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Entrainment control in a noisy neural system

Diek W. Wheeler* and W. C. Schieve†

Center for Studies in Statistical Mechanics and Complex Systems, Physics Department, The University of Texas, Austin, Texa
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The open-plus-closed-loop~OPCL! entrainment control put forth by Jackson and Grosu@Physica D85, 1
~1995!# is applied to an effective-neuron system as a way to extract stable limit cycles from a chaotic attractor,
analogous to the retrieval of memories from a memory searching state. Additive Gaussian white noise, repre-
senting the natural noise inherent in any real dynamical system, is added to the entrainment control mechanism.
Moderate levels of additive noise have little effect on successful entrainment, as reflected in phase-space plots
and Lyapunov exponents. All three Lyapunov exponents are negative, which suggests parallels between OPCL
control and chaotic synchronization.
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I. INTRODUCTION

In the 1990s there were literally hundreds of papers p
lished on the control of chaos in nonlinear systems. Reas
ably complete overviews of chaos control techniques can
found in Chen and Dong@1# and Boccalettiet al. @2#.

One such control mechanism is entrainment control,
which there are many variations. Here we discuss a met
which is based on the work first suggested by Hu¨bler @3# and
has since found many applications@4–10#. Jackson and
Grosu@11# extended Hu¨bler’s original control into an open
plus-closed-loop~OPCL! control scheme, so that it becam
applicable to most systems. Since its inception, the OP
control method has been expanded upon both theoretic
@12–20# and experimentally@21–23#.

OPCL control has some major strengths over other con
methods such as the parameter feedback mechanism o
Grebogi, and Yorke@24#. OPCL does not require access
the system parameters, and the goal dynamics are not lim
to unstable periodic orbits. OPCL control does, however,
quire a good model of the system dynamics for it to funct
properly.

The system model emphasized in this work is
effective-neuron system exhibiting chaotic dynamics
scribed by Wheeler and Schieve@25#. Even before the dis-
covery of chaotic dynamics within brain activity in 198
@26–29#, many proposals were made as to the nature
function of such dynamics. It has been suggested by Sk
and Freeman@30,31# and Tsuda, Koerner, and Shimizu@32#
that chaos allows a neural system to quickly search thro
and retrieve all stored attractors, or memories. Entrainm
control is investigated as a possible mechanism for such
call. Here we also examine how additive noise affects OP
control, since noise is a natural part of any biological syste

Section II reviews the theoretical basis for OPCL entra
ment control. The application of OPCL control to a
effective-neuron system and the extent of the basin of
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trainment are discussed in Sec. III. Section IV covers
introduction of noise to the OPCL control process, exam
ing the effects of additive noise on the transition from
chaotic attractor to a stable limit cycle. Concluding rema
are presented in Sec. V.

II. ENTRAINMENT CONTROL

In entrainment control, the objective is to entrain
system,

dx

dt
5F~x,t !, ~1!

to a desired goal dynamicsg(t) so that

lim
t→`

@x~ t !2g~ t !#50. ~2!

As this method of control was originally conceived,g(t)
would satisfy

dg

dt
5F~g,t !, ~3!

which could be any type of desired motion within th
system.

In order to satisfy Eq.~2!, the equation

dx

dt
5F~x,t !1S~ t !Fdg

dt
2F~g,t !G ~4!

must be met, whereS(t) is a switching function added to
ease violent transitions@7#. The portion in brackets is to be
satisfied at all times, as originally proposed by Hu¨bler and
Lüscher@4#.

The difficulty with this control method, as it stands, is th
it is hard to determine the extent of the basin of entrainm
for an arbitraryg(t). If the goal dynamicsg(t) do not over-
lap the basin of entrainment of the experimental dynam
x(t), then Eq.~2! will not be satisfied.

Jackson and Grosu@11# proposed a modification of this
entrainment control mechanism that expands the basin

f
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D. W. WHEELER AND W. C. SCHIEVE PHYSICAL REVIEW E67, 046219 ~2003!
entrainment to include the entire phase space for anyg(t).
The goal dynamicsg(t) can now describe any system,

dg

dt
5G~g,t !, ~5!

and can be independent of the experimental system. Jac
and Grosu’s more general solution to Eq.~4! is

dx

dt
5F~x,t !1S~ t !Fdg

dt
2F~g,t !1S ]F~g,t !

