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Pattern dynamics associated with on-off convection in a one-dimensional system
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A numerical and theoretical analysis of the phenomenologically constructed nonlinear stochastic model of
on-off intermittency experimentally observed by Jadtral. in the electrohydrodynamic convection in nematic
liquid crystal under applied dichotomous electric field is carried out. The model has the structure of the
one-dimensional Swift-Hohenberg equation with a fluctuating threshold which represents an applied electric
field and either with or without additive noise which corresponds to thermal noise. It is found that the
fundamental statistics of pattern dynamics without additive noise agree with those experimentally observed,
and also with those reported previously in two-dimensional system. In contrast to that the presence of multi-
plicative noise generates an intermittent evolution of pattern intensity, whose statistics are in agreement with
those of on-off intermittency so far known, the additive noise gives rise to the change of position of the
convective pattern. It is found that the temporal evolution of the phase suitably introduced to describe the
global convective pattern also shows an intermittent evolution. Its statistics are studied in a detailed way with
numerical simulation and stochastic analysis. The comparison of these results turn out to be in good agreement
with each other.
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[. INTRODUCTION tiplicative stochastic model for the time evolutionldf). In
fact, according to the multiplicative noise model, the expo-
Intermittency spatially or temporally observed is a ubig-nent 7z is determined as
uitous phenomenon in nonlinear systems. The small-scale
dynamics in hydrodynamic turbulence is the most famous A
example. An intermittency is also often observed in dynami- = Iy’ @
cal systems which show chaotic motions. For example, the
intermittency known as modulational intermittency or on-off where\ (>0) represents the deviation of the external con-
intermittency occurs when a synchronized chaos in a coupleglol parameter from its critical value add is the intensity of
chaotic oscillator system undergoes the instability as the corthe modulational noise of the so-called local transverse ex-
trol parameter is changefd—3]. On-off intermittency has pansion rate. Third characteristic statistiii®) is simply de-
been often studied in dynamical systems with a small numrived by the theory of first passage time problem of Brown-
ber of degrees of freedofd—6]. Several years ago, the ob- jan motion of the linearized multiplicative stochastic model.
servation of the intermittency was first reported experimen- The electrohydrodynamic convecti¢iC) is one of the
tally in the system with a large number of degrees ofmost famous examples in nonequiliblium systems observed
freedom, e.g., in the spin wave instabil[fy]. in liquid crystal systen{8]. In the nematic liquid crystal
It is known that the on-off intermittency has the three system, EC caused by the electrohydrodynamic instability
characteristic statistics4]: (i) the probability densityP(I)  (EHD) under an electric field is quite famous. So far, studies
for I(t), the magnitude of the deviation from the particular on EC have been mainly carried out by applying temporally
chaotic submanifold, asymptotically obeys a power law withperiodic electric field9]. On the other hand, several works
exponent—1+ 7, wherey is a small positive valugji) the  on EC under the application of stochastic electric field were
spectral intensity of time serig$(t)} exhibits a power law  reported 10—14. Recently, Behn, Lange, and John predicted
with the exponent-1/2 in a low frequency region, an@i)  that even if the pure dichotomous noise is applied, the onset
the probability densityQ(7) for the laminar durationr,  of the EC would be observed as the amplitude of noise is
where the laminar state stands for that being close to thincreased11]. This prediction was recently experimentally
particular chaotic submanifold, asymptotically takes a poweproved by John, Stannarius, and Beld$B [12]. In addi-
law with the exponent-3/2 for a wide range ofr. The tion, they reported that the intermittency is observed in asso-
characteristicgi) and (ii) are explained by a nonlinear mul- ciation with the onset of EC, and showed that it quite re-
sembles to the signature of on-off intermittency, observing
the laminar duration distribution, where the laminar state im-

*Electronic address: ohara@acs.i.kyoto-u.ac.jp plies the planar alignment of directors along the electrode
"Electronic address: fujisaka@i.kyoto-u.ac.jp planes[12]. Furthermore, very recently, they reported that
*Electronic address: ouchi@kobe-du.ac.jp the probability density of the pattern intensity and the spec-
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tral intensity of time series of the pattern intensity are alsoment of macroscopic local velocity of fluid at positionat
same as those of on-off intermittenfd3,14. timet, \ is the deviation of the Rayleigh numbRBrfrom its

