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Controlling turbulence in a surface chemical reaction by time-delay autosynchronization

C. Beta, M. Bertram, A. S. Mikhailov, H. H. Rotermund, and G. Ertl
Fritz-Haber-Institut der Max-Plack-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

~Received 10 January 2003; revised manuscript received 6 February 2003; published 29 April 2003!

A global time-delay feedback scheme is implemented experimentally to control chemical turbulence in the
catalytic CO oxidation on a Pt~110! single crystal surface. The reaction is investigated under ultrahigh vacuum
conditions by means of photoemission electron microscopy. We present results showing that turbulence can be
efficiently suppressed by applying time-delay autosynchronization. Hysteresis effects are found in the transi-
tion regime from turbulence to homogeneous oscillations. At optimal delay time, we find a discontinuity in the
oscillation period that can be understood in terms of an analytical investigation of a phase equation with
time-delay autosynchronization. The experimental results are reproduced in numerical simulations of a realistic
reaction model.
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I. INTRODUCTION

Nonlinear dynamics of high-dimensional, spatially e
tended systems became a subject of intense research in
over the past decade@1#. Among chemical systems, th
Belousov-Zhabotinsky~BZ! reaction@2,3# is the most promi-
nent example of a reaction-diffusion system showing a v
ety of complex spatiotemporal patters such as trave
waves, target patterns, and rotating spiral waves@4#. Besides
reactions in aqueous phase, where the detailed mechani
often complex and sometimes not even fully understo
there are a number of simple heterogeneous catalytic r
tions where pattern formation has been intensively stud
@5#. The catalytic oxidation of CO on platinum~110! is the
most thoroughly investigated reaction of this type@6#. The
mechanism of CO oxidation on platinum~110! is well estab-
lished @7#, and a simple realistic three-variable model h
been developed that accounts for most of the dynamic
tures of this reaction@8,9#. The model was later extended b
a fourth variable to include the formation of a subsurfa
oxygen species@10,11#. Also, effects of intrinsic global gas
phase coupling on the dynamics of the reaction have b
investigated in detail@12–14#.

In the field of nonlinear dynamics, control of dynamic
behavior, in particular, control of chaos is a key issue
recent research@15#. The question of chaos control has fir
been addressed for low-dimensional systems in a work
Ott, Grebogi, and Yorke~OGY! @16#. Their work has in-
spired a large number of theoretical as well as experime
studies of feedback control to nonlinear dynamical syste
~see, e.g., Refs.@17–22#! and has been extended to addre
issues of control in spatially distributed systems@23#. The
OGY method stabilizes unstable periodic orbits embedde
the chaotic attractor of the system by applying small tim
dependent perturbations. It is, however, restricted to r
tively slow phenomena since permanent extensive comp
analysis of the system state is required. In a much sim
algorithm proposed by Pyragas@24#, a continuous control of
the system is imposed by a feedback signal, generated
the time series of one of the system variables. The app
feedbackF is proportional to the difference between the d
layed value of the chosen system variableu and the instan-
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taneous value of this variable,F;u(t2t)2u(t). We will
refer to this feedback scheme astime-delay autosynchroniza
tion ~TDAS! @25#. Extensions@26# and considerable im-
provements@27,28# of TDAS were reported in the recen
literature. For spatially extended experimental systems wh
do not allow local access to their individual elements, TDA
can be applied as a global feedback, where the feedb
signal is generated from the integral value ofu over all sys-
tem elements. In previous work, the application of TDAS h
been studied, either experimentally or theoretically, for o
a few systems such as lasers@29#, semiconductors@30#, glow
discharge devices@31#, and populations of electrochemica
oscillators@32#.

For the catalytic CO oxidation on platinum, aspects
pattern formation and suppression of chemical turbule
under global delayed feedback have previously been stu
for a different feedback scheme@33–35# and can be theoreti
cally interpreted in the more general framework of the co
plex Ginzburg-Landau equation@36,37#. However, the feed-
back scheme used in these studies is of an invasive na
that is, the system is continuously driven by the feedba
signal. In contrast to this, TDAS is a noninvasive feedba
that drives the system until the desired state is reached
becomes small in the state of control. For this reason,
have carried out a separate investigation on the contro
chemical turbulence in the catalytic CO oxidation using t
noninvasive TDAS scheme.