]g
2AD ~g2x!G ,

~6!

whereA is a constant matrix with eigenvalues that all ha
negative real parts.

Chen@33# independently suggested adding a term to E
~4!, however, the extended control of Jackson and Grosu@11#
is stronger, as it contains not only a control matrix but als
partial-derivative term, which ensures that Eq.~2! is satis-
fied. The necessity of this term can be shown by examin
the stability of a small perturbation introduced into the s
tem equations. Setx5g1u, whereu!1. This leads to

du

dt
5F~g1u,t !2F~g,t !2C~g,t !u. ~7!

If F(g1u,t) is expanded to first order about the perturbat
u, then

du

dt
5

]F~g,t !

]g
u2C~g,t !u5Au. ~8!

Since the eigenvalues of matrixA all have negative rea
parts, Eq.~2! is satisfied. Therefore, OPCL control esta
lishes a finite basin of entrainment for the goal dynami
With this in mind, the following section will explore the
implementation of entrainment control in a chaotic neu
system.

III. ENTRAINMENT CONTROL IN AN
EFFECTIVE-NEURON SYSTEM

The general entrainment control of Eq.~6! is now applied
to the effective-neuron system originally explored
Wheeler and Schieve@25#,

U̇15U2 , ~9!

U̇252
h1

M1
U22

K1

M1
U11

J11

M1
tanh~U1!

1
J13

M1
tanh~U3!, ~10!

U̇352
K3

h3
U31

J31

h3
tanh~U1!1

J33

h3
tanh~U3!,

~11!

whereU is the neural potential,h is the capacitance,K is the
conductance,M is the inertia/inductance, andJ is the weight
04621
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matrix for the network. This system is derived from the ba
two-neuron system explored by Zeng, Schieve, and Das@34#,
Kwek and Li @35#, and Beer@36#. The inertia/inductance is
added to provide oscillatory and resonant behavior, as w
as complexity. Biological support for this inertial term com
from instances where a neuron’s behavior can be descr
as if its equivalent circuit model possessed a phenomenol
cal inductance~Cole and Baker@37#; Hodgkin and Huxley
@38#; Detwiler, Hodgkin, and McNaughton@39#!. Further ex-
amples of phenomenological inductance can be found
Wheeler and Schieve@25# and Wheeler@40#. The parameter
M has no effect on the locations of the fixed points in pha
space, but it does influence the dynamic stability of the fix
points. UsingM as a bifurcation parameter, the system c
make transitions from period doubling to chaos. Figure
shows an example of how entrainment control can be use
this system. A chaotic attractor from the effective-neur
system is entrained to a period-two limit cycle, which al
exists within the neural system@25#.

A. Basin of entrainment

The extent of the basin of entrainment is used to evalu
the efficacy of entrainment control in the effective-neur
system. This is accomplished by examining the stability o
perturbation introduced into the system equations. Set
Ux5Ug1Ue , whereUe!1, and expandingF(Ug1Ue ,t)
about the perturbation leads to

dUe

dt
5AUe1

1

2

]2F~Ug ,t !

]Ug
2

Ue
21

1

6

]3F~Ug ,t !

]Ug
3

Ue
31••• .

~12!

Since the eigenvalues ofA all have negative real parts, firs
order solutions for the perturbationUe have the formUe

5Ue
0 exp(at) and vanish at large values oft. Applying Eq.

~12! to the effective-neuron system results in

dU1e

dt
5a11U1e , ~13!

FIG. 1. Deterministic entrainment control in an effective-neur
system. A chaotic attractor (M52.5) is entrained to a stable period
two limit cycle (M52.0), where both attractors exist within th
same system. Control-matrix coefficientsaii 521.
9-2
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dU2e

dt
5a22U2e1

J11

M1
F2sech2~U1g!tanh~U1g!U1e

2

1
1

6
sech2~U1g!@4tanh2~U1g!1sech2~U1g!#U1e

3

1•••G1
J13

M1
F2sech2~U3g!tanh~U3g!U3e

2

1
1

6
sech2~U3g!@4tanh2~U3g!

