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Signatures of chaotic tunneling
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Recent experiments with cold atoms provide a significant step toward a better understanding of tunneling
when irregular dynamics is present at the classical level. In this paper, we lay out numerical studies that shed
light on the previous experiments and help to clarify the underlying physics. This study also provides guide-
lines for future experiments.
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I. INTRODUCTION

When studying tunneling in nonseparable systems w
more than one degree of freedom, one immediately enco
ters difficulties which generally can be traced back to
absence of sufficient constants of motion. Even in the v
particular case of integrable systems, where continuous s
metries provide as many constants of motion as degree
freedom, as soon as separability is lost, the analysis of
neling is not a simple generalization of what occurs in o
dimensional~1D! autonomous systems. The latter case is
tailed in textbooks on quantum physics~see, for instance
Ref. @1#! and it has even been possible to give a compreh
sive analytical treatment in term of complex solutions of t
Hamilton equations@2#. However, it was not until the mid
1980’s that a satisfactory quantitative approach was propo
@3,4# for tunneling in nonseparable integrable systems
volving a larger number of dimensions. Moreover, integ
bility is a property of higher-dimensional systems which
not generic. The coupling between several internal deg
of freedom as well as the coupling to an external sou
usually destroys some global constants of motion. With s
a lack of constraints on the dynamics, the classical motio
phase space may become chaotic: it may explore volu
with higher dimensionality and therefore becomes expon
tially sensitive to the initial conditions. It is not surprisin
that these deep qualitative differences between an integr
regime and a chaotic one appear at the quantum level,
Some of the properties of aquantumsystem do change whe
constants of motion are broken. Indeed, it is the very ob
of quantum chaos to study the signatures of classical cha
the quantum level~see for instance, Ref.@5# to realize how
rich, vivid, and successful this domain is!.

We define tunneling as a quantum process which is
bidden in real classical solutions of classical equations
motion. In this paper, we consider Hamiltonian systems o
and study how the nondissipative breakdown of continu
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symmetries affects tunneling. We do not consider how t
neling is modified by dissipation and decoherence of
quantum wave. Of course, this requires great care in
experiments, where making dissipation negligible is alway
hard task. This is one of the main reasons why very few r
experiments have been done on these questions. Such ex
ments would definitely help to understand tunneling in t
presence of chaos~as far as we know, the only experimen
explicitly made on chaotic tunneling in the 20th century a
those presented in Ref.@6# with electromagnetic microwave
instead of quantum waves!.

During the past 15 years, however, theoretical and
merical investigations on autonomous 2D and tim
dependent 1D Hamiltonian systems have highlighted so
mechanisms@3,4,7–12# and substantial information has bee
collected on the influence of nonseparable dynamics. Exp
mental evidence of such mechanisms would be of great
terest, especially in light of the subtle interplay between
terferences and disorder. These phenomena lie in the ge
context of wave transport in complex media where the r
of disorder is played by the~deterministic! chaotic dynamics
instead of having a statistical random origin. Of course, ot
important motivations can be found in the numerous d
mains where tunneling plays a crucial role as a fundame
quantum process: ionization@13#, absorption, nuclear radio
activity, molecular collisions, mesoscopic physics etc. Mo
speculatively, studies on tunneling in high-dimension
Hamiltonian systems should provide us with a natural ext
sion of the instanton techniques. These techniques deal
quantum field theories which are reducible to effective
autonomous Lagrangian systems.

In 2001, it was shown both theoretically@14# and experi-
mentally @15–18# that atom cooling techniques@19# ~and
possibly molecular physics as well, where formally simil
systems have been extensively studied@20–23#! yield sys-
tems which fulfill all the severe requirements for studyi
tunneling in the presence of classical Hamiltonian chaos:
curate manipulation of internal and external degrees of fr
dom, precise control of dissipation and decoherence, and
preparation/detection setup. For a brief account intended
a large audience, see Refs.@24–26#. The aim of the presen
paper is to suggest challenging experiments that remain t
©2003 The American Physical Society16-1
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done for reasons which will hopefully become clear in t
following.

This paper is organized as follows. In Sec. II we give
general and informal overview. In Sec. III, we briefly reca
the main theoretical apparatus that is needed. We implic
refer to Ref.@14# for details and demonstrations. In Sec. I
we comment on the results of Refs.@15# and@16#. In Sec. V,
we show in this context, with the help of numerical expe
ments, the very precise form taken by the phenome
known as chaos-assisted tunneling. We explain why it
not been observed yet with real atoms and propose how
actually bring it to the fore. Before the concluding remarks
Sec. VII, we give in Sec. VI some more numerical resu
that illustrate how subtle the signatures of chaotic tunne
can be.

