PHYSICAL REVIEW E 67, 046302 (2003

Thermal convection in binary fluid mixtures with a weak concentration diffusivity,
but strong solutal buoyancy forces
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Thermal convection in binary liquid mixtures is investigated in the limit where the solutal diffusivity is
weak, but the separation ratio is large. Representative examples are colloidal suspensions such as ferrofluids.
With a grain size being large on molecular length scales, the particle mobility is extremely small, allowing to
disregard the concentration dynamics in most cases. However, this simplification does not hold for thermal
convection: Due to the pronounced Soret effect of these materials in combination with a considerable solutal
expansion, the resulting solutal buoyancy forces are dominant. Indeed, convective motion is found to set in at
Rayleigh numbers well below the critical threshold for single-component liquids. A nonlinear analysis dem-
onstrates that the amplitude quickly saturates in a state of stationary convective motion.
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[. INTRODUCTION scales far beyond any reasonable observation time. Thus, in
those experiments, where thermodiffusion is irrelevant, fer-
Thermal convection in binary mixtures has attracted muchofluids can safely be treated as single-component fluid sys-
research activity in the pa&tee[1-3] for a review. In com-  tems.
parison to the pure fluid case, the dynamics and the bifurca- However, ferrofluids are also known to exhibit a very
tion scenario are more complicated due to the extra degree tdrge separation ratigr. This observation is due to the pro-
freedom associated with the concentration field; thereby sorounced thermodiffusivity of these materials in combination
lutal currents are not only driven by concentration gradientswith the fact that the specific weights of the two constituents
they also occur in response to temperature inhomogeneitie@nagnetite and water/gilre quite distinct. Following inves-
This is denoted as the thermodiffusive or Soret effect. Itdigations of Blumset al. [7], who carried out experiments
influence on the convective buoyancy force is quantified bywith a thermodiffusion chamber can adopt values up to
the dimensionless separation raioThe sign ofys indicates  about 100. Recent light scattering investigations of Bacri
whether temperature and solutal-induced density gradientst al. [8], reveal ¢ values between around 200 (for ionic
are coaligned { ) or opposed to each other(). At negative  ferrofluidg and up to+ 30 (cyclohexane carrigrt a volume
s the motionless conductive state experiences an oscillatoryoncentration of 10%. Meanwhile the Soret effect in ferrof-
instability, saturating in a nonlinear state of traveling waveduids has also been studied under the influence of an external
[3]. On the other hand, at positive the convective instabil- magnetic field 9-11].
ity remains stationary, but the critical Rayleigh number for A fairly small number of papers deals with convection in
the onset of convection is dramatically reduced as compareférrofluids. Most of them treat these liquids as single-
to the pure-fluid reference value @31708. This is a result component fluids, focusing on the extra drive associated with
of the joint action of thermal and solutal buoyancy forces.the temperature dependence of the magnetizgfigromag-
The present paper is dedicated to the case of posjiive  netic effeci [12—14. An experimental study with a binary
colloidal suspensions. system of ordinaryy andL values has been reported some
A typical property of binary mixture convection is the time ago[15]. Quite recently Shliomis and SouHd6] stud-
formation of concentration boundary laydi]. This is a ied the influence of the concentration field on thermal con-
consequence of the fact that the concentration diffusity ~ vection in ferrofluids without an external magnetic field. Us-
in mixtures is usually much smaller than the heat diffusivitying linear arguments they predicted a novel kind of
k. For molecular binary mixtures the dimensionless Lewisrelaxation-oscillation convection to appear at Rayleigh num-
numberL =D/« adopts typical values between 0.1 and 0.01bers below R& Meanwhile, magnetic field related effects
[5]. If colloidal suspensions are under consideration, the timdnave also been investigated in this problgki].
scale separation is even more dramatic. In this context mag- The purpose of the present consideration is to work out
netocolloids, also known as ferrofluids, are a canonical exmore closely the role of the concentration field. For the sake
ample. These materials are dispersions of heavy solid ferr@f concreteness we phrase the discussion in terms of ferrof-
magnetic grains suspended in a carrier ligéd. With a  luids but point out that the results apply equally well to any
typical diameter of 10 nm the particles are pretty large orbinary mixture with smalL and large positives.
molecular length scales, resulting in an extremely small par- Provided no magnetic field is applied, thermal convection
ticle mobility. This feature is reflected by the Lewis numbersin a perfectly intermixed ferrofluid is usually believgEbb] to
as small as. =10"“ [7]. The smallness df leads to a situ- behave as a single-fluid system. However, our investigation
ation where demixing effect§if any) take place on time reveals that this is not correct. Rather it is the combination of
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z the solutal expansion coefficients, respectively. The dimen-
T sionless Rayleigh number Rg8rgh3AT/(«v) is the control
parameter measuring the strength of the thermal drive. In Eq.
- - (4) we have suppressed the Dufour effdgtieat current
h T(2),%(2), c(2) l g driven by a concentration gradignas it is significant in gas
mixtures only.
T, The equations of motion are to be completed by the
boundary conditions: Taking the bounding plates to be no
FIG. 1. Sketch of the setup. For details see text. slip for the velocity, highly heat conducting, and imperme-
able for concentration currents we have at the upper (
both, the weak solutal diffusivity and the pronounced solutal=1/2) and the lowerZ= —1/2) plates
buoyancy force, which renders the convective dynamics dis-
tinct from the pure-fluid case. It will be demonstrated below v|,—+1=0, (5
that a Rayleigh-Beard setup will become unstable at Ray-
leigh numbers well below Ra Within a time, small com-
pared to the creeping solutal diffusion time, convective per-
turbations are found to grow up and saturate in a stationary _
convective state. (9,C+02T)]z- 22~ 0. ™