1sech2~U3g!#U3e
3 1•••G , ~14!

dU3e

dt
5a33U3e1

J31

h3
F2sech2~U1g!tanh~U1g!U1e

2

1
1

6
sech2~U1g!@4tanh2~U1g!1sech2~U1g!#U1e

3

1•••G1
J33

h3
F2sech2~U3g!tanh~U3g!U3e

2

1
1

6
sech2~U3g!@4tanh2~U3g!

1sech2~U3g!#U3e
3 1•••G . ~15!

Since the first-order perturbation solutions vanish, the
bility of the system is therefore determined by the remain
terms. The higher-order terms in Eqs.~14! and ~15! consist
of powers of tanh(Ug), sech(Ug), U1e , and U3e . The
tanh(Ug) terms are bound between21 and 11, and the
sech(Ug) terms are bound between 0 and11. The solutions
to U1e are known,U1e5U1e

0 exp(a11t), so all of the terms
containing powers ofU1e can be made to damp out arb
trarily quickly. If U3e is selected so that it is bound by th
exponentialC3exp(l3t), then inserting this solution into Eq
~15! results in

l3C35a33C31@~••• !e(2a112l3)t1~••• !e(3a112l3)t1•••#

1@~••• !el3t1~••• !e2l3t1•••#, ~16!

where the ellipses in parentheses have been used to re
clutter in the equation. Ifl3 is chosen such that 2a112l3
,0 andl3,0, then in the limit ast→`, l3→a33,0. A
similar approach can be used for Eq.~14!, which yields

l2C25a22C21@~••• !e(2a112l2)t1~••• !e(3a112l2)t1•••#

1@~••• !e(2l32l2)t1~••• !e(3l32l2)t1•••#. ~17!

By selectingl2 so that 2a112l2,0 and 2l32l2,0, then
as t→`, l2→a22,0. To summarize, the basin of entrai
ment for the effective-neuron system is not restricted
Ug(t) as long as the following inequalities are satisfied:

2a11,a22,0, ~18!
04621
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4a11,2a33,a22,0. ~19!

B. Criteria for entrainment control

The entrainment-control equations specific to t
effective-neuron system are

dU1x

dt
5U2x1S~ t !FdU1g

dt
2U2x2a11~U1g2U1x!G ,

~20!

dU2x

dt
52

h1

M1
U2x2

K1

M1
U1x1

J11

M1
tanh~U1x!

1
J13

M1
tanh~U3x!1S~ t !FdU2g

dt
1

h1

M1
U2x1

K1

M1
U1x

1
J11

M1
@~U1g2U1x!sech2~U1g!2tanh~U1g!#

1
J13

M1
@~U3g2U3x!sech2~U3g!2tanh~U3g!#

2a22~U2g2U2x!G , ~21!

dU3x

dt
52

K3

h3
U3x1

J31

h3
tanh~U1x!1

J33

h3
tanh~U3x!1S~ t !

3FdU3g

dt
1

K3

h3
U3x

1
J31

h3
@~U1g2U1x!sech2~U1g!2tanh~U1g!#

1
J33

h3
@~U3g2U3x!sech2~U3g!2tanh~U3g!#

2a33~U3g2U3x!G . ~22!

Jackson and Grosu’s@11# added control mechanism,

C5U]F~Ug ,t !

]Ug
2AU, ~23!

results in a cubic equation that can be solved for the eig
valuesl.

To insure that the eigenvalues of the matrixC(Ug ,t) have
negative real parts, the Routh-Hurwitz stability criteria mu
be met. Given the following general cubic equation to
solved for the eigenvalues ofC(Ug ,t),

l31b1l21b2l1b350, ~24!

the eigenvalues will all have negative real parts if the follo
ing three criteria are satisfied:

b1.0, ~25!

b3.0, ~26!

b1b22b3.0. ~27!
9-3
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D. W. WHEELER AND W. C. SCHIEVE PHYSICAL REVIEW E67, 046219 ~2003!
Since the Routh-Hurwitz criteria are inequalities, it
proper to maximize the terms in the equation before they
evaluated. This means setting the sech(Ug) terms to one.
Also, to be practical, specific values for the various para
eters are assigned,K15K35h15h351. As a final evalua-
tive simplification, all threeA-matrix coefficients are as
sumed to be the same (5a11). The stability criteria are now

b15
1

M1
112J3323a11.0, ~28!