The paper is organized as follows. In Sec. II, the expe
mental setup and the feedback scheme are introduced.
experimental results are presented in Sec. III. Here,
feedback-induced transition from chemical turbulence to
mogeneous oscillations, the effects of hysteresis, and the
pendence of the oscillation period on the delay parameter
investigated. In Sec. IV, we develop a theoretical interpre
tion of the experimental results in terms of a phase dynam
equation. The dynamical behavior of the phase model is a
lyzed and we compare the experimental results with num
cal simulations of the phase equation, on the one hand a
realistic model for the uniform system, consisting of thr
coupled ordinary differential equations, on the other ha
The paper ends with conclusions and a discussion of
obtained results in Sec. V.
©2003 The American Physical Society24-1
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II. EXPERIMENTAL SETTING

The catalytic oxidation of CO on a platinum~110! single
crystal surface proceeds via a Langmuir-Hinshelwo
mechanism@7#. Before the catalytic reaction can take plac
molecules of both CO and O2 have to adsorb from the ga
phase on the catalytic surface. In contrast to the adsorptio
CO, the adsorption of O2 is dissociative. By a reaction of th
different adsorbates, carbon dioxide is formed and imme
ately released into the gas phase. Since the dissociative
sorption of O2 requires two adjacent free sites on the surfa
a high CO coverage asymmetrically inhibits the adsorpt
of O2. Furthermore, depending on the adsorbate coverag
phase transition of the Pt~110! surface between a 132 miss-
ing row structure~clean and O-covered surface! and the 1
31 bulk structure~CO-covered surface! is observed@38#.
The oscillatory behavior of the reaction in a certain para
eter regime@39# can be explained by this adsorbate-driv
phase transition of the surface structure. Due to diffusi
CO is laterally mobile on the catalytic surface while oxyg
diffusion can be neglected in the considered tempera
range. Together with the above mentioned mechanisms
interaction of lateral diffusivity and chemical reaction e
ables the emergence of a rich variety of complex concen
tion patterns on the platinum surface, ranging from react
fronts and target patterns to spiral waves and chemical
bulence@5,6#.

For the present experiments, the Pt~110! single crystal
sample was kept in a reaction chamber under ultrah
vacuum conditions. The crystal was about 10 mm in dia
eter, and approximately 80% of the sample surface were c
ered by microlithographic decomposition with Ti. Since Ti
easily oxidized to TiO2, which is catalytically inert in the
present reaction, only a small active fraction of the surfa
remained and thus effects of intrinsic global coupli
through the gas phase@13# were minimized. Prior to each
experiment, the crystal surface was prepared by repe
cycles of argon ion sputtering and annealing up to 750
The catalyst temperature was controlled using a halogen
jector lamp mounted directly behind the sample for heat
of the crystal. Pressure gauges for CO and O2 allowed an
accurate choice of the partial pressures of the reactants in
chamber. A photoemission electron microscope~PEEM! was
used to monitor the surface of the catalyst sample@40,41#.
Imaging the local work function across the surface,
PEEM yields spatially resolved information on the adsorb
coverage, since the local work function at a given point
rectly depends on the adsorbate coverage at this point.
ferent values of the local work function are then translated
the PEEM into different values of image brightness. T
clean Pt surface has the lowest work function and, theref
displays the brightest image. For the CO-covered surface
work function is slightly increased (Dw510.3 eV), causing
a small decrease in the intensity of the PEEM image co
pared to the clean surface. Finally, the O-covered surf
appears nearly dark due to a more pronounced increase o
work function (Dw510.8 eV). We imaged a part of th
surface of 500mm in diameter with a spatial resolution o
about 1mm. The temporal evolution was recorded with
04622
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frame rate of 25 images per second using a CCD camer
In this setting, we implemented the TDAS feedba

scheme devised by Pyragas@24# in the following way. We
continuously recorded the integral intensityI (t) of the
PEEM image that has been normalized between zero for
oxygen covered surface and unity for the CO-covered s
face. The integral intensity changed in the course of time
to pattern formation processes on the catalytic surface. F
this quantity, the feedback signal was computed by taking
difference between the instantaneous integral image inten
and the intensity delayed by a chosen delay timet. This
feedback signal, multiplied by an additional intensity fact
m, was used as the input signal for the electronically op
ated dosing system for the CO gas. The CO partial pres
in the reaction chamber was thus modulated according t

pCO~ t !5pCO
0 1m@ I ~ t2t!2I ~ t !#. ~1!

In this way, a closed feedback loop was implemented, li
ing the dynamics of pattern formation on the sample surf
with the partial pressure of CO, one of the global cont
parameters of the system. Note that due to the finite pump
rate of the reaction chamber the variation of the CO par
pressure was not instantaneous but followed the feedb
induced modulations with an additional delayt i of about
half a second. In Sec. IV B, we investigate the effect of t
control loop latencyt i in numerical simulations using a stan
dard realistic three-variable model of catalytic CO oxidati
on Pt~110!. For t i!t we did not find any significant quali
tative difference to the results without control loop laten
and, therefore, we neglect the effect of the intrinsic delay
the discussion of the results.

