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Entrainment control in a noisy neural system
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The open-plus-closed-loo®PCL) entrainment control put forth by Jackson and GrpBhysica D85, 1
(1999] is applied to an effective-neuron system as a way to extract stable limit cycles from a chaotic attractor,
analogous to the retrieval of memories from a memory searching state. Additive Gaussian white noise, repre-
senting the natural noise inherent in any real dynamical system, is added to the entrainment control mechanism.
Moderate levels of additive noise have little effect on successful entrainment, as reflected in phase-space plots
and Lyapunov exponents. All three Lyapunov exponents are negative, which suggests parallels between OPCL
control and chaotic synchronization.
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[. INTRODUCTION trainment are discussed in Sec. lll. Section IV covers the
introduction of noise to the OPCL control process, examin-
In the 1990s there were literally hundreds of papers pubing the effects of additive noise on the transition from a
lished on the control of chaos in nonlinear systems. Reasor¢haotic attractor to a stable limit cycle. Concluding remarks
ably complete overviews of chaos control techniques can bare presented in Sec. V.
found in Chen and Donfjl] and Boccalettit al.[2].

One such control mechanism is entrainment control, of Il. ENTRAINMENT CONTROL
which there are many variations. Here we discuss a method ) o )
which is based on the work first suggested bibléu[3] and In entrainment control, the objective is to entrain a
has since found many applicatioig¢—10. Jackson and SyStém,
Grosu[11] extended Hhler’s original control into an open-
plus-closed-loodOPCL) control scheme, so that it became %:F(X t) (1)
applicable to most systems. Since its inception, the OPCL dt Y
control method has been expanded upon both theoretically
[12—20 and experimentally21—23. to a desired goal dynamigg(t) so that

OPCL control has some major strengths over other control )
methods such as the parameter feedback mechanism of Ott, lim[x(t)—g(t)]=0. (]

t—oo

Grebogi, and Yorkd24]. OPCL does not require access to
the system parameters, and the goal dynamics are not limite

to unstable periodic orbits. OPCL control does, however, re—gS this method of control was originally conceivegkt)

quire a good model of the system dynamics for it to functionWOUId satisfy

properly. d
The system model emphasized in this work is an _g:F(g,t), &)
effective-neuron system exhibiting chaotic dynamics de- dt

scribed by Wheeler and Schiey25]. Even before the dis- ) _ _ o
covery of chaotic dynamics within brain activity in 1985 Which could be any type of desired motion within the
[26—29, many proposals were made as to the nature andystem. . .
function of such dynamics. It has been suggested by Skarda In order to satisfy Eq(2), the equation
and Freema30,31] and Tsuda, Koerner, and Shimigs2]
that chaos allows a neural system to quickly search through d_X: F(x,t) +S(t)
and retrieve all stored attractors, or memories. Entrainment dt '
control is investigated as a possible mechanism for such re-
call. Here we also examine how additive noise affects OPClmust be met, wher&(t) is a switching function added to
control, since noise is a natural part of any biological systemease violent transitions’]. The portion in brackets is to be
Section Il reviews the theoretical basis for OPCL entrain-satisfied at all times, as originally proposed byhtar and
ment control. The application of OPCL control to an Luscher[4].
effective-neuron system and the extent of the basin of en- The difficulty with this control method, as it stands, is that
it is hard to determine the extent of the basin of entrainment
for an arbitraryg(t). If the goal dynamicg(t) do not over-
*Present address: Department of Neurobiology, University oflap the basin of entrainment of the experimental dynamics

4

dg
at Fleb

Pittsburgh School of Medicine, Pittsburgh, PA 15261. X(t), then Eq.(2) will not be satisfied.
TCorresponding author. FAX: (512 471-9637. Email: Jackson and GrosiL1] proposed a modification of this
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entrainment to include the entire phase space for g(ty.

