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Signatures of chaotic tunneling
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Recent experiments with cold atoms provide a significant step toward a better understanding of tunneling
when irregular dynamics is present at the classical level. In this paper, we lay out numerical studies that shed
light on the previous experiments and help to clarify the underlying physics. This study also provides guide-
lines for future experiments.
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[. INTRODUCTION symmetries affects tunneling. We do not consider how tun-
neling is modified by dissipation and decoherence of the
When studying tunneling in nonseparable systems witlqguantum wave. Of course, this requires great care in real
more than one degree of freedom, one immediately encourexperiments, where making dissipation negligible is always a
ters difficulties which generally can be traced back to thehard task. This is one of the main reasons why very few real
absence of sufficient constants of motion. Even in the venexperiments have been done on these questions. Such experi-
particular case of integrable systems, where continuous symments would definitely help to understand tunneling in the
metries provide as many constants of motion as degrees @iresence of chaog&s far as we know, the only experiments
freedom, as soon as separability is lost, the analysis of turexplicity made on chaotic tunneling in the 20th century are
neling is not a simple generalization of what occurs in onethose presented in Rd6] with electromagnetic microwaves
dimensional1D) autonomous systems. The latter case is deinstead of quantum waves
tailed in textbooks on quantum physi¢see, for instance, During the past 15 years, however, theoretical and nu-
Ref.[1]) and it has even been possible to give a comprehermerical investigations on autonomous 2D and time-
sive analytical treatment in term of complex solutions of thedependent 1D Hamiltonian systems have highlighted some
Hamilton equation$2]. However, it was not until the mid- mechanism$3,4,7—13 and substantial information has been
1980’s that a satisfactory quantitative approach was proposesbllected on the influence of nonseparable dynamics. Experi-
[3,4] for tunneling in nonseparable integrable systems in-mental evidence of such mechanisms would be of great in-
volving a larger number of dimensions. Moreover, integra-terest, especially in light of the subtle interplay between in-
bility is a property of higher-dimensional systems which isterferences and disorder. These phenomena lie in the general
not generic. The coupling between several internal degreesontext of wave transport in complex media where the role
of freedom as well as the coupling to an external sourcef disorder is played by thédeterministi¢ chaotic dynamics
usually destroys some global constants of motion. With suclinstead of having a statistical random origin. Of course, other
a lack of constraints on the dynamics, the classical motion ifimportant motivations can be found in the numerous do-
phase space may become chaotic: it may explore volumeasains where tunneling plays a crucial role as a fundamental
with higher dimensionality and therefore becomes exponenguantum process: ionizatidi3], absorption, nuclear radio-
tially sensitive to the initial conditions. It is not surprising activity, molecular collisions, mesoscopic physics etc. More
that these deep qualitative differences between an integrab#gpeculatively, studies on tunneling in high-dimensional
regime and a chaotic one appear at the quantum level, toélamiltonian systems should provide us with a natural exten-
Some of the properties ofguantumsystem do change when sion of the instanton techniques. These techniques deal with
constants of motion are broken. Indeed, it is the very objectiuantum field theories which are reducible to effective 1D
of quantum chaos to study the signatures of classical chaos atitonomous Lagrangian systems.
the quantum leve(see for instance, Ref5] to realize how In 2001, it was shown both theoretica(l§4] and experi-
rich, vivid, and successful this domain.is mentally [15—-18 that atom cooling techniquesl9] (and
We define tunneling as a quantum process which is forpossibly molecular physics as well, where formally similar
bidden inreal classical solutions of classical equations of systems have been extensively studjgd-23) yield sys-
motion. In this paper, we consider Hamiltonian systems onlytems which fulfill all the severe requirements for studying
and study how the nondissipative breakdown of continuousunneling in the presence of classical Hamiltonian chaos: ac-
curate manipulation of internal and external degrees of free-
dom, precise control of dissipation and decoherence, and the
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a) by an exponential energy splitting
27h
Ae ox e_lAl/ﬁ' Ae= 7_:: NefA/ﬁ (1)
P A

whereA is an#-independent typical action and can be inter-
preted in terms of a unique complex classical trajectory un-
der the barrief1,27].

In the following we generalize this elementary situation in
two ways. First, unlike the parity in the previous example,
we can deal with a symmetry which is not necessarily either
a spatial one or a twofold one. In other words, we can have
any discrete symmetry group acting on the whole phase
space as well as aniN-fold symmetry which leads to
bunches ofN-uplets in the energy spectrufor bands ifN
>1). In the following we keepN=2 since we have a two-
fold symmetry7 actually playing the role of paritjsee Fig.
(p,q,t) = (—p,q,—1) 1(b)] and being somehow decoupled from the other discrete

symmetries. The classical structure in phase space is globally
invariant under7 and the quantum eigenstates can be classi-
fied according to their symmetric or antisymmetric character
under the unitary transformation which represehts the
Hilbert space of states. Becaugeacts in phase space, it is