In a previous paper, in order to explain JSB'’s result incritical valueR;, i.e.,\=R—R., k. being the wave number
Ref. [12], we proposed a phenomenological nonlinear stonpf the most unstable mode.
chastic model for EC under the stochastic electric figkl. In this paper, we phenomenologically extend the SH

The model has the structure of the Swift-Hohenberg equatiosquation, adding multiplicative noise and additive noise, i.e.,
with the noise-modulated growth rate. In the study using this

equation in the two-dimension&PD) system[15], we re- ow(r,t) s 20 3
ported that the numerical integration shows intermittent —5; — — LA+ (D= (Vo) Tw(r,t) —w(r,t) +g(r.1).
emergence of convective pattern and that its statistics are (3)

same as those known for on-off intermittency. However, al-
though the pattern intensity changes intermittently in theln the experimental situation of J9B2], w(r,t) is the gra-
course of time, no global pattern change is observed. Notingient of the angle between the local director and the elec-
the existence of thermal noise, we added the additive noisode plates, and is the mean deviation from its critical
term in the our model equation. It was found that the intro-value. Thek. is the wave number of the linearly most un-
duction of the additive noise makes the pattern form changestable mode. Thé(t) is the applied spatially uniform modu-
This implies that the effect of thermal noise plays the globalation noise and,
pattern dynamics in the present situation.
The fundamental aim of the present paper is to study the _ - ,

details of the statistical dynamics of the phenomenological T'v= JO (FOF(E))dt, “
model in the 1D system both numerically and theoretically.
Particularly, we will study the statistics of a phase variableis the intensity of the threshold modulation, where the angu-
associated with the intermittent change of convective patterrar brackets stand for the ensemble average.dinet) rep-
The present paper is organized as follows. In Sec. Il, weesents thermal noise and is assumed to be Gaussian-white
propose a phenomenological stochastic model of EC undetoise, i.e.,
the stochastic electric field. A few characteristics of the
model are pointed out. Numerical results on the stochastic (9(r,1))=0, (g(r,)g(r’,t"))=2e46(r—r")s(t—t").
dynamics of convective pattern dynamics are given in Sec. (5)
in contrast to that the randorﬁ modulation ’in the threshol leld is more crucial than the the_rmal noise.

. : : Equation(3) always has a quiescent staigr,t)=0 for
causes the change of pattern intensity, thermal noise makes . .

anyr andt, which corresponds to the complete planar align-

the pattern itself change. Theoretical analysis of our model IS ent of directors to the electrodes, providg(d. ) is absent.

developed in Sec. IV. We propose the statistics of the pha . i . . . ;
variable relevant to convective pattern and compare thsfrozllmerzrt:tablllty of this state is examined with thenode

theory with the numerical simulations. In Sec. V, we discuss?
the phas_e diffusion of the most un_stable mode. The mean M=h—(K2—k)2 (k=]K|). 6)
square displacement of the phase is calculated analytically

and is compared to the numerical simulation. We give conif \ <0, there exists no unstable mode and the spatial pattern

clusion and remarks in Sec. VI. eventually decays into the planar state. On the other hand, if
N>0, the planar state is unstable for modes with wave num-
Il. PHENOMENOLOGICAL MODEL FOR EC INDUCED bers around,, and this situation leads to the emergence of
BY APPLIED STOCHASTIC FIELD Convective pattern_

Although thermal convection of neutral fluid has often

been studied both experimentally and theoreticg8lyL6,17, 1. NUMERICAL SIMULATIONS AND RESULTS

it is quite difficult to study EC by starting with the funda-

mental equations of motion for EHD because they are quiteS

complicated. Near the convection threshold, there appear tw;

kinds of modes; critical and noncritical. The former is di-

rectly relevant to the formation of convective pattern and the 1L 1/2
I(t)E[EJO [w(x,t)]zdx}