II. CHAOTIC TUNNELING

The simplest situation with which to illustrate tunneling
probably the case of a particle in a 1D time-independ
symmetric double-well potential@see Fig. 1~a!#. Starting in
one well, with an energy that is below the maximum of t
potential, a quantum particle can jump into the other w
with a nonzero probability, though it is a forbidden classic
process. In addition to the classical time scalet given by the
oscillating periodinsideone well, we therefore have a longe
time scale: the tunneling periodT@t of the oscillationsbe-
tweenthe wells. In the eigenenergy spectrum, tunneling
pears as a quasidegeneracy of the odd- and even-symm
states whose energies are both of the order of\/t but differ

FIG. 1. A generalization of the paradigmatic double-well pote
tial ~a! is to consider tunneling between stable islands that are
lated by any discrete symmetry in phase space;~b! corresponds to
Hamiltonian~2! with u51 andg50.018. Here, the time reversa
symmetry plays the role of parity in~a!.
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by an exponential energy splitting

De5
2p\

T
;e2A/\ ~1!

whereA is an\-independent typical action and can be inte
preted in terms of a unique complex classical trajectory
der the barrier@1,27#.

In the following we generalize this elementary situation
two ways. First, unlike the parity in the previous examp
we can deal with a symmetry which is not necessarily eit
a spatial one or a twofold one. In other words, we can h
any discrete symmetry group acting on the whole ph
space as well as anyN-fold symmetry which leads to
bunches ofN-uplets in the energy spectrum~or bands ifN
@1). In the following we keepN52 since we have a two
fold symmetryT actually playing the role of parity@see Fig.
1~b!# and being somehow decoupled from the other discr
symmetries. The classical structure in phase space is glob
invariant underT and the quantum eigenstates can be cla
fied according to their symmetric or antisymmetric charac
under the unitary transformation which representsT in the
Hilbert space of states. BecauseT acts in phase space, it i
usually more complicated than a pure spatial transformat
Thus, the two regions of phase space connected byquantum
tunneling, butclassicallynot connected, are in general n
separated by a simple potential barrier, but by a more co
plicated dynamical barrier. In such a case, tunneling is ca
‘‘dynamical tunneling’’ as suggested by Davis and Heller
Ref. @28#. It often happens that the classically unconnec
region are associated with the same region of configura
space, with different momenta. A simple study of the dens
probability in configuration space is then insufficient to ch
acterize dynamical tunneling; an analysis of the dens
probablility in momentum space is required.

The second kind of generalization leads to much m
puzzling questions. When dealing with systems with seve
degrees of freedom or, equivalently, if an external time
pendence exists, classical trajectories generally lose t
regular behavior. They cannot analytically be computed a
are organized in a fractal hierarchy that is described by
Kolmosorov-Arnold-Moser ~KAM ! perturbative scenario
Recently, important progress has been achieved in the un
standing of the continuation of these intricate structures
complex phase space and their role at the quantum level~see
Refs.@29,30# and especially Ref.@31#!. We are therefore led
to the following typical quantum chaos question: if one
able to create two symmetric stable islands separated in c
sical phase space by a chaotic sea whose volume is u
control ~see Fig. 2!, what is the effect of this sea on th
~dynamical! tunneling between the islands?

The ‘‘dual’’ situation where chaos is createdinside the
wells while the dynamical barrier is kept regular has be
introduced and studied theoretically and numerically in R
@11#. For a better understanding of what occurs in the ene
spectrum when regular wells are separated by a chaotic
it was proposed in Ref.@32# to slightly break the tunneling
symmetry. Nevertheless, in the present paper, it must be
in mind that a discrete symmetry will always be maintain

-
e-
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SIGNATURES OF CHAOTIC TUNNELING PHYSICAL REVIEW E67, 046216 ~2003!
exactly. Finally, a third kind of generalization, where th
Hamiltonian character is destroyed by introducing dissi
tion and/or coupling into a thermal bath, is beyond the sc
of this work @33#.

III. EFFECTIVE HAMILTONIAN SYSTEM

Following Refs.@14–16# ~see also Ref.@34# in a different
context! we deal with an effective 1D time-dependent syst
whose Hamiltonian is

H~p,q;t !5
p2

2
2g~u1cost !cosq ~2!

in dimensionless units.g andu are two classical real param
eters that can be modified in real experiments. In addit
there is also one parameter, namely\eff , which fixes the
quantum scale and is defined by the usual relation betw
canonical operators:@q,p#5 i\eff . It turns out that\eff is not
constant any longer~see Sec. IV below!. It can be also ex-
perimentally varied via the rescaling factor that is needed
the canonical commutation relation in order to work in d
mensionless units used to write Eq. 2.

The time dependence breaks the conservation of ene
and therefore may generate chaos. In order to deal with s
a Hamiltonian, it is crucial to remark that it has both a spa
and a temporal periodicity. The latter implies that the Floq

FIG. 2. Poincare´ surfaces of section correspond to Hamiltoni
2 at t50 with u51.724 137. Two stable islands in the vicinity o
the origin are created by a pitchfork bifurcation atg.0.56. Above
this value, chaotic motion progressively invades phase space in
tween the two stable islands. Atg.gc.0.625, the latter are no
longer connected by regular trajectories. The experimental con
ration used in the NIST experiments corresponds tog50.96 just
before the islands disappear in a bifurcation cascade atg.0.97.
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theorem can be used, which states that the Hilbert spac
spanned by an orthonormal eigenbasis of the evolution
erator over one period. The corresponding eigenvalues
this unitary operator are distributed on the unit circle and a
therefore, labeled by their phase. This is conveniently writ
as exp(2i2pe/\eff), where 2p stands for the period of the
modulation ande can be interpreted as a quasienergy, a g
eralization of the notion of energy level for a time-period
system.