FIG. 1. A generalization of the paradigmatic double-well poten-ysually more complicated than a pure spatial transformation.
tial (@) is to consider tunneling between stable islands that are reThys, the two regions of phase space connecteguaytum
lated by any discrete symmetry in phase spabgrorresponds to  tnneling, butclassicallynot connected, are in general not
Hamiltonian(2) with #=1 and 7=Q.018. Here, the time reversal separated by a simple potential barrier, but by a more com-
symmetry plays the role of parity i@). plicated dynamical barrier. In such a case, tunneling is called

“dynamical tunneling” as suggested by Davis and Heller in
done for reasons which will hopefully become clear in theref, [28]. It often happens that the classically unconnected
following. ~ region are associated with the same region of configuration

This paper is organized as follows. In Sec. Il we give agpace, with different momenta. A simple study of the density
general and informal overview. In Sec. Ill, we briefly recall phropability in configuration space is then insufficient to char-
the main theoretical apparatus that is needed. We implicitlhcterize dynamical tunne”ng; an ana|ysis of the density
refer to Ref.[14] for details and demonstrations. In Sec. IV, probablility in momentum space is required.
we comment on the results of Ref&5] and[16]. In Sec. V, The second kind of generalization leads to much more
we show in this context, with the help of numerical experi- pyzzling questions. When dealing with systems with several
ments, the very precise form taken by the phenomeno@egrees of freedom or, equivalently, if an external time de-
known as chaos-assisted tunneling. We explain why it hagendence exists, classical trajectories generally lose their
not been observed yet with real atoms and propose how tgqgular behavior. They cannot analytically be computed and
actually bring it to the fore. Before the concluding remarks ingre organized in a fractal hierarchy that is described by the
Sec. VII, we give in Sec. VI some more numerical resultskolmosorov-Arnold-Moser (KAM) perturbative scenario.
that illustrate how subtle the Signatures of chaotic tUnneIinngcenﬂy’ important progress has been achieved in the under-
can be. standing of the continuation of these intricate structures in

complex phase space and their role at the quantum (seel
Il. CHAOTIC TUNNELING Refs.[29,30 _and especially Ref.31]). We are th_eref(_)re Ied_
to the following typical quantum chaos question: if one is

The simplest situation with which to illustrate tunneling is able to create two symmetric stable islands separated in clas-
probably the case of a particle in a 1D time-independensical phase space by a chaotic sea whose volume is under
symmetric double-well potentigsee Fig. 1a)]. Starting in  control (see Fig. 2, what is the effect of this sea on the
one well, with an energy that is below the maximum of the(dynamical tunneling between the islands?
potential, a quantum particle can jump into the other well The “dual” situation where chaos is creatédside the
with a nonzero probability, though it is a forbidden classicalwells while the dynamical barrier is kept regular has been
process. In addition to the classical time scalgiven by the introduced and studied theoretically and numerically in Ref.
oscillating periodnsideone well, we therefore have a longer [11]. For a better understanding of what occurs in the energy
time scale: the tunneling perioB> 7 of the oscillationdbe-  spectrum when regular wells are separated by a chaotic sea,
tweenthe wells. In the eigenenergy spectrum, tunneling apit was proposed in Ref.32] to slightly break the tunneling
pears as a quasidegeneracy of the odd- and even-symmegsymmetry. Nevertheless, in the present paper, it must be kept
states whose energies are both of the ordéet/afbut differ  in mind that a discrete symmetry will always be maintained

discrete symmetry
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theorem can be used, which states that the Hilbert space is
spanned by an orthonormal eigenbasis of the evolution op-
erator over one period. The corresponding eigenvalues of
this unitary operator are distributed on the unit circle and are,
therefore, labeled by their phase. This is conveniently written
as exp(i2meltes), where 27 stands for the period of the
modulation ance can be interpreted as a quasienergy, a gen-
eralization of the notion of energy level for a time-periodic
system.

The spatial periodicity of the Hamiltonian is also ex-
tremely important, as it makes it possible to split the Hilbert
space into independant components, each component being
characterized by the so-called Bloch vectkr in the
]1—0.5,0.5] range: under translation ofs2along q, the
quasienergy eigenstates are just multiplied by the phase fac-
tor expf27k). Thus one has to solve the Floquet-Sclinger
equation in an elementary spatial cell with boundary condi-
tions depending oR. In this way, one generates—for a fixed
value of k—a discrete quasienergy spectrusi{k). When
the full range ofk values is considered, one obtains the fa-
miliar (quasjenergy band§35].

There is an additional discrete symmetry which can be
used. The Hamiltonian2) is invariant under the time-

FIG. 2. Poincaresurfaces of section correspond to Hamiltonian €Versal symmetry d,p,t)—(q,—p,—t). In the classical
2 att=0 with =1.724 137. Two stable islands in the vicinity of Surfaces of section, this implies a symmetry with respect to
the origin are created by a pitchfork bifurcationjat0.56. Above  theq axis. In situations like the one in Fig(H), this implies
this value, chaotic motion progressively invades phase space in béb€ existence of pairs of symmetric classically unconnected
tween the two stable islands. At>y.~0.625, the latter are no tori, i.e., a situation where tunneling could be observed. In
longer connected by regular trajectories. The experimental configithe quantum world, the situation is slightly more compli-
ration used in the NIST experiments correspondsyt00.96 just  cated, because this symmetry connectskisabspace to the
before the islands disappear in a bifurcation cascade=a.97. —k subspace. In the particular cdse 0 (k=0.5 could also

be used, this implies that the Flogquet eigenstates can be split

exactly. Finally, a third kind of generalization, where theinto two subclasses of states which are either even or odd
Hamiltonian character is destroyed by introducing dissipaunder the symmetry operation. The splitting between a dou-
tion and/or coupling into a thermal bath, is beyond the scopélet of even and odd statese,=| e, (0)— €, (0)|, will be a

o 2 1 0 I 2 m-n 2 I 0 I 2 =

of this work[33]. measure of tunneling.
We will extensively use the Husimi representation of a
Il. EEFECTIVE HAMILTONIAN SYSTEM quantum stat¢36]. Such a representation associates with

