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Controlling turbulence in a surface chemical reaction by time-delay autosynchronization
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A global time-delay feedback scheme is implemented experimentally to control chemical turbulence in the
catalytic CO oxidation on a Pt10) single crystal surface. The reaction is investigated under ultrahigh vacuum
conditions by means of photoemission electron microscopy. We present results showing that turbulence can be
efficiently suppressed by applying time-delay autosynchronization. Hysteresis effects are found in the transi-
tion regime from turbulence to homogeneous oscillations. At optimal delay time, we find a discontinuity in the
oscillation period that can be understood in terms of an analytical investigation of a phase equation with
time-delay autosynchronization. The experimental results are reproduced in numerical simulations of a realistic
reaction model.
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[. INTRODUCTION taneous value of this variabl&~u(t—7)—u(t). We will
refer to this feedback schemetase-delay autosynchroniza-

Nonlinear dynamics of high-dimensional, spatially ex-tion (TDAS) [25]. Extensions[26] and considerable im-
tended systems became a subject of intense research interpsbvements[27,28 of TDAS were reported in the recent
over the past decadgl]. Among chemical systems, the literature. For spatially extended experimental systems which
Belousov-Zhabotinsk{BZ) reaction[2,3] is the most promi- do not allow local access to their individual elements, TDAS
nent example of a reaction-diffusion system showing a varican be applied as a global feedback, where the feedback
ety of complex spatiotemporal patters such as travelingignal is generated from the integral valueuodver all sys-
waves, target patterns, and rotating spiral wgvésBesides tem elements. In previous work, the application of TDAS has
reactions in aqueous phase, where the detailed mechanismtigen studied, either experimentally or theoretically, for only
often complex and sometimes not even fully understooda few systems such as lasg?9], semiconductorg30], glow
there are a number of simple heterogeneous catalytic readischarge devicef31], and populations of electrochemical
tions where pattern formation has been intensively studiedscillators[32].
[5]. The catalytic oxidation of CO on platinuiid10) is the For the catalytic CO oxidation on platinum, aspects of
most thoroughly investigated reaction of this tyjd. The  pattern formation and suppression of chemical turbulence
mechanism of CO oxidation on platinu¢hl0 is well estab- under global delayed feedback have previously been studied
lished [7], and a simple realistic three-variable model hasfor a different feedback schenj@3—35 and can be theoreti-
been developed that accounts for most of the dynamic feazally interpreted in the more general framework of the com-
tures of this reactiof8,9]. The model was later extended by plex Ginzburg-Landau equatidi6,37. However, the feed-
a fourth variable to include the formation of a subsurfaceback scheme used in these studies is of an invasive nature,
oxygen specie§10,11]. Also, effects of intrinsic global gas that is, the system is continuously driven by the feedback
phase coupling on the dynamics of the reaction have beesignal. In contrast to this, TDAS is a noninvasive feedback
investigated in detail12—14]. that drives the system until the desired state is reached and

In the field of nonlinear dynamics, control of dynamical becomes small in the state of control. For this reason, we
behavior, in particular, control of chaos is a key issue ofhave carried out a separate investigation on the control of
recent researchil5]. The question of chaos control has first chemical turbulence in the catalytic CO oxidation using the
been addressed for low-dimensional systems in a work byoninvasive TDAS scheme.

Ott, Grebogi, and YorkgOGY) [16]. Their work has in- The paper is organized as follows. In Sec. Il, the experi-
spired a large number of theoretical as well as experimentahental setup and the feedback scheme are introduced. The
studies of feedback control to nonlinear dynamical systemgxperimental results are presented in Sec. Illl. Here, the

(see, e.g., Ref§d17-22) and has been extended to addressfeedback-induced transition from chemical turbulence to ho-
issues of control in spatially distributed systef@8]. The  mogeneous oscillations, the effects of hysteresis, and the de-
OGY method stabilizes unstable periodic orbits embedded ipendence of the oscillation period on the delay parameter are
the chaotic attractor of the system by applying small time4nvestigated. In Sec. IV, we develop a theoretical interpreta-
dependent perturbations. It is, however, restricted to relation of the experimental results in terms of a phase dynamics
tively slow phenomena since permanent extensive compute&quation. The dynamical behavior of the phase model is ana-
analysis of the system state is required. In a much simplelyzed and we compare the experimental results with numeri-
algorithm proposed by Pyragf24], a continuous control of cal simulations of the phase equation, on the one hand and a
the system is imposed by a feedback signal, generated fronealistic model for the uniform system, consisting of three
the time series of one of the system variables. The appliedoupled ordinary differential equations, on the other hand.
feedback- is proportional to the difference between the de-The paper ends with conclusions and a discussion of the
layed value of the chosen system variabland the instan- obtained results in Sec. V.
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Il. EXPERIMENTAL SETTING frame rate of 25 images per second using a CCD camera.
In this setting, we implemented the TDAS feedback