The spatial periodicity of the Hamiltonian is also e
tremely important, as it makes it possible to split the Hilb
space into independant components, each component b
characterized by the so-called Bloch vectork in the
] 20.5,0.5] range: under translation of 2p along q, the
quasienergy eigenstates are just multiplied by the phase
tor exp(i2pk). Thus one has to solve the Floquet-Schro¨dinger
equation in an elementary spatial cell with boundary con
tions depending onk. In this way, one generates—for a fixe
value of k—a discrete quasienergy spectrume i(k). When
the full range ofk values is considered, one obtains the
miliar ~quasi!energy bands@35#.

There is an additional discrete symmetry which can
used. The Hamiltonian~2! is invariant under the time-
reversal symmetry (q,p,t)→(q,2p,2t). In the classical
surfaces of section, this implies a symmetry with respec
theq axis. In situations like the one in Fig. 1~b!, this implies
the existence of pairs of symmetric classically unconnec
tori, i.e., a situation where tunneling could be observed.
the quantum world, the situation is slightly more comp
cated, because this symmetry connects thek subspace to the
2k subspace. In the particular casek50 (k50.5 could also
be used!, this implies that the Floquet eigenstates can be s
into two subclasses of states which are either even or
under the symmetry operation. The splitting between a d
blet of even and odd states,Den5uen

1(0)2en
2(0)u, will be a

measure of tunneling.
We will extensively use the Husimi representation of

quantum state@36#. Such a representation associates w
each quantum stateuc& a phase space functioncH(p,q)
~wherep andq are real numbers! defined by

cH~p,q!5u^zuc&u2, ~3!

whereuz& is the coherent state corresponding to the comp
numberz5(q1 ip)/A2\eff. Sinceuz& is a minimal Gaussian
wave packet with average momentump and average position
q, the Husimi functioncH(p,q) contains some information
about the degree of localization ofuc& in phase space. It is
then possible to associate quantum states with classical p
space structures.

IV. EXPERIMENTS WITH COLD ATOMS

Under some severe conditions which constrain the exp
ments, Hamiltonian~2! can be obtained as an effective d
mensionless Hamiltonian for cold neutral independent ato
of mass M interacting with two counterpropagating las
beams@14–16#. These two beams have two slightly differe
frequencies atvL1dv/2 and vL2dv/2. The longitudinal

e-

u-
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A. MOUCHET AND D. DELANDE PHYSICAL REVIEW E67, 046216 ~2003!
coordinate x and the dimensionlessq are related by
q52kLx, wherekL5vL /c. The rescaling of the momentum
is given by p5(2kL /Mdv)px . g and u are fixed by the
intensity of the lasers and the detuning of the laser frequ
cies with respect to the atomic resonance. The dimension
time t is taken indv21 units and the expression of the e
fective Planck constant is\eff58vR /dv, where vR

5\kL
2/2M . Sincein fine we want to measure exponential

small tunneling splittingsDe, it is necessary to maintain
these conditions for a time at least longer than\eff /De.
Moreover, a very accurate control of the preparation of
initial state and of the analysis of the final state is comp
sory.

As shown above, due to the temporal and spatial per
icity of the Hamiltonian, observing the standard signature
tunneling—that is, an oscillation of a quantum state betw
two classically unconnected regions of phase spac
requires that a single doublet of Floquet-Bloch eigenstate
initially populated, with well-defined values of the param
eters (g,u,\eff), and a well-defined value of the Bloch ang
k. If more than a single doublet is populated, additional f
quencies~related to energy differences between the vario
populated Floquet states! will appear in the temporal evolu
tion. If any parameter is not fixed, the experimental sig
will be the superposition of tunneling oscillations~with dif-
ferent frequencies! for various sets of parameters. This w
at best—if the dispersion of the parameter values is rea
ably small—blur the oscillations at long times and at wo
will completely destroy the signature of dynamical tunn
ing. It is experimentally rather simple to keep an accur
time periodicity of the driving signal, i.e., to fix\eff . Simi-
larly, the balance between the constant and the oscilla
term, hence the parameteru in Eq. ~2!, is easily controlled.
The g parameter is proportional to the laser intensity a
may thus slightly vary across the atomic cloud~because of
the transverse structure of the laser beams!. The most diffi-
cult part is to be sure that a single Bloch anglek is excited.
Indeed, this requires a phase coherence of the initial w
function over a large number of laser wavelengths, which
extremely difficult to achieve experimentally@37#, as will be
shown in the following. In any case, the inhomogeneo
broadening of the experimental signal because of the dis
sion in k will be responsible for a decay of the tunnelin
oscillations.