. _ . each quantum statpy) a phase space functiof™(p,q)
Following Refs[14-164 (see also Ref.34] in a different (Wherep andq are real numbejsdefined by
contexj we deal with an effective 1D time-dependent system

whose Hamiltonian is {//H(p,q):|<z|¢>|2, )
2
p where|z) is the coherent state corresponding to the complex
H(p,q;t)= = — y(6+cost 2 . . . L .
(P.Git) 2 Y(6++ cost)cosq @ numberz=(q+ip)/\2% ¢ Since|z) is a minimal Gaussian

wave packet with average momentgrand average position

in dimensionless unitsy and ¢ are two classical real param- g, the Husimi functiony"(p,q) contains some information
eters that can be modified in real experiments. In additionabout the degree of localization of) in phase space. It is
there is also one parameter, namély;, which fixes the then possible to associate quantum states with classical phase
quantum scale and is defined by the usual relation betweespace structures.
canonical operator$g,p]=ifi¢x. It turns out thati .4 is not
constant any longefsee Sec. IV beloy It can be also ex-
perimentally varied via the rescaling factor that is needed in
the canonical commutation relation in order to work in di- Under some severe conditions which constrain the experi-
mensionless units used to write Eq. 2. ments, Hamiltonian(2) can be obtained as an effective di-

The time dependence breaks the conservation of energgensionless Hamiltonian for cold neutral independent atoms
and therefore may generate chaos. In order to deal with suabf massM interacting with two counterpropagating laser
a Hamiltonian, it is crucial to remark that it has both a spatiabeamg14—-16§. These two beams have two slightly different
and a temporal periodicity. The latter implies that the Floquefrequencies atw, + dw/2 and o, — dw/2. The longitudinal