The goal dynamicg(t) can now describe any system, 08
0.6

dg 02

——=G(g,1), (5) WO o

-0.2
0.4
and can be independent of the experimental system. Jacksc o8

and Grosu’s more general solution to E4) is

dF(g,t)
a9

dt

_A)(g_x):|’ B - -0.
(6) U0

whereA is a constant matrix with eigenvalues that all have
negative real parts.

Chen[33] independently suggested adding a term to Eq
(4), however, the extended control of Jackson and Gfbgl

is stronger, as it contains not only a control matrix but alsoa | ) ) _
partial-derivative term, which ensures that Ef) is satis- matrix for the network. This system is derived from the base

fied. The necessity of this term can be shown by examiningVo-neuron system explored by Zeng, Schieve, and[Bdls
the stability of a small perturbation introduced into the sys-KWek and Li[35], and Beer{36]. The inertia/inductance is
tem equations. Set=g+u, whereu<1. This leads to added to provide oscillatory and resonant behavior, as well
as complexity. Biological support for this inertial term comes
du from instances where a neuron’s behavior can be described
gt - Fletun—-F(g,H-Clg.Hu. (7)  asifits equivalent circuit model possessed a phenomenologi-
cal inductancgCole and Bakef37]; Hodgkin and Huxley

If F(g+u,t) is expanded to first order about the perturbation[38]; Detwiler, Hodgkin, and McNaughtar39]). Further ex-
amples of phenomenological inductance can be found in

dx dg (
a— F(x,t)+S(t) a— F(g,t)+

FIG. 1. Deterministic entrainment control in an effective-neuron
system. A chaotic attractoM = 2.5) is entrained to a stable period-
two limit cycle (M=2.0), where both attractors exist within the
same system. Control-matrix coefficierasts=—1.

u, then
Wheeler and Schievi25] and Wheelef40]. The parameter
du JF(g,t) M has no effect on the locations of the fixed points in phase
dat -~ ag u—C(g,HHu=Au. (8)  space, but it does influence the dynamic stability of the fixed

points. UsingM as a bifurcation parameter, the system can

Since the eigenvalues of matriXx all have negative real make transitions from period doubling to chaos. Figure 1

parts, Eq.(2) is satisfied. Therefore, OPCL control estab-shows an example of how entrainment control can be used in
lishes a finite basin of entrainment for the goal dynamicsthis system. A chaotic attractor from the effective-neuron

With this in mind, the following section will explore the system is entrained to a period-two limit cycle, which also

implementation of entrainment control in a chaotic neuralexists within the neural systef25].

system.

A. Basin of entrainment

III. ENTRAINMENT CONTROL IN AN ) ) )
EFFECTIVE-NEURON SYSTEM The extent of the basin of entrainment is used to evaluate

. . . the efficacy of entrainment control in the effective-neuron
The general entrainment control of H6) is now applied  system. This is accomplished by examining the stability of a
to the effective-neuron system originally explored by perturbation introduced into the system equations. Setting
Wheeler and Schievi25], Uy,=Uy+U,, whereU <1, and expanding(Ug+U,,t)
about the perturbation leads to

U]_: U2, (9)
du, 1 9°F(Ug,t) 1 3°F(Ug,t)
: 71 Ky Jug ar Ve _—5 §+——39U§+
U,=———U,— —U;+ ——taniU,) dt 2 guZ 69U
My 2 Mg ' My 12
+ 20U, (10)
M 3h Since the eigenvalues @f all have negative real parts, first-
order solutions for the perturbatiod, have the formU,
0 . .
o 3 31 33 =U_ exp@t) and vanish at large values af Applying Eq.
Us=~ %U3+%tam‘(ul)+ Etanr(u?’)’ (12) to the effective-neuron system results in
1
whereU is the neural potentialy is the capacitancé is the du,, —aU (13
conductancel is the inertia/inductance, antis the weight dt 1= 1e
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dUZE ‘]11
T=a22U25+M—1 —secl(Uyg)tanh(U,) U3,
1 3
+€secﬁ(Ulg)[4tam¥(Ulg)+secﬁ(Ulg)]U1€
J13 H 2
+.. +M—1 —sech(Ugzq)tanh(U34) U3,
1
+gsecl"r(ugg)[4tanr?(u3g)
+sech(Usg) JUS A+ -+ |, (14)
dU3e ‘]31
T=a33U35+E —secl(Uyg)tanh(U, ) U3,

1
+€secﬁ(ulg)[4tam‘?(u 19) Tseck(U,g)1U3,

J
L3
73

.