: Y cheme devised by Pyragg&4] in the following way. We
crystal surface proceeds via a Langmuir-Hinshelwoo ontinuously recorded the integral intensityt) of the

mechanisni7]. Before the catalytic reaction can take place, peem image that has been normalized between zero for the
molecules of both CO and Lhave to adsorb from the gas oyygen covered surface and unity for the CO-covered sur-
phase on the catalytic surface. In contrast to the adsorption @fce The integral intensity changed in the course of time due
CO, the adsorption of Ois dissociative. By a reaction of the to pattern formation processes on the catalytic surface. From
different adsorbates, carbon dioxide is formed and ImmEdlth|s quantity, the feedback Signa| was Computed by taking the
ately released into the gas phase. Since the dissociative adifference between the instantaneous integral image intensity
sorption of Q requires two adjacent free sites on the surfaceand the intensity delayed by a chosen delay timeThis
a high CO coverage asymmetrically inhibits the adsorptiorfeedback signal, multiplied by an additional intensity factor
of O,. Furthermore, depending on the adsorbate coverage, @, was used as the input signal for the electronically oper-
phase transition of the @10 surface between aX42 miss-  ated dosing system for the CO gas. The CO partial pressure
ing row structure(clean and O-covered surfgcand the 1  in the reaction chamber was thus modulated according to
X1 bulk structure(CO-covered surfageis observed38].
The oscillatory behavior of the reaction in a certain param- Peo(t) =peot mll(t—7)—1(1)]. (1)
eter regime[39] can be explained by this adsorbate-driven
phase transition of the surface structure. Due to diffusionln this way, a closed feedback loop was implemented, link-
CO is laterally mobile on the catalytic surface while oxygening the dynamics of pattern formation on the sample surface
diffusion can be neglected in the considered temperatur@ith the partial pressure of CO, one of the global control
range. Together with the above mentioned mechanisms, tHgarameters of the system. Note that due to the finite pumping
interaction of lateral diffusivity and chemical reaction en-rate of the reaction chamber the variation of the CO partial
ables the emergence of a rich variety of complex concentraPressure was not instantaneous but followed the feedback
tion patterns on the platinum surface, ranging from reactionnduced modulations with an additional delay of about
fronts and target patterns to spiral waves and chemical tufalf a second. In Sec. IV B, we investigate the effect of the
bulence[5,6]. control loop latencyr; in numerical simulations using a stan-
For the present experiments, the(1IRD) single crystal dard realistic three-variable model of catalytic CO oxidation
sample was kept in a reaction chamber under ultrahigion P{110). For ;<7 we did not find any significant quali-
vacuum conditions. The crystal was about 10 mm in diam{ative difference to the results without control loop latency
eter, and approximately 80% of the sample surface were cownd, therefore, we neglect the effect of the intrinsic delay in
ered by microlithographic decomposition with Ti. Since Ti is the discussion of the results.
easily oxidized to TiQ, which is catalytically inert in the

The catalytic oxidation of CO on a platinuf@10 single

present reaction, only a small active fraction of the surface IIl. EXPERIMENTAL RESULTS
remained and thus effects of intrinsic global coupling . . _
through the gas phadd3] were minimized. Prior to each  In this work, we study the dynamics of the catalytic CO

experiment, the crystal surface was prepared by repeatetkidation on a RiL10) single crystal surface under the effect
cycles of argon ion sputtering and annealing up to 750 Kof TDAS. We performed a series of experiments, varying
The catalyst temperature was controlled using a halogen pr&oth the feedback intensity and the delay timer of the
jector lamp mounted directly behind the sample for heatindeedback scheme introduced in Egj). The temperature and

of the crystal. Pressure gauges for CO andalowed an partial pressures of the reactants were chosen such that, in
accurate choice of the partial pressures of the reactants in tfige absence of feedback, homogeneous oscillations were un-
chamber. A photoemission electron microscOpEEM) was ~ stable and the system developed a state of highly irregular
used to monitor the surface of the catalyst saniglg41]. spiral-wave turbulence. A snapshot of this state is shown in
Imaging the local work function across the surface, theFig. 1(@). Note that the shape of concentration patterns on the
PEEM yields spatially resolved information on the adsorbatd*(110) surface is affected by anisotropy of surface diffusion
coverage, since the local work function at a given point di-of CO[42]. Diffusion of CO is faster in th¢ 110] direction
rectly depends on the adsorbate coverage at this point. Dithan in the perpendiculdr001] direction, causing an elon-
ferent values of the local work function are then translated byated, or, in the case of curved fragments, elliptical shape of
the PEEM into different values of image brightness. Thethe pattern.