A. NIST experiments †15‡

In the NIST experiments, the two stable symmetric
lands are chosen quite close in phase space in order to
with not too small splittings. Another crucial point of th
experiment is that the classical motion of the islands o
one period, unlike those in Refs.@14# and @16#, always re-
mains trapped in one spatial elementary cell of length 2p.
The quantum states localized in these islands are co
quently only weakly sensitive to the boundary conditio
which are governed by the Bloch angle. In other words,
tunneling period will be only weakly dependent on the Blo
anglek. This implies that the unavoidable broadening ovek
will not spoil too much the signature of tunneling. This is
04621
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major improvement over the tunneling described in Re
@14,16#, where a very narrow band of Bloch angle is requir
to observe clear tunneling oscillations. Moreover, the ato
involved in the tunneling process stay longer in the reg
where the laser intensities are uniform.

Indeed, as proposed in Ref.@38# and Chaps. 4 and 5 o
Ref. @17#, the two stable symmetric islands are created fr
a pitchfork bifurcation of the fixed point at (p,q)5(0,0). To
visualize it @see Figs. 2~a! and 2~b!#, we extract a one-
parameter sequence by varyingg while u is fixed to the
experimentally chosen value in Ref.@15#, i.e., u
51.724 137. Wheng is increased, the pairs of symmetr
tori appear atg.0.56. At the center of each set of tori, the
is a periodic orbit. Over one period of the driving, the pe
odic orbit is essentially a rotation over the fixed point
(p,q)5(0,0). This explains that the whole structure rema
trapped in a single spatial cell. For 0.56&g<gc , the tori
remain nested in one connected stable island. Atg5gc
.0.625, a chaotic sea separates the symmetric islands w
shrink and move away from the central point before be
dissolved through a cascade of bifurcations starting ag
.0.97.

In one series of experiments,g.0.96 and\eff.0.8, the
atoms are prepared in one island and their average mom
tum ^p& is measured stroboscopically at every modulat
period (52p in dimensionless units!. Since in phase spac
the islands rotate about the origin with the same period,
variation in ^p& would be noticeable if no tunneling oc
curred. In fact, starting the measurement sequence when^p&
has its maximum value, oscillations are observed which
lustrate the back and forth motion of the atoms between
islands due to dynamical tunneling. The tunneling periodT is
about 10 modulation periods in this case (200ms). This is in
perfect agreement with the quasienergy splitting obtained
merically for the two Floquet eigenstates having the larg
Husimi functions inside the islands.

It is worth noting that the NIST group uses a Bos
Einstein condensate as a preliminary step for preparing
oms in well-defined quantum states, especially for achiev
a large coherence length for the wave function, i.e., a sm
spreading of the Bloch anglek. In order to prepare phas
space localized states, an optical lattice is carefully turn
on. When the tunneling experiment starts, the atomic den
and the interaction between atoms is sufficiently small, a
the experiment can be described by the interaction of in
vidual independent atoms with the laser beams, i.e., us
Hamiltonian~2!. However, the cloud of atoms remains co
enough, at a subrecoil temperature, to prevent a large the
broadening of momentum distribution that would destroy
signal. Because they start from very low temperature, th
preparation techniques based on condensate manipul
seem to allow greater room to maneuver than those work
with thermal clouds only. Adiabatic switching of the ligh
potentials is not required and one can actually work w
values of the classical parametersg andu which are far from
the perturbative regime of an integrable system.

By diagonalizing the evolution operator corresponding
Eq. ~2! over one period, we are not only able to reprodu
the oscillatory behavior of̂p(t)& @see Fig. 3~a!#, but also can
6-4
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SIGNATURES OF CHAOTIC TUNNELING PHYSICAL REVIEW E67, 046216 ~2003!
study the spoiling effect of the thermal dispersionDp
}Atemperature and predict the maximum allowed tempe
ture @see Figs. 3~b! and 3~c!# @48#. If a denotes the width of
the momentum distribution in recoil momentum units, it c
be shown~@14#, Sec. 6 A! that it corresponds to a statistic
mixture of Bloch states withDk5a/2. Figure 3#~a! corre-
sponds to the ideal situation where all atoms are prepa
with a!1 about thek50. When a small but nonvanishinga
is introduced, some states of the quasienergy bands with
vanishingk get involved and blur the tunneling oscillation
For a50.2, the oscillation amplitude is reduced by a fac
of 2 and fora50.4 the oscillations nearly disappear. The
fore, in this experiment, having a subrecoil atom cloud
essential.

In the following we want to focus on tunneling only an
we will implicitly keep k50.

