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Dynamics of many-particle fragmentation in a cellular automaton model
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A three-dimensional cellular automaton model developed by the authors to deal with the dynamics of
N-body interactions has been adapted to investigate the head-on collision of two identical bound clusters of
particles, and the ensuing process of fragmentation. The range of impact energies is chosen low enough, to
secure that a compound bound cluster can be formed. The model is devised to simulate the laboratory set-up
of fragmentation experiments as monitored by detectors. The particles interact via a Lennard-Jones poten-
tial. At low impact energies the numerical experiments following the dynamics of the individual particles
indicate a phase of energy sharing among all the particles of the compound cluster. Fragments of all sizes are
then found to evaporate from the latter cluster. The cluster sizes, measured in our setup by simwlated 4
detectors, conform to a power law of exponen2.6. In an attempt to duplicate the laboratory caloric curves
related, in particular, to nuclear fragmentation processes, we introduce several temperature pakinetiers
temperature of nucleons, kinetic temperature of fragments, reaction equilibrium temperaftezsetical
caloric curves are then constructed for those temperature parameters, we regard as physically most relevant.
Our results show that different temperature definitions generate different curve patterns, indicating that the
fragmentation system remains far from thermodynamic equilibrium. The pattern of the laboratory caloric curve
for Au-Au collision experiments as derived from a recent analySisPECC Report, 1997%unpublished] is
reproduced qualitatively by our reaction temperatures.
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I. INTRODUCTION capture the particular nuclear case.
A few comments on the related laboratory experiments
The currently favored theoretical approach of investigat-are therefore in order. The empirical results are collected
ing many-particle fragmentation consists in applying statisti-essentially through the following experimental procedure. A
cal mechanics to the excited compound cluster. The procearget nucleus A;,Z7) is bombarded with a high-energy
dure relies on the assumption that the collection of particlesheam of incident nuclei4, ,Z,) generated by an accelerator.
or compound cluster, originating from the two colliding clus- A series of detector setugsuch as ALADIN, CHIMERA,
ters reaches a state of thermodynamic equilibrium. The prog=0S, FOPI, INDRA, LASSA, or MINIBALL), ideally uni-
erties of this compound cluster can then be described thefoermly distributed over a sphere centred on the target nucleus
modynamically, in terms of a small number of global and thereby securing ar4coverage, identify the charge and
parameters, namely, the total number of partidepossibly mass of the collisional fragments as well as their kinetic
the total charge numbet, the total available energl (re-  energies.
garded as measured in the center-of-mass systie total Experiments of this nature were spearheaded in the 1980s
volumeV occupied by the particles, and possibly the area of 9—11]. In Ref.[9] the target was a Kr or Xe ion; the accel-
the surface®, enclosing this voluméSee Ref[1] for arecent erated incident particles consisted of a beam of protons of
review of the theoretical approaches in the nuclear field; Seenergy in the range 80-350 MeV. The detectors isolated
Refs.[2—8] for experiments and results on molecules andnuclear fragments in thé\ range 1ZA<31. The yield
clusters of ions In this paper, we shall describe a less re-Y(A,Z) was found to be consistent with an expression of the
strictive theoretical framework applicable to a multiple frag-form A~ " times a Boltzmann factd©9] depending on a tem-
mentation process of arbitrary natufeuclear, atomic, or perature parameter. The exponents evaluated experimentally
moleculaj. For our specific illustrations, the relevant orderswere r=2.64(Xe) and 2.65(Kr). Qualitatively, the outcome
of magnitude of the global parameters have been chosen twf these experiments was compared with the thermodynamic
transition from a liquid phaséoriginal target heated by the
infalling beam of protonsto a state of formation of droplets

*Electronic address: a.lejeune@ulg.ac.be of all sizes(fragment distribution measured by the detectors
"Electronic address: jperdang@solar.stanford.edu taking place at a critical-point temperatufe. In fact, for
*Electronic address: richert@Iptl.u-strasbg.fr the latter transition a power law in the sizes of the droplets is
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known to hold, of exponent=2.33. This result is derived in has not reached a final equilibrium state. These comments
the context of the mean field theof§2]. Similar fragmen- make it manifest that priori the distribution of fragments as
tation experiments were described in R¢fi,11], in which  measured by the laboratory detectors is not directly related to
the target was an Ag, Kr, Xe, or U ion; the incident particlesa statistical equilibrium state of a central clustery it is
were protons or carbon ions. Again fragments were detectedather the system’s nonequilibrium state that causes the
(here in theZ range 3<Z=<22), which obeyed an approxi- evaporation of the fragments. However, provided that the
mate power law. central cluster evolves slowly enough, the component par-

The seemingly canonical interpretation of these earlier asicles may have time to reach an approximate statistical equi-
well as of the more recent intermediate-mass ion-ion collidibrium. The latter alternative is envisaged in gravitational
sion experimentgfor instance, the'®’Au-**’Au fragmenta-  systems as well. The distribution of the clusters that evapo-
tion reported in Refd.13,14)) regards the fragmentation pro- rate at a given timé is then expected to correspond to a
cess as the formal analog of a liquid-gas phase transitioohemical reaction equilibrium, or a dissociation equilibrium,
occurring at a transition temperatufg. At lower tempera-  at the temperature characterizing the central cluster atttime
tures, T<T, the nuclear system is a mixture of individual On the other hand, it is clear that this situation can hold only
nucleons and fragmentdiquid phasg; at higher tempera- if the impact energy remains low enough. At higher impact
turesT>T,. all fragments dissolve into a gas of nucleonsenergies the target will be essentially transparent to the par-
(gas phase ticles of the incident cluster.

This interpretation of an observed fragmentation process The simplest statistical models bypass the conceptual
(of any naturg as a thermodynamic phase transition may bequestion of whether or not a statistical equilibrium holds in
helpful in providing a qualitative picture for the outcome of the fragmentation process. In these models, the system of
the collision experiments. However, it should be clear that garticles is enclosed in an energetically insulated box of fi-
many-body fragmentation process induced by violent colli-nite volumeVyg ; the collection of interacting particles is then
sion cannot be regarded as a proper thermodynamic equililfully specified by three independent thermodynamic param-
rium phenomenon. Prior to the collision, both the target clusetersVy, Ac, andE( (total energy which are given at the
ter, and the incident cluster, are in a stable internabutset. Such a system is necessarily due to the relaxation
equilibrium state. The two clusters are characterized globallyowards a thermodynamic equilibrium. In the specific
by two sets of (extensive thermodynamic variables nuclear context, detailed classical molecular dynamics
(Aq.Zq,Eq.Vq.2q), Q=T,l. The energieg, are measured (CMD) calculations have indeed demonstrated directly the
in the center-of-mas&c.m) system of ionsT and|, respec-  existence of a statistical equilibrium state, from which the
tively. The stability of the equilibrium of each cluster re- thermodynamic properties of the system can be recovered
quires a zero surface pressure. At the moment of the incipieritL7,18. Moreover, the distribution of the fragments with size
collision theT and| clusters merge into a single clust€r  can be evaluated in the thermal equilibrium state. Similar
the compound clustelC (counterpart of the compound thermodynamic equilibrium results have also been derived in
nucleusC in the sense of Bohr and Wheeld5]). The ex-  the framework of cellular automatg@A) numerical experi-
tensive thermodynamic variables are then essentially theents(in two dimensional2D) [19] and three dimensional
sums of the extensive variables of the componénénd|, (3D) [20]). However, the connection between these, as well
Ac=At+A,, etc., except for the difference in the evaluationas other theoretical models so far propoggfion the one
of the energy. The energy @, E, is to be measured in the hand, and the reah priori far from equilibrium laboratory
c.m. frame of the compound system, so that we hBye experiments on the other hand, remains entirely unclear.

=Er+E/+Ejnp; the extra energy componef,, is the In this paper, we pursue the goal of setting up a theoretical

impact energy(global kinetic energy of thd andl in c.m.  framework capable of closely simulating the arrangement of

of C). the actual laboratory experiments. To this end we have given
Since the impact energy is a free parameter, the surfadhe following.

pressure o€, the initial merger ofl andl, will not vanish, in (1) We follow in the first place the dynamics of the colli-

general, and hence the compound cluster will not be in &ion(as in the case of CMD calculationithout relying on
state of thermal equilibrium. The surplus energy is expecte@n assumption of a thermodynamic equilibrium.

to create a pressure increaggositive surface pressyre (2) Next we analyze the collection of fragments which
which will force C globally to expand. This expansion may have arrived at a certain distandg from the collision site
consist in a release of clusters of particles which ultimatelywhere they can be regarded as independent. The fragment
become independent fragmeriss observed in the experi- distribution is estimated at that particular level. Our proce-
ments, leading in turn to a contraction of a central core.dure of evaluation of the theoretical distribution thus con-
Such a phenomenon of global expansion made up of an exrasts with the conventional statistical methods which have
panding outer envelopé&ogether with a contracting inner been applied by previous authors, including ourse[Mes-

corg is familiar in gravitationally bound systenispherical ~ 20]. It conforms instead essentially to the laboratory readings
clusters of stars; cf. the classic analysis by Lynden-Bell ands given by an array of detectors located at a distahce
Wood [16]). In the general fragmentation problem, the cen-from the collision site.

tral remainderC’ is a new compound cluster, with fewer  (3) We introduce and compute explicitly a variety of for-
particles, which keeps evaporating fragments, thereby transnal temperature parameters, namely, kinetic temperatures as-
forming again into a smaller central clustef, as long as it sociated with the gas of particles and the gas of fragments,
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and reaction temperatures related to the distribution of the N

fragments. If the system were in a state of genuine thermo- VAL 1)
dynamic equilibrium, in particular, during the initial stage of

the collision when the two colliding clusters merge into @ accordingly, in our framework the allowed states of motion
single compound cluster, then a true thermodynamic temgs 5 particle arey= +ve , wheree represents the unit vector
perature would exist. Under this condition the formal tem'along the lattice axis=x,y,z. A CA particle @ then exists in
perature parameters would all be equal to the true tempergj,o among seven possible dynamic stawes-0, ve,,
ture. Provided only that there are experimental proceduregveX, ve,, —ve,, orve,, —ve,: the momentum of this

replicating the conditions of the theoretical definitions of . ticle is denoted bp,(=mv,). As in Ref.[19], we do not
these formal temperature parameters, the latter continue Qe account of the cﬁarge gf the nucleons. '

provide a useful global characterization of the system, o ca particles obey an exclusion principle, in the sense
whether or not a thermodynamic equilibrium state is réalyh 4t 5 cell is not allowed to contain more than one particle in

ized: An acceptable theory must then be capable of duplicathe same state of motion. Accordingly, the maximum density
ing the experimentally available values of these formal pay our nuclear matter is seven particles per cell.

rameters.