In the present paper, we consider the 1D system with the
stem size. The pattern intensity at timeis measured by
e quantity

latter is stably slaved to the critical mode. Adiabatically (7
eliminating noncritical modes, Swift and HohenbdigH)

derived the amplitude equation, If 1(t)=0, no convective pattern is present at time

aw(r,t) The applied spatially uniform nois€t) is assumed to be
=[N = (VZ+Kk)Zw(r,t)—w3(r 1), (20  generated by the Ornstein-Uhlenbeck process,

at
near the onset of convective pattern in thermal convection in df(t) = — Yf () +R(1) ®)
neutral fluid[8,16,17. Here,w(r,t) is the vertical compo- dt '
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whereR(t) is the Gaussian-white noise with the statistics,

(R(1))=0, (R(OR(t"))=2Ds(t—t"), 9) -
with positive valuesy andD. The statistics of (t) is there- § ; 0 ¢ 10
fore Gaussian and has the correlation function 2 ' "
(F()F(t")) =y et (10) o wom
and the noise intensitl/; of f(t) is relatedy andD via > o0 ¢ v0w s 0 v
1(t)
D 0.25
4 0.2
Hereafter, we numerically and theoretically investigate
Eq. (3) without thermal noisgmodel A) and with thermal 0.15
noise(modelB). Numerical simulations are carried out with
the use of the Euler scheme for stochastic differential equa- 0.1
tions interpreted in the Stratonovich sef&8,19. The time
step for numerical integration was set &s=5x10 4. We 0.05
integrate the scalar field on 256 lattice points with the peri- J
odic boundary condition. The parameter values were set to 0 -
be k.=1 andL=327. The initial condition was chosen in 0 10000 20000 30000 40000 50000
such a way that initiallyw(x,0) at each lattice point is ran- time
domly distributed with the mean zero and the variance®10 FIG. 1. Simultaneous plots of evolutions of pattéuppe) and
time series ofl (t) (lower) for A=0.001,D=10, y=50. Dark re-
A. Model A gion corresponds to positive valuesvefx,t), gray region to values

) . . . close to zero, and white region to negative values. One observes

We first consider the case without thermal noise. The gov: . o
. tion i itt that when a pattern is generaté(t) takes a nonvanishing value.

erning equation 1S writtén as The pattern generation is intermittent.

IW(X,t) =[N+ (1) — (V2 KR WX, 1) — Wi(X,t). D, an(jlezvyhich we used. This is the reason why the power

gt law o~ Y2 is not so clearly observed. It is worth noting that

(12 for a largew region, the power laww =32 |

is rather observed

in a wide range. This fact may suggest that the on-off inter-

mittency can exhibit another characteristic observed is the
ower spectrum in an intermediate frequency range, or may
e derived from our model. However, there exists no theo-

retical explanation on this power law.

We carry out the numerical integration of E@2) for several
different values of\, D, and y with the quasispectral
method. Figure 1 shows the temporal evolution of spatial
pattern andl(t)} obtained by numerically solving E¢12).
One clearly observes that the temporal evolutiom(bf and
the spatial pattern show intermittency composed of laminar(arb.units)
regions where no apparent pattern change are observed at
burst regions where the spatial pattern with the wave numbe

k. are generated. The temporal evolution I¢f) is quite
similar to that of the so-called on-off intermittency. There . _
exists no change of position of the pattern form.

Numerical results with the statistical laws of on-off inter- Sae " .
mittency are compared. Calculating the expongnt\/T'; § """" o
by Eq. (1), we theoretically get probability densities fiqt) i % W
with the exponent estimated from several valuek ,dD, and A=0.001,D=10,1=50 =« e, Y v
v. As shown in Fig. 2, one finds a good agreement with [ 4=0.002,D=10,=50  ~ A
numerical results. %fg'%gﬂfig'}:gg : 3

The second characteristic of on-off intermittency is the [ 1=0.002 ,D;50ﬁ50 . ]
o~ Y2 law in the low frequency region of the power spectrum , , , LK
is shown in Fig. 3. However, the power law %2 is not 107 107 107 107 107! 10°

clearly observed for all parametexs D, and y used in the !