IV. EXPERIMENTS WITH COLD ATOMS
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coordinate x and the dimensionlessy are related by major improvement over the tunneling described in Refs.
g= 2k X, wherek, = w /c. The rescaling of the momentum [14,16], where a very narrow band of Bloch angle is required
is given by p=(2k_/Mdéw)py. v and @ are fixed by the to observe clear tunneling oscillations. Moreover, the atoms
intensity of the lasers and the detuning of the laser frequennvolved in the tunneling process stay longer in the region
cies with respect to the atomic resonance. The dimensionlesghere the laser intensities are uniform.
time t is taken indw ! units and the expression of the ef-  Indeed, as proposed in RéB8] and Chaps. 4 and 5 of
fective Planck constant isfios=8wgr/dw, where wg Ref.[17], the two stable symmetric islands are created from
=ﬁkf/2M. Sincein fine we want to measure exponentially a pitchfork bifurcation of the fixed point ap(q) =(0,0). To
small tunneling splittingsAe, it is necessary to maintain Vvisualize it [see Figs. @) and 2b)], we extract a one-
these conditions for a time at least longer thag/Ae.  parameter sequence by varyingwhile ¢ is fixed to the
Moreover, a very accurate control of the preparation of theexperimentally chosen value in Ref[15], i.e., 6
initial state and of the analysis of the final state is compul-=1.724137. Wheny is increased, the pairs of symmetric
sory. tori appear aty=0.56. At the center of each set of tori, there
As shown above, due to the temporal and spatial periodis a periodic orbit. Over one period of the driving, the peri-
icity of the Hamiltonian, observing the standard signature ofodic orbit is essentially a rotation over the fixed point at
tunneling—that is, an oscillation of a quantum state betweeifip,q)=(0,0). This explains that the whole structure remains
two classically unconnected regions of phase space-trapped in a single spatial cell. For 056=1y,, the tori
requires that a single doublet of Floquet-Bloch eigenstates beemain nested in one connected stable island.yAty.
initially populated, with well-defined values of the param- =0.625, a chaotic sea separates the symmetric islands which
eters (y,0,h.4), and a well-defined value of the Bloch angle shrink and move away from the central point before being
k. If more than a single doublet is populated, additional fre-dissolved through a cascade of bifurcations startingy at
quencies(related to energy differences between the various=0.97.
populated Floquet statewill appear in the temporal evolu- In one series of experimenty=0.96 and%4=0.8, the
tion. If any parameter is not fixed, the experimental signalatoms are prepared in one island and their average momen-
will be the superposition of tunneling oscillatiosith dif-  tum (p) is measured stroboscopically at every modulation
ferent frequencigsfor various sets of parameters. This will period (=2# in dimensionless unijs Since in phase space
at best—if the dispersion of the parameter values is reasonhe islands rotate about the origin with the same period, no
ably small—blur the oscillations at long times and at worstvariation in (p) would be noticeable if no tunneling oc-
will completely destroy the signature of dynamical tunnel-curred. In fact, starting the measurement sequence Vihien
ing. It is experimentally rather simple to keep an accuratehas its maximum value, oscillations are observed which il-
time periodicity of the driving signal, i.e., to fites. Simi-  lustrate the back and forth motion of the atoms between the
larly, the balance between the constant and the oscillatorislands due to dynamical tunneling. The tunneling pefids
term, hence the parametérin Eq. (2), is easily controlled. about 10 modulation periods in this case (20€). This is in
The y parameter is proportional to the laser intensity andperfect agreement with the quasienergy splitting obtained nu-
may thus slightly vary across the atomic clolmecause of merically for the two Floquet eigenstates having the largest
the transverse structure of the laser bearffike most diffi-  Husimi functions inside the islands.
cult part is to be sure that a single Bloch angls excited. It is worth noting that the NIST group uses a Bose-
Indeed, this requires a phase coherence of the initial wavEinstein condensate as a preliminary step for preparing at-
function over a large number of laser wavelengths, which issms in well-defined quantum states, especially for achieving
extremely difficult to achieve experimentallg$7], as will be  a large coherence length for the wave function, i.e., a small
shown in the following. In any case, the inhomogeneousspreading of the Bloch angle In order to prepare phase
broadening of the experimental signal because of the dispespace localized states, an optical lattice is carefully turned
sion in k will be responsible for a decay of the tunneling on. When the tunneling experiment starts, the atomic density
oscillations. and the interaction between atoms is sufficiently small, and
the experiment can be described by the interaction of indi-
, vidual independent atoms with the laser beams, i.e., using
A. NIST experiments[15] Hamiltonian(2). However, the cloud of atoms remains cold
In the NIST experiments, the two stable symmetric is-enough, at a subrecoil temperature, to prevent a large thermal
lands are chosen quite close in phase space in order to ddaioadening of momentum distribution that would destroy the
with not too small splittings. Another crucial point of this signal. Because they start from very low temperature, these
experiment is that the classical motion of the islands ovepreparation techniques based on condensate manipulation
one period, unlike those in RefEl4] and[16], always re- seem to allow greater room to maneuver than those working
mains trapped in one spatial elementary cell of length 2 with thermal clouds only. Adiabatic switching of the light
The quantum states localized in these islands are consgotentials is not required and one can actually work with
guently only weakly sensitive to the boundary conditionsvalues of the classical parametgrand ¢ which are far from
which are governed by the Bloch angle. In other words, theéhe perturbative regime of an integrable system.
tunneling period will be only weakly dependent on the Bloch By diagonalizing the evolution operator corresponding to
anglek. This implies that the unavoidable broadening over EQq. (2) over one period, we are not only able to reproduce
will not spoil too much the signature of tunneling. This is athe oscillatory behavior ofp(t)) [see Fig. 8)], but also can
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-5 FIG. 4. When a third level is crossing a tunneling doublet when
a parameter of the Hamiltonian is varied, there is an avoided cross-
ing between the third level and the member of the doublet with the
same symmetry, while the other member of the doutMéth op-
conditions of the NIST experiment, i.e§=1.72 ,y=0.96 and, posite symmetryignor_es the t_hi_rd Igvel. Two g_eneric s_c_en_arii exist
in case(a), the tunneling splitting increases in the vicinity of the

heﬁ=0.8'(compare to Fig. &) of Re. [1.5]).' Start_lng _a1t= 77/.2 Wlth avoided crossing; in cagb), it decreases and vanishes at a specific
a Gaussian wave packet whose Husimi function is localized in one

stable islandwith a vanishing average momentynae follow the value of the parameter.
average momentugp) as time evolves. The stroboscopic measure-
ments at times 2+2m# (7+2m7) with me{0,1,...,40 are

0 5 10 15 20 25 30 35 40
t (in modulation period)

FIG. 3. Numerical simulation of the quantum evolution, in the

rameter  or 6) or the quantum onefi(y) is continuously

plotted with the whitgblacK circles. The tunneling oscillations are ya”ed' Two(quas)energles may exactly become degenerate
clearly visible; the tunneling period can be extracted from the typi-"c they belong to d'St'n.Ct symmet_ry classes. I.f not, they may
cal time scale of the envelope: it is about 10 modulation periods. “.]‘OIIOV\{ a so-callgd avoided crossing whose size reflgcts both
the upper plot(a), we assume that a single Bloch angle0 is  the direct coupling between the two statesore precisely,
initially prepared(which implies a perfect phase coherence of thethe off-dl_ag(_)nal matrix element of the coupling perturbakion
wave function across the optical lattic@he (therma) dispersion ~ and the indirect coupling to other states. One of the keys to
of the Bloch angle washes out the signal: in céise we take a the chaotic tunneling problems is to clearly identify the
momentum distribution with widtiAp=a=2Ak=0.2 and in case qualitative nature and the quantitative influence of indirect
(c) Ap=0.4. In the latter case, the amplitudes of the envelopes aréoupling. This is the background of the Austin experiments.
so weak that this corresponds to an upper bound in temperature A third level is involved in a non-negligible indirect cou-
(about 1/5 of the recoil temperatyrat which tunneling can be pling when its quasienergy approaches the tunneling doublet
measured. energies. This can be understood from perturbation theory,
since the leading term of the indirect coupling is proportional

study the spoiling effect of the thermal dispersisp O the inverse of the energy difference. The two generic sce-

