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Optimal control of the transient behavior of coupled solid-state lasers
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We apply optimal control theory to substantially reduce transient times for transitions between in-phase and
out-of-phase states in coupled solid-state lasers. The control is a time-varying optical field that is injected into
the cavities of each laser. We have analytically derived the optimal control and numerically solved the opti-
mality system. Numerical simulations indicate that transient times can be significantly reduced upon increasing
the injection strength very briefly.
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Laser arrays hold great promise for space communicatioduce transitions between states of generic two-dimensional
applications, which require compact sources with high opti-separable nonlinear systems described by a Lotka-Volterra

cal intensities and fast switching tim¢s]. Recently, both ~model.

solid-state[2,3] and semiconductof4,5] laser arrays have  Here we apply optimal contr¢OC) techniques to reduce

been investigated to that effect, and various relevant aspecta€ ransient switching times between OP and IP states in an
rray of two coupled solid-state lasers. The OC method is

of their dynamical behavior such as chaotic synchronizatior?l :
[6], chaotic communicatiofi7], and amplitude dropou] com_pletely gene_ral and systematic and does not _depe_nd es-

’ ’ sentially on the internal features of the system. Since it tai-
have already been reported.

- ] _lors the effort precisely to the desired task, the OC method
The most efficient mode of operation for space communiyeeps the cost at its minimum possible and yields significant

cation is realized when the array elements are synchronize@ductions of the transient time, without resulting in over-

to an in-phasélP) state, such that the output interferes con-shoots.

structively and the light intensity at the central lobe scales as We illustrate the approach on a system of coupled solid-

N?, whereN is the number of lasers in the array. Unfortu- state lasers and demonstrate its efficiency. We start with a

nately, the IP state is typically unstable; instead, the system igomplete description of the dynamics of coupled lasers and

driven to the stable out-of-phag®P) state, whose destruc- demonstrate the OC on the dynamics of the phase model.
{The phase model adequately describes the dynamics of solid-

tive interference pattern results in low output intensities a ; ; - . e
the central lobg3,5]. The IP behavior can be stabilized by state I_asgrs provided Intensity and gain oscillations are small
L ’ i o (we will discuss the applicability of the phase model to laser
injecting a common driving 'a.s‘?r field .|nto the_ laser ar.raydynamics in the paper later prirhe use of the phase model
elements[3,5,9. Then, for sufficiently high driving ampli- isq enhances the generality of the OC approach to other
tude, the elements are entrained and the output intensitiggplications, since coupled phase oscillators provide a real-
interfere constructively; full entrainment of the array is real-istic description of a wide variety of dynamical systems,
ized above a certain threshold, determined by the coupling a§uch as Josephson junctiof3], neural oscillatorg14],
the array elements3,5]. frictional dynamicg15], and otherg16].

In addition to synchronization, an equally important issue OC of systems of ordinary differential equations was de-
in applications is the time required to reach the IP behavio¥eloped by Pontryagin and his co-workers in the 19808.
from an arbitrary state. In particular, it is desirable to mini- 1he basic idea is to adjust a coefficient or a source term,
mize the transient time between the IP and OP states, updfieWed as the control, in the differential system to maximize
removal of the injected entrainment field. This aspect is im- or minimize a goal that is represented in terms of the con-

ortant. for examole. in fast switching and communication trol and corresponding solutigstate of the differential sys-
gpplica:[ions Pie, 9 Sem. Pontryagin’s maximum principle for OC of ordinary

Despite the obvi iical rel d otential ifferential equations does not carry over directly to partial
espite the obvious praclical relevance and potential Oyjigarential equations, but some of the associated techniques
the topics, transient behavior, switching, and control thereo