present numerical simulation. The region where the FiG. 2. Probability densitieB(l) of I(t) for various choices of
asymptotic lawl(w)w~ "2 is observed is estimated as parameters. Symbols are the results of numerical simulation for the
NT<w<T [6]. In the present simulation, however, the model(12) in comparison with the theoretical resufgl)ecl =1+ 7
ratio'; /X is not sufficiently large for parameter values\gf  (lines).
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B. Model B

As shown in the preceding section, the form of convective
pattern does not change for the dynamical equation without
thermal noise. In a real system, the temporal evolution is
affected by thermal noise. Hereafter, we investigate its effect
on the temporal evolution of convective pattern. Parameters
are set as.=0.002,D=100, andy=>50. With the periodic
boundary condition, we carry out the mode expansion of
w(x,t) as

jo2l 4=0.002,0=10,1=30 - B
A=0002.0=501-30 - wxt= S Wk, koonk, ke=om. (13
w—3/2 n=—w
107} - - - . T o . ]
102 102 102 o 0 S.ubstltutlng.the expansidd3) into Eq.(3), we get the equa
o tions of motion forw, as

FIG. 3. Spectral intensities of time seriéét) for various
choices of parameters. Shown are the results of numerical simula-
tion using the mode{12) in comparison withw ™Y and & 32

dw,(t) -
gt~ g O Iwa(t) —

>

Wn Wn Wn
ng+nytng=n 1 2 3

The statistics of laminar duration was studied with the +gn(t). (14)
laminar duration distribution by constructing the histogram . .

of laminar durations. Here, the laminar duration is defined aglere, g,(t) [=g* ,(t)] is the Fourier coefficient for thi,
the duration wher¢is below a thresholtk;, suitably chosen, mode and is defined as

separating laminarl €l,,) and burst (>1,,,) states. In Fig.

4, the laminar duration distribution obtained from the nu-

merical results is given. One finds that the observed laminar
duration distribution clearly shows the power la

i

. 1L .
gn(t)= EJO g(x,t)e” "k dx. (15

7 3/2

which is one of the most well-known characteristics of on-The statisticg5) implies
off intermittency [4]. Here, I, was chosen as 0.005. We

confirmed that the exponent 3/2 does not depend on the

choice ofly, as far as it is sufficiently small.

(On(D)=0, (Gn(t)Gn (t'))=288, n 8(t—t'), (16)

We thus observed the intermittent emergence of conveGyheree =¢/L. Since the only mode with the wave number
tive pattern associated with the instability of the planar align-kC is unstable slightly abova =0, truncating stable modes
ment withw=0 under the application of multiplicative noise except for the modes with the wave numblers k. +k;, and

in the threshold. The intermittency has statistics same
those of on-off intermittency, and agrees with the observa
tion by Johnet al. [11-13. In this sense, in the previous
paper, the phenomenon was termed on-off convedti®h

aﬁci 2k,, we get the equations of motion fov, with the
wave numberg&., k.t k4, andk;=* 2k,. Thus, the governing
equations for the numerical simulation are given as

0! dw, (1) . R
' 2=0001,0=10,1=50 -+ gi — MO (D =Ny () +0n (O, (17)
A=0.002,D=10,=50 x
== :
107 “o00zD=lor=0 o dWp = 1(t) .
A=0002.D=301038 ——— = A= [(ne= 1)2= 2K+ F(O -1 (D)
T 103 N, L (D)4, gt 18
S n=1 gnctl( )s (18)
_5| dwnth(t) 2 24214 ~
10 — gt~ A [(ne=2)7 = N1k + F(1)}wn - o(1)
o7 , ~Np_=2(t) +n_22(1), (19

107! 10° 10! . 10?

FIG. 4. Laminar duration distribution®(7) for various choices

wherenc=Kk./ky, andNp (t), Np_+1(t), andN, ., are non-
linear terms of each mode. We will carry out numerical simu-

of parameters. Symbols are the results of numerical simulation udation for several different values of the intensityof ther-

ing the modek12) in comparison withr—%? (line).

mal noise.
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FIG. 5. Numerical results of pattern evolutigappey, its cor-
responding time series of the pattern intens{ty (middle) and the
phase change oi/nc(t) per unit time for thek, mode (lower) for
A=0.002,D=100, y=50, ande =10"** The dark regions corre-
spond to positive values @f(x,t), the gray regions to values close
to zero, and the white region to negative values.