The question of the temperatures is analyzed in greater
detail in Sec. V. The dynamical calculatiofSec. IV) are
carried out in the context of the cellular automaton model To simulate the interactions of a given nucleenvith the
developed by the authors and discussed in Ref} and its  rest of the nucleons of our system we choose an “interaction
3D extension Ref[20]. A major difference between the nu- neighborhood” of cellr containing nucleony, N;,(r). This
merical experiments of Ref20] and the experiments of the neighborhood is the collection of cells made up of the central
present work resides in the fact that the system of componenll r, the ¢=6 cells which have common faces, the e
particles was confined to a finite box, while, in principle, the =12 cells which have common edgesand ther=8 cells
system of particles in our present analysis evolves in a virwhich have common vertices with the “central” cell r.
tually infinite lattice space. Nucleona in cell r interacts with any nucleon in a cell if

The detailed CA experiments we report on, refer to aand only ifr’ e Njy(r).
nuclear fragmentation involving collisions between identical The pair interaction energy between a particle in cell
ions (cf. the **’Au-**"Au collision of ALADIN, [13]). We  and a particle in celt’, V q(r,r'), is represented by a step
treat these collisions as being head on. In a future work, W@otentialjvpair(r,r’)zv¢ if both cells have a common face;
plan to extend our model to deal with collisions of nonzeroy ,.(r,r')=V, andV,u(r,r')=V,, if they have a common
impact parameter. edge, or a common vertex, respectively. For a pair of par-

ticles in the same cell, we adopt a potential of the form
Il. THE CA MODEL Vpail1,1:p) =Vt (p—1)AV; the pair parametgy takes ac-
count of the effect that the interaction energy between a pair
sical dynamics of interacting particles is discussed in RefOf part|cl_es in the same cell depends on the numb_er of dif-
ferent pairs present in the cell: If there are three particles, and

[19], for the speC|aI|ze_d nuclear context, ‘h¢ parﬂcl_es A% ence three pairs, the first pair has an enéfgy the second
nucleons, and we consider low enough energies. We indicate

: . . pair has an energy,+ AV, and the third pair has an energy
here only the particular features of this model when appllezf/ 4L 2AV. The total potential in cell is then the sum of the
to the collisional dynamics we are concerned with, and recall ° ) X

the tvpical orders of maanitude of the model parameters pair potentials due to all particles in the interaction neighbor-
yp 9 P " hood Ny(r).

In order to minimize the number of free parameters of our
model, we have sét , = V, (equal to the interaction energy
Our CA universel is a cubic lattice oL.® cells, of toroi-  of a single pair in a cell andV.=V,=V,. We are then left
dal topology (periodic boundarigs with a typical sizeL  with three independent energy parameters specifying the
=127. A lattice cell is identified by a position vectorof  pair-interaction potential. The orders of magnitude adopted
integer Cartesian coordinates-(x,y,z) with x,y,z taking  for the latter areV,=—3.0 MeV andV,;=—0.3 MeV; AV
the values—(L—-1)/2, —(L-1)/2+1,..., —1,0,%,..., =+1.0 MeV. The precise values are adjusted to obtain op-
(L—1)/2—-1, (L—1)/2. An individual cubic cell has a side timal agreement with the observations, in particular, to se-
N\ chosen of the order of magnitude of the range of thecure the experimental mean binding energy per nucleon, of
nuclear forces£2 fm). The time step\ 7 is of the order of —8 MeV in an intermediate-mass nucleus. The valud uf
the collision time of nucleons in a bound nucleus has been estimated by requiring that two and three particles
(=10 2%s). Time intervals are measured by an integer in a cell form a stable bound configuration; a larger number
(number of time steps counted from the beginning of theof particles per cell leads to an unstable configuration.

B. Particle interactions and dynamics

The CA framework adapted to the simulation of the clas-

A. Geometry of lattice space: Particle kinematics

experimenk Due to the discrete nature of the allowed CA states of

The real nucleon is simulated by a particle of masshis ~ motion, a particle suffers a change of momentum which
particle is either at resisymbolized by the zero vectay); obeys Newton’s law of motion in a statistical sense only.
or in a state of motion with a single absolute value of theTwo or more particles in a same cell undergo a scattering
velocity which satisfies linear momentum conservation. The compu-
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tational details of the treatment of the transitions among the
particle states of motion are given in Rgt9].

C. Fragmentation clusters and cluster configurations

A major aim of our simulation consists in constructing the
distribution law of the fragmentation clusters as actually reg-
istered by real laboratory detectors, in the form of the num-
ber of fragmentdN against sizea (and at fixed timet), N
=N(a,t). In our experiments the “size” of a cluster is un-
derstood as the number of particles in the cluster. The par-
ticles are indiscernible, so that any permutation among them
which does not alter the occupation of the individual cells,
does not produce a new cluster.

A fragmentation cluster of siza of our CA context is
eventually identified with a fragment of the laboratory
nuclear fragmentation process. It simulates a nucleus con-
taining a= A nucleons. The experimental counterpart of our
theoretical distributioN(a,t) that ignores the charge of the
fragments, is then the distribution of the isobars as resulting
from the laboratory fragmentation process.

The precise specification of what we unde_rstand ,by & FIG. 1. Initial spatial configurationt 0) for head-on collision
“cluster” of size a that takes due account of the interactions o g identical nucleiT, I, of mass 150. Direction of propagation:
included in our model is given in the Appendix. For the y axis T and| separated by empty layer of celis=0.
purposes of computing reaction temperatures, we need to
evaluate the number of distinct configuratiafimultiplici- B. Initial motion
ties”) of the different cluster-geometries compatible with a

cluster of specified size. This question is also dealt within the Dynamically, all particles of each initial clustdrandT,
Appendix. are in ordered motion. In the c.m. frameT™# |, any particle

of the target cluster has a velocity= —ve,, while the ve-
locity of any particle in the incident cluster ig§=—v;=
+ve,. The ordered microscopic motion accounts for the ini-
All of our experiments are carried out in the c.m. refer-tial macroscopic motion of the two clusters along ihaxis.
ence frame whose origin coincides with cell (0,0,0). The linear momentum of the global systélr-1 is zero in
this frame. The available impact energy is

Ill. THE SETUP OF THE NUMERICAL EXPERIMENTS

A. Initial configuration

_ _ 2
The initial conditions for a dynamic run are as follows. Bimp=2AK, K= 5 mo”. )
We simulate two nuclei, referred to as the “incident nucleus”

I and the "target’T, by two identical clusteréin the sense of  Thjs energy is transformed into excitation energy of the com-
our definitior) located in the half latticec<0 andx>0,  pnound cluster; it leads eventually to the breakup of the latter.
respectively. The centres of mass of the clusteasdT are  (As in the traditional statistical models, we ignore here
required to lie on thecaxis. The mirror symmetry demands particle-creation processes, in particular, pion formation.
that we haver;=(—xy,0,0) andrr=(+xy,0,0), respec- The actual collision occurs at time stép1. Prior to the
tively. The number of particlesand mass, in units of the ¢ollision the model describes two clustarandl in uniform
nucleon massn) of each cluster ig\;=A,=A=150. motion in the c.m. frame, with opposite linear momepta

Initially, we assign each cluster cell a single particle, so— _ Amye, andp,= + Amve,= —p;. The velocities of the

shapes of these clusters are chosen to approximate densely
packed spheres. This geometry leads to a radius-mass rela- v =|v|=v. (%)
tion of the standard type

R ( 3 )1/3 AL @ C. The cluster detectors
=|-—| NAY
4 In the laboratory experiments the detectors, which iden-

tify and count the fragments, and measure their kinetic ener-
Overall consistency with the empiricR}-A relation then re-  gies, are ideally distributed isotropically around the collision
quiresA~1.9 fm. The value, we have adopted for our modelcenter. We achieve an acceptable approximation to isotropy
is A=1.95 fm, which produces the matter density of a realrespecting the lattice symmetry of our CA environment by
nucleus of mas#&\=150. At timet=0 the two clusters are placing our theoretical counting devices on the six fe8
just in contact(Fig. 1). lattice planesof a cube of size @+ 1 centred at the origin
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of the lattice (limiting planes defined byx=*dp; y= To find (P(a)), we have developed a straighforward al-
+dp; z==dp). In conformity with the laboratory experi- gorithm for the identification of fragmentation clusters of
ments, the distancel, must be chosen macroscopically sizea which enter the plang= +dp at stept. The algorithm
large. The minimum requirement is thdg exceeds the dis- exploits the property that since a free fragment propagates
tanced;,; over which the fragments interatfreeze-out ra- with speedv, AN represents the number of fragmentation
dius). For our typical cell sizex and for initial clusters of clusters which intersect the plare +dp, but which do not
150 nuclei each moving along the-axis test runs indicate intersect the plang=+dp+ 1.

thatd; x~din,y=~din;,,~20. In our numerical experiments, To the extent that our CA model incorporates an accept-
we have chosenly as large as computationally possible able approximation to the physics of the fragmentation pro-

(dp~50 for our CA universe of size =127). cess, the relative fragment distribution as derived from our
simulations should duplicate the laboratory distribution
IV. FRAGMENT IDENTIFICATION P(ab)(a) as measured by real detectors. In fact, consider a
AND COUNTING ALGORITHM laboratory run of total duratioty,,,, operating under station-

o o ] ) ary conditions. We then have a constant flux of infalling
In models of statistical equilibrium, in which the frag- particles colliding with a flux of target particles. Under typi-

ments are confined to a fixed finite volurig, the cluster  cal operating conditions these collision processes are binary
identification and count can be carried out with a standargo|lisions (each individual collision process occurs indepen-
algorithm that consists in scanning the whole box availablejently of the other collision processe€ollision ¢ therefore
to the fragment$21]. However, in the real laboratory experi- produces in the array of detectors a distribution given by Eq.
ment the detectors are not uniformly distributed over a vol-g). |f I (texp is the total number of collisions which occur
ume, so that the standard algorithm does not duplicate thgyer the whole run of the experiment, then the detectors

experimental procedure. The fragment counting method, Weegister the following relative fragment distribution:
have setup in our simulation is devised to reproduce the prin-

ciple of the laboratory counting procedure. f(texp) (texp)

We isolate the “new” clusters,AN(a;t;x"), which 021 N(9(a;t) ;1 N (t)P(ab-)(a)
“pierce” face x=+dp (ourx™ countey of the cube at time Plab)(a)= —4 3 o)
stept. The total number of clusters of siz N(a;t;x"), ix N(©) ix N(©)
which have been traced by counser up to steg, is then the & (®) & (®)
sum of all new clusters identified from time step 1 up to time (6b)
stept. We have

The notations adopted in these expressions are essentially the
N(a;t;x")=AN(a;t;x")+N(a;t—1;x")=AN(a;t;x") same as in the theoretical cd3¢(%)(a;t), N(©(t), fragment
numbers in collisiorc; P(22:9)(a), relative fragment distri-
bution of thecth collision; P(2")(a), final average relative
experimental distribution of the fragmehts