—sech(Uzg)tanh(U ) U3,
1
+€secl‘°r( Usg)[4tanif(Usg)

+sech(Usg) JUS A+ - |. (15)

Since the first-order perturbation solutions vanish, the sta-
bility of the system is therefore determined by the remaining
terms. The higher-order terms in Eq44) and (15) consist
of powers of tanH{y), sechUy), U,., and Uz.. The
tanhUg) terms are bound betweenl and +1, and the
sech{,) terms are bound between 0 a#d.. The solutions
to U, are known,U 1€=U26exp(allt), so all of the terms
containing powers ofJ,, can be made to damp out arbi-
trarily quickly. If Us, is selected so that it is bound by the
exponentialCzexp(st), then inserting this solution into Eg.
(15) results in

AgCa=agCat[(---)el )ty (.. )elauraty .. ]

F(-- )Mt ()Pt (16)

The entrainment-control
effective-neuron system are

PHYSICAL REVIEW E67, 046219 (2003

4a1<2a33<a,,<0. (19

B. Criteria for entrainment control

equations specific to

dUy, U,
T=U2X+S(t) T_UZX_all(Ulg_le) ,
(20)
dUy,y 7 Ky Ju
at ——M—lex—M—lU1x+M—ltanV(U1x)
Jiz dUZg 71 K1
+M—ltanl"(U3X)+S(t)[ at +M—1U2X+M—1U1X
‘]ll H
+M_1[(U1g_U1x)S€C (Upg) —tanh(Uqq)]
J13 H
+M—1[(U39—U3x)sec (Ugg) —tanh(Uszg) ]
_azz(Uzg_sz)}a (21)

dUsy Kz Ja1 Ja3
———=——Ug,+ —tanhU,,) + —tanhUj,) + S(t)
dt 73 3x 73 r( 1x 73 3x
dUsy, Ks
dt 73 3x

J
+ 77—331[(U19— Uyy)sech(Uq) —tanhi(Uyg) ]

J
+ 77—333[<u39—u3x>secﬁ<ugg>—tanr(ugg>]

_a33(U39_U3x)}- (22
Jackson and Grosu[41] added control mechanism,
IF(Ug,t)
= &—UQ—A , (23

results in a cubic equation that can be solved for the eigen-

where the ellipses in parentheses have been used to redu¢@ues\.

clutter in the equation. I3 is chosen such thata2;—\5
<0 and\3<0, then in the limit ag—oo, A3—az3<0. A
similar approach can be used for E@4), which yields

To insure that the eigenvalues of the mattiklU ,t) have
negative real parts, the Routh-Hurwitz stability criteria must
be met. Given the following general cubic equation to be

solved for the eigenvalues @(U,,t),

ApCor=ay,Cot[(---)elu 2ty (.. )elau—ty .. ]
7

By selecting\, so that 2;;,—A,<0 and 23— A,<0, then
ast—o, \,—a,,<0. To summarize, the basin of entrain-
ment for the effective-neuron system is not restricted by
Ug(t) as long as the following inequalities are satisfied:

+[(--)e@am Mty (L) elhs )ty L

2a1<ay<0, (19
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)\3+ bl)\2+ b2)\+b3:0, (24)

the eigenvalues will all have negative real parts if the follow-
ing three criteria are satisfied:

b,>0, (25
bs>0, (26)
bb,—bs>0. 27
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Since the Routh-Hurwitz criteria are inequalities, it is cients of which are produced by adding Gaussian white noise
proper to maximize the terms in the equation before they arwith zero mean and unit variance to the coefficients of ma-
evaluated. This means setting the sétfj(terms to one. trix A.