« Jtemperature and predict the maximum allowed temperaP@rios of the crossing of the doublet by a third state are
ture[see Figs. @) and 3c)] [48]. If « denotes the width of sh_own in Fig. 4. As_lde f_rom the unavoidable ambiguous defi-
the momentum distribution in recoil momentum units, it can™tion of the splitting, it appears clear that ca corre-

be shown([14], Sec. 6 A that it corresponds to a statistical SPONdSs to an increase of the tunneling splitting during the
mixture of Bloch states with\k= /2. Figure 3(a) corre- crossing while, conversely, cagb) can lead to arbitrarily

sponds to the ideal situation where all atoms are prepareg@!/l splittings, since an exact degeneracy occurs. Thus,
with a<1 about thek=0. When a small but nonvanishing such a crossing by a third state produces a sharp variation of

is introduced, some states of the quasienergy bands with nomﬁ, tl_JnneIing” perir(])d _thatbcan bs .mer?sured _experimentally.
vanishingk get involved and blur the tunneling oscillations. This is actually what is observed in the Austin experiments

For «=0.2, the oscillation amplitude is reduced by a factor@nd can be confirmed by numerical experiments as shown in

of 2 and fora=0.4 the oscillations nearly disappear. There-F19: - When looking at the I—_Iusimi _repres_entation of the
fore, in this experiment, having a subrecoil atom cloud gStates, Fig. 6, one can |mm_ed|ately dlst!n_gwsh between the
essential tunneling doublet and the third state sufficiently far from the

In the following we want to focus on tunneling only and crossing_. As expepted,_the tunneling. doublet has Husimi rep-

we will implicitly keep k=0. resentations Iocallzgd in the stable |sl_ands, tpough they also
spread in the chaotic sea. On a classical Poinsarface of

section, it is easy to make the difference between chaotic and

regular motion; how to transpose this distinction at the quan-
For a better understanding of the dynamics, one must gtum level is not known with the large values bf; used in

beyond the two-level model involving the symmetric and theboth the Austin and the NIST experiments. Some classical

antisymmetric states only. Other states must be taken intstructures much smaller than the de Broglie wavelength are
account and their influence can be felt when a classical pgpossibly present in some of the stafté$], but just looking at

B. Austin experiments[16]
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FIG. 5. Numerical results obtained with the parameters of theH FlG f6' (a)_, (b), and (9) SQOW. Lhehdenh3|ty n gray S‘;ﬁ"i Ofl the
Austin experiment, that is Hamiltoniaf®), with =1 and ey usimi functions associated with the three states which play an

=0.33. The lower plot shows a part of the quasienergy spectrur#nportant role for tunneling ay=0.25 (parameters of the Austin

when vy is varied. Thick lines show the two quasienergies whoseSXPerment, as in Fig.)5As expected, the two members of the

difference is the tunneling splitting plotted in the upper plot. ThedOUblet‘(a) ar_ld(_b)l, hgve .th.i'lr I—_luer]nl lemctl_onllc’)Dca}I[zed ?bOUt tfhe
two states are selected to have the largest localization of the Husir{© _symmetrlc_: islands visible in the ¢ assical Foincarelace o
function at the center of the stable islands. When a third leve[sectlon(d). (b) is strongly coupled to a third states Showr(én 7.
couples to the state that belongs to the same symmetry class é%too large to attribute any regular or chaotic character to the third
avoided crossing can be seen and the definition of the doublet ’bé_ta_te_.(c) clearly play_s a role in the enhgn_cement of the _tunneling
comes necessarily ambiguous. There, some discontinuity in the sép“_tt'ng through an |nd|_rect coupling; this is t_hus an "assisted t_un-
lected statdand in the slope of the tunneling frequepcannot be neling” mechgnlsm, which cannot be unambiguously characterized
avoided. The tunneling splitting is shown as a functionydh the as chaos assisted.

upper plot, and is compared with the experimental results from Refig the ryle. Following the discussion in the preceding section,
[16]. The agreement is very good, which validates the numerical,,o 14y therefore expect that the average size of avoided
approach. Around=0.2, a discrepancy is visible. This is precisely crossings is increased when chaos is present. The fluctua-

the amb'guoys region \.Nhere the dynamics cannot be reduced to ions of a tunneling process which should be narrow and
simple tunneling oscillation, but at least three levels must be taken

into account, leading to several relevant energy splittings. Sparse in an mteg_rablt_—:‘ reglme should be br(_)ader, mo_re nu-
merous, and possibly involving many states in a chaotic re-

the Husimi representation of the third state fgf=1 does dime. We now illustrate this statement in the framework of

not make it possible to attribute any chaotic or regular charthe éxperimental atomic Hamiltonia@).