+AN(a;t—1;x")+---+AN(a;1;x"). (5

The identification at the other counteps , (face x=
—dp); y*, y-, (facesy==dp); z', z, (faces z=

+dp), follows the same scheme. The total number of all V. DYNAMIC RESULTS

distinct clustersN(a;t) traced up to time is the sum over The evolution of the particles of the two colliding clusters
the measurements of all six detectors. is followed with our CA program over a total time interval
The relative distribution of the fragmen®(a), probabil-  t. .. not exceedingl{—1)— (di,;+dp) (about 70 in our ex-
ity of a fragment of size, is given by periment$. The order of this time interval is fixed by the
N(&:D) A observation that it is the shortest time it takes an individual
. a; . . i particle, or a cluster, ejected in the collision, to migrate
P(a)_tlm N(t) with N(t)i; N@b.  © through the available CA lattice, to be reflected on the

boundary of the lattice universe, and to be sent back to a
Finally, if we repeat the same simulation a large number detector plane. For timeis>t,,, a reflected fragment could

of times, we have collide with outflowing fragments; this would violate our
} ) assumption of noninteraction of the fragments at distances
exceeding;p; .
czl N©(a;t) ;1 N©(1)P©(a) We begin with a discussion of a first physically realistic
(P(a))=— -— . (6a effect o |
SNt S NE(t) (i) At the collision site, we observe a central concentration
& & of nucleons(a compound nucleliof size Ac(t). This con-

centration progressively loses individual particles as well as
whereN(©(t) is the total number of fragments of all sizes, fragments. The sequence of fram{es-d exhibited in Fig. 2
N©(a;t) is the fragment distribution, an®(“(a) is the and corresponding to an impact energy per nuclgg,/A
relative fragment distribution in theth experiment. If the =3.75 MeV, illustrates this situation in greater detail. Frame
numberr of experiments is chosen large enough, a stable anth) (t=20) indicates that besides isolated particles leaving
well-defined distribution is expected to emerge. the center, two large fragments were symmetrically ejected
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nucleons for time step 40 (b
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impact energy alone is regarded as a parameter, all other free
coefficients being held fixed, we can express mass in terms
of the nucleon mass, and volume in the reference volume, so
that mass and volum@nd hence lengjtbecome dimension-
less; in this system the impact energy has the dimension of
an inverse time squared. Hence, the above relationship. The
remaining factory depends on the model constafits., ref-
erence volume, mass of nucleons, nuclear interaction con-
stants, etk

Integration of Eq.(7), from the momentt,, at which
evaporation starts, to the current timeyields

[Ac() = Ao]* ™ *=[Ac(to) = Aol °— (1-d)(t

—to) Eimp™ 2y
if 6#1, (78)
Ac(t) = Ag=[Ac(to) = Aolexd — Eimp?y(t—t,)]
it 6=1. (70)

Figure 3 shows the curvéc(t) — A, ][ Ac(te) — Ao]* for
values ofk (=1— 6) ranging from 0.1 to 0.%fine lineg, as
well as IfAC(t) — A JIN[Ac(t) —A,] (heavy ling; time is mea-
sured witht, taken as origin. The parametdgsand A, are
read-off from the numerical runt{=11; A,=36 in the case
of the experiment exhibited in Fig,).3The curves in Fig. 3,
which are strongly nonlinear for larger valuesloftend to
become linear in the limik—0, as is found from a linear
regression analysi®ver the 25 time steps shoyrHence,
Eq.(7b) (6=1) gives the best fit. In other words, the excited

along the collision line; smaller fragments were blown alongcompound cluster essentially suffers a standard disintegra-

the y and z axes normal to the collision linex(axis). The

tion. The decay time for the specific experiment, we have

collision site remains a high density zone, which is clearlydisplayed is7q;s=6.58.

visible on the later frame&)—(d) (t=40, 50, and 60 An

evaporation of small fragments and individual particles con
tinues from this central condensation zone, at a rate which i

expected to depend on the impact enefy,, (the only free
parameter of our series of experiments

The experiment seems to suggest that the collision phe-
nomenon is actually a two-stage process. In the first phase %fol
the collision, the nucleus is broken up into several large frag,,

(ii) A second conspicuous feature of the plot of our nu-

merical results is an artifact of the CA lattice symmetry and

gomputational procedure. In each lattice directiang , i
=X,Y,z, we observe a column of particles or clusters that
propagate all with maximum speed[Eq. (1)] away from

the collision site.

Figure 2 discloses that the density of particles in each
umn increases with distance, with a peak density at the
o ends of each column. The peak density corresponds to

ments; the latter are larger, the higher the impact energy isje effect of the violent breakup occurring in the first phase
for a high enough impact energy, only two fragments emergey the collision. The subsequent gentle decrease in time of
from the collision (negligible interaction between the two the content of the residual compound clustei(t) implies

nuclej. The second phase, starting at some time gjejis a
more gentle evaporation from a central fragment.

that the rate of evaporatiditq. (7)] decreases with time as
well. Therefore, the density in the columns decreases as we

To quantify the phenomenon of emission of clusters weapproach the central compound cluster; at the latter central

fix a small reference voluméa cube of 23 cells which

cluster, the common center of the columns, a density maxi-

encloses the compound nucleus, and which we regard asmaum survives.
rough approximation to the space occupied by the latter. It is Statistically the particle distribution at any tintepre-
then reasonable to assume that the rate of particle loss frogerves the symmetry of the initial configuration. Figure 2

this reference volume is proportional to somepriori un-

demonstrates indeed that the pattern possesses the following

known poweré$ of an excess number of particles over ansymmetry elements: Theaxis is a fourfold axis; the planes

equilibrium numberA, in the reference volume, or

d/dtAc=—B(Eimp)(Ac=Ao)’,  B(Eimp) = YEimp"- - -

%)

The functional form of8(E;y,p) follows from a dimensional

(x,y) and (,z), as well as their bisectors are reflection
planes; they andz axes are binary axes, and so are the two
diagonal axes;y(,z) is a reflection plane. The invariance
group of this statistical configuration 3, (in standard no-
tations for the point groups; cf. Landau-Lifshits, quantum
mechanics The distribution of the particles along the colli-

scaling argument. In our series of experiments in which thesion axisx is clearly seen to be different from the distribu-
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tions along they or z axes,(cf., in particular, the large frag-
ments on thex axis). The collision axis remains a privileged
direction all over the experiment.

At time stept=0, the initial conditions of the collision
setup in our CA lattice environment, Fig. 1, create a symme-
try breaking from the original octahedr@lus translational
symmetry of the empty(infinite) lattice (the “vacuum
state”), Oy, to the symmetryD,;, of our initial configura- 21
tion. At all later timest>0, our CA results demonstrate that ]
the latter symmetry is statistically preserved Fig. 2. The
collision process itself, starting a1, induces no overall
geometric symmetry transition. The occurrence of such a
transition would be direct evidence for a second-order phase
transition. If a second-order phase transition does occur ir
the fragmentation process, then it must be related to a fine %
symmetry breaking not immediately manifest in the spatial
distribution of the fragments.

The initial conditions for a head-on collision of two iden-
tical nuclei occurring in the continuous physical configura-
tion space break the symmetry of the original “vacuum”
(spherical plus translational symmettyansforming it into a
cylindrical symmetry, of axis coinciding with the collision
axis Kp—D..,. Provided that our discrete CA model can 2 T T g )
capture the essential physics of the real fragmentatior
mechanism, the results of the above numerical experiment:(a) S
are indicative that the full cylindrical symmetry should be
preserved in the real laboratory experiment. This symmetry
is indeed consistent with theAdetector measurements.

Our next task is an attempt at wiping out the CA artifact
(ii) in the computed spatial distribution and to convert the
latter into a form more directly comparable with the labora-
tory experiments.

We reconstruct aD.,,,-symmetric number distribution,
p'®¢(r;t), from the CAD4,-symmetric number distribution,
pCA(r,t), by the following procedure. We expand the new
distribution in Legendre polynomials

E= 0.307 (MeV)

-
)
P

10

®; E= 3.973 (MeV)

©

pf“(r:n:ngo pn(r;t)P(cosh), (8)

N(s)

where the anglé is the angle between the position vector
and the collision axigoriented from thd to the T nucleus.
Since the CA experiments indicate that the difference in the
distribution along the collision axis and the axes normal to -
the collision axis is relatively small, we truncate the expan-
sion after the dipole terms. In this lowest order approxima-
tion, we then write

pe4r;t) =pe(r;t)+ n(r;t)cosd . . . . (8a)
The functionsp.(r;t) and %(r;t) are then determined from )
the CA distribution by et " —
pc(r;)=B(pA(r;))y -, (b) s
pe(ri) + 7(r;t) =B(pA(0r ,0;1))y, (8b)

FIG. 4. Cluster distribution IlN-Ina derived from simulated
where the right hand sides are averages over the positions; detectors,(a) Eimp/A=0.307 MeV per nucleons=2.56; (b)
r=|y| and|z| on they andz axes, and =|x| on thex axis,  Ej,,/A=3.973 MeV per nucleon;=2.64. The numbers of clus-
respectively;B is a normalization constant which is fixed by ters are normalized to the numbers of runs.
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requiring that the integration of the distribution over theration showing a higher central concentration, which we re-
available spacgthe sum ofp®“(r;t) over all CA cellsr] is  fer to as the compound cluster, always emerges in the simu-
equal to the total number of nucleons 800 in our experi- lation (Fig. 2), provided only that the collision energy is low
ments. enough as compared to the binding energy of the nucleons in

Panel (B) of Fig. 2 shows a stereoscopic plot of the sym-the nuclei. The compound clustére., high central concen-
metrized space distributiofB) reconstructed from the CA tration survives over a period of time which can be esti-
distribution displayed in panéb). The plot is generated by a mated from Eqs(7).
straightforward Monte Carlo procedure distributing 300 par- Within this compound cluster, and, in principle, also
ticles in conformity with the statistical lawBa). We observe  within our CA universeU (127 cells; toroidal topology, a
that this distribution falls off with distancefrom the center variety of statistical equilibri@, e’, €”, ... are conceivable
(with an exponen& 2), except that the higher density of the among the different components.
distribution front survives. We should point out that the (a) If we identify the components as the individual par-
method just redistributes the individual particles withoutticles (nucleons in our specific nuclear fragmentation simu-
conserving the clusters. lation; etg of a configurationZ, then we may have a statis-

(iii ) The cluster-size distribution as generated by our CAtical equilibrium in Z, eg"®, due to energy exchange
dynamics and registered by our countafs etc., obeys a among the particlen(Z) of configurationZ. The configura-
power law. This result is illustrated in greater detail in Fig. 4,tion Z may be the compound clusté&, or our entire CA
which exhibits two instances, one at very low impact energyuniverseU.