Here, we define the phagit) by
=|wp (D))

Wy (D=r(t

yexdio(t)] (r(t
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e=107% -
e=1071%
7=0.05

Vs
VN
§ b

1072

10—4 L

107 |

10 —6 I-s ._4 ._3 '_2 '_1 0

10 10 10 10 10 ° )

FIG. 7. Probability density(l) of I(t). Shown are the results
of numerical simulation with modé (symbolg and the theoretical
result P(1)<1 1% 7 (line). The theoretical curve is obtained far
=0.002,D=100, y=50, and, thereforep=0.05.

changeA 6 per unit time for thek, mode obtained by nu-
merically integrating Eqs(17), (18), and(19).

It is worth to note that the time evolution oft) is con-
nected to that obtained for mod&l This is same as in Fig. 1.
In addition, one observes that when the pattern form
changes, the time series of the phase chakgeshows a
prominent intermittent characteristic. Figure 6 shows the tra-

jectories for thek, mode on the compleﬁ/nc(t) plane. It is

observed that the phase does not change when the amplitude
r(t) is large and it suddenly changes due to thermal noise
when the amplitude almost vanishes.

Figures 7, 8, and 9 are the statistics of the temporal evo-
lution of I (1), i.e., its probability density, the power spectrum
and the laminar duration distribution under the effect of ad-
ditive noise. The numerical results are almost same as for
modelA because of a weak intensity of thermal noise. How-

It is easy to understand that the phase is clearly connectesler, one should note that the probability densl) for

with the spatial form ofwv(x,t). In order to observe the sta-

tistics of the temporal evolution of the phase changes for the o’

k. mode, we defin&\ § as the phase change of thg mode
per time stepAt. Figure 5 shows the temporal evolution of
the spatial pattern, the pattern intendify), and the phase

0.4 T T T
03|
02|
01

0
011
02
03

-0.4
-0.3

Imw,,

02 -0.1 0 01 02

Ret,,

0.3

FIG. 6. Plot of a trajectory of thé&. mode on the complex

10

103]

{w)

102}

10'}

100 [ _4 1 3 1 2 1 l ] 0
10 107 IO_w 10” 10

FIG. 8. The spectral intensity of time serig$) | (). Shown

Wn (t) plane. Parameter values are same as in Fig. 5. One observgge the results of numerical simulation with mo@ih comparison

no phase change wh¢wnc(t)| is not small enough.

12 73/2

with the power lawsw™ < and w
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10 thatf(t) is Gaussian white, the ensemble averagley?\q(t)|2
for the stationary state is given as
10°F (IWr(1)]%)~(|Wq(0)|2) €2y Tt
= : + e [e2(i P Tt—1], (20)
t 10—2 )\k +Ff
@ n
1074t Thus, the modes withkn+1“f<0 are stable, and the modes
i with A, +1'¢>0 are unstable. Moreover, ¥ is increased,
] we get the estimatiod\fvn(t)|2>~s_/|)\kn+l“f| in the laminar
¢ = — 5 - ") ;  State so that it becomes harder f¢t) to vanish in the lami-
10 10 10 10 10 10

T nar state. This fact implies that if the intensity of thermal
noise is increased, the pattern will not disappear completely.
FIG. 9. The laminar duration distributio@(7). Shown are the

results of numerical simulation with modBl(symbolg in compari- o
son with 732 (line). B. Statistics ofl(t) and phase changes

The statistics of (t) is theoretically discussed as follows.
I(t) does not obey the asymptotic power law!* 7 in a  Suppose that only the mode with the wave numkgris
small | region ase is increased. This is because that theynstable, and other modes avg(t)=0 (n# *k./k;) in the
thermal noise smears the singularity of the statisticH8t  stationary state. Thus, the system behavior is determined by