III. EXPERIMENTAL RESULTS

In this work, we study the dynamics of the catalytic C
oxidation on a Pt~110! single crystal surface under the effe
of TDAS. We performed a series of experiments, varyi
both the feedback intensitym and the delay timet of the
feedback scheme introduced in Eq.~1!. The temperature and
partial pressures of the reactants were chosen such tha
the absence of feedback, homogeneous oscillations were
stable and the system developed a state of highly irreg
spiral-wave turbulence. A snapshot of this state is shown
Fig. 1~a!. Note that the shape of concentration patterns on
Pt~110! surface is affected by anisotropy of surface diffusi
of CO @42#. Diffusion of CO is faster in the@11̄0# direction
than in the perpendicular@001# direction, causing an elon
gated, or, in the case of curved fragments, elliptical shap
the pattern.

When feedback is present, the system gradually sync
nizes with increasing feedback intensitym. An example of
the feedback-induced transition from turbulence to homo
neous oscillations is shown in Fig. 1. The upper part displ
a sequence of three PEEM images. For zero feedback in
sity, the system is in a state of fully developed spiral-wa
turbulence@Fig. 1~a!#. There are no long living coherent pa
terns, and the turbulent state is characterized by small irre
lar rotating spiral-wave fragments that continuously mo
4-2
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FIG. 1. Feedback-induced transition from chemical turbulence to homogeneous oscillations. Snapshots~top! of freely developing chemi-
cal turbulence in the absence of feedback~a!, intermittent turbulence for small values of feedback intensity~b!, and homogeneous oscilla
tions for higher values of feedback intensity~c!. Space-time plot~middle! for the transition from turbulence to homogeneous oscillatio
along the line AB indicated in image~a!. From left to right, the plot shows, with increasing time, the turbulence form50.0, the transition
to intermittent turbulence and the persistent state of intermittent turbulence form50.7731025 mbar, and the transition to homogeneo
oscillations form51.231025 mbar. Below the space-time diagram, the feedback intensity is plotted as a function of time. The para
areT5505 K, pO2

5431024 mbar, pCO
0 59.531025 mbar, andt53 s.
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and break up. These waves emerge randomly and, u
meeting each other, undergo mutual annihilation. For in
mediate values ofm, oscillations are already synchronized
a certain extent and we can maintain a state of intermit
turbulence@Fig. 1~b!#. Intermittent turbulence has alread
been observed and characterized in the catalytic CO ox
tion for a different kind of global delayed feedback@43#,
where two types of localized turbulent objects, ring-shap
bubble structures and spiral-wave fragments, were repo
They emerged in repeated reproduction cascades on a h
geneously oscillating background. In the experiment p
sented here, the intermittent turbulent state is dominated
localized, frequently breaking spiral fragments on an alm
uniformly oscillating background. Bubblelike structures m
also be observed. However, in most cases they burst
undergo breakups, again forming irregular spiral-wave fr
ments. Finally, for higher feedback intensities, complete s
chronization is reached and the system performs homo
neous oscillations@Fig. 1~c!#.

The space-time plot in the middle part of Fig. 1 furth
illustrates the process of synchronization. The plot is ta
along the diagonal of the PEEM images from the top left
the bottom right hand corners, corresponding roughly to
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@001# direction along which surface diffusion of CO is slow
The feedback intensitym is increased in the course of tim
~see the graph at the bottom of Fig. 1!. The first part from the
left ~0–18 s! shows a space-time plot for the turbulent sta
of the system in the absence of feedback. The second
~from 82 s onwards! illustrates the transient from turbulenc
to intermittent turbulence and the third part~137–160 s!
gives a space-time plot of the state of intermittent turbulen
where oscillations are already partly synchronized. Fina
after a short transient, we reach, in the fourth part, the co
pletely synchronized state of homogeneous oscillati
~416–437 s!.