Eimp/A=0.307 MeV[panel(a)], and the other at a 13 times  (b) If we identify the components as the clusters of par-
higher energyE;y,,/A=3.973 MeV [panel (b)]. The plot ticlesc (which in turn, when evaporating from the compound
shows(a nonnormalized form ¢frelation(6) in log-log for-  cluster become the observable fragmgriteen we may have
mat, obtained from a total number of runs 16. Over the (i) a statistical equilibrium due to energy exchange among
rangea< 10, both curves appear as straight lines, with negathe clusters of a configuratiaf, ¢(Z), eg%?. But we may

tive slopesr=2.56 (low energy and 2.64(high energy. Our  also have(ii) an equilibrium due to exchange of energy as
experiments indicate that this property holds at least up tavell as particle® among these cIustereE,pC(Z). Under the
Eimp/A~10 MeV, wherer takes the value 2.65. We are latter alternative, the observed distribution of fragments
entitled to conclude that in the range of impact energiesgainst size will be the thermal reaction-equilibrium distri-
Eimp/A<10 MeV, the (smalley fragments obey a power bution of the clusters. For the sake of completeness, we men-
law with negative slope=2.6, which is independent of the tion further (iii) that within each individual clustet;, the
energy. As the impact energy increases larger clusters ammmponent particles may exchange energy among each
being formed; the tail of the distribution then tends to be-other; this process may then lead to a special type of equi-
come longer. librium eg"(®?) inside each clustec; .

Critical exponents of 2.64 and 2.65 have been measured We define here a temperature paramétég), which is
in the laboratory, for the fragment distribution of proton-Kr associated with a specific thermodynamic equilibrium pro-
and proton-Xe fragmentation. We should mention also that irtesse, as follows : The parameteF(e) is the thermody-
the field of ion cluster fragmentation, fragment distributionsnamic temperature that reproduces the macroscopic proper-
obeying power laws of exponents of 2.56 and Z.8Bhave ties of the specific equilibriune assuming it is realized. If
been isolated. w=F(e;T) is the thermodynamic relation that expresses the

It appears that the slope values of the fragment distribuebservablew as a function of the thermodynamic tempera-
tion, we obtain from our dynamic results are in better agreeture T under equilibrium conditions (other thermodynamic
ment with the laboratory data than the values derived fronvariables being held fixedthen from the measurement of
standard statistical theories, which are close to the valuand the thermodynamic relation, we 3¢e)=T. (Note that
given by mean field theory [12]: r=2.33). This remains our way of introducing temperatures differs from the more
also true for ion cluster fragmentation problems, even thougliormal procedure adopted in Chernomeretzl. [29]). We
our model parameters were not adjusted to that particulagire free to use this thermodynamic relation in a formal way
situation. to determine a parametdi(e) characterizing a given mac-
roscopic configuration, whether or not the specific equilib-
rium e holds. We begin with listing the thermodynamic rela-
tions of relevance for our purposes.

In principle, all of the above-listed equilibriz, €', €”,

With the exception of the symmetrized distributi¢8), ... Mmay arise in our numerical experiments, or in the labo-
the results described in the preceding section are direct reatory experimentéin the sense that there is, for instance, no
sults of ourN-body simulations. They involve no extra ap- membrane surrounding a fragment that would prevent the
proximations besides the assumptions inherent in any Caxchange of particles, ejcThe question is rather: Given an
modelization(space and time discretizatipand the schema- equilibrium proces®, does the collision system we investi-
tization of the interaction potential among particles. In par-gate survive over a time span that is long enough for the
ticular, the dynamic calculations dispense with the hypoth-equilibrium e to establish itself?
esis of formation of a compound cluster in the collision If the collision system reaches a full thermodynamic equi-
process. Our numerical experiments indicate that a configuibrium, then we must have

VI. FORMAL TEMPERATURES: COMPARISON
WITH LABORATORY EXPERIMENTS
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T(e)=T(e)=---=T, 9 2
where the formal temperatur@ge), ..., obtained as indi-
cated; all of these formal parameters are then equal; the
define the single thermodynamic temperatlir€€onversely, o
if relation (9) is violated, then the relevant statistical equilib- &1

ria are not realized. We have indeed good reasons to belie\
that some of the possible equilibria listed above will never -,
materialize in our syster(tf. below); or, alternatively, some §
equilibria cannot establish themselves over certain ranges o
the impact energy. Our numerical results confirm this point.& o]
Even if a state of full thermal equilibrium is not attained g
for the system we are investigating, the formal temperatures
T(e), T(e'), ..., mayremain perfectly useful parameters
for the purposes of comparison of the numerical results witt
actual laboratory experiments in the following sense. Sup
pose a given observabl@, measured in the laboratory, is 2]
plotted against the temperature parametéfe)
=Q(T(e)), this temperature being measured according to ¢
well-defined protocolcf above. A typical instance is pro-
vided by the(formal) caloric curve,T(eg p™®) Vs Ejyp,
(equilibrium process: energy and particle exchange amon
clusters in the compound clusteiThe necessary condition 0 o0 20 . 2.0
for a given theoretical model, such as our present CA mode ENERGY/NUCLEON (MeV)
to be an adequate model for the fragmentation process, Is
then that this model can duplicate the experimerital FIG. 5. Formal CA caloric curve§,-E;n, /A, for different defi-
=Q(T(e)) relation. The agreement must hold provided thatnitions of temperature:a T,c,, nucleon gas in compound
the formal parametef(e) be obtained in conformity with nucleus; &’) T, nucleon gas in CA universéh) T, , cluster
the experimental protocol. It should be kept in mind thatgas in compound nucleusb() Ty, cluster gas in CA universe,
there is no guarantee that an easily measurable temperatu T1322, reaction equilibriumC(1)+C(3)=2C(2); (c) Taua,
parameter of our CA galsuch asT(eg"Y)) can be substi- reaction equilibrium C(3)=C(1)+C(2); (c") Tzu, reaction
tuted to the actual experimental parametemperature as- equilibrium C(2)=2C(1). Individual point_s: experimental esti-
sociated with ratio yieldd (eg Pc(C))]_ mates from Au-Au fragm.entsd) NuPECC interpretation of data
We have measured the fbllowing collection of tempera_(fuII square$; Trautmann interpretatiof(e) full dots], [(f) crossed
ture parameters for our CA systeimdapted to nuclear frag- square} [(g) double crossds

T

TEMPER,
8

4.0

0.0

mentation.
A
3 1 Am(u)(1)
Sk Ta) (0= 57M 2 [Vl () ]2=—"—K<K,
A. Nucleon-gas temperatures: Global nucleon-gas temperature a=1
Th)(t) and nucleon-gas temperature in compound (10)
nucleus T, c)(t)
Ac(t
The temperature parametéigy)(t) andT,c(t) are the 3 1 c(t) . Anc)(D

formal temperatures of a gas of nucleons in thermal equilib- 5K Tn(c)(t) = 2A0M 2 [Vo(D)] _A—(t)K<K’
rium under exchange of energy in the CA univetsand in ¢ «t ¢ (11)
the compound nucleus, respectively. With the above nota-
tions Ty (D =T(ee");t), Ty () =T(eg");t); the ex-
tra argumentt indicates that these parameters depend on In these expressiorsis the Boltzmann constant,(t) is
time. the velocity of the nucleon labeled and taken at time step
The total number of nucleons of our system, the CA uni-t, andK is the kinetic energy of a moving CA particl&q.
verseU, is conservedAy(t)=A (=300). The number of (3)]. Note that all formal temperature parameters we shall
nucleons in the compound nucle@sat time steft, Ac(t), is  introduce are time dependent.
variable, and so are the number of nucleons in motion in the The second temperature paramelgyc, [Eq. (11)] mea-
universe A y)(t), and the number of nucleons in motion in sures the physically meaningful average kinetic energy of a
the compound nucleushyc)(t). The temperature param- gas of particles in the compound cluster, which can, in prin-
eters, which are measure of the average kinetic energy peiple, reach a thermal equilibrium in our CA model, or in the
nucleon of the gas of nucleons ihandC, respectively, are laboratory; hence, it can represent a genuine temperature of a
then given in terms of these numbers of nucleons by th@as of nucleons. This is the case if the energy exchanges
following expressions: among the nucleons have time to establish themselves, i.e., if
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the lifetime of the central condensatipef. Egs.(7)] exceeds Even thoughT,(t) has a formal meaning only in the
the average collision time among nucleonirta few time  nuclear fragmentation problem, it can be used to find the
steps. physically significant temperature parameter of the com-

Figure 5 shows a caloric curveé,, against the impact pound nucleusT,(t). In fact, in the numerical experi-
energy per nucleork;,,/A with Tc)=Tnc)(trer) COM-  ments we can easily compulg,y)(t); we can also easily
puted from our CA runs at a reference time stgp (=17  count the outer nucleongy_(t). Taking then account of
for reasons to be discussed bejoin the low-energy range, the relations
up to E./A~7-8 MeV/nucleon, the temperature parameter

rises slowly with impact energy, approximately as A=Ac(t)+Ay_c(t) and Apu)(t) =Anc)(H) +Ay_c(t),
Tnc)=0.15Ejnp/A, Eimp<Ec. (113  we obtain from Eqs(10) and (11)
In the high-energy range the rise is steeper, and we approach 2K Ay_c(t)
, Tao(O=Tau)(O = 53 1~ Tawy(® A Ay o)
Tuo=5Emp~E/A, Eimp>Ec. (115 (12

This relation demonstrates that the temperature parameter in
The slope 2/3 in the latter relation is indicative that the ranthe compound nucleus at time stef,c)(t), is always less
dom kinetic energy of the nucleons is asymptotically equal tdhan the formal temperature parameter of the CA universe,
the impact energy minug.. Accordingly, this critical en-  Tp)(t), taken at the same time stegrigure 5 exhibits also
ergy appears as a binding energy of the nucleons in the conthe formal caloric curvel ,y(t) vs Ejmp/A, at time stept

pound nucleus. The numerical valuelf/A, which is of the  =tef (=17), which is seen to obey the inequalify(t)
order of the average binding energy per nucleon in a stable>Tycy(t). In the lower-energy range the two curves
nucleus, is indeed consistent with this interpretation. Thu)(t) and T, c(t) are nearly superposed, indicating that