clean Pt surface has the lowest work function and, therefore, When feedback is present, the system gradually synchro-
displays the brightest image. For the CO-covered surface, theizes with increasing feedback intensjiy An example of
work function is slightly increased{¢=+0.3 eV), causing the feedback-induced transition from turbulence to homoge-
a small decrease in the intensity of the PEEM image comneous oscillations is shown in Fig. 1. The upper part displays
pared to the clean surface. Finally, the O-covered surfaca sequence of three PEEM images. For zero feedback inten-
appears nearly dark due to a more pronounced increase of te#ty, the system is in a state of fully developed spiral-wave
work function Ae=+0.8 eV). We imaged a part of the turbulencgFig. 1(a)]. There are no long living coherent pat-
surface of 50Qum in diameter with a spatial resolution of terns, and the turbulent state is characterized by small irregu-
about 1um. The temporal evolution was recorded with alar rotating spiral-wave fragments that continuously move
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FIG. 1. Feedback-induced transition from chemical turbulence to homogeneous oscillations. Srggshaftéreely developing chemi-
cal turbulence in the absence of feedb&ak intermittent turbulence for small values of feedback intendjy and homogeneous oscilla-
tions for higher values of feedback intensity. Space-time plotmiddle) for the transition from turbulence to homogeneous oscillations
along the line AB indicated in imag@). From left to right, the plot shows, with increasing time, the turbulenceufsi0.0, the transition
to intermittent turbulence and the persistent state of intermittent turbulenge=f@.77x 10~° mbar, and the transition to homogeneous
oscillations foru=1.2x10"° mbar. Below the space-time diagram, the feedback intensity is plotted as a function of time. The parameters
areT=505 K, po,=4x10"* mbar, p2o=9.5x 10" mbar, andr=3 s.

and break up. These waves emerge randomly and, updi01] direction along which surface diffusion of CO is slow.
meeting each other, undergo mutual annihilation. For interThe feedback intensity is increased in the course of time
mediate values oft, oscillations are already synchronized to (see the graph at the bottom of Fig. The first part from the
a certain extent and we can maintain a state of intermitternieft (0—18 9 shows a space-time plot for the turbulent state
turbulence[Fig. 1(b)]. Intermittent turbulence has already of the system in the absence of feedback. The second part
been observed and characterized in the catalytic CO oxidgfrom 82 s onwardsillustrates the transient from turbulence
tion for a different kind of global delayed feedbaf43], to intermittent turbulence and the third pdf37-160 §
where two types of localized turbulent objects, ring-shapedjives a space-time plot of the state of intermittent turbulence,
bubble structures and spiral-wave fragments, were reportetvhere oscillations are already partly synchronized. Finally,
They emerged in repeated reproduction cascades on a homafter a short transient, we reach, in the fourth part, the com-
geneously oscillating background. In the experiment prepletely synchronized state of homogeneous oscillations
sented here, the intermittent turbulent state is dominated b{#16-437 &
localized, frequently breaking spiral fragments on an almost For synchronization of the system in dependence on the
uniformly oscillating background. Bubblelike structures mayfeedback intensityx, strong hysteresis effects are observed.
also be observed. However, in most cases they burst and Fig. 2(a), we show the space-time diagram of an experi-
undergo breakups, again forming irregular spiral-wave fragment where the feedback intensity is increased until homo-
ments. Finally, for higher feedback intensities, complete syngeneous oscillations are reached and subsequently decreased
chronization is reached and the system performs homogegain until synchronization is lost and patterns start to
neous oscillationgFig. 1(c)]. evolve. In this experiment, the parameters are chosen such
The space-time plot in the middle part of Fig. 1 further that the initial state of the system in the absence of feedback
illustrates the process of synchronization. The plot is takeris less turbulent, and shows evolving and interacting waves
along the diagonal of the PEEM images from the top left toand large spirals. A snapshot of this state is displayed in Fig.
the bottom right hand corners, corresponding roughly to th&(c). As shown in Fig. %), the feedback intensity is in-
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FIG. 2. Hysteresis for the tran-
‘ sition from freely evolving pat-
terns to complete synchronization.
The space-time plot(a), taken
LT t i along the lineAB indicated in im-

80 100 120 140 160 180 200 age(c), shows the transition from
(b) uncontrolled pattern formation to
homogeneous oscillations and the

reverse transition from complete

synchronization to freely evolving

o patterns. A plot of the correspond-
t s

' 8'0 ' 160 ' 12'0 ' 1)10 ' 1('30 ' 1é0 ' 260 T ing feedpack intt_ensities as a func-
tion of time (b) is shown below
the space—time diagram. Snapshot
(c) is taken at low feedback inten-
sity (t=9s). The parameters are
T=512 K, po,=4x10* mbar,
po=10.5<10"° mbar, and 7
=35s.