The rest of the Paper 1S organlzed.as follows. In. the neX‘Equation(7) guarantees that a concentration current cannot
section the problem is set up along with the governing equ:f)enetrate the plates. Owing to the Soret effect the applied

2?1glsysirs]ds;t))g;gﬁjrt);ilcoorg?jlttlggsc'ciﬁgil?gr Itlrllepgleosv?/néznitlalgt?a emperature difference enforces a finite concentration gradi-
TR . ; en h ndaries. Equatiofty—(4 her with th
tion diffusion. In Sec. IV a Galerkin model is employed for ent at the boundaries. Equatio(—(4) together with the

o - . . 4 boundary condition$5)—(7) complete the system of hydro-
predicting the long time nonlinear convective behavior. dynamic equations for the variablesT,C.

Tlpec10=T+3, (6)

II. SETTING UP THE PROBLEM
lll. LINEAR STABILITY ANALYSIS

Let us consider a laterally infinite horizontal layer of an
incompressible ferrofluiddensityp, kinematic viscosityv)
bounded by two rigid impermeable platésee Fig. L The It is easy to show that the above boundary-value problem
setup is heated from below with a temperature differeife has a simple stationary solution, the so-called conductive
between the plates. In the present paper we do not considetate. It is represented by linear temperature and concentra-
magnetic field related effects, thus the evolution equationgion distributions
for nonmagnetic binary mixtures can be adopted. Taking

A. Basic state and time scale separation

C(r,t) as the concentration of the solid constituent of the v=0, 8)
suspension, the dimensionless equations for the Eulerian o
fields of velocityv(r,t), temperaturd (r,t), andC(r,t) read Teond2)=T—2, 9
in the Boussinesq approximati¢h8—20:
V‘v:O, (1) Ccond:C+Z- (10)
dv+v-Vo=—VW+PrvZp In order to check for the stability of this solution one usually

proceeds by introducing small perturbations around the con-
+Pr Rz{(T—?)— lﬁ(C—E)]ep 2 ductive state and following their time evolution as governed
by the linearized equations of motion. However, owing to the

T+v-VT=V?T, (3)  smallness of the Lewis number, the time necessary to estab-
lish C;,,q €Xceeds the equilibration time fadr,,,q by a fac-
d,C+v-VC=L(V2C+V?T). (4  tor 1L. Take, for instance, a layer with a depth bf