For synchronization of the system in dependence on
feedback intensitym, strong hysteresis effects are observe
In Fig. 2~a!, we show the space-time diagram of an expe
ment where the feedback intensity is increased until hom
geneous oscillations are reached and subsequently decre
again until synchronization is lost and patterns start
evolve. In this experiment, the parameters are chosen s
that the initial state of the system in the absence of feedb
is less turbulent, and shows evolving and interacting wa
and large spirals. A snapshot of this state is displayed in
2~c!. As shown in Fig. 2~b!, the feedback intensity is in
4-3
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FIG. 2. Hysteresis for the tran
sition from freely evolving pat-
terns to complete synchronization
The space-time plot~a!, taken
along the lineAB indicated in im-
age~c!, shows the transition from
uncontrolled pattern formation to
homogeneous oscillations and th
reverse transition from complet
synchronization to freely evolving
patterns. A plot of the correspond
ing feedback intensities as a func
tion of time ~b! is shown below
the space–time diagram. Snapsh
~c! is taken at low feedback inten
sity (t59s). The parameters are
T5512 K, pO2

5431024 mbar,
pCO

0 510.531025 mbar, and t
53.5 s.
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creased fromm51.231025 to 2.031025 mbar, and then
decreased again tom51.231025 mbar in the course o
time. Obviously, coming from the uncontrolled state, t
feedback intensity needed to synchronize the system is m
higher than the feedback intensity necessary to maintain
mogeneous oscillations when starting from the state of c
plete synchronization and decreasing the feedback inten
When synchronization is lost at a low feedback intensity,
wavelength of the patterns which start to evolve is, at fi
much longer than it was at the beginning of the experime
However, it decreases with time and soon the system rea
its initial state again~not shown in Fig. 2!.

In the state of control, the periodT of homogeneous os
cillations depends on the choice of the delay timet in the

FIG. 3. PeriodT of homogeneous oscillations~black squares!
and feedback magnitudeM ~open circles! in dependence on the
delay timet. The parameters are temperature, partial pressur
oxygen, base partial pressure of CO, and feedback intensity, res
tively: T5515 K, pO2

5431024 mbar, pCO
0 510.031025 mbar,

andm/pCO
0 50.32.
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feedback scheme. In Fig. 3, the periodT is plotted versus the
delay timet ~black squares!. A series of experiments wa
performed to obtain this plot. At the beginning of each e
periment, the CO supply was kept closed and only oxyg
was present in the reaction chamber, causing a uniform o
gen coverage on the sample surface. Att50, the CO valve
was opened to its predefined value. The parameters w
chosen such that, in the absence of feedback, chemical
bulence would spontaneously develop. In these experime
however, the feedback intensity factorm was chosen large
enough to prevent the emergence of turbulence and to s
lize homogeneous oscillations. The oscillation period w
then determined for different values of the delay timet.

Superposed in the same plot, we show the magnitud
the feedback signal that acts on the system at different d
times. To this end, the quantityM5^uI (t2t)2I (t)u& is plot-
ted, which is the time average over the modulus of the fe
back signal~open circles in Fig. 3!. We callM the feedback
magnitude. Since the feedback signal is oscillating arou
zero, we compute the feedback magnitude as the time a
age of the modulus of the feedback signal. Thus, this qu
tity is a measure for the absolute average driving force tha
imposed on the system by the feedback and hence quan
the invasiveness of the feedback. Finally, we added to
plot the line given byT5t, representing all points for which
the optimal case of a vanishing feedback signal would
reached.

The experimental result shows clearly that, as with
creasing delay time the values forT approach the line where
T equalst, the magnitude of the feedback signal is decrea
by about a factor of two. Hence, we were able to reduce
invasiveness of the feedback considerably by optimizing
choice of the delay time in the feedback scheme.

On the other hand, the feedback signalF(t)5m@ I (t2t)
2I (t)# should become vanishingly small att 5T if uniform

of
ec-
4-4
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emerge via a transcritical bifurcation atm5mc . Generally,
the bifurcation point is given by

in-
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oscillations with periodT were stabilized by a noninvasiv
feedback. However, we could not reach this optimal cas
our experiments. Instead, a jump always occurred around
line given byT5t, and the system evaded the point whe
its oscillation period would have become equal to the de
time. To understand the origin of such a behavior, theoret
investigations of the global TDAS scheme have been p
formed.

IV. THEORETICAL INVESTIGATIONS

A. Phase dynamics equation

Some properties of a spatially extended system under
influence of TDAS can already be understood in terms o
simple analysis for the uniform system. For a limit-cyc
oscillator, the orbital shape, amplitude, and frequency of
cillations are well-defined characteristic features. If we ap
a small perturbation, the original orbital form and amplitu
will be reestablished after some relaxation time. The pha
however, will not recover its initial value but will maintain
small shift induced by the perturbation. By an adiaba
elimination of the amplitude variable, the description of o
cillatory dynamics may be reduced to a simple equation
the phase variablef. The phase dynamics equation of
single oscillator under the effect of weak TDAS should ta
the form ~see Ref.@44# and the Appendix!

ḟ5v1m f @f~ t !2f~ t2t!#. ~2!