=0. Figure 10 shows the probability density for the phase[he k, mode. The substitution ofv,(t)=0 except for
changeA 6. The numerical result suggests the possibility ofa, no(= k ./k,) into Eq. (14) leads to "

new statistics associated with the intermittent change of con-
vective pattern. The details of the statistics will be theoreti- 4, (t
cally studied in the following section. i

= [\ () W (£) = 3|y ()] AW, (1) + T (D).
(21

C
dt
IV. THEORETICAL RESULTS FOR MODEL B

A. Linear analysis Usingw, (t)=r (t)exdi&(t)], we get the equations of motion
With the mode expansion E@14) of w(x,t), the on-off  for r(t) and 6(t),

variable I(t) defined in Eq.(7) is evaluated asl(t)
~[ 2wy (t)|2]¥2 Here, we examine the linear stability of dr(v

w,(t)=0, i.e., nonconvective state, for each mode. By drop- ——— =[N+ f()]r(t)—3r(t)3+g,(1), (22)
ping out the nonlinear terms in E¢L4) and approximating dt

; doy 1
T-m@a(t)- (23

Here, we assumed thgt(t) andg,(t) are statistically inde-
pendent Gaussian-white noises, i{@,(t)g,(t’))=0 and

glo" -
- 14 1 (9:())=0, (g (1)g(t"))=ed(t—t"), (24)
w0l Eige ]
£=10_l4 """"""" H))Y=0 t t’ :_5t_t/ 2
M e=10710 1 (96(1))=0, (ge(t)ge(t"))=26( ) (25

—8 1 1 1

107 10 10 10 102 10° 10> Equation(23) immediately shows that there exists no tempo-
A0 ral evolution of 4(t) if thermal noise is absent, i.e., no
FIG. 10. Probability densit(A 6) of the phase chang&6(t) change of the pattern form is observed if thermal noise is
for the time difference\t=0.0005. The results of numerical simu- absent(Fig. 1).
lation (symbolg are compared with the theoretical result Eg9) The Fokker-Planck equation for the joint probability den-
(lines). sity Q(r, 6,t) of r(t) and 6(t) can be written a§20—22
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J ,0,t J
Q(;t_) = 5{[(>\+Feﬁ)r—3r3]Q(r,9,t)}
P e ,
+P E_I_Feffr Q(r,&,t)
e 2Q(r,0,1)
Yo e (26)

where we used the Markov approximatidrng is the effec-
tive colored-noise strength given by

'y

Ty -

1_‘eﬁ

(see Refs[20,21]). Here, we defined
P(r,t)=/2..Q(r,6,t)d6.

Integrating Eq(26) over the phas#, we get the equation of
P(r,t) as follows:

dP(r,t) d 3
= o L Ter=3r31P(r, )
+a2 8_+F 2)P( t)
e (= 32Q(r,o,1)
| —="“qe. 2
2r2) = 967 do 8

With a straightforward calculation for E€R8), the stationary
probability densityPg(r) of r(t) is obtained as

24

— \ (p=1)2
8 )

2)

P(r)=N|r

Here,N is the normalization constant, and we defined

_ N N 3e 30
T Ter 2T’
and
. fr .. . —(p+1)12 3 )
(r)y= X T ex 21ﬂeﬁx
x[ & (= > 0
xf ij TR0 oV aylax, (31
2y?) = 967

whereQq(r, 0) is the steady state solution of E&6). Since

I(t)=/2r (t) because ofv,(t)=0 except fom., the steady
probability density P(I) for I(t) turns out to obey the
asymptotic power law

P(l)ocl ~1F7, (32

PHYSICAL REVIEW E 67, 046223 (2003

o ]
“107e=10 ]
e=10""
=10
10 Sojg0

3
+
i

10°

107 12 1010 108 6 - =)
10 10 10 10 10 10
r

FIG. 11. Probability densitieBg(r) of the amplitude (t) of the
k. mode for parameter values same as in Figs. 7, 8, and 9. Shown
are the results of numerical simulation with mo8eglsymbolg. The
theoretical results are given by the lines. For details of the theory,
see the text.

for smalll if e=0. However, it does not obey the asymptotic
power lawl ~1*7 in a smalll region if e #0. These results
agree with the simulation results as shown in Figs. 2 and 7.