As can be seen in Fig. 5, the slope of the asymptoti@t the reference time few nucleons have escaped the com-
expressior(11b) is in line with the high-energy branch of the pound nucleus. Even at the highest impact energies we have
experimental caloric curve of th®’Au-1°Au fragmentation  investigated, the difference in the two formal temperatures
procesq 14|. The NUPECC caloric curve exhibits a plateau, does not exceed 1.5 MeV.
at a temperature level of 4.5-5.0 MeV, which is not repro-
duced by the CA nucleon-gas temperature; however, the B. Cluster-gas temperaturesT o(y,(t) and Tc)(t)
change of slope in the theoretical curve coincides with the ) _ - _
transition from a plateau to a rising behavior. We should At time stept consider the specifitth fragmentation clus-
stress that the experimental points of Trautmann’s analysid®" Cr» f=1.2,..., Fz(t), a representative of the cluster
also plotted in Fig. 5, indicate no proper plateau; they rathefduivalence clas€(as). Fz denotes the total number of
follow a rising curve similar to the CA ) curve. Quanti- ~ clustersin the configuratioril( or C). Denote by(v((t)) the

tatively, the experimental da@uPECC or Trautmannare  Velocity of this cluste(average of the velocities of the com-
shifted byAT~3.5 Mev above the CA curve. ponent nucleonsat stept. Then, the cluster-gas temperature

The first parameteT () must be regarded as an arti- is the temperature parameter associated with the equilibrium
ficial temperature. It measures an average kinetic energy ¢irought about by the exchange of energy a_mongct(g)g Clusters
nucleons composing a mixture of two gases, which in thdn & given configuratiorZ. We haveT,z)(t)=T(eg" 1),
context of our CA model, or the real laboratory experimentsZ = (U,C). Hence,

never interact. Namely, we have on the one hand a gas of 3 Fo(t)
nucleons essentially trapped inside the compound nucleus KT (t)= m ad (v ()12 13
and on the other hand an expanding gas outside the com- 2K Te@ (V=3 Fz(t) 1‘21 v ()1 3

pound nucleudJ-C. In the latter gas the collisions are neg-

ligible; no energy exchange can take place among the outer As in the case of the nucleon-gas, the cluster-gas tempera-
nucleons. All of these latter nucleons conserve the momerture parametef.)(t) is again a formal magnitude, since
tum and kinetic energgmaximum energyK) they have ac- the cluster-gas outside the compound nucleus does not inter-
quired at the moment they evaporate fr@n To simulate  act within our runs ot,,,, time steps. On the other hand, the
realistic laboratory nuclear fragmentation, our CA experi-clusters in the compound nucle@smay have time to ther-
ments must consist in relatively short runs, of a total numbemalize, so that the temperature paramédigk,(t) does rep-

of time stepd,,,, €ssentially chosen as followsf. Sec. V). resent a physically meaningful temperature.

Once a fragment has left the collision site it suffers no fur- On Fig. 5, we have superposed the formal theoretical ca-
ther interactions. In the finite CA universe of our model thisloric curvesT)(t) andTc)(t) vs impact energ¥y,,/A
requires that an ejected fragment be not allowed to be retat time stept,e;). We note that the inequality between the
flected on the boundaries of the cubic CA universe, and sertvo temperature parameters of the nucleon gald iand C,

back to the reaction site. Very roughly, we then chogsg, ~ read-off from Eq.(12), is preserved in the case of the cluster
<L/2. (Interactions inJ-C would require that the number of gas inU andC : T¢(t)>T¢c(t) (outer fragments move
time steps obey,.,>L). with maximum speed The cluster-gas curves have much
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steeper slopes than the nucleon-gas curves, implying the fumvestigated, from which a specific temperature parameter is
ther inequalityT¢(c)(t) > Ty (1) derived via the standard relation for chemical equilildga

The higher cluster-gas temperature reflects the followindRef. [27]; the specific nuclear context is dealt within Ref.
property. In a given configuratiozithe number of clusters is [28]).
smaller than the number of nucleons, while the total energy In the framework of our CA formulation which ignores
to be shared among clusters or among nucleons is the san®ectric charge, the chemical equilibria among different frag-
Therefore, the average energy per cluster is larger than thments are not directly comparable with the real nuclear equi-
average energy per nucleon. At high impact energiedibria investigated, which involve isotopes. Under conditions
Eimp/A> average binding energy per nucleon in a stableof true thermal equilibria, the ratio among any group of iso-
nucleus, one might expect intuitively that the physicallytopes, or of isobars, is governed by the same thermodynamic
meaningful caloric curve for a fragmentation process shouldemperature. But if the system is not in a genuine state of
be the nucleon-gas curvi, ). The high energy available, equilibrium under nucleon exchange, then the temperature
when shared among the nucleons, would indeed produce aparameter is specific for the precise reaction process. Differ-
erage energies per nucleon which exceed the binding eneent reactions, and hence different measured ratios of frag-
gies of any fragment. However, our CA experiments demonments in the CA experiments, lead to different temperature
strate that in the case of high impact energy the meffjed parameters. The same conclusion holds for the laboratory
and | nuclei break immediately up into essentially sevenratio measurements.
large fragments. Two compact fragments carrying a sizable In fact, as transpires from Rdfl4], different experimen-
fraction of the mass of theandT nuclei, continue to propa- tal ratios, and different analyses of these ratios, have led to
gate along the collision axis. Four smaller fragments aralifferent shapes of the caloric curve in the case of the
ejected along the/ and z axes, respectively. The residual °/Au-1°’Au fragmentation process. In Trautmaji#] a ris-
nucleons form a concentration of matter at the center. Onlyng pattern for the He-Li ratio is identified, while a nearly
the latter can play the part of a compound nucleus in whiclconstant temperature is found for other ratios; moreover, the
actual energy sharing may occur. Qualitatively this initialearlier NUPECC caloric curvgl4], based on other ratios,
breakup survives at lower energies, except that the siexhibits a temperature-platednot present in Trautmann
ejected fragments become progressively smaller, while thapproximately over the range 3—10 MeV per nucleon. In Fig.
central residual becomes larger as the impact energy is d&; we have superposed the various available experimental
creasedcf. the sequence shown in Fig. 2 for an impact en-points defining caloric curves for the symmetttAu-1°"Au
ergy 3.75 MeV per nucleon, where the seven fragments arfagmentation. This laboratory process comes close to our
clearly distinguishable on all pangls CA simulation, even though the total number of nucleons

The observed scenario is indicative that at high impacinvolved in the laboratory is 4/3 times the number of nucle-
energies it is the cluster-gas temperature that supplies thens of our simulation.
physically meaningful characterization of the laboratory ca- To formulate the relevant statistical expressions for reac-
loric curve. This temperature takes properly care of the contion equilibria in the CA context, consider the equilibrium
tribution of the large fragments in the energy balance. Anyamong the cluster class€a;), C(a;/), .. ., described by
laboratory measurement techniq@end any theoretical pro- the stoichiometric scheme
cedurg of a temperature assignment ignoring the largest
clusters must fail to provide a physically relevant tempera- viC(ag) +vpClag)+---=vpClag)+---, (14
ture estimate. _ ) ) _

This point is of importance in connection with the reac- (¥f+ ¥’ - - -, Integers consistent with conservation of the
tion temperatures. The latter, to the extent that they typicallj'umPer of nucleons in the reaction procesga+ vy ay: +

refer to fragments of low siz&f. below), are not physically " = Verapr+ - )
representative in the high-energy range. Denoted byN(as,t), the total number of clusters of class

C(as) present in our system at time steplf a statistical
equilibrium holds, then the standard statistical procedure al-
C. Reaction temperaturesT o . jor . (1) lows us to write

The favored laboratory methoq for assigning an experi- V[27mkT(1)]32 a2
mental temperature to a fragmenting nuclear system consistsN(a; ,t)= 3 X—
in measuring ratios of yields of different fragments, assum- ar:
ing a statistical equilibrium of general typg ) among J
the fragmentg23]. Examples are the ratioSHe/*He) and x| > gjexd — Eint,j /KT(1)] | Xexp(A vay).
(SLi/ "Li) for the earlier analysis of the ALADIN experi- =1 ’
ments[13,22,23, and other ratios of populations of isotopes (15)
in the more recent analysis of the same experirhgl; (cf.
also Refs[24,25). In Ref.[26] the ratios He/*He)/(d/t) In this expressiolY denotes the reaction volum&(t) is the
and GHe/*He)/(Li/"Li) are considered for the multifrag- equilibrium temperature at time stépThe summation ex-
mentation resulting from an Au target bombarded by C ionstends over the internal energy statef;,,, ; of the J distinct
Several other instances of measured ratios are listed in Refeometric configurations of the same cluster claga;) (as
[1]. In all cases, populations of light nuclei alone have beerdefined in the Appendix Physically, these energies simulate
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different excitation states of a nuclear fragment of massiwcleons of the clusterThe third factor is essentially the
numbera; . The factorg; is the statistical weight of the en- internal partition function of the cluster clag€{as), which
ergy stateEpn, ;. we evaluate in the specific CA framework.

To compute the parameters referring to the internal states, For the purposes of estimating reaction-equilibrium tem-
we construct the different geometrically different clusterperatures from our numerical experiments, we restrict our-
classes denoted3(a;,c;;y) in the Appendix. We then se!ves to clusters of smz_illest siz#g=1, 2 and 3. As tran-
evaluate the corresponding energig@; ,c; ;y) and the re-  SPIres from the_Appendlx, the precise enumeration of the
lated multiplicitiesg(as,c;;y). The full details are given in Cluster geometries becomes already rather involvedafor
the Appendix. The factok is the Lagrange multiplier that =3. Tc_> degl with higher sizes, we bellgve that asymptotic
takes account of conservation of nucleons. The fagfois ~ @PProximations to the cluster conflguratlons should be con-
the “volume” of an elementary phase-space cell. In the stricStructed. This has not been done in the present work.
classical context of statistical mechanics the elementary cell &f=1. For @ cluster made of a single nucleon, we have
is not defined; a quasiclassical argument identifiewith ~ ¢(1)=1, and the internal partition function reduces to
Planck’s constarit29]. In the CA context, we have a natural Zin(1T(1)=1. (16)
phase-space cell, inherited from the discretized space and
discretized velocity, or momentum space; the volume of this a;=2. For a cluster made of two nucleon§2)= J2; the

cell is (AN XmxXv)® which is to be substituted th®. internal partition function involves the contributions of the
We rewrite Eqg.(15) in the form (1539 geometric configurations listed under E¢8.3)—(A5), and
AB.

N(af ,t) = @(T(t),V)X O'(af) X Zim(af ,T(t))X eX[i)\ Vfaf).