creased fromu=1.2<10"° to 2.0<10 ° mbar, and then feedback scheme. In Fig. 3, the peribds plotted versus the
decreased again tg=1.2x10 % mbar in the course of delay timer (black squares A series of experiments was
time. Obviously, coming from the uncontrolled state, theperformed to obtain this plot. At the beginning of each ex-
feedback intensity needed to synchronize the system is mudperiment, the CO supply was kept closed and only oxygen
higher than the feedback intensity necessary to maintain hovas present in the reaction chamber, causing a uniform oxy-
mogeneous oscillations when starting from the state of comgen coverage on the sample surfacetAD, the CO valve
plete synchronization and decreasing the feedback intensitwas opened to its predefined value. The parameters were
When synchronization is lost at a low feedback intensity, thechosen such that, in the absence of feedback, chemical tur-
wavelength of the patterns which start to evolve is, at firstbulence would spontaneously develop. In these experiments,
much longer than it was at the beginning of the experimenthowever, the feedback intensity factar was chosen large
However, it decreases with time and soon the system reachesiough to prevent the emergence of turbulence and to stabi-

its initial state agairinot shown in Fig. 2 lize homogeneous oscillations. The oscillation period was
In the state of control, the periotl of homogeneous o0s- then determined for different values of the delay time
cillations depends on the choice of the delay time the Superposed in the same plot, we show the magnitude of
the feedback signal that acts on the system at different delay
10 . . . . 1.0 times. To this end, the quantity ={|I (t—7) — I (t)|) is plot-
ted, which is the time average over the modulus of the feed-

40.9 back signal(open circles in Fig. B We callM the feedback
magnitude Since the feedback signal is oscillating around
zero, we compute the feedback magnitude as the time aver-
age of the modulus of the feedback signal. Thus, this quan-
tity is a measure for the absolute average driving force that is
imposed on the system by the feedback and hence quantifies
the invasiveness of the feedback. Finally, we added to the
b o feedback T plot the line given byl = 7, representing all points for which

the optimal case of a vanishing feedback signal would be

T [s]

s
~J
M [arb. units]

2
=N

4
i

magnitude M
- - - i reached.

2 N . [S]6 ; 10 Thg experimgntal result shows clearly that, as with in-
creasing delay time the values forapproach the line where

FIG. 3. PeriodT of homogeneous oscillation@lack squares T equalsr, the magnitude of the feedback signal is decreased
and feedback magnitudk! (open circles in dependence on the by about a factor of two. Hence, we were able to reduce the
delay timer. The parameters are temperature, partial pressure dghvasiveness of the feedback considerably by optimizing the
oxygen, base partial pressure of co, and feedback intensity respechoice of the delay time in the feedback scheme.
tively: T=515K, po,=4X% 10~ * mbar, p2,=10.0x10 ° mbar, On the other hand, the feedback sighdt) = u[l(t—7)
and u/p2,=0.32. —1(t)] should become vanishingly small a&=T if uniform
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oscillations with periodl were stabilized by a noninvasive
feedback. However, we could not reach this optimal case in
our experiments. Instead, a jump always occurred around the
line given byT= 7, and the system evaded the point where
its oscillation period would have become equal to the delay
time. To understand the origin of such a behavior, theoretical
investigations of the global TDAS scheme have been per-
formed.

IV. THEORETICAL INVESTIGATIONS
A. Phase dynamics equation

Some properties of a spatially extended system under the
influence of TDAS can already be understood in terms of a
simple analysis for the uniform system. For a limit-cycle
oscillator, the orbital shape, amplitude, and frequency of os-
cillations are well-defined characteristic features. If we apply
a small perturbation, the original orbital form and amplitude
will be reestablished after some relaxation time. The phase,
however, will not recover its initial value but will maintain a
small shift induced by the perturbation. By an adiabatic
elimination of the amplitude variable, the description of os-
cillatory dynamics may be reduced to a simple equation for
the phase variableb. The phase dynamics equation of a
single oscillator under the effect of weak TDAS should take
the form(see Ref[44] and the Appendix

d=w+pufl(t)— p(t—7)]. 2

Here, w is the oscillation frequency in absence of feedback,
7 is the delay time, ang is the coefficient characterizing the
feedback intensitynote that the phase equation is only valid
for u<1). Generally, the functiofif ¢(t) — ¢(t—7)] is 27
periodic and satisfies the conditioh@)=f(27)=0. For a
harmonic oscillator close to the onset of oscillations, de-
scribed by the Stuart—Landau equat{@b], this function is
given by (see the Appendix