We turn to the statistics ok 6. Suppose that(t) is con-
stant since the characteristic time scale rgf) is much
longer than that of)(t), and thatA 6 obeys the normal dis-
tribution with zero mean and varianeg\t/r? by Eq. (23).
The probability density for the phase change for a given
amplituder is thus given by

r2(A6)?
2eAt |

(33

pAgr(t)=r)= ﬁex;{ —
et

From Eq.(29), the stationary probability density(A 6) of
A6 is determined as

A6

o 1
P(AG)= fo PAB[r(t)=r)Pg(r)dr= \/T—tdB(\/T—t) :
(34)

where

N . )(7;+1)/2 .

R (n—1)12
$(X) \/JZ( T fo (z+1)47

Varz
2Feffz dz, (35

with the functionG(r) same as in Eq(31), and we intro-
duced

Xexg —zp(x)]G

3 [ X2
© ef ) . (36)

IJI(X)=F(1+ —

eff €

Figure 11 shows the statistics oft) numerically ob-
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tained. In order to compare the theoretical result with nu- 108

merical result, we assume

1/2
1—ex;{—(£_6ﬁr2) 1 (rZrmin)
G(r)= & (37

0 (r<rmin)u

where

[ &
[ min= é\_1"M v Tm= 2T o (39
e

where § is a certain constant which is phenomenologically
introduced. In order to compare numerical result in Fig. 11,

we put=10*. Hence, we obtain

N . ()2 1—exp— Z1/2)
sag= S| 2| e
\V8me 2l e 672 (z+1)- M2

X exy —zy(x)]dz (39

With the use of the asymptotic form

1—exp—zY?) (20312 (z<1)
(z+1)A-n2  [(z+1) D2 (z=1).

¢(X) can be approximately obtained as

N

B(X)~ L2 %exd — zy(x)]dz
.

—\ (p+1)/2
8 )
2me

1—‘eff

(n+1)/2

N o
[
1

V8 me

Xexq —zy(x)]dz

+

2l o

N
\/2778_

3. -2
-y 5-5 (X)

— \ (g+1)2
8 )

—\ (g+1)I2
€
) [(x)]~ %3

3
7<§;¢(X)>

1—‘eff

N
V8me

x expl Y (x) 1T

+ [p(x)]~ 7"

20 o

wherey(z,p) andI'(z,p) stand for the first kind incomplete
v function and the second kind incomplejefunction, re-
spectively. Furthermore, using the asymptotic fof@3,24),

1
S 7;);2¢(X)), (40)
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10* .
3 b A=0001 -

£10 A=0010 = 7

S At=0.100 ]
Ar=1000 ©

104 Ar=1000 = ]
A=1000 ©

- Theory
-3 ] L

10 10 10° 100t 102 10° 10
AOIVAL
FIG. 12. Scaling forms of the probability densiti®fA 6) of
A6(t) for A=0.002,D =100, y="50, ands =10 14 Shown are the
results of numerical simulation for different valuesif (symbols
in comparison with the theoretical result with EG4) (line).

Y(le)’v[

0 (p=<2) )N{F(Z) (p<2)
I'(z) (p>2), ’ 0 (p>2),

ep/ZF(Z’ p) — pzf 167 p/2

X

1+, i(z— 1)(z—2)- - -(z—n)]
n=1 pn

N[F(z) (p—0)
0 (p—°),

we obtain the asymptotic forms of E(B9) as follows:

To , —(1+np)2
—X (X< \/Zreﬁ)
(X)) 3e
x 3 (V2T o <x< 52T o).

(4)

The theoretical result Eq39) is compared with the nu-
merical simulation in Fig. 10 foe=10"* and 10 ° with
At being equal to the time step of the time integration. The-
oretical results turn out to be in a good agreement with the
results of numerical simulation. In addition, it should be
noted that Eq(41) also approximates the results of numeri-
cal simulation well. Here, sincg2)~ 103 estimated by us-
ing the result of numerical computation, E@®7) leads to
I'eg=T"¢. From Eq.(34), we have the scaling relation with
the scaling functionp(x). Figure 12 depicts the scaling plot
of the P(A @) for several different values oAt, obtained
from the numerical simulation wite=10"% We find a
good agreement between the theory and the simulation.