acter to it. It is only for much smallef that chaotic or There are two different ways of rendering chaos observ-

regular wave functions make sense. This is not surprising@Ple by quantum eyes: the first one consists of increasing the

the dichotomy between regular and irregular motion is avolume of the chaotic sea with the help of a classical param-

classical one and, at present, it can be extrapolated at tififer, the second one fixes the classical dynamics and de-

quantum level within the semiclassical regime only. Anyway,creasedie. We will present in both ways.

one must keep in mind that tunneling only makes sense in One may try to study the tunnelifuctuationsseparately

the semiclassical regime. One of the great merits of the Ausfom the average behaviorThis average—in a somewhat

tin experiments is that they show a quantum tunneling effecyagueé sense—is increased, because chaos diminishes the

where an indirect process is involved. However, it is an ex<£lassical dynamical barrigb0], and this is the reason why

ageration to attribute any chaotic origin to it. the phenomenon can be called chaos assisted tunneling.
However, as far as only fluctuations are concertibdre can
V. NUMERICAL EVIDENCE OF A CHAOTIC be an enhancement or a decrease as)whk words “chaos
TUNNELING REGIME assisted tunneling(CAT) [10] may lead to confusion and we

simply use “chaotic tunneling.” At last, Brodier, Schlagheck,

It was one of the first successes of quantum chaos to havend Ullmo discovered what they called “resonant assisted
shown that the energy levels of an integrable system areunneling” (RAT) [42] to describe an enhancement of tunnel-
independent of each other, because they are localized on difag due to an indirect process. It involves one or several
ferent classical tori, while in chaotic systems level repulsionquasimodes localized in the secondary resonances surround-
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FIG. 8. The tunneling splitting as a function &fy for fixed
v

values of the classical parameters, i.e., fixed classical dynamics (
FIG. 7. Th i ltti f . ¢ =1.724 137 and four values of). In the regular regime, an expo-
o e tunneling splitting as a function of, for ¢ nential decrease, as described by #4.is visible as a straight line

=1.724137 an(ﬁeff=0.079 638, .that is ten times smaller than in with a negative slope in a logarithmic scale. The regime of fluctua-
the NIST experiments. Two regimes are clearly separated by thﬁons can be seen fop>y, whent . is small enough for the de

crltlc(?}-fvalue);c: (.)'6'25; _these_ twr:qu?)nt_urqreglrpes corfrespc_)nd _to Broglie wavelength to be comparable to the size of the chaotic sea
two differentclassicalregimes in the Poincamurfaces of sectionin . v ib o 0o islands.

Fig. 2. The smooth average decrease with sparse and narrow fluc-
tuations (y<y.) corresponds to the case where the symmetric clas- . . .
sical tori belong to the same regular island. The Hamiltonian theréunngl!ng reglme.occurs when the resonant tori belong to one
can be approximated by a simple integrable Hamiltonian, using théluasi-integrable island. For<y., we are able to reproduce
normal form described in the Appendix. The dotted line corre-the main features of tunneling by using an integrable ap-
sponds to the splitting calculated with this normal form and is inProximation(see Appendix The decrease of tunneling can
good agreement with the numerical result. In the second regim@€ €xplained in terms of the lengthening of the dynamical
(7> 17.), there are huge quantum fluctuations of the tunneling splitbarrier.y. exactly corresponds to the point where the islands
ting (and a slightly increased average valu€lassically, this cor-  get disconnected. In addition, one can follow the bifurcation
responds to tunneling between unconnected symmetric islande&n the Husimi representations of the tunneling doublet.
separated by a chaotic sea. One can hardly detect by eye any regularity in the chaotic
regime, but four large spikes in the rangge< y<<0.7 can be
ing the main symmetric islands. Up to now, RAT has beerseen. This can be traced back to the crossing by the same
studied quantitatively in a purely quasi-integrable case buthird state whose quasienergy line is folded four times in the

there are clues that it can be extended far beyond KAM-loquet zone centered on the doublet.
theory.

B. fie change

A. 7y change Figure 8 shows\ e as a function of ¥4 for four values

Let us first takefi o ten times smaller than the values in of y. Here again, two types of regimes, a quasiregular and a
the NIST and Austin experiments. It is much easier to do itchaotic one, can clearly be distinguished. For the values of
numerically than experimentally, as it requires the increasevhere some substantial chaos is present in between the is-
of the modulation frequency of the laser beams by one orddands, by decreasinfj.; one gets to the chaotic regime. For
of magnitude. We then follow the quantum states through they<y,, i.e., in the quasiregular regime, one may enter a cha-
classical bifurcation shown in Fig. 2 and discussed in Secotic regime but for much lower values df., since the
IV A. Again, in order to calculate the tunneling splittinge, chaotic layers betweexam tori are so thin that they are not
we select the states that have the largest Husimi functionsven resolved in the Poincaserface of section given in the
inside the islands. figures.