. . =3 mm [16]. Then T;,,q IS adopted after a few thermal
Here, we have scaled length by the layer thickrtessne by diffusion timest,;=h%« (=1 in dimensionless unitsWith
the characteristic heat diffusion tint€/«, temperature by the heat diffusivity of waterg=1.5x 10~ 7 m?s, this period
AT, and the concentration byog/D)AT. The scale forthe  amounts to about one minute. On the other hand, Lfor
pressureW is «x?p/h?; therebyx, D¢, D are the coeffi- =104 the equilibration of the linear concentration profile
cients for heat, corEentra_tion and thermodiffusion, respece ., takesh?/(«L), i.e., almost a week! Clearly, this tops
tively. The quantitie§ andC are reference values defined as any reasonable time scale at which convection experiments
the mean values for temperature and concentration. Apagre carried out. Accordingly, a linear stability analysis, suit-
from the Prandtl number Prv/x and the Lewis numbel able for a comparison with the experiments, has to account
=D./« there is a third dimensionless material parameter, théor the creeping solutal diffusivity. This can be accomplished
separation ratio ¢=D+1B:/(D:B1), where  Br by taking the slowly establishing conducting concentration
=—(1lp)dpldT and B.=(1lp)dpl/dc are the thermal and profile Cy(z,t) as the basic state rather than the fully devel-
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oped profileC.,,q. For times larger than the evolution time d,0—w=V?20, (18
of the temperature profile>t,y, Cqy(z,t) obeys the linear
partial differential equation d,c+wa,Co=L[V2c+V?0]. (19
3;Co= LaﬁCo, (11 Here we have taken twice the curl of the Navier-Stokes equa-
tion to derive the equation for the vertical componenof
with the inhomogeneous boundary condition the velocity field.
The boundary conditions read as
&ZCO|Z: +1p=1, (12
) L W|,—+1=0, (20)
resulting from Eq.(9). On the creeping time scale of the
evolution of Cy(z,t), 7=Lt, the validity condition of Egs. OW| = +1/,=0, (21
(11) and(12) readsr=L=10 *.
Equations(11) and (12) reflect the evolution of the up- 0| ,—+1=0, (22
coming conductive concentration profig,,,q. However, as
outlined at the length above, the system has not enough time (9,64 3,0)| ;= +1/,=0. (23

to reach this state. At best the Soret driven concentration ) )
current is able to pile up thin concentration boundary layerdEduations(17)—(19) together with Eqs(20)—(23) are to be
along the plates, the depthof which remains small in com- Solved for a giverC,.

parison to the distance between the platés<(). This is Since the temporal eyolution of the bour!dary layers f[akes
somewhat difficult to see from the exact solution of E44) ~ Place on the stretched time scalé. e consider the profile
and (12): Co(z,7) as being stationary within the period at which con-
vective perturbations grow up to saturation, i.€4(z,t)
4 2 (—1)n+t =Cy(2). The self-consistency of this assumption has to be
Colzt)=z+— 2, exd — (2n+1)%7?7] checked at the end of the calculations. With this approxima-

™ i=0 (2n+1)? tion of a stationaryC, all coefficients in Eqs(17)—(19) are
Xsin(2n+1) 7z, (13  ftime independent and solutions in the form,c,w
«eMcoskx can be adopted. This leads to
since for the smalk’s, we are interested here, the sum con-
verges extremely slowly. A better feeling &, can be ob-
tained by the solution of the somewhat simpler problem
where the boundary conditiongl2) are replaced by
9,Col,=—1,=1 and 4,Cq|,s _12~0 [16]. The solution of
this problem is

N (95— k?)w= —PrRak?(§— i) +Pr( 3 —k?)w,
(24

NO—w=(92—k?)0, (25)
AC+W3,Co=L(32—k?)(c+0). (26)

