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Can simple renormalization theories describe the trapping of chaotic trajectories
in mixed systems?
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We investigate the relation between the chaotic dynamics and the hierarchical phase-space structure of the
standard map as an example for generic Hamiltonian systems with a mixed phase space. We demonstrate that
even in ideal situations when the phase-space structure is dominated by a single scaling, the long-time dynam-
ics is not dominated by this scaling. This has consequences for the power-law decay of correlations and
Poincarerecurrences.
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[. INTRODUCTION the universal presence of critical tori in phase space and are
supported by a numerical investigation of the standard map
Generic Hamiltonian systems are neither integrable notkicked rotop,
chaotic[1], but rather exhibit a mixed phase space, where
regular and chaotic regions coexist. Each island of regular
motion is surrounded by infinitely many chains of _smaller One1=0npt+Pnmod 27, prr1=pPntKsing,.:1, 2
islands. As the same holds for any of these smaller islands a
very complex hierarchical phase-space structure is found for
generic Hamiltonian systems, which is well underst¢ayl  at kicking strengtiK =K =0.971 635 406 31. At this param-
and nowadays appears in textbooks on classical mechani€éer value, the golden torus is critical, i.e., it can be destroyed
[3]. by an arbitrarily small perturbation. The self-similar vicinity
The dynamical properties of these systems, however, aref the critical golden torusee Figs. (a,b] has been studied
still poorly understood. The most fundamental statisticalusing renormalization method8] and the asymptotic value
quantity for characterizing the dynamics is the decay of cory=3 for the power-law decay oP(t) was predicted long
relations in time. It determines transport properties and i¢ime ago[9,10]. The fact that it has never been observed led
directly related to the distribution of Poincarecurrences to the speculation that the universal decay should appear for
P(t), which is the probability to return to a given region in larger times[11]. In Ref. [7], the onset of this decay was
phase space with a recurrence time larger thais prob-  estimated by a numerical approach.

ability decays on average like a power &) In addition to the sticking of trajectories in the vicinity of
critical tori, the trapping of trajectories in island-around-

island structures has been studid®,13. Zaslavskyet al.
P(t)~t"7, (1) [13] showed that for the kicked rotor akK=K*
=6.908 745, the phase space possesses an island-around-
island structure of sequence-8—-8—8- - - [see Fig. 8)].
due to the trapping of chaotic trajectories in the hierarchi-They used this self-similarity to derive the trapping exponent
cally structured vicinity of islands of regular motion. The y=2.25 by renormalization argumenit$4], which was re-
power-law decay is a universal property of Hamiltonian sys-cently supported numericallyL5].
tems. It has dramatic consequences for trangditanoma- In fact, these renormalization approaches for single self-
lous diffusion and quantum mechanical propert[€§ (con-  similar phase-space structures can be considered as special
ductance fluctuations and eigenfunctipnshich sensitively cases of the more general phase-space model by Meiss and
depend on the value of. The exponenty, as determined Ott [16] for the trapping in the neighborhood of regular is-
from finite time numerical experiments, seems to be nonunitands[17]. In this binary tree model a chaotic trajectory can
versal, varies with system and parameter, and typicallat any stage of the tree either go to a boundary cifleleel
ranges between 1 and 44-6]. It is a fundamental question scaling or to the island-around-island structuigass scal-
of Hamiltonian chaos, how the exponentof the dynamics ing). The universal coexistence of the two routes of renor-
is related to the structure of the hierarchical phase space. malization at any stage led to the expongnt1.96[16]. In
Recently, it was argued by Chirikov and Shepelyanskycontrast, the recent findings claim that joste of these scal-
that for asymptotically large times the exponent is indepenings is relevant for the trapping mechanism: While in Ref.
dent of the specific system and parameter and is given by th&] it is argued that in the case of a typical border invariant
universal exponeny=3 [7]. Their arguments are based on curve(and in particular fok =K_.) the level scaling should
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smaller exponent than predicted. Although the phase-space

| 1aarar7 structure in both cases is dominated by a single scaling, our

TR, analysis shows that it does not necessarily dominate the dy-
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The standard map as defined by E2).has a 2r-periodic
phase space ip direction and forK =K. the dynamics is
bounded inp direction by the golden torus, which is critical
[8] [Figs. Xa,b]. The route towards the critical golden torus
is determined by the principal resonances given by the ap-
proximants of the golden mean=(y/5—1)/2 and the scal-
ing has been analyzed in detfd]. The dynamics along this
1 route was described by a Markov chain leadingyte 3.05
. [9] and alternatively via the scaling of the local diffusion rate
1 leading toy=3 [10].