Figure 7 shows that, after a smooth decreasa eip to In these plots, a purely exponential law given by ED.
v=1v.~=0.625 there is an abrupt change of regime. First, thevould produce a straight line with negative slope. Ror
mean value ofA e increases and second, many fluctuations<y,. and small values ofi ., this is also the prediction for
appear which modify the splitting by several orders of mag-the integrable approximatiotsee Appendix of the Hamil-
nitude. It is remarkable that this change of regime can beonian. Deviations from a pure exponential decrease are ob-
matched on the Poincamurfaces of section. The smooth served at low values ofi.;. This is not surprising, as the
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integrable approximation is a local approximation of the 10"
Hamiltonian which must fail when large phase space struc-
tures are involved. This is, for example, the case for the
NIST experiment at #/4=1.3 where the model is only
gualitative and predicts a splitting about ten times smaller
than that numerically and experimentally observed. How- P(Ae)
ever, that the model correctly predicts the behavior at small
hes Values is a strong indication that it is qualitatively cor-
rect.

On the other hand, in the chaotic regime, both the inte-
grable model and the exponential law cannot reproduce the
fluctuations in the splitting observed in Fig. 8. Whenever )
such a fluctuation is due to a crossing by a quasimede 10° 10~ 10 100 10
not to a state delocalized in the surrounding chaotig, sea Ae
might be reproduced by the resonance assisted tunneling
techniques.

10°

3 2 - 7 210

FIG. 9. Statistical distribution of the tunneling splittings/ag

is varied in the quasiintegrable case corresponding to Fh. (¥

=1,y=0.018). Surprisingly, the numerically observed distribution
V1. STATISTICAL SIGNATURE OF CHAOTIC (small circleg is in good agreement with the Leyvraz-Ulimo law

TUNNELING? (solid line) which is supposed to be valid in the chaotic case, as it

In order to reproduce quantitatively the statistics of thelreats all the states .COL.‘pled 0 the tunneling dOUble.t on th.e same

tunneling splitting fluctuations in the chaotic regime, footlng._T_hls clearly |nd|c§1tes that a Leyvra_z-UIImo distribution is

Leyvraz and Ullmo[43] have introduced a random matrix Ot Sufficient to characterize chaotic tunnefing.

model. The Hamiltonian can be split into two uncoupled

components associated with the even and odd symmetry su

spaces. The corresponding matrices are written as

Vhen looking at the splitting, one observes numerous and
arge fluctuationgover several orders of magnituydehich
were supposed to characterize the chaotic regime. Con-

P versely, we have not been able to find a regular regime of
°+ ! 2 fluctuations with classically chaotic dynamics. Therefore,
U1 one must conclude that even though two different regimes of

Hevene (4) . . . 2. .
tunneling fluctuations can be identified unambiguously, clas-

sical chaos appears to be a sufficient, but not a necessary,
condition for having numerous and large fluctuations gov-
erned by the Leyvraz-Ullmo law.
These unexpected results are not explained at the present
- . state of the theoretical approaches of chaotic tunneling. If it
appears, within future numerical or real experiments, that
v, these results are not due to the peculiar properties of our
- - ' (5 system, it would definitely mean that further theoretical stud-
ies are needed.

+
U2 H/

and

H odd_

where e, represent the energies of the doubldt; is the Vil. CONCLUSION

Hamiltonian in the chaotic s¢anodeled by a random Gauss-  In this paper we have studied in great detail the transition
ian matriy, andv is the indirect coupling. between a regular and a chaotic regime of tunneling within a
Neglecting direct tunneling consists in takirg =€, . classical configuration that can be achieved experimentally.

The central hypothesis is to consider all the as indepen- We have shown whi .« has to be small enough if one wants
dent variables withthe sameGaussian distribution. This is to reach for the first time the chaotic regime in real systems.
quite natural in order to treat all the other states on the samka recent experiments with cold atoms, it requires the in-
footing, as they are assumed to be chaotic states randoméyease of the modulation period up to one order of magnitude
delocalized in the chaotic sea. With these assumptions, thghat is, at least the MHz

splitting distribution can be calculated and is given by a Theoretically, there is also a lot of work to be done if we
(truncatedl Cauchy distribution, see Ref43]. For Hamil-  want to understand and therefore predict the fluctuations
tonian(2), in each chaotic case where it has been tested, thguantitatively. The semiclassical regime requires careful
Leyvraz-Ullimo prediction is in agreement with the numerical study of the dynamics with complex coordinates. However,
results(see Ref[14]). More surprisingly, we have found that the present work has shown clearly that the abrupt transition
the Leyvraz-Ullmo law gives correct predictions even whenbetween a regular and a chaotic regime of tunneling corre-
the classical dynamics is quasiintegratdee Fig. 9 and the sponds to a classical transition that can be identified very
corresponding Poincamurface of section in Fig.)land the  precisely. Tunneling being a relevant concept in a semiclas-
de Broglie wavelength is much larger than the chaotic layerssical regime only, it is therefore not surprising that future
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investigations of chaotic tunneling will have to keep track ofprecisely, the case shown in Fig. 2 corresponds to
the classical dynamics in one way or another. 0=1.724 137(the experimental value in the NIST experi-
meny and the bifurcation takes place @4=0.564673. In
the following, we uses = y— v,.
Let us denote by, (z) [respectively,Z,.(z)] the solution
We acknowledge A. Shudo, S. Tomsovic, D. Ullmo, andof the Mathieu equation
W. Hensinger for stimulating discussions. A.M. is grateful to
N. Mohammedi for his kind reading of the original manu-
script and to O. Boebion for computer assistance in the Lab- y'(X)+[4y 6+ 4ycog2x)]y(x)=0 (A1)
oratoire de Mathmatiques et de Physique Tdrégque of
Tours and thanks the Laboratoire Kastler Brossel of Paris fog,ch thaty, (0)=0 and)’(0)=1 [respectively,Z,(0)=1
kind hospitality. Laboratoire Kastler Brossel de I'Universite and Z/(0)=0]. The primge stands for the derivative with