V. PHASE DIFFUSION ASSOCIATED WITH THE
UNSTABLE MODE

Figure 13 shows the time series @fft) for the parameter
values same as in Fig. 5. The temporal evolutiond6f)

046223-8
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+
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FIG. 13. Time series of the phase varialig) of the k, mode

A o FIG. 14. Temporal evolution of the mean square displacement
Wnc('[) for the parameter values same as in Fig. 5.

([6(t)— 6(0)]?) plotted as a function of time differendefor A
=0.002,D=100, y=50, ande=10"1% Shown are the results of
numerical simulation(symbolg in comparison with the numerical

shows apparently intermittent behaviors. By EB3), We  integrations of Eqs(29) and (37) (line).

find that 0(t) changes considerably whelfit) is small, i.e.,

when the state is in the laminar state. One expects that the

phase variable shows a diffusive motion. In order to analyzénematic liquid crystal under the external stochastic electric
the phase statistics, we study the mean square displacemedigid. The model was organized as the Swift-Hohenberg
([ 6(t)— 6(0)]?) below. Sincey,(t) is Gaussian-white noise equation with both spatially uniform external stochastic field
which is independent 0§,(t) andr(t), the mean square and thermal noise. It was found that numerical simulation of
displacement[ 6(t) — 6(0)]?) is evaluated as the 1D system shows that a temporal evolution of the pattern
intensity is intermittent and its statistics are same as three
statistics of on-off intermittency so far known. These results
explain JSB’s experimental results. In the case when thermal
noise is absent, we did not observe change of pattern form.
On the other hand, when thermal noise is present, the tem-
porally intermittent change of pattern form is observed. The

temporal evolution of the phase of Fourier coefficiém:[:(t)

of the most unstable mode also changes simultaneously with
intermittent pattern change. The intermittent change of con-

is the phase diffusion constant. Figure 14 depicts the time\-lgcuve pattern was in fact. reported in areal experinéAl
difference dependence of the mean square displacemenince the phase ok, () is directly related to the pattern

([ 6(t)— 6(0)]?) obtained by the numerical integration for itself, it is important to study the phase dynamics.
the parameter values same as in Fig. 13. The numerical in- Moreover, in the present paper we studied the probability
tegrations of Eq(43) carried out with the numerical integra- density P(A¢) for the phase changa 6(t) of the critical
tions with Eqs(29) and(37) is compared with the simulation mode for an intervalit, and found that the scaling relation
in Fig. 14. Here, we again sé=10" and used the fadf.+  (34) holds for a wide range of time ste@gt. Furthermore,
=T since(r?) is small. A good agreement between thewe derived the asymptotic form of the scaling funct|&u.
theory and the numerical simulation is found. One should41)]. It was found that in contrast to that the pha¢) of
note that the present phase diffusion is generated by the predhe k. mode does not change when the amplitude) is
ence of thermal noise. large enough, it changes considerably due to thermal noise
In the time region when the amplitudét) is large, ther- when the amplitude is small. Furthermore, it was shown that
mal noise does not affect the phase change. On the oth#ie phase variable shows a diffusion. We derived an approxi-
hand, wherr (t) is sufficiently small, thermal noise gives a mate expression of the diffusion constant. Mean square dis-
considerable effect on the phase change. This is the origin gflacement of phase theoretically obtained turned out to be in
a global diffusive behavior of the phase, and therefore gena good agreement with numerical simulation. Although a pat-
erates a considerable long-time change of convective pattertgrn change is obtained in laboratory experimgh4], no
analysis of the pattern dynamics is carried out. We hope that
analysis of the pattern dynamics in laboratory experiment is
made and is compared with the present result in a near
In the present paper, we first introduced a phenomenologituture.
cal stochastic model of electrohydrodynamic convection in  Finally, although our model gives qualitatively same re-

([6(t)— 6(0)]%) = 2D g, (42)

for larget, where

Ddiﬁ=§<i>:§fomrzpst(r)dr (43)

r¥(s)

VI. CONCLUSION
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