b35
1

M1
2

J11

M1
2

J33

M1
1

J11J33

M1
1

J13J31

M1
1S J33

M1
1

J11

M1

2
2

M1
Da111S 12J331

1

M1
Da11

2 2a11
3 .0, ~29!

b1b22b35F 1

M1
112J3323a11GF 2

M1
2

J11

M1
2

J33

M1

1S 2J332
2

M1
22Da1113a11

2 G2F 1

M1
2

J11

M1

2
J33

M1
1

J11J33

M1
1

J13J31

M1
1S J33

M1
1

J11

M1
2

2

M1
Da11

1S 12J331
1

M1
Da11

2 2a11
3 G.0. ~30!

As an initial approximation, the first criterion is used
evaluatea11,

a11,2
1

3 F 1

M1
112J33G . ~31!

By inserting the valuesM152.5 andJ3351.44, which have
been demonstrated to yield chaotic behavior by Wheeler
Schieve@25#, the inequality becomes

a11,2
1

3 F 1

2.5
1121.44G520.04. ~32!

Therefore, given Eq.~32!, which satisfies Eqs.~18! and~19!,
it is reasonable to select nearly any negative number fora11
to achieve full entrainment control. The only caveat is if o
chooses a value ofa11 that lies close to the inequality bound
ary. This may result in the basin of entrainment being
duced and Eq.~2! not being satisfied. To avoid such an o
currence,a11 should be selected so thata11!20.04.

IV. NOISY ENTRAINMENT CONTROL

Noise is inherent in any biological system, therefore,
OPCL control technique is modified to include additi
noise. One of the keys to implementing the control meth
lies in the eigenvalues of the control-matrixA. Under noisy
control, matrixA is replaced with matrixN(t), the coeffi-
04621
re

-

d

-

e

d

cients of which are produced by adding Gaussian white no
with zero mean and unit variance to the coefficients of m
trix A.

The form of the switching functionS(t) used in these
simulations is

S~ t !512e2l(t2tON), ~33!

wheretON is the time step value at which the switching fun
tion activates andl50.1 for all of the simulations.

A. Noise as a control mechanism

Skarda and Freeman@30,31# and Tsuda, Koerner, an
Shimizu @32# have suggested that chaos in brain dynam
would allow for the rapid search and retrieval of stor
memories. Several groups have specifically looked at the
bilization effects of noise in both real and model neural s
tems. Freemanet al. @41# looked at noise in a model of th
olfactory bulb. In biologically-realistic solutions to the
model, they were able to stabilize the chaotic dynamics
the system by adding low levels of noise. Rajasekar a
Lakshmanan@42# looked at the effects of Gaussian noise
chaos in a Bonhoeffer–van der Pol oscillator. They disc
ered that for a critical noise level, the maximal Lyapun
exponent becomes negative, and the system loses its s
tive dependence on initial conditions. Wang@43# explored
the effects of a dynamical environment on model neural n
works. He described how varying the noise level with tim
can induce transitions from ordered states to chaotic sta
and vice versa. He proposed that such a varying environm
might facilitate information processing, such as memory
trieval. Whereas the above groups examined the use of n
as a control mechanism unto itself, we investigate the effe
of adding noise to an already established deterministic c
trol mechanism.

B. Entrainment from a chaotic attractor

Here we discuss a chaotic attractor entrained to a per
two limit cycle. Both attractors exist within the effective
neuron system described previously in Sec. III@Eqs. ~9!–
~11!#, with K15K35h15h351 and

J5U 0.43 1.50

20.25 1.44
U. ~34!

The chaotic attractor occurs atM52.5, and the limit cycle
appears atM52.0. The entrainment equations are same
Eqs.~20!–~22! from Sec. III, except theaii terms have been
replaced by their stochastic counterparts,nii (t)521
1noise. To reiterate, the concept being explored is the a
ity of the neural system to use the chaotic attractor to sea
through its memory space, in the presence of noise, until
system finally entrains to a desired memory@30–32#.