Pierre et Marie Curie et de I'Ecole Normale Stpere is e :

Unite Mixte de Recherche No. 8552 du CNRS. LaboratoirereSpeCt tox. Fore=0, it s straightforward to show that
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APPENDIX A: INTEGRAL APPROXIMATION NEAR
THE PITCHFORK BIFURCATION
. . . whereZ{(m)=1.480919 ford=1.724137.
When one classical parameter is smoothly varied in a (2) The second step is to make (Hnean 2-periodic
nonintegrable Hamiltonian system, its periodic orbits follow .5onical change of coordinate that eliminates the time de-

an infinite fractal-like cascade of bifurcations through_whichpendence in the quadratic part of Hamiltoni@, near the
they cannot be followed smoothly. However, all the b'f“rca'origin and uniformly ine. We are then led to the Hamil-

tions can be classified according to a simple set of scenariognian
for a given bifurcation of a given periodic orbit, the phase-
space dynamics of the original parameter-dependent Hamil-
tonian can be uniformly approximated by an integrable 1 1 1
parameter-dependent Hamiltonian that retains the relevant — = —Z\(m)+as |q®+ = Bep?+ < Sep?
features only. Of course, because one cannot get rid of the 2 4m 2 2

chaotic dynamics, this approximation makes sense only lo- +higher order 2r-periodic terms, (A3)
cally, that is, near the periodic orbit, in the neighborhood of

the bifurcation. It is the object of the Hamiltonian normal
form theory to classify the bifurcations and obtain the sim-

plest form of the approximated integrable Hamiltonigiine L : )
so-called normal forms Generally, i.e., when no constraint and 4 can be eliminated by a suitable canonical change of

or symmetry is present, the one parameter Hamiltonian no.;_:oordmates following a method explained in Rkg0], Sec.

mal forms have been completely classified by Meyer4'2' In our caseB=2.008fr. We are therefore led to the

[30,44,49. However, the bifurcation shown in Fig. 2 is out- foII(_)Wi.ng normal form of the quadratic part of the Hamil-

side the scope of Meyer’s classification precisely because th nian:

time reversal symmetry plays a key role. Even if the Poin-

caresurface of section near the origisee Fig. 2b)] cannot

be distinguished from that corresponding to Meyer’s transi- ( _ E —Z!()

tional bifurcation(see, for instance, Fig.(#) in Ref.[30]), it 24770

is crucial to note that, in our case, tvaistinct 2 7-periodic

orbits have emerged from the origin. In a transitional bifur-

cation, the two stable islands would correspond toghme . . .

4Ar-periodic orbit. Therefore, they would be classically con-  (3) Following the same reasoning that led to the transi-

nected to each other and would be irrelevant for tunnelingtional normal form ([30], Sec. 4.2 all higher order

Let us sketch briefly how to obtain the Hamiltonian normal27-periodic terms except the resonant terms of the form

form in our case. he(¢)pX can be canceled by a suitable canonical change of
(1) The first step is to find the valug, of y at which the ~ coordinates. Because of the time-reversal symmetry, the co-

bifurcation occurs ¢ is kept fixed. Such a bifurcation oc- efficient h; vanishes identically, and therefore the leading

curs when the trace of the monodromy mathik, at the ~ order normal form is

origin after one period is 2 and corresponds in the

(—2v,4y6) plane to the border of the even Arnold tongues

(see Fig. 20.1 in Ref46]) (the transitional case occurs when ( _ } iZ’( )

trM,=—2 at the border of the odd Arnold tongueMore 2 470\

where «,B,6 are e-independent coefficients. Only3
=1/mwd,Y.(7) evaluated at =0 will be relevant, sincex

1
2, = 2
o+ 5 Bep

+higher order Zr-periodic terms. (A4)

2 1 2 1 4
9"+ 5 Bep —Zh4(0)p . (A
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The explicit calculation ofh,(0) is tedious but it can be
estimated numerically by fitting the coordinate=0, p=

cal transformations only at the leading orderiinWhen we
replacep with g and change the sign of the energies, the
+Belh, of the satellite Zr-periodic orbits fore>0. We  normal form(A5) leads to a standard 1D double-well prob-
obtainh,=0.0320. lem whose quantum spectrum can be found by numerically
It is far from obvious that the quantization of the normal diagonalizing the Hamiltonian written in a harmonic basis.
form (A5) will give a good approximation of the quasiener- The tunneling splitting of the ground doublet is given by the
gies of the tunneling doublet. Some discrepancies may arisgotted line in Fig. 7 and it agrees reasonably well with the

from the fact that quantum physics is invariant under canoniexact numerical result foy neary,.
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