B. Austin experiments †16‡

For a better understanding of the dynamics, one mus
beyond the two-level model involving the symmetric and t
antisymmetric states only. Other states must be taken
account and their influence can be felt when a classical

FIG. 3. Numerical simulation of the quantum evolution, in t
conditions of the NIST experiment, i.e.,u51.72 ,g50.96 and,
\eff50.8 ~compare to Fig. 4~a! of Ref. @15#!. Starting att5p/2 with
a Gaussian wave packet whose Husimi function is localized in
stable island~with a vanishing average momentum!, we follow the
average momentum̂p& as time evolves. The stroboscopic measu
ments at times 2p12mp (p12mp) with mP$0,1, . . . ,40% are
plotted with the white~black! circles. The tunneling oscillations ar
clearly visible; the tunneling period can be extracted from the ty
cal time scale of the envelope: it is about 10 modulation periods
the upper plot~a!, we assume that a single Bloch anglek50 is
initially prepared~which implies a perfect phase coherence of t
wave function across the optical lattice!. The ~thermal! dispersion
of the Bloch angle washes out the signal: in case~b!, we take a
momentum distribution with widthDp5a52Dk50.2 and in case
~c! Dp50.4. In the latter case, the amplitudes of the envelopes
so weak that this corresponds to an upper bound in tempera
~about 1/5 of the recoil temperature! at which tunneling can be
measured.
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rameter (g or u) or the quantum one (\eff) is continuously
varied. Two~quasi!energies may exactly become degener
if they belong to distinct symmetry classes. If not, they m
follow a so-called avoided crossing whose size reflects b
the direct coupling between the two states~more precisely,
the off-diagonal matrix element of the coupling perturbatio!
and the indirect coupling to other states. One of the keys
the chaotic tunneling problems is to clearly identify th
qualitative nature and the quantitative influence of indir
coupling. This is the background of the Austin experimen

A third level is involved in a non-negligible indirect cou
pling when its quasienergy approaches the tunneling dou
energies. This can be understood from perturbation the
since the leading term of the indirect coupling is proportion
to the inverse of the energy difference. The two generic s
narios of the crossing of the doublet by a third state
shown in Fig. 4. Aside from the unavoidable ambiguous d
nition of the splitting, it appears clear that case~a! corre-
sponds to an increase of the tunneling splitting during
crossing while, conversely, case~b! can lead to arbitrarily
small splittings, since an exact degeneracy occurs. Th
such a crossing by a third state produces a sharp variatio
the tunneling period that can be measured experiment
This is actually what is observed in the Austin experime
and can be confirmed by numerical experiments as show
Fig. 5. When looking at the Husimi representation of t
states, Fig. 6, one can immediately distinguish between
tunneling doublet and the third state sufficiently far from t
crossing. As expected, the tunneling doublet has Husimi r
resentations localized in the stable islands, though they
spread in the chaotic sea. On a classical Poincare´ surface of
section, it is easy to make the difference between chaotic
regular motion; how to transpose this distinction at the qu
tum level is not known with the large values of\eff used in
both the Austin and the NIST experiments. Some class
structures much smaller than the de Broglie wavelength
possibly present in some of the states@49#, but just looking at

e

-

i-
n

re
re

FIG. 4. When a third level is crossing a tunneling doublet wh
a parameter of the Hamiltonian is varied, there is an avoided cr
ing between the third level and the member of the doublet with
same symmetry, while the other member of the doublet~with op-
posite symmetry! ignores the third level. Two generic scenarii exis
in case~a!, the tunneling splitting increases in the vicinity of th
avoided crossing; in case~b!, it decreases and vanishes at a spec
value of the parameter.
6-5
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A. MOUCHET AND D. DELANDE PHYSICAL REVIEW E67, 046216 ~2003!
the Husimi representation of the third state for\eff.1 does
not make it possible to attribute any chaotic or regular ch
acter to it. It is only for much smaller\eff that chaotic or
regular wave functions make sense. This is not surpris
the dichotomy between regular and irregular motion is
classical one and, at present, it can be extrapolated a
quantum level within the semiclassical regime only. Anyw
one must keep in mind that tunneling only makes sens
the semiclassical regime. One of the great merits of the A
tin experiments is that they show a quantum tunneling ef
where an indirect process is involved. However, it is an
ageration to attribute any chaotic origin to it.

V. NUMERICAL EVIDENCE OF A CHAOTIC
TUNNELING REGIME

It was one of the first successes of quantum chaos to h
shown that the energy levels of an integrable system
independent of each other, because they are localized on
ferent classical tori, while in chaotic systems level repuls

FIG. 5. Numerical results obtained with the parameters of
Austin experiment, that is Hamiltonian~2!, with u51 and \eff

50.33. The lower plot shows a part of the quasienergy spect
when g is varied. Thick lines show the two quasienergies who
difference is the tunneling splitting plotted in the upper plot. T
two states are selected to have the largest localization of the Hu
function at the center of the stable islands. When a third le
couples to the state that belongs to the same symmetry clas
avoided crossing can be seen and the definition of the double
comes necessarily ambiguous. There, some discontinuity in the
lected state~and in the slope of the tunneling frequency! cannot be
avoided. The tunneling splitting is shown as a function ofg in the
upper plot, and is compared with the experimental results from R
@16#. The agreement is very good, which validates the numer
approach. Aroundg50.2, a discrepancy is visible. This is precise
the ‘‘ambiguous’’ region where the dynamics cannot be reduced
simple tunneling oscillation, but at least three levels must be ta
into account, leading to several relevant energy splittings.
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is the rule. Following the discussion in the preceding secti
one may therefore expect that the average size of avo
crossings is increased when chaos is present. The fluc
tions of a tunneling process which should be narrow a
sparse in an integrable regime should be broader, more
merous, and possibly involving many states in a chaotic
gime. We now illustrate this statement in the framework
the experimental atomic Hamiltonian~2!.