1/2+Z)’ (14) Note that the above ordinary differential system is not au-
27 tonomous sinc€y(z) entails an expliciz dependence. Only

in the limiting cases where eitherCy=1 (fully developed
which, for =10 %, describes the development of the conductive concentration profile, i.6Go=Ccond) OF 9,Co
boundary layer close te=—1/2 very well.[erf(x) denotes =0 (uniform concentration distribution Eqgs. (24)—(26)
the error functiorf21].] As long as each boundary layer does adopt an autonomous form. These two situations will be dis-
not feel the presence of the opposite one, the superposition @{issed, in turn, below.
Eq. (14) with the corresponding solution at=1/2 gives the
realistic picture ofCy. We will also corroborate this scenario C. Threshold for a fully developed conductive
within the nonlinear calculations below. concentration profile

9,CEPPIO (7 t)=1— erf(

Although the fully developed conductive profile is of mi-
nor significance for the present investigation, let us briefly
To probe the stability of the ground state, deviations argeview [2,3] the situation wherCy,=C_,,4 Or equivalently
added whose time evolution is investigated. To that end wg,C,=1 is the ground state. To identify the threshold of the
impose[22] stationary instability, we impose.=0. We obtain ¢2
—k?)9=—w from Eq. (25) and (72—k?)c=w/L from Eq.

B. Linear deviations

Cr)=Co(zt) +c(rt), (19 (26), sinceL<1. This allows to neglect thermal versus so-
T 1) =Toond 2) + 6(1.1), (16) lutal buoyancy forces in Eq24) leading to
2_ 1,2\3~_ 24
and the velocity fieldv(r,t). Linearizing the equations of L(7;~k%) e~y Rak’e=0, @7
motion for the convective perturbatiowms 6, c yields with the boundary conditions
aV2W=PrRad;+d5)[ 60— yc]+PV4w,  (17) 0,C| e+ 11~0, (28)
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(ﬁi—kz)dz:ﬂ/z: 02(0§—k2)0|z:¢1/2= 0. (29)  tions rather than the threshold value. To that end we assume
that the spatial profiles of velocity and temperature are only
The solution of this eigenvalue problem is know23] to  slightly disturbed by the concentration dynamics. Accord-
provide a stationary instability with a critical wave number ingly we represent their dependencies in terms of simple

k=k.=0 at trigonometric test functions in the form
. L w(x,z,t)=A(t)cog kx)coS(7z), (34)
Reg = 72%. (30
0(x,z,t)=B(t)cogkx)coq 7z). (35

TakingL=10"* and =10 we obtain R&=10"2, indicat- | wast for th i wration fielde all
ing that the threshold of the Soret driven convection is,) contrast, for the convective concentration el atiow

smaller by a factor of T0as compared to the pure fluid for a steep boundary layer behavior, which we account for by

threshold R&=1708. Note, however, that in order to experi- the following multimode expansion:

mentally verify this drastic onset reduction one has to wait n=c

for about a week after any temperature step before the linear c¢(x,z,t)=— 6(x,z,t) +cogkx) 2 b,(t)cog2mnz).
conductive concentration profile has fully equilibrated. This n=0

case will not be pursued further. (36)

Again we assume that the conductive concentration bound-
ary layers had not enough time to pile up, thus imposing
We now turn to the opposite limit when the concentrationd,C,=0. It is easy to see that E(B6) satisfies the boundary
boundary layer had no time to develop, thGg=C or,  conditions(7). Furthermore, it conserves the mirror symme-
equivalently,d,C,=0. Imposing again zero growth rate  try of c with respect to the midplane between the boundaries

=0 we obtain from Eqs(23) and (26) the equalityc=¢.  (z——2). Substituting Eq(36) into Egs.(17)—(19), and pro-