In order to check the prediction fdt(t), we started sev-

107

10—10-

eral long trajectories initially located near the unstable fixed

1050 1 8 82156144877 - i : :
I 78 AT point (q,p)=(0,0). We measured the timesfor which an
10° 102 o 10° 0° 10 orbit stays close to the critical torus by monitoring succes-

t sive crossings of the linp=0, as was also done in R¢T].
The total computer time corresponds toxIB0*? jterations
FIG. 1. (3) Phase space of the symmetrized standard map at of the standard map, which came from 15 trajectories of
=K. As the phase space is symmetric abpst only the lower  |ength 162 We have checked if our statistical data for large
half of one unit cell is shown(b) By stretching the phase space in imes are sensitive to the unavoidable finite numerical preci-
p direction according to the distanpg(q) — p to the critical golden sion, by comparing data for double=(L6 significant digits
torusp¢(q), the self-similar phase-space structure in its vicinity is and quadruple 32 digits precision[19]. We found no dif-
visualized. The winding numbers of the principal resonances apr, ance and present a combination of both data sets in Fig.
proaching the golden torus are shown on the rigbf. Poincare 1(c).

recurrenced(t) (solid) for the standard map witK =K, deviat- In Fig. 1(c), we compare our numerical findings fB(t)

ing from the prediction of Ref.7] (dashed ling The winding num- ith thg. d tionP tp> 107) = 3.9 104% -3 9 tracted
bers above each arrow specify the hierarchy level that a trajector?’I e predictionP( . )=3. . as extrac e.
with the indicated trapping time should reach according to the rom Ref. [7]. The predicted power law is not compatible

renormalization prediction of Ref7]. with our data_, even though we are in the .time regime
>10’, where it should be observable according to Re.

For 10<t=<10° we rather see an exponept=1.9. We also
studied Poincareecurrences for trajectories approaching the
critical torus from the other side in the same way as in Ref.
[7]. In the range from 1B<t<10° we find a very slow decay
(y=1.2), so thatP(t=10°) is more than three orders of

dominate, in Ref[13] it is claimed that foK =K* the class
scaling describes the trapping mechanism.

In order to clarify these contradictions and to check
whether it is sufficient to describe the dynamics by the scal
ing of a single structure, we humerically investigaigt) for magnitude bigger than the predictioR(t)=4x10%"3
the kicked rotor ak. andK* for very large times. We find from Ref.[7] (see Fig. 1 in Ref[18])
considerable deviations from the predictions of the renormal- ' ' '
ization theories that rely only on the scaling of a single struc-
ture. The Poincarescurrence(t) for K=K, have already
been published in a short noft&8]. In addition, we analyze The failure of the renormalization theories in describing
where chaotic trajectories are trapped in phase space, whithe decay of(t) may be due to at least two reasofig:the
allows us to understand these deviations. For large times thenormalization theory correctly describes the trapping along
majority of trajectories is not trapped in those phase-spacthe considered phase-space structures, but the neglected
regions that are described by the simple renormalizatiostructures give more important contributions to the trapping
theories. This indicates that the decay Rft) cannot be time statisticsyii) the trapping is dominated by the consid-
captured by solely inspecting a single structure, be it level oered phase-space regions but the renormalization fails to de-
class scaling. In particular faf =K, the self-similar vicin-  scribe the associated dynamics correctly. This could be the
ity of the critical golden torus does not dominate the trappingcase if, for example, the mixing time at each level is bigger
mechanism for large times and thus even in this ideal situathan the exit time to the next level, making the dynamics
tion the proposed universal exponent 3 is not found. For  between the levels non-Markovian.