The first factor of the right hand sid€ (T(t),V) is essen-
tially the translational partition function of the clusters of
classC(as) [normalized toa;=1; the actual mass contribu-

Zim(Z,T(t))=§exp: —V4 /KT(1)] +§exr[ ~V/KT(1)]

tion a;*? is included in the second facter(a;)]. The trans- L e — N B
lation contribution is evaluated in the standard context of 2exr{ Vo KT(O]+ 1 el = Vo /kT(D]
classical mechanics, for reasons of algebraic simplighg (17)

discrete kinetic energy states of the CA lead to a more com-

plicated expression, which should be equivalent to the clas- a;=3. A cluster of 3 nucleons hasg(3)= \/3/2. Thegeo-
sical expression in the largg limit). This factor is the same metric configurations which contribute to the partition func-
for all species of clusters. The second factofa;) tion are listed in the Appendix under Eq#\7)—(A9) [first
=a;Y%(a;—1)! is a combination of the mass effect in the line of Eq. (18)], (A10)—(A15) (second and third lings
kinetic energy contribution, and the effect of the indiscern-(A16)—(A19) (fourth and fifth line$, (A20)—(A22) (sixth
ability of the nucleonginvariance under permutation of all line), and(A23) (last line:

7. (3T(1)= gexp{— 2V, IKT(1)]+ gexp[— 2V, IKT(1)]+ gexp[— 2V, IKT(1)]+ (92— @)exd — (2V 4+ Vo) KT(1)]
+(€216— e€)exd — 2V /KT(t) ]+ €2/6 exgd — 2V /K T(t) ]+ €2/6 exgd — (2Ve+V,)/KT(1)]

+eexg —2V, IKT(t)]+2¢ exg —2V, /KT(1)] +% extf — (Vy+ Vo) /KT(1)]

Qe Qv 3pe
+ ?exq— (Vgt+Vet VU)/kT(t)]+7 exd —(Vyt VU)/kT(t)]+T ex — (Vet+ V,)/KT(t)]

+ @ exp — (2V4+ Vo) IKT(1) ]+ € exf — (2Ve+ Vo) KT(1) ]+ v exi] — (2V, + Vo) IKT(1)]
+1exg —3(Vo+AV)/KT(D)] ... . (18)

The following ratios of cluster numbers are independent N(3t) \/g 1 Z (3T(1))
of the Lagrange parametar. : e

NBON(LY) \F Zin3T(1)
N2D? VA Z,@Tm)

NONLD  2y2  OT0V)  Zm@T(1)’
(19 (209
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N(2,t) 1 Mev. The experimental temperature is thus shifted Adly
N(1t)2 - 2X®(T(t),V) XZin(2,T(1). (200 ~35-4 Mev with respect to the CA temperature,
The first ratio is independent of the translational téntand TLab=TCAL AT, (22)

hence independent of the reaction voluke The numbers
of clustersN(a;,t), a;=1, 2, 3 are directly supplied by our In the case of the nucleon-gas temperature, we have noticed
CA runs, at every time step so that the left hand sides of a shift of a similar order between the theoretical CA tempera-
Egs.(19), (20a, and(20b) are known. These equations are ture and the laboratory estimate.
then solved with respect to the paramefg(t) [written The temperature defedT between the CA and experi-
TaaAt), TanAt), Toua(t), respectively, under the above al- mental temperature is thought to be due to a feature inherent
ternative$. These temperature parameters are the reactiot® our CA treatment. The construction of a stable nucleus in
temperatures of the equilibrium processes the CA framework relies on a discretized version of classical
mechanics, in which the component nucleons possess no ki-
C(1)+C(3)=2C(2), C(3)=C(1)+C(2), netic energy at allin the reference system attached with the
center of mass of the nucleusince classically temperatures
C(2)=2C(1), are related to microscopic kinetic energies, an underesti-
. mated kinetic energy leads to underestimating the tempera-
respectively. _ ture as well. The reaction temperatures encoded in relations
In order tp follow as glosely as possible the actual Iabo-(lg), (20a, and(20b) refer to small-size fragments only. Ac-
ratory experiment, consider the cumulated number of cluszqqing to our remarks on the cluster-gas temperature, these
:jeertsegz (frlszejé ,tg/lt(i:;:ét)s'tgvpthchT—:-hri\llgvgﬁfstﬁgeths?ecsIilscigggtiof temperatures are not thought to be representative for the real
fied with the length of our runt,,,~70 steps. With our collection - of fragmgnts at high energle_sEi,(m/A ;

) 9 o ymax p >8 MeV). However, in the low-energy domain the avail-
detectors situated at a finite distandg (~50) from the  jpj energy can concentrate on small-size fragments, which
reaction center, the first _cI_usters arriving at the det_ector@hen form and dissolve easily; therefore, the latter fragment
were emitted from the collision sité, — Rc time steps prior  gistripution does reflect a physically meaningful temperature
to the arrival time Rc, radius of the initial merged +1 gt jower energies. The full physically significant temperature
configuration,~10 in our setup Accordingly, inarun of 70 1y with energy(caloric curve from 0 to about 25 MeV is
steps the first fragments have time to be reflected on thg,gqested, therefore, to be made of the cluster temperature
boundary of our CA universe. The actual choicetgf, se- Tc(c) at the high-energy end, and the reaction temperatures
cures that the clusters cannot reach the detectors after refl T4, €10 at the low-energy end, with a continuous transi-
tion; thereby the clusters arriving close to the detectors canion from one curve to the other around the critical energy

not undergo any interactions with other clusters. E./A~7-8 MeV/nucleon, of the order of the average bind-
On the other hand, the last fragments registered by thpng energy.

detectors, at stef, ., have left the central nucleus roughly at
step tmax— (dp—Re) (=30). Accordingly, the cumulated
number readings of the detectors, terminating at time step

tma(=70), M(ay,tmay, cover the first 30 time steps of the  The primary aim of the proposed CA simulation has been
fragmentatlo.n mechanism. Alternatively, the cumulated numyg devise a framework capable of replicating the actual labo-
ber may be interpreted as the average number of clusters phtory procedure of monitoring a fragmentation process gen-
sizeay actually present in our system at the “average” time grated in cluster collisions. Previous theoretical work, inves-
12 tmax— (dp—Rc)I=ter, Of the order of 15: tigating thermodynamic properties of the collection of
_ fragments(e.g., a caloric curye was implicitly based on an
N(ar tre) =M(ar, tmax - (@1 assumption of a thermodynamic equilibrium. In the present
In our numerical simulations, we have set this reference tim@°d€! no equilibrium hypothesis is needed. Statistical rela-
t,o; equal to 17 tions [Egs. (10) and (11); (13); (19), (20a), and (20b)] are
re . : ) .
The three formal caloric CUrVesTy3;4t)~Eimp/A, used formally, for the purpose of making comparisons with

the laboratory experiments.
T3pAt) —Eimp/A, andTy14(t) —Ejnp/A for t=t,¢¢, are plot- . _ _
ted in Fig. 5. All three curves are seen to be essentially in-. Our numerical experiments demonstrate that the distribu-

dependent of the energy over the ragé< 25 MeV inves- tion of_the CA clusters against c_Iuster size,. as registered by a
tigated collection of detectors surrounding the _coII|S|on site, ol:_;eys a
power law of exponent close to 2.6. This model result is in
T1z~Tap=Toy1~1—2 MeV. excellent agreement with the laboratory results of nuclear as
well as other multifragmentation processes. It is well known

Quallitatively this behavior is in line with the different formal that the very existence of a power law can be derived in the
temperatures derived from the laboratory Au-Au fragmentacontext of various statistical mode(sf. the review{1]). The

tion as analyzed in Trautmanfh4] (with the exception of the statistical assumptions of these theoretical approaches, and
He-Li isotope temperatuyeQuantitatively, the constant tem- the related counting procedure, do not respect, however, the
perature level as found in the laboratory experiments lies at eal laboratory protocol. It should then not come as a surprise

VII. CONCLUSION
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that the theoretically derived slope of thequilibrium) dis-  equately(cf. Ref.[30] for an attempt at implementing quan-
tribution is found to be significantly different from the ex- tum mechanics in the CA framewark
perimentally measured slope of tifar from equilibrium In the specific nuclear multifragmentation case we have
distribution (2.3 against the experimental value 2.6 analyzed, besides the absence of quantum corrections, our
Secondly, the CA experiments are indicative that the nomodel ignores any charge-related effects, so that the detailed
tion of a compound cluster, which would support a meaningiheoretical results cannot be compared directly with the de-
ful thermodynamic treatment, is of limited value in the frag- tailed experimental measurements. All laboratory cluster
mentation problem. We observe that typically during theidentifications rely on counts of isotop&sither than isobars,
earliest phases of the collision process the combifed is @S done in our approachWe hope to be able to include
fractured into a few large fragments. The latter tend to ac€lectrostatic effects at a later stage. We also plan to extend
quire all the available mass when the impact energy becomdge model to handle asymmetric collision, ¢ Ar) and col-
large enough; in the latter limig;y,,> binding energy, two lisions involving a nonzero impact parameter. _ _
fragments survive. The targ@tthen becomes transparent to ~ Theé CA model as developed in this paper remains mani-
the incident clustet. Significant energy sharing is found to festly a highly schematic representation of an actual physical
occur in the range of low impact energies. fragmentation problem of any nature, and as such it can only
Thirdly, our CA model experiments demonstrate that the'eplicate, and hence also isolate, properties which are largely
original spatial symmetry of the collision setup is statisticallyinsensitive to the microscopic details of the physics. Our
preserved during the whole fragmentation mechanigig. ~ humerical experiments suggest that the power law of the
2). fragments, and on a quantitative level, the exponent of the
Finally, a major goal of our paper was to construct formallatter, belong into this category of invariant properties.
caloric curves T“A—E;,,/A, based on a variety of formal
temperature parameters directly derived from the CA experi-
ments, and defined and discussed in this paper for clusters of
particles of arbitrary nature. In the nuclear fragmentation A.L. would like to thank the SPM Department of the
setup, comparison of our CA caloric curv@gemperature pa- CNRS(Parig for financial support for a stay at LPT in Stras-
rameter chosen at a selected time dtgp, with the labora-  bourg during which this work was initiated. He thanks the
tory caloric curvesT“°—E;,,,, derived from the Au-Au col- members of LPT for the hospitality extended to him. J.P.
lision experiments in the case of different methods ofgratefully acknowledges financial support from the Royal
measurement of a temperatuf&3®, calls for several com- Society. He wishes to thank the New Hall College, Cam-
ments. bridge, U.K., for their kind hospitality.
With none of the formal temperatures introduced we can
reproduce the qualitative shape of the full NUPECC caloric
curve[14]. The theoretical treatment does not reveal a tran- APPENDIX: ENUMERATION OF CLUSTER
sition from a rising behavior to a plateau, and again from a CONFIGURATIONS
plateau to a rising branch. Full CA C_a'o“c curves either r€-1. Clusters, cluster equivalence classes, and cluster geometries
duce to a platealicase of the reaction temperatures, Egs.
(19)' (203)' and (20b)], or else the curves are rising every- We introduce a definition of a cluster of siaethat rests
where [nucleon gas, Eqgs(10) and (11); cluster gas, Eq. On the notion of interaction neighborhodd.(r) [19]. If r
(13)]. The formal CA temperatures are qualitatively more inlabels an arbitrary cell, then any cefl distinct fromr and
line with the Trautmann analysis of the experimental Au-Au.contained in the interaction neighborhood of aelN(r),
Experimental reaction temperatures are found to be indepers termed “adjacent” to cellr. The notion of adjacency is
dent of the excitation energy per nucleon; this behavior ig1aturally extended to an arbitrary set of cefisA cell r' is
duplicated for our three CA reaction temperatures. The laboadjacent to the set of celSif (i) r’ ¢ S; and (ii) there is a
ratory He-Li temperature parameter exhibits a rising behaveell r e S such thatr’ e Ni(r). The collection of all cells
ior, reminiscent of the rising pattern of the temperatures ofidjacent taSis the outer boundary d§, JS.
the nucleon gas and the cluster gas. The slope of the latter Define a “walk” in the CA, of headr, and tail r¢,
experimental curve, 0o/~0.27 (in the energy range 0-15 w(r,,rs), as an ordered collection of cells
MeV), compares favorably with the average slope of the(ry,ry, ... rf—1,r¢), such that for any pair of successive
cluster gas, of 0.3, in the energy rang&’.5 MeV. Quanti-  cells (rj,rj,1) we have (j.1) €Niy(r;) (cf. Ref.[31] for
tatively, the CA temperatures are typically too low as com-the graph-theoretical detajlDefine further a “connected set
pared to the laboratory measurements of the temperature paf cells,” Q, in the lattice space of the CA as a set of cells
rameters, by an amoudT of nearly 4 MeV[Eq. (22)]. We  {ra.rp, ...}, such that for any pair of cells of the set,
have traced this effect to the treatment of the dynamics of the,, ,r,,e Q, there exists a walkv(r,,,r,) € Q (all cells of the
nucleons in a context of classical mechanics; in this framewalk lie in the connected set
work the residual quantum-mechanical zero-point kinetic en- We understand by a “cluster rooted at partial¢’ F[ «],
ergy is disregarded. We believe that this effect may accourthe connected set of cells such tliatparticle« is located in
for a defect in the theoretical temperatures. An extension obne cell of the set(ii) each cell of the set is nonemptit
the model taking account of quantum-mechanical effects wilcontains at least one partigi@nd(iii ) the outer boundary of
eventually be needed to handle the energy problem adhe connected sefF[ «], is empty.
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A cluster rooted at particl@, F[ 3], is identical with the We have the following natural construction procedure for
cluster rooted at particle, F[ o], F[B] = F[«], if particle  a cluster geometry(a,c;y), which we specify(i) by the
B occupies a cell of the connected set of cElsr]. Accord-  number of particles in the cluster{ii) the number of cells
ingly, we can talk about “clusteF,” without reference to a  Of the cluster(iii) the precise mode of assembling the cells,
root particle. A “cluster,” or “fragmentation cluster,F, isa  and the precise distribution of the particles among the
connected set of nonempty cells, which has an empty bound:€lls, which we symbolize by the descriptive parameter
ary. (1) Ass_emble the different cells according to the selected