D. Threshold at a uniform concentration distribution

Substituting this into Eq(24) yields jecting the equations with the respective Galerkin modes,
reveals that only the first two concentration modgsandb,
(92— k?)?w—Rak?(1+ ) 6=0, (31)  enter the evolution equation féx The remaining concentra-
tion modesb; with i=2 are decoupled. Summarizing the
(&?—k2)0+w=0. (32 Galerkin model for the relevant modég(t), B(t), by(t),

b,(t) leads to the following system of equations:
In combination with the boundary conditioi20) and (22),

we recover the known boundary value problem for pure-fluid 3k?+ 472 4

thermogravitational convection; however, with an extra pref- ~ gpy +| g Tk 2m A
actor (1+¢) in front of the Rayleigh number. Taking this ) )
renormalization into account, and following Chandrasekhar’s 4k ik
solution[24], yields an exchange of stability at N ﬁRdl“L ¥)B+ TR"’(ZbO’L b1)=0, (37)
R%:%R (33 A Bt (24 KB A=0 (39)
Y 37 3m g
with a critical wave numbek,=3.117 and R&=1708. 2724 K2) 9
The appreciable value of the separation ratiamplies a Abo+Lk?bg+ ————B— —A=0, (39
significant onset reduction. Strictly speaking, the determina- ™ 16
tion of Ra by imposing zero growth rate=0 is void, since 4 3
the creeping diffusion ofC, can only be disregarded for LK+ 472 b+ — (72 +K2)B— A=
timest<L 1. In other words, the exponential amplification Aby+L (K" + 477)by 377(77 k%)B 8A 0. (49

of the convectiveperturbationc has to proceed much faster

than thediffusive evolution of Cy. This is always true for ~ To check the reliability of the above 4-mode approxima-
Rayleigh numbers sufficiently off from Rai.e., when\ is  tion, we solved the linearized boundary value_ problem of
nonzero with A (Ra)|>L. It is this inequality that guarantees Eds.(17)—(23), exactly by means of the numerical method
the validity of the time scale separation. And it is also theoutlined in Ref.[25]. Comparing the results for the growth
experimentally relevant case because extreme waiting timggte A we found that the Galerkin technique is accurate by

are circumvented. This situation will be focused on in theabout 10%.
following. For A>L and ¢>1 (with the approximatiork~ ) an

analytical expression fok as an implicit function of the
material and the control parameterg, (L, Pr, and Ra, re-

spectively can be obtained from Eq§37)—(40):
The preceding discussion reveals that a linear stability

theory, suitable to compare with a convection experiment, 3 Ra PN+ 272Lh) =N (272 + \)(27m?Pr+ 7\).
has to rely on the growth rates of the convective perturba- (42

E. Linear growth rate
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the convectiveone c(r,t) evolve on strongly distinct time
scales. While the former always proceeds on the creeping
time scale 1, the quantityc(r,t) grows up much more
rapidly proportional toeM, in unison with @ andw. Then,
owing to the pronounceds value, solutal buoyancy forces
significantly contribute to the destabilization of the conduc-
tive state.

Our observations shed light on a state of relaxation-
oscillation convection predicted recently by Shliomis and
Souhar[16]. In that paper it was argued that after a sudden
application of R&c Rag to a ferrofluid with an initial uniform
concentration distribution, a concentration boundary layer
along the plates piles up slowly, making the instantaneous
convective threshold Ré) gradually sink below the applied
Ra value. Then the increasing convective motion mixes up
the ferrofluid, sweeping out the concentration boundary lay-
ers. With the concentration profile being rehomogenized, the
ferrofluid was argued to behave like a single-component lig-

FIG. 2. The linear growth rate(z) for convective perturbations Uid, returning to the conductive state since the applied Ray-
as a function of the reduced Ray|e|gh numbe:rRa/R@-l Here |e|gh number iS Sma”er than %aThel’eafter th|S I’e|axati0n-
R& is the threshold for the onset of convection in a single-Oscillation cycle can start again. The present investigation
component fluid. Within the present Galerkin approximatiorf Ra reveals that such a cycle cannot work: This is because it was
=1752. proven that convective perturbations in a homogeneously
mixed ferrofluid do not decay at RaRa< Rag. Rather they

Without these approximations numerical results in Fig. 2MaY experience a considerable [gositive growth (ate Fig.
illustrate the dependence ®fon the reduced Rayleigh num- 2) even at Raylglgh numbers .50/0 beIowCRaay. We con-
ber s =Ra/R§—1 for different values of the separation ra- clude that there is no mechanism, that drives the system back
tio. The dashed line bifurcating at=0 indicates the refer- to the conductive state. Once initiated, convection will per-
enée case of single-fluid convection. From E4f) and Fig sist(rather than oscillajeand saturate in a stationary nonlin-

2 it becomes clear that depends for larger on the product ear state. This will be shown in the following section.