Also, to be practical, specific values for the various param- The form of the switching functior5(t) used in these
eters are assigne#l,;=Ks;=mn,=73=1. As a final evalua- simulations is
tive simplification, all threeA-matrix coefficients are as-

sumed to be the same=@;4). The stability criteria are now S(t)=1—e Mt-ton (33
wheretqy is the time step value at which the switching func-
ble_l +1-J5=3a1,>0, (28 tion activates and.=0.1 for all of the simulations.
A. Noise as a control mechanism
b :i_ g_ E+Jll‘]33+ J13J31+ @.}. g
STM, M; M, M M, M, M, Skarda and Freema[80,31 and Tsuda, Koerner, and

Shimizu [32] have suggested that chaos in brain dynamics
s 3 would allow for the rapid search and retrieval of stored
aj;—ay>0, 29 memories. Several groups have specifically looked at the sta-
bilization effects of noise in both real and model neural sys-
tems. Freemaet al. [41] looked at noise in a model of the

1

b-boe bae i+1—J _3a 2 Ju Js olfactory bulb. In biologically-realistic solutions to their
725 M, B CHYIM, M; M, model, they were able to stabilize the chaotic dynamics of
the system by adding low levels of noise. Rajasekar and
41 230ne 1_2 a.+3a2 _{i_ ﬂ Lakshmanarj42] looked at the effects of Gaussian noise on
B M, 1 M, My chaos in a Bonhoeffer—van der Pol oscillator. They discov-

ered that for a critical noise level, the maximal Lyapunov
exponent becomes negative, and the system loses its sensi-
tive dependence on initial conditions. Wap43] explored

the effects of a dynamical environment on model neural net-
>0. (30)  Wworks. He described how varying the noise level with time
can induce transitions from ordered states to chaotic states,
and vice versa. He proposed that such a varying environment
might facilitate information processing, such as memory re-

333+311\]33 J13da Ju 2
My M My

a3 333+J11 2
My M, M,

an

1
1_\]33+ T

+ R

2 .3
ap;—apg

As an initial approximation, the first criterion is used to

evaluatea,,, trieval. Whereas the above groups examined the use of noise
as a control mechanism unto itself, we investigate the effects
1 of adding noise to an already established deterministic con-
an<-— §[M_ +1- J33} : 3D trol mechanism.
1
By inserting the valuet;=2.5 andJ;;=1.44, which have B. Entrainment from a chaotic attractor

been demonstrated to yield chaotic behavior by Wheeler and

Schieve[25], the inequality becomes Here we discuss a chaotic attractor entrained to a period-

two limit cycle. Both attractors exist within the effective-
neuron system described previously in Sec.[EhQs. (9)—

1/ 1 i =Ka= 171= 172=
ay< 3|55 +1-144=-004 3y (D) With Ky=Kg=n,=7;=1and
. . _ 043 15
Therefore, given Eq32), which satisfies Eq$18) and(19), J= ] (34)
it is reasonable to select nearly any negative numbeafor -025 14

to achieve full entrainment control. The only caveat is if one ) o

chooses a value af,; that lies close to the inequality bound- The chaotic attractor occurs M=2.5, and the limit cycle
ary. This may result in the basin of entrainment being re2Ppears aM=2.0. The entrainment equations are same as
duced and Eq(2) not being satisfied. To avoid such an oc- Eds.(200—(22) from Sec. lll, except tha;; terms have been

currenceay; should be selected so that;< —0.04. replaced by their stochastic counterparts,(t)=—-1
+noise To reiterate, the concept being explored is the abil-

ity of the neural system to use the chaotic attractor to search

through its memory space, in the presence of noise, until the
Noise is inherent in any biological system, therefore, thesystem finally entrains to a desired mem¢@a@—32.