; ! X 0. The corresponding theory was developed by Li&@

in (arrays of lasers have not been widely studied. We men-3nq applied to a wide variety of distributed systems, ranging
tion though the related work of Porea al.[10], who applied  from economics and management to physical and biological
a two-step steering function to the pumping of a single,CO models[18,19,2]. For the sake of simplicity, we present the
laser and reduced the turn-on time by a factor of 3. Usingpplication of OC to a system of two coupled lasers, but the
chaos control methods, Uchig al. [11] reported statistical procedure extends canonically to arbitrary arrays.
properties of the transient response times between periodic We start from the dimensionless system of equations de-
attractors. Switching was realized via high-frequency injecscribing the dynamics of two evanescently coupled solid-
tion in a laser diode subject to optical feedback. Lippal.  state lasers, where the polarization is adiabatically eliminated
[12] developed a global steerinargeting technique to in-  [3,8]:
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E-(t)=(G~—a-+i5-)E~+K(E-+1+E-_1)+E 1), where §;, i=1,2, are the detunings is the coupling con-
! S : ' ¢ stant, andA(t) is the amplitude of the injected field.
_ Te We have extensively discussed the conditions for which
Gj(t)= —[pj—(1+|EJ—|2)Gj], j=1,2. (1)  the phase model adequately describes the dynamics of the
Tt “full” relaxation oscillations model[3,8]. Here we reiterate
In Egs. (1) free end boundary conditiongEq(t)=Ea(t) these conditions only to verify tha§ we are indeed in 'ghe'
~0] are imposed. The variablds and G, are the dimen- parameter range yvhere phase description of laser dynamics is
sionless complex electric field and gain, respectively, for the/alid- The conditions ask8] that w>max(1g), where w
jth laser. All times and frequencies are scaled relative to the @/ V(P— @)@ ande = —xa/(p—a)w,. For the set of pa-
cavity round trip timer., and 7 is the fluorescence time of a@meters chosen abovehich correspond to experimentally
the laser mediump; and p; are the dimensionless cavity meas_urable parameters for the neodymium-doped yttrium
decay and pump rates, respectively, for felaser,« is the ~ aluminum gamet lasg2]), » =200 ‘{”5d8:‘f'0' Therefore,
evanescent coupling constant between the two lasers, afyf Meet this assumption fik|<5x 1077, which, '”dégd' 1S
E.(t) is the slowly varying amplitude of the external field Satisfied in our simulations since we Usg=1.3<10"".
that drives each laser. Systdf) is written in a frame rotat- We consider the physically relevant transitions between
ing with frequencyw,, at which the external field has a OP and II_3 states. For the case of |n|t|_aI OoP I{:\sers, taking the
nonzero Fourier component. This frequency is tuned to miniiniected field amplitude to be a function of tim(t), the
mize the detuning from the cavity resonances. In practicelitial conditions read
the output power emitted by the array depends on the tuning _ _
of external field to the cavitie§9]. The detunings;= w, 0<¢1(0)<m and ¢5(0)= ¢1(0) = @
~ e~ GjAwj~we— wj, Where g is the cavity reso-  The control functiom,(t) is a Lebesgue integrable function
nance frequency for lasgrand Aw is the atomic detuning gych that
from we in units of the polarization decay rate. We allow for

a small spread in detunings as a way to test the robustness of 4| k|<Ag(t)<My. (5)
the entrainment mechanism to a physically reasonable pa- . _ _
rameter spread. The lower bound is set at|4| since 4«| is the constant

We assumey;=a, p;=p, p>a [3]. SubstitutingE;(t) amplitude external field input that will drive the phases to the
=\I;(t) exdig;(t)], wherel;(t) and ¢;(t) are the intensity final IP state, and, is an arbitrary upper bound.

and the phase of las¢r respectively, and assumirf(t) Since the aim is to drive the phaseg and ¢, close
—E.= /I, to be a constant field, the model equations for thefogether quickly, we consider the following objective func-
two lasers read tional, which is to be minimized as a function Af:
- 1 T
1j=2(Gj— )l +2x V11l co8 o~ ) + 211l cOSYy Jo(Ag)= Efo [(b1= b)) +eAfDIdL (6)
: j V|1|2 . . 2. e “
pj=6i+ (-1« 3 Sin(¢1— o) —Vle/ljsing;, The termeAy is a stabilizing term that represents “the cost
j

of the control,” the positive parameteris chosen small to
make the ¢, — ¢,)? term dominant, and the total time inter-
val T is chosen to be shorter than the transient time experi-
enced by the system in the absence of an optimal control. We
seek the optimal contrdhj (t) such that

Gj:(p_Gj_Gjlj)wO1 (2)

wherewy= 7./7;. System(2) has been studied theoretically
for N coupled laser$3] and the condition for full entrain-
ment was derived. This condition assumes small deviations
in detunings and small couplings between the lasers in the
array. We denote the dimensionless amplitude of the injected
field by A= m wherel =p/a—1. Ideally, to entrain an Here we present in detail the transition from OP to IP with
array of N identical lasers requires an injected field ampli-initial conditions(4). For the transition from OP to IP with
tude A.=4|«| or E;=4|«|\l. The functional form of the initial conditions 7<¢,(0)<2m, ¢,(0)=¢,(0)—, the
total output intensity may significantly depend on the paramf{irst term in the objective functional is to be replaced by
eters of the array, such as detunings and the coupling corf<;— ¢,— 2)?. Transitions from IP to OP are treated simi-
stant. larly.