We distinguish the fragmentation clusters occurring in aconstruction ruley to form a connected set.

CA experiment by an argumehtwriting F(f) to refer to the (2) Distribute thea (>c) particles among the cells; this
fth fragmentation cluster in a given CA contet a given procedure generates one representative of the cluster geom-
etry G(a,c;v).

time stept). Any collection of clusters(i), F(j), . .., con- ! S ]

taining the same number of particles, regarded as indiscern- (3) To find the multlpI|C|_tyg(a,c_, 7.) of the (_:Iuste_r geom-

. T . ; etry, generate all geometrically distinct configurations repre-
ible, aj=a;=---=a;, belongs into the same “cluster

. ) ) sentative of the same cluster geometry; this is done by ap-
equwalenge classC(a;). It is the cluster equivalence class plying the symmetry operations of the lattiogarring
C(ar) which we regard as the CA counterpart of thegangiations along the axes, as well as those geometric sym-
‘nuclear fragment” of mass numbeh=a; in the nuclear  metries which are equivalent to particle permutatjofi$ie
fragmentation laboratory experiment. binding energy of a representative of this cluster geometry,
A pair of clusters=(i), F(j), of same cluster equivalence naturally denoted b¥(a,c;y), is obtained by applying the
class, in which the cells are joined according to a same gequles of Sec. |I.
metric rule, and such that each cluster of the collection has The totality of cluster-geometries corresponding to a clus-
same binding energy, will be said to have same “cluster geter C(a) is finally generated by repeating stefs, (2), and

ometry” G. The collection of all clustergof same cluster (3) for all allowed choices of cell;=a, a—1, ..., 1, and
equivalence clagavhich have same cluster geometry defineall possible geometrical assemblages of the cells into clus-
the “cluster-geometric equivalence class! ters.

Two clustersF (i), F(j) of same cluster geomet@ are Fora;=1, there is only one cluster equivalence class; the

said to be “geometrically equal” if after translation along the binding energy is zero. For am¢>1 the cluster equivalence
lattice axes, and permutation of the particles among the cellglass of a specied clusté(ays) contains several cluster ge-
they can be superposed exactly. Otherwise, the two configiemetriesG(as,cs;7y), which are energetically distinct.
rations are geometrically unequal or distinct. The nungper ~ In order to carry out the construction and characterization
of geometrically distinct configurations of a cluster- of thg cluster geometries it is helpful to resort to an algebraic
geometric equivalence clag is the “multiplicity” of the ~ notation for the parametey. _
cluster geometry. (1) If c;=1 no construction is involved; we then write
The reason for assigning a special status to clusters supeY-E@' o
posable under translations is that the statistical treatment OL (2) If sz_z there are three distinct r_nodes of c_ontact of
Sec. V deals separately with the translational motions of th&he two (_:u_b|_c cells, generated by facewise, edgeW|se, or ver-
fragments, the effect on the reaction equilibrium of the en €Xwise joining of the cells; thess modes specify Fhe cluster
ergy attached to these motions being described by the fun(%eometry pqmplgtely. !Ve wrlte/=_¢> . (face Jommgz or y
tion O(T,V) [Eq. (153] (a translational partition function =e (edge joining; or y=v (vertex joining, respectively.

The evaluation of the internal partition functi@,,, which nirlr?lgie JgL;Tstdaer}(i:r?e;age ef?alltt]il(?r?iristhnemci %?[gge;rlc;iléy we
concerns us here, involves those configurations which we 9 y P pace,

have referred to as “geometrically distinct.” |ntr0(_juce more ele_mentary constructipn §ymbols which
specify unique and independent operations; the elementary

(and in this specific case irreducibiedependent operations

are the joinings along the lattice axgsaxis, ¢y ; y axis, ¢y ;
Essentially, the notion of cluster geometry enables us t@ndz axis, ¢,. (We can join the second cell to the first cell

group together clusters which are geometrically distinct, butn the positive or in the negative direction; however, the

which become superposable after application of certain gedwo resulting configurations are superposable under transla-

metric transformation groupgthe discrete lattice symme- tions along thex axis; they count as geometrically equal

tries). It is manifest that clusters of same cluster geometry These construction symbols can be combined by a first

have generically same binding energies. Conversely, if theperation, of addition )

interaction energies are generic, then different cluster geom-

etries realize different binding energi@cidental degenera- bt byt d.= 9,

cies may occur as a result of a nongeneric interaction poten-

tial). For the purpose of the statistical mechanics of Sec. \the sign (+) is read ‘or’: face joining is face joining along

“energy equivalence classes” rather than cluster-geometrithe x axis, or along they axis, or along the axis, and this

equivalence classes have to be isolated. The above commeskthausts the possible alternatives. Denote the number of cell

indicates that the two questions are essentially equivatent faces in thex direction by ¢,, etc.; we then have,(= ¢,

closely related in the case of degeneracies = ¢,)= ¢/3(=2). The multiplicity of the geometric configu-

2. Construction of cluster geometries
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ration generated by, is 1 (= ¢,/2, the division by 2 being ey 6= (8y 80, + (&) 8y
due to the geometrical equivalence of the joining along the
“positive” or “negative” face). The multiplicity of the  (This notation is consistent with the symbols for the elemen-
geometric-cluster clagsd(2,2;¢) is then the sum of the mul- tary operations: inp, the subscripk indicates a constraint to
tiplicities of the component elementary geometric-clusterthe general face-joining operatiaf.)
classesG(2,2;¢,), etc. This property of additivity of multi- The trivial cluster equivalence clags(1l) contains a
plicities is an instance of the following obvious property.  single-cluster geometrys(1,1,J) (single nonempty cell

If a general construction proceduseis the sum ¢) of  The corresponding binding energy is zero,

independent elementary construction procedures,, G(L1D)E(L1Z)=0, g(11@)-1 (A2)

v2, . .., then the multiplicity of the cluster geometry is the
sum of the multiplicities of the corresponding elementary
cluster geometries: 3. Cluster equivalence clas€(2)

The cluster equivalence cla€{?2) is (a) either a collec-
y=vit vyt +ynig(aciy) tion of c=2 adjacent cells containing one particle eagh;
—g(a.c i) +0(aciy)+ - +g(ac vy, (Al or it is a single cellc=1, containing both particles.
9(a.ciy)+9(a,cy2) g@ciyn)- (Al (a) Under the first alternative, we have all three modes of
joining the two cellsG(2,2;j), j=¢, e oruv.

A similar breakup of the operation of edge joiniegolds, (i) Common face: geometi§3(2,2:¢). Multiplicity :

e=e.+e,te,; wheree, is the more elementarghough not
irreducible operation ofjoining two cglls along an edge par- 0(2,2;0)=0(2,2;,) +9(2,2;) +9(2,2;h,).

allel to thex axis. We have, with obvious notatiorg(= €,

=€,) = €/3(=4) different edges parallel to theaxis, and, as  Sinceg(2,2;¢,) = ¢,/2 (cf. above, we have

in the case of face joining, half of these edgese(/2) pro-

duce geometrically distinct configuratiofthe joining along G(2.2:0):E(2.2:d)=V 2 2-) = f:3 A3
opposite edges with respect to the center of the cube gener- (2.2:¢):E(22:)=Vy,  9(2.2:¢) 2 7 (A3)
ates geometrically equal configurations; the joining along )

edges belonging to a same face produces geometrically dis- (i) Common edge: geomet(y(2,2;e). Proceeding as un-

tinct configurations der (i) (with substitution ¢—e and ¢—e€), we have
Similar considerations hold for vertex joining. 9(2,2;e,) = €,/2, and hence,
(3) If c;=3, first form a two-cell cluster, joining two cells c

as under(2); the third cell is then attached to the two-cell G(2,2;e):E(2,2:8)=V,, g(2,2;e)= E:6_ (A4)

cluster. A sequence of two joining operations is indicated
algebraically by a multiplication sign-{ between these op-
erations. For instance, the combined operaéipre, symbol-
izes the construction of three-cell clusters, a pair of cell
being joined along ar edge; the attachment of the third cell
is along ay edge. Through addition and multiplication of
elementary construction operations more complex constru
tion schemes can be generated.

