 1283 lattice size and time steps from 450 to 700, when th
are scaled by Eq.~8!, the abscissas being rescaled by a fac
of (2p)21, and the ordinates by the peak’s maximum. E
lier times are represented in Fig. 8 by empty symbols, a
later times by filled symbols. There is good collapse, a
therefore, scaling according to the scaling hypothesis, in
region fromq50.4 to aboutq'3, whereq[kL is dimen-
sionless. The middle of the region 1,q,2 follows a q29

behavior, in accordance with Tomita’s prediction of an exp
nent26 or more negative@63#.

d
r
in
.

e

v-
0,

FIG. 7. Spherically averaged structure function for parameter
III ~cf. Table I!. 1283 lattice. Error bars represent the standard er
of the structure function spherical average. Time slices shown
time step 100, 200, 300, 400, 500, 600, and 700 from right to l
All quantities are reported in lattice units.

FIG. 8. Spherically averaged structure function versus w
number, for parameter set IV~cf. Table I!. 1283 lattice. Error bars
represent the standard error of the structure function spherica
erage. Time steps shown are 100, 200, 300, 400, 500, 600, and
from right to left. All quantities are reported in lattice units.
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Close toq'3 we observe the presence of a shoulder,
has been reported in experiments@64# and numerical simu-
lations@48,65#. Most strikingly, the shape of our large-q tail
is very reminiscent of that of Fig. 4 in Ref.@48# and that of
Fig. 3 in Ref.@65#: ~1! there is still a time dependence ind
cating that interfaces have not yet been fully resolved~we are
probing the smallest scales, where diffusion still exists a
j/L is not small enough!; and ~2! the tail decreases with a
exponent which is in fact more negative than that of
Porod tail, Eq.~6!, despite what these authors@48,65# claim.

For q,0.4, data points do not seem to collapse onto
same curve of those forq.0.4. This is similar to, but with
more data than, the results of Koga and Kawasaki@65#. Our
results show an exponent growing with time: the slope o
line ~not shown! joining the first two empty circles (T
5450) is 1.61, while the slope of a line~not shown! joining
the last two filled downward triangles (T5700) is 2.12. This
resembles the temporal growth cited by Appertet al. @48# on
the results of Alexander, Chen, and Grunau@34#; nonethe-
less, we consider the amount of data in the latter insuffic
to draw firm conclusions. Given that the points atT5700 are
closer to the asymptotic regime, we take such a slope as
best approximation to the asymptotic regime.

In the small-q region, Yeung@66# predicted aq4 behavior
for the asymptotic limit (L→`, or at late times!. Addition-
ally, at earlier stages, a term proportional toL22q2 caused by
thermal noise would also come into play. Now, the estim
of Appertet al. @48# applies well for our results: such a qu
dratic term is less dominant than the quartic one only foq
.0.4, given that the largest value ofL(T) for which there
are no finite size effects is also about 25. This happens t
the region where we find theq2↔q4 crossover.

FIG. 9. Scaled spherically averaged structure function for
rameter set III~cf. Table I!, as defined by Eq.~8!. Lattice size is
1283. Time steps are as shown in the legend. Earlier times co
spond to the empty symbols; later times to the filled symbols. E
bars are smaller than the size of the symbols. Straight lines serv
slope guides to the reader only, and represent power lawsq2, q4,
q29, and Porod’s lawq24, from left to right, respectively, withq
[kL. All quantities are reported in lattice units.
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Figure 10 shows similar curves for parameter set IV~cf.
Table I!, where only time steps 450 to 675 are displayed a
we have also normalized the curve such that the pea
located at~1,1!. We have again neglected early time ste
because of poor collapse. A fit to the tail in 2,q,10 gives
q23.65, close to being a Porod’s law. It is when we probe t
finest length scales, atq'10 that it ceases to apply, due t
lattice discretization effects.

The behavior at intermediate wave numbers is betw
q28 andq27, again in agreement with Tomita’s theory@63#,
and close toq27 as computed using a dissipative partic
dynamics method by Juryet al. @13# and a lattice-gas au
tomaton by Love, Coveney, and Boghosian@9#.

For small momenta~large domains! we found a behavior
close toq3, in agreement with the numerical results of Lov
Coveney, and Boghosian@9# and in disagreement with Ye
ung’s predictions@66#.