The lower limit for the noise amplitude (1025) was de-
termined by the accuracy of the Lyapunov exponent calcu
tions, which were halted when all three exponents w
stable to five decimal places. The upper limit (1022) was
9-4
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ENTRAINMENT CONTROL IN A NOISY NEURAL SYSTEM PHYSICAL REVIEW E67, 046219 ~2003!
kept roughly two orders of magnitude below the amplitu
of the normal phase-space displacement of the system
namics. The Lyapunov exponents were calculated using
method of Wolfet al. @44#. The deterministic equations wer
numerically integrated with a fourth-order Runge-Kutta
gorithm @45#, and the stochastic equations were integra
with a second-order Runge-Kutta algorithm@46#.

Figure 2 shows ten iterations of the noisy entrainm
dynamics for an added noise level of 1022. Once the entrain-
ment mechanism is activated, the phase-space paths fo
different iterations begin to diverge. Despite this divergen
when the paths approach the limit cycle, they begin to rec
verge.

The Lyapunov exponents are21.4031023, 279.70
31023, and 281.9531023 for the deterministically en-
trained system. Entrainment with increasing levels of no
causes the average first Lyapunov exponent to drift tow
less negative values, as depicted in Fig. 3~a!. Each point in
the plot represents one thousand iterations of the stoch
dynamics, and the error bars depict one standard devia
from the averages. Overall, it appears that the presenc
noise in the dynamics has little effect. The changes in
second and third Lyapunov exponents are depicted in F
3~b! and 3~c!. Again, there is a slight deviation in the exp
nents from the deterministic values as the noise level is
creased, but the absolute magnitudes of the exponents re
fairly small and negative.

V. CONCLUSION

The OPCL entrainment control method developed
Jackson and Grosu@11# can be modified by additive Gaus
ian white noise. This noisy entrainment control, when a
plied to an effective-neuron system, provides a robust wa
extract stable limit cycles from a chaotic attractor, in analo
to a memory being recalled from a memory-searching s
@30–32#.

Noise is present in any real dynamical system, and

FIG. 2. Stochastic entrainment control in an effective-neu
system. Ten iterations of a chaotic attractor (M52.5) are stochas-
tically entrained to a period-two limit cycle (M52.0). Despite the
divergence of the phase-space paths from one another due to a
noise, eventually all ten paths become entrained to the limit cy
Control-matrix coefficientsaii 521 with an added noise level o
1022.
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central nervous system is no exception. Therefore, nois
added to the entrained neural system to represent a low-l
background that may originate as stray signals from vari
parts of the nervous system at large. The moderate leve
noise added to the OPCL control mechanism have little
fect on the stability of the entrained attractors. This is
flected in phase-space plots and moderate changes in th
erage values of the Lyapunov exponents.

The fact that all three Lyapunov exponents are negativ
suggestive of a synchronization criterion put forth by Pec
and Carroll @47,48#. The conditional Lyapunov exponent
must be negative to successfully synchronize chaotic syst
@47,48#. Grosu@13# and Chen and Liu@20# have previously
applied OPCL control to synchronize chaotic systems, a
Grosu described the mechanism as being robust in the p
ence of additive noise. Toralet al. @49# recently concluded

n

ded
e.

FIG. 3. Average Lyapunov exponents during stochatic entra
ment~as in Fig. 2! for noise levels ranging from 1025 to 1022. The
horizontal dotted lines represent the deterministic values for the~a!
first (21.4031023), ~b! second (279.7031023), and ~c! third
(281.9531023) Lyapunov exponents. The average exponents
viate only slightly from the deterministic values. Each data po
represents the average Lyapunov exponent after 1000 iterations
chaotic attractor (M52.5) being stochastically entrained to
period-two limit cycle (M52.0). The error bars represent one sta
dard deviation around the ensemble average.
9-5
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D. W. WHEELER AND W. C. SCHIEVE PHYSICAL REVIEW E67, 046219 ~2003!
that noise can aid in chaotic synchronization. Our resu
however, correspond more with Grosu’s than with To
et al.’s, although we have made a more quantitative analy
of the effects of noise on OPCL control.

Our application of OPCL control to the effective-neuro
system also differs from traditional chaotic synchronizat
@47,48# because we are not using a chaotic attractor a
driving signal. In our neural system, the period-two lim
,
,

a,

ls

i.

c

pl

04621
s,
l
is

a

cycle drives the behavior of the chaotic attractor, so that
memory state drives the response of the search state
synchrony.
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