f(Ag)=asin(A¢)+bcogA¢)—Db, (3

with A¢= ¢(t) — ¢(t—7), wherea andb are fixed param-

eters, expressed a&s=cosy+Bsiny and b=siny—Bcosy

in terms of the coefficient® and y of the Stuart-Landau

equation with TDAS. ten
Harmonic oscillations with¢(t)=Qt are special solu- (¢)
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FIG. 4. Oscillation frequency as a function of the feedback in-
sity for three different delay timgs) 7=0.985, (b) 7=1, and
7=1.015. The parameters aie=2m, =3, andy=7/6. The

tions of the phase equatiof2), and their oscillation fre- transcritical bifurcation takes place at~0.42. Dotted lines show
quency¢ = should satisfy unstable branches.

Q=w+puf(Q7). 4 s

The solutions of this equation can be constructed by writingX
it as

O—w

obtained solutions for three different delay times, choosing

an example the functidngiven by Eq.(3) for =3 and

=1/6.

When the delay time is equal to the natural oscillation
period, 7=Ty=2n/w, EQ. (4) always has a solutiof)

# w with vanishing feedback signal. However, other solu-

u= ' (5) tions are additionally present at sufficiently high feedback
f(Qr) intensities, as seen from Fig(b}. For these additional solu-
tions, (= w and the feedback signal is not vanishing. They
For each oscillation frequendy, it determines the respec- emerge via a transcritical bifurcation at=u.. Generally,
tive value of the feedback intensify. Figure 4 shows thus the bifurcation point is given by
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O—w B ® ©) @ 45
9) C27f'(0)

M= lim
Qﬂwf 20

When 7 #T, the transcritical bifurcation is replaced by a
saddle-node bifurcation, leading to the appearance of two
new solution branches at sufficiently high feedback intensi-
ties, as shown in Figs.(d and 4c).

The phase dynamics equati¢?) can further be used to
analyze the stability of various solution branches. We apply

period T

small perturbations to the phasg= Qt+ 8¢, and, after lin- '
earization, obtain an equation fékb: 0.6 . . . . . : i
0.6 0.8 1.0 1.2 1.4
Sp=nf" (QAN[54(t)— 5¢(t—7)]. (7) delay time <
With an ansatz¢(t) =e'!”, we find B,
A=q(l—et), (8) 1
1.1 ‘/'j
whereq=7uf’'(Q 7). Thus, the solution with frequenc{ 1.0 o
is stable, if Re\<0. 7o
Suppose that- =T, and investigate the stability of the ~ 0.9 -
solution with Q=w. In this case, the coefficierg can be 8 e
written as g 081 A
N ,’/, \J
M o s ——
q=— 9
Iu’C 0.6 T T T 1
0.6 0.8 1.0 1.2 14
by taking into account Eq.6) and f'(Q7)=f"(27) delay time <
=f’(0). By analyzing the roots of the characteristic equa- o . ) _ .
tion (8), it can be shown that the solution wih=w be- FIG. 5. Oscillation period as function of delay time obtained

from numerical simulations of the phase dynamics equation for a

comes unstable at the transcritical bifurcation paint . ; )
feedback intensitya) of u=0.2 and(b) of ©=0.6. The parameters

A similar analysis can be performed for other solution

branches and also for#T. As a result, we find that only the 2'€ 3 N Fig. 4. Hysteresis effects are found in the gray shaded
solution branches, indicated by solid lines in Fig. 4 alrereglon in (b). Open circles indicate unstable solutions yielded by
stable. Thus, our study, based on the general phase dynam%g' @.

equation, predicts that at=T, the solution withQ=w

should become unstable at sufficiently high feedback inten-

sities and will be replaced by one of the two possible solu- Catalytic CO oxidation on P110) single crystal surfaces

tions with O+ . is described by a mod€]9,8,11 that consists of three
We performed a series of numerical simulations of @y.  coupled ordinary differential equations

tracing the oscillation period =2/} as a function of the )

delay timer. Figure Sa) displays the dependence®bn the u=Kk;ScoPcol 1= u?) —kou—ksuv, (10

delay timer for a feedback intensity below the critical value

(for u<uc). We see that at=T, the solution with)=w is v= K4Po,[S0,1x1+ S0,1x2(1=W) J(1—u— v)2—ksuv,

indeed realized. However, if the feedback intensity is in- (12)

creased above its critical valye,, the system cannot reach

such state with a vanishing control signal and a hysteresis 1

effect takes place, as shown in Figbp w=ks| ——————w |,
Comparing Fig. 5 with Fig. 3, we note that the behavior of 1+ex;{ Uo— u)

the oscillation period under varying the delay time is quali- éu

tatively similar in the experiment and in our numerical simu-

lations based on the phase dynamics equation withu. . where the variables, v, andw represent the CO coverage,