The most notable difference between Figs. 9 and 10 is
behavior aboveq'1.5. Figure 10 shows a neat Porod ta
which bends down dramatically forq.10, whereas Fig. 9
shows either a poor Porod tail in the region 3,q,5, or a
minute one in the region 1.5,q,3. A condition assumed in
the derivation of Porod’s law@47# is that the sampling length
r satisfiesj!r !L, which in wave numbers means

1/L!k!1/j. ~40!

By ‘‘eyeball’’ inspection of the system’s order parameter w
found that interface widths naturally shrink with an increa
ing number of time steps, going from about 5 or 6 lattice u
spacings at 200 time steps down to about 3 at 675 time st

-

e-
r
as

FIG. 10. Scaled spherically averaged structure function for
rameter set IV~cf. Table I!, as defined by Eq.~8!. Lattice size is
1283. Time steps shown are from 450 up to 675, every 25. Ear
times correspond to the innermost lines; later times to the outerm
lines. Error bars are smaller than the size of the symbols, excep
the two leftmost, detached data sets, for which they are slig
larger. Straight lines serve as slope guides to the reader only,
represent power lawsq3, q4, q28, q27, and the fit to the large-q
tail, q23.65, from left to right, respectively, withq[kL. All quan-
tities are reported in lattice units.
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regardless of the data set, III or IV~cf. Table I!. Simulations
for a 2563 lattice size revealed similar widths, and snapsh
of the order parameter at 200 and 700 time steps are sh
in Figs. 11 and 12. With these widths in mind, assum
domain sizes of a quarter of the lattice side length~the
threshold imposed by our prescription for eliminating fin
size effects!, and a 1283 lattice, condition~40! becomes

1!q!10, ~41!

which contains our large-q region. Despite this, we do no
observe a Porod tail for data set III, or, as in data set IV,

FIG. 11. Order parameter (rR2rB) snapshot at time step 20
for parameter set IV~cf. Table I!. We show a 2563256340 slab of
the lattice.

FIG. 12. Order parameter (rR2rB) snapshot at time step 70
for parameter set IV~cf. Table I!. We show a 2563256364 slab of
the lattice.
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tail obtained is only close to being a Porod tail. This is
agreement with the fact Eq.~40! is necessary but not suffi
cient for a Porod tail to hold.

Finally, it is worth noting in Fig. 12 that the existence
nested domains and droplets much smaller than the ave
domain size.

VI. NUMERICAL STABILITY OF OUR
LATTICE-BOLTZMANN ALGORITHM

As is well known, owing to the lack of anH theorem, an
approach to equilibrium is not guaranteed in all lattic
Boltzmann models to date; recent theoretical developme
to address and solve this have been made@43–46#. For
single-phase lattice-Boltzmann models, equilibrium sta
are well defined in the collision term; if the automaton do
relax to these, the pertinent macroscopic momentum~and
sometimes energy! balance equations are reproduced in t
low-Knudsen number limit. Interacting, multicompone
lattice-Boltzmann models exhibit the same situation in
bulk of pure fluid regions where intercomponent interactio
are negligible. For regions where they are not, there is
even a well-established thermohydrodynamic theory wh
could provide equilibria to which the automaton could rel
to, or with which to compare the stationary state to which
can evolve. Whether dealing with a single or multiphase s
tem, lattice-BGK stationary regimes ought to be treated w
caution and contrasted with experiment.

Numerical instabilities are the reflection of the lack of
H theorem, which is a direct consequence of space and
discretization on the BGK-Boltzmann equation and the fr
dom in the choice of the equilibrium distribution functio
@45,46#. These instabilities can be defined as follows. As
generally the case for a finite difference method with a sin
relaxation parameter, such as our lattice-BGK model fo
zero phase-coupling constant@42#, linear stability occurs
within a finite interval of such a parameter. If multicomp
nent interactions are introduced, additional parameters m
influence the stability: density, intercomponent coupli
strength, and even composition. The mechanism is sim
certain choices of parameters can turn the lattice-BGK co
sion term positive~therefore increasing the mass density! for
long enough to generate floating-point numbers larger t
the largest the machine can deal with, hence causing an o
flow signal. Numerical instabilities are defined in this wo
as the generation of such floating-point numbers. We c

TABLE III. Model parameters leading to numerical instabilit
including the surface tensions(r,t,g) generated some time step
before the instability sets in, and the associated characteristic t
The lattice used was 4343128, and the instability sets in befor
4000 ts.

r t g s(r,t,g) T0

0.5 0.5625 0.06 0.0115 0.0169
0.5 0.5625 0.03 0.0052 0.0122
0.3 0.5625 0.10 0.0068 0.0174
0.3 0.5500 0.08 0.0061 0.0112
4-13
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sider it crucial to be able to map out regions in the mode
parameter space leading to unstable configurations, an
report them alongside any lattice-BGK simulations.