L rather thanL alone. Thus decreasing the concentration

diffusivity L makes the curvi (&) approach to the pure fluid IV. NONLINEAR BEHAVIOR

case. On the other hand, increasing the solutal buoyancy , , . .
force by risingy has the opposite effect. Assuming that the 1€ Preceding linear analysis reveals that for Rayleigh
experimental observation time is long enough to detect afumbers well below Ra convective fluctuations are expo-
unstable convective mode with a growth rate=0.1 (i.e. nentially amplified on a time scale, which is experimentally
waiting time of about 10 heat diffusions times, which in g relevant. It can therefore be expected that these fluctuations
layer of thicknesi=3 mm corresponds to about 10 min and saturate qwckly in a nonllnegr conyecnve pattern. To work
which is still much shorter thah ~*, the time scale o€,) out whether this final state is stationary or oscillatory we
then convective motion is detectable at Rayleigh numberS0!ved the nonlinear problem by use of numerical methods.
10-50 % below R%\depending on the valug. Tp that_ end we make' the foIIowmg an.satz_ of a .two—

To corroborate the validity of the time scale separation Wed:jmeng:ﬁnal pattern,bwkr.uch is lateralfn x direction peri-
have also solved the linear problem, where the approxima(—) Ic with wave numbex.
tive uniform concentration distributio?,Cy=0 was re-

linear growth rate A

0
-0.5 -0.25 0

reduced Rayleigh number &

placed by the true profile, as given by Ed4) at t=10. C(X’Z’t):CO(Z’t)+C(X’Z't):CO(Z’I)JFCl(Z’t)COSk)((AZ)
Reevaluating the growth rate yields a value for which
differs from the previous one by less than 10%. B B

Regarding typicaly values in the rangg=10-100, Eq. T(x.z,t)= =2+ 6(x,2,t) = 6o(z,1) + 61(2,1) coSkX, 43)
(33) indicates that the convective onset threshold foa a
homogeneously intermixed ferrofluid experiences a signifi- _ _
cant reduction relative to the pure-fluid value’Raf. Sec. vx(x.2,0)= = (1K) awy(z,)sinkx, (44)
1 D). This result appears somewhat counterintuitive: As
long as the initial concentration profile is approximately uni- vAX,2,t) =w,(z,t)coskx, (45)

form, one might expect convection to behave as in single-

component liquidg16]. But it turns out here that this argu- with incompressibility already built in. Substituting Egs.
ment is not generally applicable, provided the applied(42)—(45) into the nonlinear equations of moti¢®)—(4) and
Rayleigh number is not too far below the reference valuesorting for different lateral dependences yield the following
Ra‘g, Fig. 2 reveals that theonductiveprofile Co(z,7) and  system of equations:
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1
5075 = kA)wy = (D?—k?)*w, —Rak?( 6, — yc,),

(46)
9 Co+ %@(wlcl) =L3;(Co+ o), (47)
9C1+W13,Co=L(82—k?)(c1+ 6y), (49
9100+ %az(w1 01)= 0926, (49)
01— W1+ W,d,00= (35— k?) 0y, (50
with the boundary conditions
9A(C1+ 01)| = +112=0, (51
9 Co+t 00)| 2= =12=1, (52)
01l 2= +112= 0ol z=+12=0, (53
Wy|z= +1/5= I Wa| = +12=0. (54