Here,v is the oscillation frequency in absence of feedba
t is the delay time, andm is the coefficient characterizing th
feedback intensity~note that the phase equation is only va
for m!1). Generally, the functionf @f(t)2f(t2t)# is 2p
periodic and satisfies the conditionsf (0)5 f (2p)50. For a
harmonic oscillator close to the onset of oscillations, d
scribed by the Stuart–Landau equation@45#, this function is
given by ~see the Appendix!

f ~Df!5a sin~Df!1b cos~Df!2b, ~3!

with Df5f(t)2f(t2t), wherea and b are fixed param-
eters, expressed asa5cosx1b sinx and b5sinx2b cosx
in terms of the coefficientsb and x of the Stuart-Landau
equation with TDAS.

Harmonic oscillations withf(t)5Vt are special solu-
tions of the phase equation~2!, and their oscillation fre-

quencyḟ5V should satisfy

V5v1m f ~Vt!. ~4!

The solutions of this equation can be constructed by writ
it as

m5
V2v

f ~Vt!
. ~5!

For each oscillation frequencyV, it determines the respec
tive value of the feedback intensitym. Figure 4 shows thus
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obtained solutions for three different delay times, choos
as an example the functionf given by Eq.~3! for b53 and
x5p/6.

When the delay time is equal to the natural oscillati
period, t 5T052p/v, Eq. ~4! always has a solutionV
Þv with vanishing feedback signal. However, other so
tions are additionally present at sufficiently high feedba
intensities, as seen from Fig. 4~b!. For these additional solu
tions, V5v and the feedback signal is not vanishing. Th

FIG. 4. Oscillation frequency as a function of the feedback
tensity for three different delay times~a! t50.985, ~b! t51, and
~c! t51.015. The parameters arev52p, b53, andx5p/6. The
transcritical bifurcation takes place atmc'0.42. Dotted lines show
unstable branches.
4-5
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mc5 lim
V→v

V2v

f S 2p
V

v D 5
v

2p f 8~0!
. ~6!

When t ÞT, the transcritical bifurcation is replaced by
saddle-node bifurcation, leading to the appearance of
new solution branches at sufficiently high feedback inten
ties, as shown in Figs. 4~a! and 4~c!.

The phase dynamics equation~2! can further be used to
analyze the stability of various solution branches. We ap
small perturbations to the phase,f5Vt1df, and, after lin-
earization, obtain an equation fordf:

dḟ5m f 8~Vt!@df~ t !2df~ t2t!#. ~7!

With an ansatzdf(t)5elt/t, we find

l5q~12e2l!, ~8!

whereq5tm f 8(Vt). Thus, the solution with frequencyV
is stable, if Rel,0.

Suppose thatt 5T0 and investigate the stability of th
solution with V5v. In this case, the coefficientq can be
written as

q5
m

mc
~9!

by taking into account Eq.~6! and f 8(Vt)5 f 8(2p)
5 f 8(0). By analyzing the roots of the characteristic equ
tion ~8!, it can be shown that the solution withV5v be-
comes unstable at the transcritical bifurcation pointm5mc .
A similar analysis can be performed for other soluti
branches and also fort ÞT. As a result, we find that only the
solution branches, indicated by solid lines in Fig. 4, a
stable. Thus, our study, based on the general phase dyna
equation, predicts that att5T0 the solution with V5v
should become unstable at sufficiently high feedback int
sities and will be replaced by one of the two possible so
tions with V5” v.

We performed a series of numerical simulations of Eq.~2!
tracing the oscillation periodT52p/V as a function of the
delay timet. Figure 5~a! displays the dependence ofT on the
delay timet for a feedback intensity below the critical valu
~for m,mc). We see that att5T0 the solution withV5v is
indeed realized. However, if the feedback intensity is
creased above its critical valuemc , the system cannot reac
such state with a vanishing control signal and a hyster
effect takes place, as shown in Fig. 5~b!.

Comparing Fig. 5 with Fig. 3, we note that the behavior
the oscillation period under varying the delay time is qua
tatively similar in the experiment and in our numerical sim
lations based on the phase dynamics equation withm.mc .
We should, however, remember that the phase equatio
strictly speaking, valid only for weak feedbacks. Therefo
to analyze the system behavior at stronger feedbacks, a
tional simulations based on the realistic reaction model
needed.
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B. Realistic reaction model

Catalytic CO oxidation on Pt~110! single crystal surfaces
is described by a model@9,8,11# that consists of three
coupled ordinary differential equations

u̇5k1sCOpCO~12u3!2k2u2k3uv, ~10!

v̇5k4pO2
@sO,1311sO,132~12w!#~12u2v !22k3uv,

~11!