For certain ranges of parameters of the laser array, the The existence of an O@j and corresponding optimal
intensities and gain oscillations are not large and the comstate pairg} ,¢3 is guaranteed by the convexity of the prob-
plete description of the full systefiegs.(1) and(2)] can be  |em as a function of the control and by the Lipschitz property

Jo(A5)=min  Jo(Ao).

4|k|<Ag=Mg

reduced to the “phase model” of the right hand side of Eq1) in ¢; and ¢, [23].
. ) . The optimization problem stated above is solved using
$1(t)= 01+ k Sin(Ppa— 1) —Ag(t)singy, Pontryagin’s maximum principlgl 7,19, which converts the
. problem(3)—(6) into a problem of minimizing pointwise a
Po(1)= o+ Kk SIN(p1— o) — Ap(t)SiN by, 3 HamiltonianH:
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1 e )
H= 5 (d1= d2)*+ 3 AGH Nol 1+ SNy ) 1,007
—Ao(t)sing; ]+ NoA S+ k SIN( 1~ ) 0.75
—Ao(D)siney) /.
3
with respect toA,. The adjoint functiond.y; and\ g, act like = 9507
“Lagrange multipliers” and couple the differential equations
[system(3)] to the minimization problem. Pontryagin’s prin- 0.254 o
ciple yields the following system of differential equations
and boundary conditions for the adjoint functiong, and
Ag2: 0.00 =<
0.00
)\01: - (9H/(9(]Sl
= — i+ ot Noil K CO — ) +A,(t)cos FIG. 1. Normalized total output intensity,,/l, as a function
$ut b2t ol K2 ot) ¢ of timet in the transition from OP to IP for different values lgfy:
—Ngok COS b1 — ¢>), (8) 5.2 (dash-dotted curye 15 (dotted curvg 20 (dashed curve 25
(solid curvg. Inset: the optimal controhy(t) as a function of time
Ngo=—dHI 3, t for different values oM, : 15 (dotted curvg 20 (dashed curve
25 (solid curve. The other dimensionless parameters Bre0.15,
= ¢1_ ¢2_ )\OlK COS{ ¢2_ ¢1) + )\02[K COS ¢1_ ¢2) k=-—1.3, 51:0.4, and52: —-0.4.
+Ag(t)cose,],

trol and the value calculated from the characterizatib®)
Ao(T)=0, \oT)=0 (transversality conditions using the new values of the states and adjoint functions.
(9) Repeat step§)—(iv) until the difference between the values

of unknowns at the present iteration and the previous itera-
To minimize the Hamiltonian with respect A&, we use the  tjon becomes arbitrarily small.
necessary conditionH/dA,=0 atAg, and solve forAg , We present numerical results for the case of OP initial
taking the bounds into account. As a result, we obtain amonditions ¢,(0)=1.77 and ¢,(0)=¢,— 7. The physical
explicit characterization of the OC as a function of the stateand numerical parameters are given in the figure captions.

and adjoint functions: Since the transient time for the minimal entrainment required
L to achieve synchronizatio®g=4|«|) is approximately 0.15
* 4\ — ryi - ; time units, we chos&=0.15. We then compared the relative
Ao ()=min ma{4|K|, € [Nox()sinda(t) effects of the time-varying OCs and the minimal entrainment

control on the total output intensifyn units of the intensity

+NoAt)sin ¢>2(t)]} ,Mo>. (10 ©of a single uncoupled laser[8], liul/lo=4 <_:o§[(¢1
—¢,)/2], wherel y is the single laser intensity. Various upper
boundsM, have been used.