There are two different ways of rendering chaos obse
able by quantum eyes: the first one consists of increasing
volume of the chaotic sea with the help of a classical para
eter, the second one fixes the classical dynamics and
creases\eff . We will present in both ways.

One may try to study the tunnelingfluctuationsseparately
from the average behavior. This average—in a somewha
vague sense—is increased, because chaos diminishe
classical dynamical barrier@50#, and this is the reason wh
the phenomenon can be called chaos assisted tunne
However, as far as only fluctuations are concerned~there can
be an enhancement or a decrease as well!, the words ‘‘chaos
assisted tunneling’’~CAT! @10# may lead to confusion and w
simply use ‘‘chaotic tunneling.’’At last, Brodier, Schlaghec
and Ullmo discovered what they called ‘‘resonant assis
tunneling’’ ~RAT! @42# to describe an enhancement of tunn
ing due to an indirect process. It involves one or seve
quasimodes localized in the secondary resonances surro
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FIG. 6. ~a!, ~b!, and ~c! show the density in gray scale of th
Husimi functions associated with the three states which play
important role for tunneling atg50.25 ~parameters of the Austin
experiment, as in Fig. 5!. As expected, the two members of th
doublet,~a! and~b!, have their Husimi function localized about th
two symmetric islands visible in the classical Poincare´ surface of
section~d!. ~b! is strongly coupled to a third states shown in~c!. \eff

is too large to attribute any regular or chaotic character to the t
state.~c! clearly plays a role in the enhancement of the tunnel
splitting through an indirect coupling; this is thus an ‘‘assisted tu
neling’’ mechanism, which cannot be unambiguously characteri
as chaos assisted.
6-6
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ing the main symmetric islands. Up to now, RAT has be
studied quantitatively in a purely quasi-integrable case
there are clues that it can be extended far beyond K
theory.

A. g change

Let us first take\eff ten times smaller than the values
the NIST and Austin experiments. It is much easier to do
numerically than experimentally, as it requires the incre
of the modulation frequency of the laser beams by one o
of magnitude. We then follow the quantum states through
classical bifurcation shown in Fig. 2 and discussed in S
IV A. Again, in order to calculate the tunneling splittingDe,
we select the states that have the largest Husimi funct
inside the islands.

Figure 7 shows that, after a smooth decrease ofDe up to
g5gc.0.625 there is an abrupt change of regime. First,
mean value ofDe increases and second, many fluctuatio
appear which modify the splitting by several orders of ma
nitude. It is remarkable that this change of regime can
matched on the Poincare´ surfaces of section. The smoo

FIG. 7. The tunneling splitting as a function ofg, for u
51.724 137 and\eff50.079 638, that is ten times smaller than
the NIST experiments. Two regimes are clearly separated by
critical valuegc.0.625; these twoquantumregimes correspond to
two differentclassicalregimes in the Poincare´ surfaces of section in
Fig. 2. The smooth average decrease with sparse and narrow
tuations (g,gc) corresponds to the case where the symmetric c
sical tori belong to the same regular island. The Hamiltonian th
can be approximated by a simple integrable Hamiltonian, using
normal form described in the Appendix. The dotted line cor
sponds to the splitting calculated with this normal form and is
good agreement with the numerical result. In the second reg
(g.gc), there are huge quantum fluctuations of the tunneling sp
ting ~and a slightly increased average value!. Classically, this cor-
responds to tunneling between unconnected symmetric isla
separated by a chaotic sea.
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tunneling regime occurs when the resonant tori belong to
quasi-integrable island. Forg,gc , we are able to reproduc
the main features of tunneling by using an integrable
proximation~see Appendix!. The decrease of tunneling ca
be explained in terms of the lengthening of the dynami
barrier.gc exactly corresponds to the point where the islan
get disconnected. In addition, one can follow the bifurcat
on the Husimi representations of the tunneling doublet.

One can hardly detect by eye any regularity in the chao
regime, but four large spikes in the rangegc,g,0.7 can be
seen. This can be traced back to the crossing by the s
third state whose quasienergy line is folded four times in
Floquet zone centered on the doublet.

B. \eff change

Figure 8 showsDe as a function of 1/\eff for four values
of g. Here again, two types of regimes, a quasiregular an
chaotic one, can clearly be distinguished. For the values og
where some substantial chaos is present in between th
lands, by decreasing\eff one gets to the chaotic regime. Fo
g,gc , i.e., in the quasiregular regime, one may enter a c
otic regime but for much lower values of\eff , since the
chaotic layers betweenKAM tori are so thin that they are no
even resolved in the Poincare´ surface of section given in the
figures.