(iii) Common vertex: geometi@(2,2;v). In (i) substitute
S¢ — v and¢ — v, and consider vertices lying on the main
diagonals of the cubic cell; take acount that the joining in
opposite directions along a diagonal generates geometrically
Ce_qual configurations. Therefore,

For c;=3, we have six main combinations of joinings, G(2,2v):E(2,2v)=V,, g(2,2;v)=%=4. (A5)
(¢p-¢, e-€,v-v, ¢-€, e-v, v-¢); each main combination
gives rise to directional variants which are described in terms (b) The second alternative is trivial
of the elementary operationg{, etc). As an instance, take
the facewise joining of all three cells, the common faces G(2,1,0):E(2,1.2)=V,, 09(2,1)=1. (A6)
being parallel; this operation is symbolized by, ¢,
T dy byt by by 4. Cluster equivalence clas€(3)

In the construction of cluster geometries, we have to take
account very often of special clauses in the combination of This classC(3) gives rise to three broad categories of
the elementary operations. For instance, among the differegteometrical clustersa) G(3,3;y), (b) G(3,2;y), and (c)
edge joinings of three cells, consider the joining along G(3,1;,).
edges combined with the joining alongedges, €,-¢,), (a) CategoryG(3,3;y) contains a first variety of three
under the extra constraint that both edges have no vertex igeometries of types(3,3;j-j), obtained by attaching one
common. Such extra clauses are symbolized by appropriatell to each of the three geometri€42,2;j), (j designates
subscripts to the construction symbol. In our illustration thean operationp, or e, orv, as undelC(2); if thefirst joining
absence of a common vertex is indicated by the subscriptis a face joining, then so is the second; ktthis variety of
—v, so that the construction symbol becomeg-€,) _,. In geometrical clusters is constrained to form three aligned
a similar fashion the symbole(-e,) ,, points out that the cells.
two edges are required to have a common vefsbsript (i) Pair of common opposite faces: geomei®(3,3;
+v). We have (¢- ¢)_o) (three cells aligned along a lattice axisubscript
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—e indicates that the two faces of the cubic cell have nowhere the subscript ¢ signifies that the two parallel edges
common edge; hence they are parallel. belong to a same face of the cube. The multiplicity ef (
The construction procedure is explicited as follows ( -e,) ., is [cf. (i")] €212— e, with e,= /3. From Eq.(A1),

- })_e= by byt by- byt b, b,; hence the multiplicity we obtain the total multiplicity.

from Eq. (Al):
G(3,3/(e €)1 4):E(3,3/(e-€),4)=2V,,
G(3,3/(¢ ¢)_o):E(3,3i(¢- d)_)=2V,, ,
€
o a(3,3;(e- e)“/’):E_ e=12. (A11)
9(3.3(¢-¢)-o)=5 =3. (A7)
(2) The two joining edges are distinag, e’ (mutually
, . . . . . orthogonal, and have no common vertdgubscript—uv);
ii) Pair of diametrically opposite common edges: geom- .
etr§/ é(g 3i(e-€)_,) (threg C(Iaolllos aligned along diggongls of (alternatively, we may say that the twq edges do n_ot belong
one faceg; subscript— ¢ indicates that the two edges of the to the same fageHence, the construction scheme is
cubic cell do not belong to a common face; this implies that (e-€)_,=(ec€)_,+(e ) ,+(e,8)_,.
they are symmetric with respect to the cell center.
The multiplicity of (e,-ey) _, is [cf. (i")] ece,/2. Hence,

CB3ie-e)-y):EE3(e-e)-g)=2Ve, G(3,3(e-e')_,):E@33i(e-e')_,)=2V,,

2
9(3-3i(e'e)—¢)=§=6- (A8) g(3,3;(e-e’)_v)=%=24. (A12)

(iii) Pair of diametrically opposite common vertices: ge- (3) The two joining edges are distingnutually orthogo-
ometryG(3,3;(v-v)_,) (three cells aligned along cell diag- nal, and do have a common vertesubscript+v) (or they
onal; as under(ii) subscript— ¢ stresses that the two verti- do belong to a same faceUnder this alternative each cell
ces do not belong to a common face; hence they arshares an edge with each of its two neighboring cells. The
symmetric with respect to the cell center. construction scheme is

G(B,3:(v-v)_¢):EB3(v-0v)_4)=2V,, (e-€'),=(exey)i,t(eye),t(ere)y.
The multiplicity of the geometry generated bg,(ey) ., is

14
9(3,3;(0_0)_(#):5:4. (A9) S under(2), namely, e, e, /2.
G(3,35(e-€e"),):E(3,35(e-€e"),)=2V+V,,
CategoryG(3,3;y) includes a second variety of three ge- 2
ometries of typeG(3,3;j-j), this time under the extra con- g(3,3;(e~e’)+v)=€=24. (A13)

straint of nonalignment of the three cellsThe two con-

straints, alignment, and nonalignment of the three cells, (') pajr of nondiametrically opposite common vertices.

joined by a same operatignmanifestly exhaust all altema- thege ‘configurations fall into two geometry classes.

tlve_s, of typ_eG(3,3;J DI _ (1) Two vertices lying on same edge: geometry
(i") Pair of nonparallel common faces: geometry (3 3:(,.),.) (subscript+e indicating that the vertices

G(3,3;(¢- #)+e) (L-shaped configuration subscript +e 4 joined by a common edgaVe decompose this construc-

points out that the two faces have a common edge. tion scheme as follows:
Start with a central cube and add a pair of cubes having
faces in common with the central cube; there arep (v~v)+e=(v~v)+ex+(v~v)+ey+(v~v)+ez,

—1)/2 different pairs, among whicl/2 pairs belong to al-
ternative(i) already listed. All of these configurations have with the notation ¢-v) . indicating that the two vertices
same energy. are constrained to lie on a edge, etc. The multiplicity of
(V-V)1e IS €=3.
GB3i(¢ #)+)ER3i(¢ d)1e)=2Vy+ Ve, "
G@B,3;(v-v)+e):ER3i(v-v)ie)=2V,,
2
9(3,3(¢- ¢)+e)=%—¢=12. (A10) 9B.3i(v-v)e)=€=12. (A14)

(2) Two vertices belonging to different edges of same face

(ii") The case of nondiametrically opposite common|vertices belonging to different faces are diametrically oppo-
edges gives rise to three geometry classes. site and have been dealt with, undér), Eqg. (A9)]. It is

(1) Parallel joining edges: The construction scheme is  convenient to describe this alternatively by saying that these
vertices belong to the same diagodabf a face(constraint
(e-8)sp=(ee)rpt(ey ) yt(€,-8).y, indicated by subscript-8): G(3,3;(v-v), ). If we denote
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by &, the collection of the diagonals of the faces normal to  (vi) Edge and vertex joiningwo cells joined vertexwise;
the x lattice direction, etc., the relevant construction schemahird cell attached to an edge not incident to the joining

becomes verteX: geometriesG(3,3;v-e). Construction scheme: At-
tach second cell to a vertex of the first cel/2 distinct
(v-v)+5=(v-v)+§x+(v~v)+5y+(v-v)+5z. alternatives, according t6(2,2;v)]; the third cell is to be
added such that to have a common veftaxt not a common
Since the multiplicity of (z-u)ﬂ;X is readily seen to be face with the two cells; we have 34 =9) alternatives on
2¢,=4, we have each of the two cells. Hence, the multiplicity
G(3,3;(v-v)4+):EB3(v-v)L5=2V,, G(3,3p-e):E(3,3pv-e)=V+V,,
9(3,35(v-v) L 5)=2¢=12. (A15) 3pe
0 9(3,30-e)= %zn. (A19)

Finally, categoryG(3,3;y) generates a third variety of
three geometries of typ&(3,3;j-]’), wherej andj’ are of
different naturgif j stands for face joining,” must be either
edge joining, or vertex joining, efc.

(iv) Face and edge joining: geometri€s(3,3;e- ¢).
These configurations fall into two geometry classes.

(1) Edge joining on “small side” of the face-joined box:
G(3,3:g)4° ¢) (wheree, indicates that the edge is parallel
to the face¢). Construction scheme

(b) CategoryG(3,2;y) generates essentially the variety of
geometries5(2,2;y), with one difference. In th&(2,2;v)
case the two cells are equivalent and indistinguishable; in the
G(3,2;y) case, one cell contains two particles, while the
other contains only one particle, so that the translational
symmetries do not hold. The multiplicities are, therefore,
twice the multiplicities encountered undér2,2;y).

(i) Common face: geometr§(3,2;¢).

€l b=y dxt ey byt ey dytecdytecdtey o, G(3,2;¢):E(3.2,¢)=2V4+V,, 9(3,2;¢)=¢=6.

The multiplicity of the geometries resulting fromy - ¢, is (A20)

¢x&x/2(=4), hence, (i) Common edge: geometi®(3,2:€).
G(3.3e14- ):E(3.3i€)4 ¢) =V + Ve, G(3,2:6):E(3,2:8) =2V +V,, g(3,2:e)=e=12.
(A21)

3,361, ¢) = =24 (A16)

9(3.3€yq 3 ' (iii) Common vertex: geometr§(3,2:v).

L . o . In (i) substitute — v, and consider vertices lying on the
(2) Edge joining on “long side” of the face-joined box: main diagonals; take acount that the joining in opposite di-

G(3,3ie1 4 ¢) (Wheree, 4 indicates that the edge is normal rections along a diagonal produces an equivalent configura-

to the faceg). Construction scheme tion under combinations of translations. Therefore,

e 4 = Pyt ey dyte, ¢, G(3,2v):E(3,20)=2V,+V,, g(3,2v)=vr=8.
Since the number of edges of the long side & 2the mul- (A22)
tiplicity of ¢yey is oxex(=4). (c) The final alternative of all three particles in the same

cell generates the trivial geometry
G(3,3ie1 4 #):E(3,38, 4 ) =Vy+VetV,,
G(3,1,0):E(3,1,0)=3V,+3AV, ¢(3,1,0)=1.
: _Pe_ (A23)
9(3,3e, 4 ¢)—?—24. (A17)

This completes our list of distinct geometrical configura-
(v) Face and vertex joininghird cell attached to an outer tions associated with the cluster class®gl), C(2), and
free vertex of box geometriesG(3,3v-¢). Construction  ¢C(3).
scheme The systematic construction method of the configurations
extends naturally to clusters of arbitrary siae However,
v-p=v-dytu-dytu- . with increasinga the number of alternatives increases expo-
o ) nentially, so that a detailed enumeration becomes rapidly
The multiplicity of v - ¢ is v¢,/2 prohibitive. This suggests that an asymptotic approach, with
ataken as the “large” parameter, should be substituted to the
G(3,3v-¢):E(33v-p)=Vy+V,, detailed enumeration procedure of this Appendix. Common
experience with asymptotic expansions suggests that results
9(3.31- ¢):ﬂ:24_ (A18) precise enoqgh for the statist_ical purposes of Sec. V should
2 become available even for fairly low values.
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