Using the same initial conditions as explained in Sec.
we found our algorithm to be unstable for regimes with t
smallest length and time scales,L0 and T0, which coincide
with those of the largest Mach numbers. In Table III w
show some of the paramaters leading to numerical instab
The dependence of the surface tension on the model pa
eters, as given in Sec. IV, should be taken into considera
as a guide to steering through the parameter space. Note
all values ofDt included are larger than that for parame
set IV.

We then investigated the nature of our instabilities,
others have done. The group of Cates found troubleso
numerical instabilities with their free-energy based, lattic
BGK model in 3D in regions in which quiescent binary po
tions of fluid go into a checkerboard state@61#. They re-
ported that their model is unconditionally unstable@49#.
Nonetheless, by improving the way gradients were trea
numerically they were able to considerably reduce this
physical behavior. For our model, we looked at the tim
evolution of the quantity

u~ t ![max$uVk8
a~x,t !u; x ; k ; a%, ~42!

for parameters$r50.3, g50.06,t50.5125%, where the col-
lision term,Vk8

a , is defined in Eq.~25!. We also monitored
the maximum and average values of the fluid mixtur
speed,umax andū, respectively, on the lattice. We show the
quantities for a 323 lattice in Figs. 13–15. We see howu
reverses its decreasing trend in a few time steps; after th
blows up atT552 time steps. We only show data up toT
549, asu(T551)'10111. umax blows up in similar style: at
T550, umax57498, andu'1021; at T551, umax has ex-
ceeded the maximum floating-point value that the compu
can deal with, and overflow signals are generated. This i

FIG. 13. Evolution of the collision term maximum absolu
value,u, Eq. ~42!, with the time step on a 323 lattice for parameters
$r50.3, g50.06, t50.5125%. All quantities are in lattice units.
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cates that at the time steps immediately prior to the onse
the instability the lattice gets more and more populated w
increasing speeds until in two or three time steps they g
by ten or more orders of magnitude. That the population
lattice sites with rapidly increasing speeds over time is sm
compared to the lattice volume can be concluded from c
trasting the time variation in the standard error~one sigma!

of ū to the time variation ofū, Fig. 15. The same paramete
set run on a 1283 lattice seems to make the instability set
much quicker, as it occurs during the first 10 time steps. A
final check, we ran a 1283 lattice with parameter set I~cf.
Table I! for 20 000 time steps and found no instabilities. T

time evolution ofu, u, and ū is shown in Figs. 16–18, re
spectively. We conclude that the occurrence of instabilit
only depends on the set of parameters used, regardless o
number of time steps simulated.

FIG. 14. Evolution of the maximum speedumax with the time
step on a 323 lattice for parameters$r50.3, g50.06, t
50.5125%. The interpolating curve serves as a guide to the e
only. All quantities are in lattice units.

FIG. 15. Evolution of the speed averageū, with the time step on
a 323 lattice for parameters$r50.3, g50.06, t50.5125%. Error
bars represent the standard error of the average~one sigma!. All
quantities are in lattice units.
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VII. CONCLUSIONS

We have presented a quantitative study of the phase s
ration dynamics in three dimensions for critical~50:50! fluid
mixtures~spinodal decomposition! for a modified Shan-Chen
lattice-BGK model of multicomponent, isothermal immi
cible fluids.

We found that, after a brief diffusional transient in whic
interconnected regions of fluid species embedded into
another are formed, the average size of such regions gr
with time asl}tg, whereg'2/3. The trend is for the value
to increase in the range 0.54560.014,g,0.71760.002 as
the Reynolds number increases. This increase is consi
with a crossover froml}t1/3 diffusive behavior to hydrody-
namic viscous growthl}t predicted by the Cahn-Hilliard

FIG. 16. Evolution of the collision term maximum absolu
value,u, Eq.~42!, with the time step on a 1283 lattice for parameter
set I ~cf. Table I!. We can see a decreasing trend for most of
simulation, which accentuates after time step 10 000. The inte
lating curve serves as a guide to the eye only. All quantities ar
lattice units.