Note that concavity ofH with respect to A, yields In Fig. 1, we present the results for the transition from OP
d°Hl/9AG=¢>0, which ensures that we are indeed finding ato |P for a few typical cases. The value of the injection am-
minimizer. plitude A, to obtain the IP behavioffor the parameters of

The OCAg is found by solving the optimality system our choice is given byAy=4|x|=5.2 (since in our simula-
(09), i.e., the phase equatiori8),(4) and the adjoint equa- tions k= —1.3). We use OC to decrease the transient time to
tions (8),(9) together with the explicit characterization of the reach the IP behavior. We have chosen three values for the
OC, Eq.(10). We discuss the numerical solutions of the OSupper bounds between 15 and 25, for which the total output
for various choices oM. Since the state system has initial intensities are plotted as functions of time. The total intensity
conditions and the adjoint system has final time conditionswithout the OC(i.e., using a constant input,=5.2) is the
the OS cannot be solved by an ordinary forward marchingeference curvédash-dotted curye As expected, the tran-
scheme. Instead, an iterative method with a fourth ordesjent time shortens significantly as controls are allowed to
Runge-Kutta scheme is used, whereby the iterative methoghke higher values. In the inset, we show three optimal con-
consists of the following steps for this two-point boundarytrols during the simulated time, corresponding to the three
value problem(i) Guess the value of the OG\f) over the different upper bounds. In Fig. 2, we show the time that is
prescribed timd. (ii) Solve the state systefarwardin time  required to reach 85%solid curve, 75% (dashed curve
(for a time period 6<t<T) using the Runge-Kutta scheme. 50% (dotted curvg, and 25% (dash-dotted curyeof the
(iii) Solve the adjoint systerhackwardin time for a time  maximum intensity as a function of the upper bound imposed
period (T=t=0) using the Runge-Kutta scheme and the so-on the optimal control.
lution of the state equations from st€p). (iv) Update the Several comments are in order.
control by using a convex combination of the previous con- (1) The OC displayed in the Fig. 1 inset shows two con-

046222-3



JUNG et al. PHYSICAL REVIEW E 67, 046222 (2003

(3) Finally, we briefly discuss the relevance of these re-
sults for the full system Eq92). For small values of the
coupling constank and detunings; , only very small values
of injection amplitude are required for full entrainment of
coupled lasers. In that case, the intensities will not change in
time and the conditions of using the phase model are satis-
fied [3,8]; therefore the phase modHEgs. (3)] yields the
same results as the full modEEgs. (2)]. However, if the
injection amplitude is large, relaxation oscillations of the in-
tensity have to be considered and the phase model may not
be applicable. We tested the control function obtained from
the phase moddlEgs. (3)] on the full model[Egs. (2)] for
small values of the coupling constan¢< 10 °) and detun-
ings (8,=— 6,=0.4x 10 %) and obtained perfect agreement
for small injection field amplitudes. For the higher values of
the coupling constants, detunings, and control amplitudes
used here, optimal controls computed from the phase model
alone still provide a fairly efficient control tool for the whole
system, even though we observed small discrepancies be-
tween the intensities, particular at short times.
stant regions. The higher one is imposed by the upper limit The results presented here demonstrate that OC theory is
of the OC,M,. The lower one is, to a certain extent, the a very efficient systematic tool for significantly reducing the
combined result of the OC method and the sizeToBy  transient times for the array of coupled lasers when switched
choosing smaller values fd, this region can be reduced or between IP and OP states. It is important to mention that a
even eliminated completely. significant reduction of transient times is obtained at the

(2) We studied the asymptotic behavior of the total outputPrice of briefly increasing the injection strength. In our ex-
intensity when the injection amplitud&, increases to such ample, a brief increase by a factor of 3 in injection may lead
levels that the coupling contribution becomes insignificantt0 a decrease of the transient time by an order of magnitude.

0.4

0.3+

Time

0.2

0.14

0.0 T - T T
5 10 15
Upper Bound of the Optimal Control

FIG. 2. Time needed to reach 85%olid curve, 75% (dashed
curve), 50% (dotted curveg and 25%(dash-dotted curyeof the
total output intensity as a function of the upper bouMg.

Neglecting the coupling one can solve E(R). and (4) ex-

Since the typical injection power required to mode-lock a

plicitly and show that, in this limit, the total output intensity Single laser is less than 1% of the total output power of the

behaves as
liotar/ 10=4 COS[ (1~ ¢h2)/2]
=4 cog[tan 1C e Aot —tan 1C,e A,

which means that the transient time decreases~akA,.
The coefficientsC; andC, can be determined from the ini-
tial conditionsC;=tang;(0)/2,i=1,2.

injected laser, the “price” for such transient reduction in
switching application is reasonable and worthwhile.
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