In these plots, a purely exponential law given by Eq.~1!
would produce a straight line with negative slope. Forg
,gc and small values of\eff , this is also the prediction for
the integrable approximation~see Appendix! of the Hamil-
tonian. Deviations from a pure exponential decrease are
served at low values of\eff . This is not surprising, as the

e

uc-
s-
e
e
-

e
t-

s,

FIG. 8. The tunneling splitting as a function of\eff for fixed
values of the classical parameters, i.e., fixed classical dynamicu
51.724 137 and four values ofg). In the regular regime, an expo
nential decrease, as described by Eq.~1! is visible as a straight line
with a negative slope in a logarithmic scale. The regime of fluct
tions can be seen forg.gc when \eff is small enough for the de
Broglie wavelength to be comparable to the size of the chaotic
between the two islands.
6-7
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integrable approximation is a local approximation of t
Hamiltonian which must fail when large phase space str
tures are involved. This is, for example, the case for
NIST experiment at 1/\eff.1.3 where the model is only
qualitative and predicts a splitting about ten times sma
than that numerically and experimentally observed. Ho
ever, that the model correctly predicts the behavior at sm
\eff values is a strong indication that it is qualitatively co
rect.

On the other hand, in the chaotic regime, both the in
grable model and the exponential law cannot reproduce
fluctuations in the splitting observed in Fig. 8. Whenev
such a fluctuation is due to a crossing by a quasimode~and
not to a state delocalized in the surrounding chaotic sea!, it
might be reproduced by the resonance assisted tunne
techniques.

VI. STATISTICAL SIGNATURE OF CHAOTIC
TUNNELING?

In order to reproduce quantitatively the statistics of t
tunneling splitting fluctuations in the chaotic regim
Leyvraz and Ullmo@43# have introduced a random matr
model. The Hamiltonian can be split into two uncoupl
components associated with the even and odd symmetry
spaces. The corresponding matrices are written as

Heven5S e0
1 v1

1 v2
1

•••

v1
1

v2
1 H'

1

A
D ~4!

and

Hodd5S e0
2 v1

2 v2
2

•••

v1
2

v2
2 H'

2

A
D , ~5!

where e0
6 represent the energies of the doublet,H'

6 is the
Hamiltonian in the chaotic sea~modeled by a random Gaus
ian matrix!, andv is the indirect coupling.

Neglecting direct tunneling consists in takinge0
15e0

2 .
The central hypothesis is to consider all thev ’s as indepen-
dent variables withthe sameGaussian distribution. This is
quite natural in order to treat all the other states on the s
footing, as they are assumed to be chaotic states rando
delocalized in the chaotic sea. With these assumptions,
splitting distribution can be calculated and is given by
~truncated! Cauchy distribution, see Ref.@43#. For Hamil-
tonian~2!, in each chaotic case where it has been tested,
Leyvraz-Ullmo prediction is in agreement with the numeric
results~see Ref.@14#!. More surprisingly, we have found tha
the Leyvraz-Ullmo law gives correct predictions even wh
the classical dynamics is quasiintegrable~see Fig. 9 and the
corresponding Poincare´ surface of section in Fig. 1! and the
de Broglie wavelength is much larger than the chaotic lay
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When looking at the splitting, one observes numerous
large fluctuations~over several orders of magnitude! which
were supposed to characterize the chaotic regime. C
versely, we have not been able to find a regular regime
fluctuations with classically chaotic dynamics. Therefo
one must conclude that even though two different regime
tunneling fluctuations can be identified unambiguously, cl
sical chaos appears to be a sufficient, but not a neces
condition for having numerous and large fluctuations go
erned by the Leyvraz-Ullmo law.

These unexpected results are not explained at the pre
state of the theoretical approaches of chaotic tunneling.
appears, within future numerical or real experiments, t
these results are not due to the peculiar properties of
system, it would definitely mean that further theoretical stu
ies are needed.

VII. CONCLUSION

In this paper we have studied in great detail the transit
between a regular and a chaotic regime of tunneling withi
classical configuration that can be achieved experiment
We have shown why\eff has to be small enough if one wan
to reach for the first time the chaotic regime in real system
In recent experiments with cold atoms, it requires the
crease of the modulation period up to one order of magnit
~that is, at least the MHz!.