FIG. 17. Behavior of the maximum speedumax with the time
step for a 1283 lattice with parameter set I~cf. Table I!. It shows an
overall decreasing trend. The interpolating curve serves as a g
to the eye only. All quantities are in lattice units.
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Model H. Owing to the significant amount of diffusio
present at low Reynolds number, we do not consider
results to be indicative of a genuinely hydrodynamic inert
t2/3 regime.

We observed exponential growth in the time depende
of the structure function for wave numbers up to a thresh
value, in qualitative agreement with predictions from the l
earized Cahn-Hilliard ModelB. For small wave numbers
such an exponential growth is seen at all simulation tim
whereas it is only an initial transient for larger wave num
bers. These departures from ModelB predictions are for
wave numbers far from the one characterizing the aver
domain size. A natural continuation of this work would be
investigate the nature of diffusion currents for these case

We have found very good agreement with the dynami
scaling hypothesis in the form of a neat collapse of the str
ture function curves for Re52.7 and Re537 when they are
appropriately scaled according to Eq.~8!. This collapse holds
roughly for the second half of the simulation time, as diff
sional transients act during the first. By looking at order p
rameter snapshots we observed the formation of nested
mains and smaller droplets for the largest Reynolds numb
achieved, as Wagner and Yeomans also found@12#. However,
unlike them, in our case these are transients rather tha
result of length scales growing at different speeds, as p
collapse of the scaling functions would then occur due
breakdown of scale invariance.

Yeung predicted aq2 behavior at the small-q end of the
spectrum as the result of thermal effects at preasympt
stages@66#. Love, Coveney, and Boghosian@9# conjectured
that aq2 behavior, and a crossover toq4, could be caused by
~a! lattice-gas noise, or~b! a poor scaling collapse, and tha
their t2/3 domain growth, instead oft, might be justified by
the former. Appertet al. @48# ascribed theq2 behavior and
the crossover to not having reached the asymptotic limitL
→` ~poor scaling collapse again!. Our noiseless model re
produced theq2↔q4 crossover at Re52.7 and did not at
Re537, for which there is better scaling collapse, and a
produced a 2/3 domain growth~crossover! exponent. All this

e
o-
in

de

FIG. 18. Evolution of the speed averageū with the time step on
a 1283 lattice for parameter set I~cf. Table I!. We can see a decreas
ing trend of the average and its error. All quantities are in latt
units.
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leads us to conclude that noise may not play as importa
role as the lack of scaling collapse in explaining theq2↔q4

crossover, and is definitely not a requirement for the rep
duction of a 2/3 domain growth exponent. Aq2 behavior is
the only one experimentally observed by Kubotaet al. @64#
for a mixture of isobutyric acid and water; they cite surfa
tension effects, measurement difficulties, multiple light sc
tering, and even specificity to the mixture’s molecular weig
as reasons for not seeing aq4 behavior, and definitely discar
thermal noise. Not surprisingly, in his prediction Yeung a
sumed a diffusive domain growth exponent of 1/3, which
rather seen in quenches of polymer mixtures and meta
loys.

In the case Re537, the spectrum shows aq3 behavior in
the small-q limit, in disagreement with Yeung’s prediction
In fact, his analysis is based on a Cahn-Hilliard model wi
out hydrodynamics.

The numerical instabilities seen in our runs are caused
large speeds turning the equilibrium distribution negative
long enough to incur floating-point overflows. This happe
for characteristic times~cf. Table I! below T050.0172, and
the population of lattice sites undergoing such a burst in
fluid’s macroscopic speed is small compared to the lat
volume. We found no evidence that an initially stable regi
becomes unstable at later times, as typically happens in
laxational models~such as is our model forgaā50). This is
in stark contrast with the findings of Kendonet al. @49# and
Cateset al. @61# in their spinodal decomposition studies u
ing a free-energy based, lattice-BGK model, who repor
their algorithm to be unconditionally unstable.

A search for a crossover to growth laws other thant2/3 at
Reynolds numbers higher than Re537 faces two major prob
lems:~a! the triggering of numerical instabilities due to larg
interspecies coupling and smallness of relaxation time
ues; and~b! the approach to the compressible limit, who
macrodynamic behavior for pure phases cannot, by const
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tion, be correctly described by our method. On the ot
hand, there is still scope to achieve Reynolds numb
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Our results clearly challenge the claim that a dom
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we obtained excellent collapse of scaled structure functi
yet our domain growth exponents are in the crossover reg
between diffusive and hydrodynamic viscous regimes.

The properties of this binary immiscible fluid model a
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growth observable in ternary amphiphilic~oil/water/
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