PHYSICAL REVIEW EG67, 046302 (2003

The equations for the mode amplitudésB,F,a,,b,
have been solved by a Runge-Kutta integration. The wave
numberk, usually taken to be the mode of maximum linear
growth ratei(k,Ra) varies between 3 and 3.5 within the
investigated Rayleigh number regime. However, since the
final predictions of our model turned out not to depend sen-
sitively on thek value chosen we adopted in all of our simu-
lations k= 7r. All runs were started from an initial configu-
ration characterized by a undisturbed linear temperature
profile T=T.,,q, @ uniform concentration distributiof,C,
=c¢;=0, and small random velocity fluctuations. The time
evolution of the velocity amplitudé(t) as obtained from a
typical simulation run is presented in Fig. 3 for two different
values of the Rayleigh numbes € Ra/R{— 1= +5.7%) on
either side of the pure-fluid reference threshold R@he
dashed line in Fig. 3 denotes pure-fluid reference case
=0. In all of our runs the convective motion was found to
settle in a state o$tationaryconvection. A relaxation oscil-
lation behavior as predicted in Rdfl6] could not be ob-
served. The times necessary to reach the saturation values are
several thermal diffusion times and increase with decreasing
e. However, they are still much shorter than the evolution

To solve this boundary-value problem we adopt vertical proiime of the creeping concentration profile, thus corroborating

fileswq, 6g, 61, Co, andc4 in the form

w1 (z,t)=A(t)cod(mz), (55)
01(z,t)=B(t)cosmz, (56)
0p(z,t)=F(t)sin 27z, (57)

Co(zt)=2—by(z,t)+ >, an(t)sin2n+1)wz, (58)

=0

z

n=N
ci(z,t)=—61(z,t) + ZO b,(t)cos 7z, (59

which satisfy the boundary conditioriS1)—(54) identically.

The above equations describe two-dimensional convection ir

the form of parallel rolls along thgaxis in an infinite slab of
thickness 1. We point out that faf=0, the concentration

our assumptio®,Cy=0 in the preceding section. The over-
shoot in Fig. 3 before the plateau values are reached is not a
numerical artifact, but it may be related to the small number
of lateral modes we have taken into account. This can be
expected, since additional modes with negative growth rate
smooth out the relaxation into the saturated state.

Figure 4 shows the corresponding bifurcation diagram
with the dependence of the saturation amplitude on the re-
duced Rayleigh number. At>0 the amplitude saturates at a
value that does not significantly deviate from the single-
component case. On the other hand, the influence of the con-
centration field is most pronounced for RR& . This is a
consequence of the competitive interaction between the

4

fields decouple from temperature and velocity. This reduces 3| r\\ £=00%6
Egs. (55 —(57) to the 3-mode model introduced by Lorenz
[26] to mimic the dynamics of convective rolls in single-
component Rayleigh-Berd convection. At nonzerg, con-
vection is modified by the concentration field but we can
adopt the above few-mode expansions for temperature an
velocity without modifications, because the diffusivities for
heat and momentum are large enough to prevent the appea
ance of strong gradients. By way of contrast, owing to the
small Lewis number, the concentration field does build up
steep boundary layers, which we account for by multimode
Fourier series as given in Eq&8) and (59). For C, the 0

velocity amplitude A(t)
n

modes are antisymmetric imand resemble the solutid@3), 0 10 20 30 40 50 8t

. . . time)/(th | diffusion ti
while for ¢, symmetric modes are appropriate. The number (tme)/(thermal difiusion times)

N of contributing modes was taken large enough to ensure F|G. 3. The time dependence of the velocity amplitéd) for
that the results are insensitive against a further increab of positive and negative values of= Ra/R&— 1 in terms of the ther-

For the parameter values considered hbre,20 turned out
to be sulfficient.

mal diffusion timet,y (for Pr=7 andL=7x10 %). The dashed
gray line corresponds to single-component fluig=0) &= 0.056.
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(a) (b)

o
T

IS

conductive concentration field C(z)
7
<
convective concentration field c,(z)

convective saturation amplitude A_,
n

-0.02 L - y : ! y -0.02
-05 -0.25 0 0.25 05-05 -0.25 0 0.25 0.5

vertical coordinate z vertical coordinate z

-0.4 -0.2 0 0.2 0.4

reducad Fayleigh numbsre FIG. 5. (a) The conductive concentration profil€y(z)

=Cp(z,t—>) in the fully developed saturated state far
=—0.058(parameters Pr7, L=7x10"%, andy=10). (b) Same
as (@) for the convective concentration fietd(z) =c,(z,t— ).