Theoretically, there is also a lot of work to be done if w
want to understand and therefore predict the fluctuati
quantitatively. The semiclassical regime requires care
study of the dynamics with complex coordinates. Howev
the present work has shown clearly that the abrupt transi
between a regular and a chaotic regime of tunneling co
sponds to a classical transition that can be identified v
precisely. Tunneling being a relevant concept in a semic
sical regime only, it is therefore not surprising that futu

FIG. 9. Statistical distribution of the tunneling splittings as\eff

is varied in the quasiintegrable case corresponding to Fig. 1~b! (u
51,g50.018). Surprisingly, the numerically observed distributi
~small circles! is in good agreement with the Leyvraz-Ullmo la
~solid line! which is supposed to be valid in the chaotic case, a
treats all the states coupled to the tunneling doublet on the s
footing. This clearly indicates that a Leyvraz-Ullmo distribution
not sufficient to characterize chaotic tunneling.
6-8
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SIGNATURES OF CHAOTIC TUNNELING PHYSICAL REVIEW E67, 046216 ~2003!
investigations of chaotic tunneling will have to keep track
the classical dynamics in one way or another.
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APPENDIX A: INTEGRAL APPROXIMATION NEAR
THE PITCHFORK BIFURCATION

When one classical parameter is smoothly varied in
nonintegrable Hamiltonian system, its periodic orbits follo
an infinite fractal-like cascade of bifurcations through whi
they cannot be followed smoothly. However, all the bifurc
tions can be classified according to a simple set of scena
for a given bifurcation of a given periodic orbit, the phas
space dynamics of the original parameter-dependent Ha
tonian can be uniformly approximated by an integra
parameter-dependent Hamiltonian that retains the rele
features only. Of course, because one cannot get rid of
chaotic dynamics, this approximation makes sense only
cally, that is, near the periodic orbit, in the neighborhood
the bifurcation. It is the object of the Hamiltonian norm
form theory to classify the bifurcations and obtain the si
plest form of the approximated integrable Hamiltonians~the
so-called normal forms!. Generally, i.e., when no constrain
or symmetry is present, the one parameter Hamiltonian
mal forms have been completely classified by Mey
@30,44,45#. However, the bifurcation shown in Fig. 2 is ou
side the scope of Meyer’s classification precisely because
time reversal symmetry plays a key role. Even if the Po
carésurface of section near the origin@see Fig. 2~b!# cannot
be distinguished from that corresponding to Meyer’s tran
tional bifurcation~see, for instance, Fig. 9~b! in Ref. @30#!, it
is crucial to note that, in our case, twodistinct 2p-periodic
orbits have emerged from the origin. In a transitional bif
cation, the two stable islands would correspond to thesame
4p-periodic orbit. Therefore, they would be classically co
nected to each other and would be irrelevant for tunneli
Let us sketch briefly how to obtain the Hamiltonian norm
form in our case.

~1! The first step is to find the valueg0 of g at which the
bifurcation occurs (u is kept fixed!. Such a bifurcation oc-
curs when the trace of the monodromy matrixMg at the
origin after one period is 2 and corresponds in th
(22g,4gu) plane to the border of the even Arnold tongu
~see Fig. 20.1 in Ref.@46#! ~the transitional case occurs whe
tr Mg522 at the border of the odd Arnold tongues!. More
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precisely, the case shown in Fig. 2 corresponds
u51.724 137~the experimental value in the NIST exper
ment! and the bifurcation takes place atg0.0.564673. In
the following, we use«5g2g0.

Let us denote byY«(z) @respectively,Z«(z)] the solution
of the Mathieu equation

y9~x!1@4g u14g cos~2x!#y~x!50 ~A1!

such thatY«(0)50 andY«8(0)51 @respectively,Z«(0)51
and Z«8(0)50]. The prime stands for the derivative wit
respect tox. For «50, it is straightforward to show that

Mg0
5S 1

1

4p
Z08~p!

0 1
D , ~A2!

whereZ08(p).1.480 919 foru51.724 137.
~2! The second step is to make a~linear! 2p-periodic

canonical change of coordinate that eliminates the time
pendence in the quadratic part of Hamiltonian~2!, near the
origin and uniformly in«. We are then led to the Hamil
tonian

S 2
1

2

1

4p
Z08~p!1a« Dq21

1

2
b«p21

1

2
d«p2

1higher order 2p-periodic terms, ~A3!

where a,b,d are «-independent coefficients. Onlyb
51/p]«Y«(p) evaluated at«50 will be relevant, sincea
and d can be eliminated by a suitable canonical change
coordinates following a method explained in Ref.@30#, Sec.
4.2. In our caseb.2.008/p. We are therefore led to the
following normal form of the quadratic part of the Hami
tonian:

S 2
1

2

1

4p
Z08~p! Dq21

1

2
b«p2

1higher order 2p-periodic terms. ~A4!

~3! Following the same reasoning that led to the tran
tional normal form ~@30#, Sec. 4.2!, all higher order
2p-periodic terms except the resonant terms of the fo
hk(«)pk can be canceled by a suitable canonical change
coordinates. Because of the time-reversal symmetry, the
efficient h3 vanishes identically, and therefore the leadi
order normal form is

S 2
1

2

1

4p
Z08~p! Dq21

1

2
b«p22

1

4
h4~0!p4. ~A5!
6-9
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The explicit calculation ofh4(0) is tedious but it can be
estimated numerically by fitting the coordinateq50, p5
6Ab«/h4 of the satellite 2p-periodic orbits for«.0. We
obtainh4.0.0320.

It is far from obvious that the quantization of the norm
form ~A5! will give a good approximation of the quasiene
gies of the tunneling doublet. Some discrepancies may a
from the fact that quantum physics is invariant under cano
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