ẇ5k5S 1

11expS u02u

du D 2wD , ~12!

where the variablesu, v, andw represent the CO coverage
the oxygen coverage, and the fraction of the surface foun
the nonreconstructed 131 phase, respectively. The mod
takes into account the adsorption of CO and oxygen,
reaction between the two adsorbed species, the desorptio
CO, and the adsorbate-dependent structural change o

FIG. 5. Oscillation period as function of delay time obtain
from numerical simulations of the phase dynamics equation fo
feedback intensity~a! of m50.2 and~b! of m50.6. The parameters
are as in Fig. 4. Hysteresis effects are found in the gray sha
region in ~b!. Open circles indicate unstable solutions yielded
Eq. ~4!.
4-6
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FIG. 6. Oscillation period@~a! and ~b!# and feedback magnitude@~c! and ~d!# as functions of the delay time obtained from numeric
simulations of the realistic model of CO oxidation on Pt~110! for two different feedback intensities@~a! and~c!# m/pCO

0 50.01 and@~b! and
~d!# m/pCO

0 50.03. The model parameters arek153.143105 s21 mbar21, k2510.21 s21, k35283.8 s21, k455.863105 s21 mbar21, k5

51.61 s21, sCO51.0, sO,13150.6, sO,13250.4, u050.35, du50.05, pCO
0 54.8231025 mbar, andpO2

513.131025 mbar.
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Pt~110! surface. Some processes, such as the formatio
subsurface oxygen or roughening of the catalytic surface,
neglected here.

The TDAS feedback scheme should be further includ
into the model. For simplicity, we introduce it via a depe
dence of the CO partial pressure on the CO coverage,

pCO~ t !5pCO
0 1m@u~ t2t!2u~ t !#, ~13!

wherepCO
0 is the base CO partial pressure,m is the feedback

intensity, andt is the delay time. In the experiments, th
feedback signal was generated using the integral PEEM
tensityI, which nonlinearly depends on both the CO and
oxygen coverages.

Numerical simulations of the model~10!–~13! were per-
formed using a set of parameter values for which the m
dium is in the oscillatory state and, once the mobility
adsorbed CO molecules is taken into account, diffusi
induced turbulence spontaneously develops@34#. The period
of oscillations in the absence of feedback wasT052.44 s.

Figure 6 shows the results of numerical simulations of
realistic model. Here, the dependences of the oscillation
riod T and of the feedback signal magnitudeM5^uu(t2t)
04622
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2u(t)u& on the delay timet are displayed. For relatively wea
feedbacks@Fig. 6~a! and 6~c!#, a state with vanishing feed
back signalM is realized att 5T0. When the feedback is
increased, this state, however, becomes unstable and ca
be reached in our simulations. Instead, a hysteresis effe
observed@Fig. 6~b!#. If we start with a short delay timet and
increase it, the oscillation periodT is first larger thanT0 and
gradually grows. When the delay time becomes sligh
larger thanT0, the oscillation periodT abruptly jumps down
to a value belowT0 and then slowly increases. If we move
the opposite direction and gradually decrease the delay t
a jump to the upper branch occurs slightly belowt 5T0.
Though the feedback signal is decreased close tot 5T0, it
does not drop down to zero at this point and a hystere
effect for this property is also observed@Fig. 6~d!#.

In Sec. II, we explained that for technical reasons
feedback signal, applied to the system in the experim
took effect with an additional intrinsic time delayt i . It is
known from both experimental@46# and theoretical@47#
studies that a control loop latency in the application of TDA
might effect the size of the domain of control of the syste
Here, however, we are not investigating the size of the
main of control but we are concerned with qualitatively e
4-7
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plaining the behavior of the system in the state of control
varying delay time. In order to study the impact of contr
loop latency on our results, we repeated the computat
that led to the results shown in Figs. 6~a! and 6~c!. This time,
the intrinsic delayt i , which is due to the finite pumping rat
of the reaction chamber, was included by extending
model ~10!–~12! with an additional equation for the tim
evolution of the CO partial pressure:

ṗCO52
1

t i
$pCO2pCO

0 2m@u~ t2t!2u~ t !#%. ~14!