We should, however, remember that the phase equation ithe oxygen coverage, and the fraction of the surface found in

strictly speaking, valid only for weak feedbacks. Therefore,the nonreconstructed 1 phase, respectively. The model

to analyze the system behavior at stronger feedbacks, addakes into account the adsorption of CO and oxygen, the

tional simulations based on the realistic reaction model areeaction between the two adsorbed species, the desorption of

needed. CO, and the adsorbate-dependent structural change of the

B. Realistic reaction model

(12
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FIG. 6. Oscillation period(a) and (b)] and feedback magnitudéc) and (d)] as functions of the delay time obtained from numerical
simulations of the realistic model of CO oxidation orf1R10) for two different feedback intensitid$a) and(c)] ,u/pgo=0.01 and (b) and
(d)] u/p2y=0.03. The model parameters de=3.14<10° s * mbar !, k,=10.21 s*, k;=283.8 5%, k,=5.86x10° s~ * mbar %, kg
=161 5?1, 5c0=1.0, S 1x1=0.6, Sp 1,=0.4, Uy=0.35, 5u=0.05, p2,=4.82x 10" ° mbar, andpo,=13.1X10"° mbar.

Pt(110 surface. Some processes, such as the formation of u(t)|) on the delay time- are displayed. For relatively weak
subsurface oxygen or roughening of the catalytic surface, areedbackdFig. 6(a) and Gc)], a state with vanishing feed-
neglected here. back signalM is realized atr =T,. When the feedback is
The TDAS feedback scheme should be further includedncreased, this state, however, becomes unstable and cannot
into the model. For simplicity, we introduce it via a depen-be reached in our simulations. Instead, a hysteresis effect is
dence of the CO partial pressure on the CO coverage, observedFig. 6(b)]. If we start with a short delay time and
increase it, the oscillation periodis first larger thanT, and
Peo(t) =peot ulu(t—7)—u(t)], (13 gradually grows. When the delay time becomes slightly
larger thanT,, the oscillation period abruptly jumps down
wherep?,, is the base CO partial pressugejs the feedback to a value belowl y and then slowly increases. If we move in
intensity, andr is the delay time. In the experiments, the the opposite direction and gradually decrease the delay time,
feedback signal was generated using the integral PEEM ina jump to the upper branch occurs slightly belawe T,
tensityl, which nonlinearly depends on both the CO and theThough the feedback signal is decreased close #dT, it
oXxygen coverages. does not drop down to zero at this point and a hysteresis
Numerical simulations of the modél0)—(13) were per-  effect for this property is also observgig. 6(d)].
formed using a set of parameter values for which the me- In Sec. I, we explained that for technical reasons the
dium is in the oscillatory state and, once the mobility of feedback signal, applied to the system in the experiment,
adsorbed CO molecules is taken into account, diffusiontook effect with an additional intrinsic time delay. It is
induced turbulence spontaneously develf@. The period known from both experimental46] and theoretical[47]
of oscillations in the absence of feedback Was=2.44 s. studies that a control loop latency in the application of TDAS
Figure 6 shows the results of numerical simulations of themight effect the size of the domain of control of the system.
realistic model. Here, the dependences of the oscillation peHere, however, we are not investigating the size of the do-
riod T and of the feedback signal magnitutfe=(|u(t— 7) main of control but we are concerned with qualitatively ex-
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(a) 1o- ' lar shapes in their dependence enfor vanishing r; and

’ ‘ different nonzeror; . In particular, we point out that the ef-
fect of control loop latency does not simply amount to add-
ing up the intrinsic delay; and the delay- from the control
scheme. Instead, the intersection point of the curve giving

1.1

1.04 -~

= the dependence df on 7 with the line for whichT= 7 is not

= 0.9 shifted when control loop latency is introduced and, as a
g consequence, the minimum of the feedback magnitude re-
8 0.8 mains in the same position as well. The effect of an intrinsic

delay gets less pronounced when approaching the point for
which T= 7 which is of particular interest for our present
investigation.

0.7 1

0.6 T T v T T T v 1
0.6 0.8 1.0 1.2 1.4

delay time ¢/ T

C. Spatially extended systems

Diffusion plays a principal role in the considered system,
since it destabilizes the state of uniform oscillations and
1.2 brings up chemical turbulend®4)]. While individual oscil-
no intrinsic delay , lators show regular periodic dynamics, their population dis-
plays diffusion-induced spatiotemporal chaos. Diffusion
terms were not, however, taken into account in the phase
dynamics equatiof2) and in the realistic mod€L0)—(13) of
the CO oxidation reaction. Therefore, these equations de-
scribe only the effect of TDAS on the uniform oscillation
mode.