FIG. 4. The saturation amplitud&s,=A(t—=) as a function
e= Ra/R@—l (parameters as in Fig.)3The dashed gray line cor-
responds to a single-component fluid=¢ 0). Dotted lines show the

result of a 7-mode Galerkin approximation as given b b in . L
Ref.[22] PP g y@db neous profile only inthin boundary layers. Consequently,

time consuming redistribution processes of the concentration

small Lewis number and the large separation ratio. Decreadl€!d aré not necessary for building up the solutal saturation
ing L makes the curve in Fig. 4 approach to the dashedPrOf'les' This keeps the equilibration time small and no fur-
reference line, whereas risinfg has the opposite effect as it tEer evolution 0';] thehslow d|ﬁu§|on .t'mei sc5ale occurs after
amplifies the solutal buoyancy forces. For the sake of com{N€ SyStém reaches the state given in Fig. 5.

parison the dotted lines in Fig. 4 show an analytical approxi-

mation for the saturated velocity amplitude based on a V. CONCLUSION
7-mode Galerkin approximation recently introduced by
Hollinger, Licke, and Miler [Eq. (4.1b in Ref.[22]]. Thermoconvection of binary mixtures with a weak con-

Unlike a single-component system, where convective pereentration diffusivity and a large separation number has been
turbations decay for negativg the ferrofluid exhibits a pro- investigated theoretically. By considering the classical Ray-
nounced positive linear growth ratef. Fig. 2. When mea- leigh Benard setup, it is shown that both the linear as well as
suring a bifurcation diagram such as Fig. 4, one mighthe nonlinear convective behavior is significantly altered by
conclude that the bifurcation is imperfect. Indeed, a slighthe concentration field as compared to single-component sys-
imperfect behavior was observed in the experiments of Bigatems. Starting from an initial motionless configuration with a
zzi, Ciliberto, and Croquett¢l5] and of Schwab, Hilde- uniform concentration distribution, convective perturbations
brandt, and Stierstafi14], who recorded the convective heat are found to grow even at Rayleigh numbers well below the
transport as a function of Ra. But we learn here that thighreshold R% of pure-fluid convection. It turned out that the
phenomenon is to be attributed to the concentration dynanmactual critical Rayleigh number R& drastically smaller, but
ics: As outlined in Sec. 3, the very onset for convection isexperimentally inaccessible due to the extremely slow
located at a much smaller Rayleigh numbeg Raut at Ray-  growth of convection patterns for Re&Ra., requiring ex-
leigh numbers slightly larger the linear growth rate of distur-tremely large observation times. On the other hand, operating
bances remains extremely small. Thus, trying to detegifRa the ferrofluid convection experiment at Rayleigh humbers
such an experiment would be hopeless, as it requires eRa.<Ras Ra‘c’, reveals considerable positive growth rates,
tremely long observation times. Experiments on ferrofluidswhich lead to a saturated nonlinear state almost as fast as
have been reported recenfl§7] that corroborate the behav- pure-fluid convection does at Ra&Rg . This result is cor-
ior shown in Fig. 4. roborated by earlier convection experiments. It does not

In contrast, at around=10-20% the time necessary to comply with a recent prediction of convective self-
wait for the equilibration of the nonlinear convective Stateosci"a[ions Conjectured from the interp|ay between short

amounts to only a fevthermaldiffusion times(see Fig. 3 thermal and slow solutal diffusion time scales.
This statement, which holds in particular also for the concen-

tration field, demonstrates that the growth of convective per-
turbations is a fast process on tteeeping time scale 1.

of solutal diffusion. On the first view this might appear coun-  Helpful discussions with M. Lcke and B. Huke are
terintuitive, but it can be seen from Fig. 5 that the final gratefully acknowledged. This work was supported by the
concentration distribution differs from the initial homoge- Deutsche Forschungsgemeinschaft.
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