Figure 7 shows the oscillation periodT ~a! and the feedback
magnitudeM ~b! as a function of delay timet for two dif-
ferent values of the intrinsic delayt i in comparison to the
results for zero intrinsic delay which are, of course, identi
to Figs. 6~a! and 6~c!. With an increasing intrinsic delay, th
curve describing the dependence of the oscillation period
the delay time experiences a shift to higher values but m
tains its original shape. The change in the feedback ma
tude, on the other hand, consists roughly in an increase
some multiplying factor. However, both the oscillation p
riod and the feedback magnitude maintain qualitatively si

FIG. 7. Effects of control loop latency: oscillation period~a! and
feedback magnitude~b! as functions of delay time for differen
values of intrinsic delay. The model parameters are as in Figs.~a!
and 6~c!.
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lar shapes in their dependence ont for vanishing t i and
different nonzerot i . In particular, we point out that the ef
fect of control loop latency does not simply amount to ad
ing up the intrinsic delayt i and the delayt from the control
scheme. Instead, the intersection point of the curve giv
the dependence ofT on t with the line for whichT5t is not
shifted when control loop latency is introduced and, as
consequence, the minimum of the feedback magnitude
mains in the same position as well. The effect of an intrin
delay gets less pronounced when approaching the poin
which T5t which is of particular interest for our presen
investigation.

C. Spatially extended systems

Diffusion plays a principal role in the considered syste
since it destabilizes the state of uniform oscillations a
brings up chemical turbulence@34#. While individual oscil-
lators show regular periodic dynamics, their population d
plays diffusion-induced spatiotemporal chaos. Diffusi
terms were not, however, taken into account in the ph
dynamics equation~2! and in the realistic model~10!–~13! of
the CO oxidation reaction. Therefore, these equations
scribe only the effect of TDAS on the uniform oscillatio
mode.

In the absence of feeback, the uniform oscillatory mo
cannot suppress the growth of other spatial modes, and
bulence develops. When global feedback is applied, only
uniform spatial mode can be directly influenced by the co
trolling force. The other spatial modes are affected by su
feedback because they are coupled to the uniform mode
other words, they ’’feel’’ the presence of a feedback only
the extent that the dynamics of the uniform mode is mo
fied.

If the delay time is equal to the oscillation period (t
5T0) and the feedback signal is vanishing (M50), the pe-
riodic uniform mode would not be modified by the feedbac
Moreover, its interactions with nonuniform spatial mod
would not be modified either. But then these other spa
modes should behave exactly in the same way as in the
sence of feedback, so that spatiotemporal chaos wo
develop.

These simple general arguments indicate that a nonin
sive suppression of diffusion-induced chemical turbulence
global feedbacks is not possible.When the TDAS method
applied, a stabilization of periodic uniform oscillations wi
V5v cannot be realized att 5T0. Though the phase dy
namics equation~2! and the realistic model~10!–~13! with-
out diffusion predict that the state withV5v is stable for
sufficiently weak feedbacks withm,mc , such a state would
always be unstable when diffusion is included and inter
tions with nonuniform spatial modes are allowed. Note th
the above arguments do not exclude the possibility tha
nonuniform oscillatory pattern becomes stabilized as a re
of the global feedback@30#.

V. CONCLUSIONS

We studied the control of chemical turbulence in the ca
lytic CO oxidation on a Pt~110! single crystal surface by
4-8
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means of time-delay autosynchronization~TDAS!. It was
found that synchronization can be gradually induced in
system: with increasing feedback intensity a transition fr
chemical turbulence to homogeneous oscillations takes p
via a state of intermittent turbulence. For the transition fro
the uncontrolled state to homogeneous oscillations, sig
cant hysteresis effects were observed. Varying the de
time, we were able to lower the magnitude of the feedb
signal by a factor of 50%, thus reducing the invasivenes
the feedback considerably. However, we could not reach
ideal case of a vanishingly small feedback signal in the s
of control since TDAS does not allow one to directly targ
specific points in phase space for arbitrary feedback inte
ties. Instead, we found that the oscillation periodT as a func-
tion of the delay timet displays a discontinuity around th
point whereT5t. We thus conjectured that the point fo
which T5t was unstable in the experiment.

To understand the dynamics of the system under the e
of TDAS, a phase dynamics equation for a single oscilla
in the presence of TDAS has been derived. From the ph
equation, we obtained a bifurcation diagram for the osci
tion frequency of the system with the feedback intensity
bifurcation parameter. A linear stability analysis showed t
for feedback intensities below a certain threshold, the so
tion with vanishing feedback signal is stable, while at t
threshold a transcritical bifurcation occurs and this solut
becomes unstable. Simple general arguments have been
sented to show that, once diffusion is included, it wou
make stable uniform oscillations withT5t impossible.