In the absence of feeback, the uniform oscillatory mode
cannot suppress the growth of other spatial modes, and tur-
bulence develops. When global feedback is applied, only the
00 uniform spatial mode can be directly influenced by the con-

06 o8 10 12 14 trolling force. The other spatial modes are affected by such
feedback because they are coupled to the uniform mode. In
other words, they "feel” the presence of a feedback only to

FIG. 7. Effects of control loop latency: oscillation perital and  the extent that the dynamics of the uniform mode is modi-
feedback magnitud¢b) as functions of delay time for different fjaq.
values of intrinsic delay. The model parameters are as in Figs. 6 If the delay time is equal to the oscillation period (
and o). =T,) and the feedback signal is vanishingl €0), the pe-

o ) ) riodic uniform mode would not be modified by the feedback.
plaining the behavior of the system in the state of control forMoreover, its interactions with nonuniform spatial modes
varying delay time. In order to study the impact of control \yo1q not be modified either. But then these other spatial
loop latency on our results, we repeated the computationg,gdes should behave exactly in the same way as in the ab-
that led to the results shown in Figgaband @c). This time,  gence of feedback, so that spatiotemporal chaos would
the intrinsic delayr; , which is due to the finite pumping rate develop.
of the reaction chamber, was included by extending the These simple general arguments indicate that a noninva-
model (10—(12) with an additional equation for the time gjye suppression of diffusion-induced chemical turbulence by
evolution of the CO partial pressure: global feedbacks is not possible.When the TDAS method is

_ 1 applied, a stabilization of periodic uniform oscillations with
Pco=— __{pco_ poco— wlu(t—7)—u(t)]}. (14) ch_u cannot_be realized a7t=To._ Though the phas_e dy-
Ti namics equatiori2) and the realistic modelL0)—(13) with-

) o ) out diffusion predict that the state with = is stable for
Flgurg 7 shows the oscnlat-lon peridd(a) f’:\nd the feedb.ack sufficiently weak feedbacks with < x., such a state would
magnitudeM (b) as a function of delay time for two dif-  5jyays be unstable when diffusion is included and interac-
ferent values of the intrinsic delay in comparison to the  {jons with nonuniform spatial modes are allowed. Note that
results for zero intrinsic delay which are, of course, identicakhe apove arguments do not exclude the possibility that a

to Figs. @a) and @c). With an increasing intrinsic delay, the nonyniform oscillatory pattern becomes stabilized as a result
curve describing the dependence of the oscillation period 0Bt the global feedback3o).

the delay time experiences a shift to higher values but main-
tains its original shape. The change in the feedback magni-
tude, on the other hand, consists roughly in an increase by
some multiplying factor. However, both the oscillation pe- We studied the control of chemical turbulence in the cata-
riod and the feedback magnitude maintain qualitatively simidytic CO oxidation on a Ri10) single crystal surface by

g

104
0.8+
061
0.4-

0.2 1

feedback magnitude M [arb.units]

delay time /T,

V. CONCLUSIONS
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means of time-delay autosynchronizatiRhDAS). It was  cal modes which evolve on significantly longer time scales
found that synchronization can be gradually induced in thehan the other noncritical modes. The dynamics of these re-
system: with increasing feedback intensity a transition frommaining modes is “enslaved” to the evolution of the critical
chemical turbulence to homogeneous oscillations takes plagaodes so that they may be eliminated adiabatically. As a
via a state of intermittent turbulence. For the transition fromconsequence, the system of ordinary differential equations
the uncontrolled state to homogeneous oscillations, signifithat describes the specific system reduces to a simple univer-
cant hysteresis effects were observed. Varying the delagal equation for the complex oscillation amplitudgt),

time, we were able to lower the magnitude of the feedbackvhich is known as the Stuart-Landau equation. In order to
signal by a factor of 50%, thus reducing the invasiveness oétudy the behavior of an oscillator in the presence of TDAS,
the feedback considerably. However, we could not reach there extend the Stuard-Landau equation by an additional feed-
ideal case of a vanishingly small feedback signal in the statback termF(t), thus obtaining

of control since TDAS does not allow one to directly target ) _ _ 5

specific points in phase space for arbitrary feedback intensi- n=(1—iwo)n—(1+ip)|7|*n+F(1), (A1)

ties. Instead, we found that the oscillation periods a func- .

tion of the delay timer displays a discontinuity around the with
point whereT= 7. We thus conjectured that the point for F(t)=pue n(t)— n(t—7)]. (A2)
which T= 7 was unstable in the experiment.