OPCL control technique is modified to include additive The lower limit for the noise amplitude (18) was de-

noise. One of the keys to implementing the control methodermined by the accuracy of the Lyapunov exponent calcula-

lies in the eigenvalues of the control-matéx Under noisy tions, which were halted when all three exponents were

control, matrixA is replaced with matri?\(t), the coeffi- stable to five decimal places. The upper limit () was

IV. NOISY ENTRAINMENT CONTROL

046219-4
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namics. The Lyapunov exponents were calculated using thal — -e16-
method of Wolfet al.[44]. The deterministic equations were 8171
numerically integrated with a fourth-order Runge-Kutta al- s1ad {
gorithm [45], and the stochastic equations were integrated
with a second-order Runge-Kutta algoritf46]. o H
820x10 -1 J. J. L

Figure 2 shows ten iterations of the noisy entrainment < : .
dynamics for an added noise level of Y0 Once the entrain- 10
ment mechanism is activated, the phase-space paths for the
different iterations begin to diverge. Despite this divergence, FiG. 3. Average Lyapunov exponents during stochatic entrain-
when the paths approach the limit cycle, they begin to reconment(as in Fig. 2 for noise levels ranging from 16 to 10" 2. The
verge. horizontal dotted lines represent the deterministic values fotahe

The Lyapunov exponents are-1.40X10 3, —79.70 first (—1.40<10°3), (b) second (79.70<10 %), and (c) third
X103, and —81.95<10 2 for the deterministically en- (—81.95<10 %) Lyapunov exponents. The average exponents de-
trained system. Entrainment with increasing levels of noiseiate only slightly from the deterministic values. Each data point
causes the average first Lyapunov exponent to drift towardepresents the average Lyapunov exponent after 1000 iterations of a
less negative values, as depicted in Figp)3Each point in chaotic attractor 1 =2.5) being stochastically entrained to a
the plot represents one thousand iterations of the stochastigriod-two limit cycle M=2.0). The error bars represent one stan-
dynamics, and the error bars depict one standard deviatioffrd deviation around the ensemble average.
from the averages. Overall, it appears that the presence of
noise in the dynamics has little effect. The changes in the
second and third Lyapunov exponents are depicted in Figgentral nervous system is no exception. Therefore, noise is
3(b) and 3c). Again, there is a slight deviation in the expo- added to the entrained neural system to represent a low-level
nents from the deterministic values as the noise level is inbackground that may originate as stray signals from various
creased, but the absolute magnitudes of the exponents remajlrts of the nervous system at large. The moderate levels of

fairly small and negative. noise added to the OPCL control mechanism have little ef-
fect on the stability of the entrained attractors. This is re-
V. CONCLUSION flected in phase-space plots and moderate changes in the av-

erage values of the Lyapunov exponents.

The OPCL entrainment control method developed by The fact that all three Lyapunov exponents are negative is
Jackson and Grodl1] can be modified by additive Gauss- suggestive of a synchronization criterion put forth by Pecora
ian white noise. This noisy entrainment control, when ap-and Carroll[47,48. The conditional Lyapunov exponents
plied to an effective-neuron system, provides a robust way tonust be negative to successfully synchronize chaotic systems
extract stable limit cycles from a chaotic attractor, in analogy[47,48. Grosu[13] and Chen and Lij20] have previously
to a memory being recalled from a memory-searching statapplied OPCL control to synchronize chaotic systems, and
[30-32. Grosu described the mechanism as being robust in the pres-

Noise is present in any real dynamical system, and thence of additive noise. Torat al. [49] recently concluded
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that noise can aid in chaotic synchronization. Our results¢ycle drives the behavior of the chaotic attractor, so that the
however, correspond more with Grosu’s than with Toralmemory state drives the response of the search state into
et al’s, although we have made a more quantitative analysi§ynchrony.
of the effects of noise on OPCL control.

Our application of OPCL control to the effective-neuron ACKNOWLEDGMENTS
system also differs from traditional chaotic synchronization D. W. W. was partially supported by the U.S. Department
[47,48 because we are not using a chaotic attractor as af Energy Grant No. DE-FG03-94ER14465. D.W.W. would
driving signal. In our neural system, the period-two limit like to thank G. A. Herin for helpful discussions.
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