In numerical simulations of both the phase dynamics
proximation and a realistic three-variable model for CO o
dation on Pt~110!, the experimental results could be com
firmed and the occurence of a discontinuity in t
dependence ofT on t could be reproduced for feedback in
tensities above the critical threshold. The hysteresis effec
the dependence ofT on t could not, however, be checked
the present experiments because, for technical reasons
were not able to vary the delay time within the same m
surement, and a separate experiment had to be carried o
each new value of the delay time.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support of th
Deutsche Forschungsgemeinschaft~Sonderforschungsbere
ich 555 ‘‘Komplexe Nichtlineare Prozesse’’!. We thank E.
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APPENDIX: DERIVATION OF A PHASE EQUATION
IN THE PRESENCE OF TDAS

The specific properties of a limit cycle oscillator may d
fer strongly from one system to another. However, su
ciently close to the onset of oscillations, the behavior of a
such system takes a universal form. Close to a bifurca
point, the dynamics of the system is governed by only cr
04622
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cal modes which evolve on significantly longer time sca
than the other noncritical modes. The dynamics of these
maining modes is ‘‘enslaved’’ to the evolution of the critic
modes so that they may be eliminated adiabatically. A
consequence, the system of ordinary differential equati
that describes the specific system reduces to a simple un
sal equation for the complex oscillation amplitudeh(t),
which is known as the Stuart-Landau equation. In order
study the behavior of an oscillator in the presence of TDA
we extend the Stuard-Landau equation by an additional fe
back termF(t), thus obtaining

ḣ5~12 iv0!h2~11 ib!uhu2h1F~ t !, ~A1!

with

F~ t !5meix@h~ t !2h~ t2t!#. ~A2!

Here,v0 is the frequency of small-amplitude oscillations, th
coefficientb determines the nonlinear frequency shift, a
the parameterx accounts for a possible phase shift in t
application of the control force. The feedback intensity
specified by the coefficientm. We assume that the feedbac
is weak,m!1.

The Stuart-Landau equation~A1! is written in a dimen-
sionless form, by choosing as a time unit the relaxation ti
which is proportional to the distance from the bifurcatio
point. Since this relaxation time diverges at the Hopf bifu
cation, whereas the oscillation period remains finite, we h
v0@1 in the neighborhood of the Hopf bifurcation.

Through the ansatzh(t)5r(t)e2 if(t) for the complex os-
cillation amplitudeh, the oscillation phasef is introduced
and the feedback term is written as

F~ t !5meix@r~ t !e2 if(t)2r~ t2t!e2 if(t2t)#. ~A3!

Substituting Eq.~A3! into Eq. ~A1! we obtain, by separating
real and imaginary parts, the following equations for the r
amplituder(t) and for the phasef(t), respectively:

ṙ5r~12r2!1m@ r~ t !cosx2r~ t2t!cos~x1Df!#,
~A4!

ḟ5v01br22mFsinx2
r~ t2t!

r~ t !
sin~x1Df!G , ~A5!

whereDf(t)5f(t)2f(t2t).
Since the feedback is weak (m!1), it leads to only small

variations of the real amplituder, that is, we haver(t)51
1dr(t) where dr is of order m. Therefore, Eq.~A4! ap-
proximately yields

dṙ522dr1m@cosx2cos~x1Df!#. ~A6!

Thus, small perturbations ofr adjust to the variation ofDf
within the relaxation time of order unity. On the other han
the variations ofDf are slow and are characterized by tim
scales of order 1/m which are much larger than unity. Henc
the adiabatic approximation can be used and we obtain

dr5
m

2
@cosx2cos~x1Df!#. ~A7!
4-9
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Substituting this result into Eq.~A5! and again retaining only
the terms linear inm, the following approximate phase dy
namics equation is derived:

ḟ5v1m f ~Df!. ~A8!

The functionf (Df) in this equation is given by

f ~Df!5a sin~Df!1b cos~Df!2b, ~A9!

and the notationsv5v01b, a5cosx1b sinx, and b
5sinx2b cosx are introduced.

Now we can check that the variations ofDf are indeed
slow. We define the slow phase variablew(t)5f(t)2vt,
note thatDf5Dw1vt, and write Eq.~A8! as
G

v.

tl,

tl,

tl,

tt

s

re

04622
ẇ5m f ~Dw1vt!. ~A10!

Thus, the rate of variation ofw is proportional to the feed-
back intensity and is small,m!1. BecauseDf differs from
Dw only by a constant, the same is true forDf.

Though we have derived the phase dynamics equa
~A8! in this appendix only starting from the Stuart-Land
equation, a similar equation can be found for any lim
cycle oscillator under the action of sufficiently weak TDA
Generally, the 2p-periodic function f (Df) would have
a form different from ~A9! satisfying the conditionf (0)
50.
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