To understand the dynamics of the system under the effediere,w is the frequency of small-amplitude oscillations, the
of TDAS, a phase dynamics equation for a single oscillatoicoefficient 8 determines the nonlinear frequency shift, and
in the presence of TDAS has been derived. From the phadfe parameteyy accounts for a possible phase shift in the
equation, we obtained a bifurcation diagram for the oscilla-application of the control force. The feedback intensity is
tion frequency of the system with the feedback intensity aspecified by the coefficient. We assume that the feedback
bifurcation parameter. A linear stability analysis showed thais weak,u<<1.
for feedback intensities below a certain threshold, the solu- The Stuart-Landau equatig@l) is written in a dimen-
tion with vanishing feedback signal is stable, while at thesionless form, by choosing as a time unit the relaxation time
threshold a transcritical bifurcation occurs and this solutiorwhich is proportional to the distance from the bifurcation
becomes unstable. Simple general arguments have been ppeint. Since this relaxation time diverges at the Hopf bifur-
sented to show that, once diffusion is included, it wouldcation, whereas the oscillation period remains finite, we have
make stable uniform oscillations wifh= 7 impossible. wp>1 in the neighborhood of the Hopf bifurcation.

In numerical simulations of both the phase dynamics ap- Through the ansatg(t)=p(t)e '¢(") for the complex os-
proximation and a realistic three-variable model for CO oxi-cillation amplitudes, the oscillation phase is introduced
dation on Pt110), the experimental results could be com- and the feedback term is written as
firmed and the occurence of a discontinuity in the o ot i1
dependence of on 7 could be reproduced for feedback in- F()=ue[p(e ?Op(t-ne 7). (A3)

tensities above the critical threshold. The hysteresis effects i@ubstituting Eq(A3) into Eq. (A1) we obtain, by separating
the dependence Gf on 7 could not, however, be checked in rg4) and imaginary parts, the following equations for the real

the present experiments because, for technical reasons, Wehplitudep(t) and for the phase(t), respectively:
were not able to vary the delay time within the same mea- ’

surement, and a separate experiment had to be carried out for p=p(1—p?)+ u[ p(t)cosy—p(t—7)cog x+A )],
each new value of the delay time. (A4)

: . p(t—1)
ACKNOWLEDGMENTS ¢=wo+ Bp?— p| siny— (D) sin(x+Ad¢)|, (A5)

We gratefully acknowledge financial support of the B
Deutsche Forschungsgemeinsché&®onderforschungsbere- whereA 4(t) = (1) = S(t=1). .
ich 555 “Komplexe Nichtlineare Prozesse”We thank E. Smpe the feedback is wgala@l), "F leads to only small
Schdl for fruitful discussions and M. Pollmann for his help variations of the real amplitude, that is, we have(t)=1
concerning the experimental setting. We are grateful to 1.G.H 9°(t) where dp is of order u. Therefore, Eq(A4) ap-
Kevrekidis for providing the microlithographically fabricated Proximately yields

crystal. Sp=—28p+u[cosy—cosx+Ad)].  (AB)
APPENDIX: DERIVATION OF A PHASE EQUAT|ON ThUS, small perturbations Qf adeSt to the variation OA(ﬁ
IN THE PRESENCE OF TDAS within the relaxation time of order unity. On the other hand,

- . o . _ the variations ofA ¢ are slow and are characterized by time
The specific properties of a limit cycle oscillator may dif- scales of order 1 which are much larger than unity. Hence,
fer strongly from one system to another. However, suffi-the adiabatic approximation can be used and we obtain
ciently close to the onset of oscillations, the behavior of any
such system takes a universal form. Close to a bifurcation H
) ) . " Sp=[cosy—cogx+Ad¢p)]. A7
point, the dynamics of the system is governed by only criti- P 2[ X W +ad)] (A7)
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Substituting this result into EGA5) and again retaining only
the terms linear inu, the following approximate phase dy-
namics equation is derived:

b=+ uf(Ad). (A8)

The functionf(A ¢) in this equation is given by
f(Ap)=asin(A¢)+bcogA¢)—Db,

¢=,uf(A<p+w7). (A10)

Thus, the rate of variation af is proportional to the feed-

back intensity and is smalk<1. Because\ ¢ differs from

A ¢ only by a constant, the same is true fot).

(A9) Though we have derived the phase dynamics equation

(A8) in this appendix only starting from the Stuart-Landau

equation, a similar equation can be found for any limit-

cycle oscillator under the action of sufficiently weak TDAS.
Now we can check that the variations &fp are indeed Generally, the Zr-periodic function f(A¢) would have

slow. We define the slow phase variah€t) = ¢ (t) — wt, a form different from(A9) satisfying the conditionf(0)

note thatA ¢=A ¢+ w7, and write Eq.(A8) as =0.

and the notationsw=wy+ B, a=cosy+pBsiny, and b
=siny—Bcosy are introduced.
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