K=K*, the majority of long trapped trajectories does not In order to check what causes the deviation® @) from
follow the island-around-island structure, and we find athe predictions, we calculate the density in phase space for

B. Why renormalization fails
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[ ] FIG. 3. (a) Phase space of the symmetrized standard map at
04k h =K* with successive magnifications showing the island-around-
: . island structure(b) Poincarerecurrenced®(t) (solid) for the stan-
] dard map withK=K* for various initial conditions(vertically
0.2 7] shifted for better comparisgpnThe upper curve shows the recur-
3 rences for trajectories started randomly on the fjmerr. The other
0.0 L curves belong to trajectories started randomly in small boxes at

107 100 ¢ three different positions close to the island as indicated by the ar-
rows in (a). All four curves show the same power-law behavior,
FIG. 2. (a) Phase-space density of a trajectory with trappingincluding the log-periodic oscillations, and deviate from the predic-
timet~5x 10’ for the symmetrized standard mapkat K. plotted tion y=2.25 from Ref[13] (dashedl
in logarithmic style as in Fig. (b). The density is determined on a
250x 250 grid, gray shadings are on a logarithmic scale. The trag nonprincipal resonandénset in Fig. 2b)]. The contribu-
jectory follows the self-similar phase-space structure given by thgjon to P(t) of such trajectories is not captured by the renor-
principal resonances approaching the golden talsA represen-  mgjization theory. In order to quantify their influence we
tative counterexample, which is not trapped in the hierarchy ofyatermine from all trajectories with trapping tirhéhe frac-
principal resonances as predicFed by the ren70rmalization approacﬂOn f (t) that follows the route of renormalization. f(t)
although it has the same trapping time5x10°. Instead, the tra- 5503 ches unity for large times, the asymptotic trapping is
ectory Is trapped.arour.'d a Donp“nc.'pal 'resonafnn.sel). (c) The dominated by trajectories that follow the route of renormal-
fractionf,(t) of trajectories with trapping timefollowing the route .~ " .
of renormalization. The decay shows that the main contributions tc';zat.lon' If f'(.t) decays to zero, .howevgr, other phase-space
P(t) do not arise from trajectories that are trapped in the phase':(aglons dpmlnate the asyrr_1ptot|c trapplng_. . .
space structure given by the class scaling of the principal reso-, Nur_nerlcally_, We_deter_mlnér_(t) by considering trajeqto-
nances. ries with trapping times in an interval aroundWe classify
these trajectories, as was done for the examples in Figs.
trajectories that are trapped for long times. Two examples ar@(a,b), according to their phase-space densities: For a trajec-
shown in Figs. Pa,b. Figure Za) shows a trajectory of tory with trapping timet the renormalization theory together
lengtht~5x 10’ that follows the route to the critical golden with the numerical findings in Ref7] predict that it should
torus up to the principal resonance with winding numberapproach the golden torus up to a certain hierarchy level
55/144. This is consistent with the renormalization theorycharacterized by its winding numbégarrows in Fig. 1c)].
according to the data presented in R&l.[see arrows in Fig. When the trajectory reaches this level or the one before, we
1(c)]. In contrast, the trajectory shown in Figh2, although classify it as following the route of renormalization and it
trapped for the same time, approaches the critical torus onlgontributes to f,(t). We find that f,(t) decays fort
up to the resonance 3/8 and is predominantly trapped around2x 10’. While att=1.5x 10° more than 60% of all trajec-
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tories follow the route of renormalization, &t~10° only a)
10% do sdFig. 2(c)]. This indicates that for large times the 3.48
majority of trajectories does not follow the route of renor- p
malization towards the golden torus given by the principal
resonances, but are trapped around nonprincipal resonance
[like the example shown in Fig.(B)]. Since the renormal- 283
ization theories that lead tp~3 consider only the trapping b
around principal resonances they miss for increasing time ° 3.4s
more and more trajectories that carry the long-time behavior r
of P(t). In view of that, the renormalization theory is not
applicable for predicting the decay Bf(t).
Nevertheless, the renormalization theories correctly de- 283 =
scribe the contribution td°(t) due to the trapping around
principal resonances, as can be seen as follows: From thec)

o

ratio of the predictedP(t)~t 2 for the trajectories trapped LY —— = AL
in the self-similar phase-space structure and the observec ];(f) -
P(t)~t~ 1% we expect the fractiorf, to decay asf,(t) 08 L

~t~11for large times. This is consistent with our numerical
data in Fig. 2c). We thus find from our numerical analysis
that the failure of the renormalization approach is due to
reason(i) mentioned at the beginning of this section and not i
due to reasofii). 04 |
We find that the majority of trajectories is trapped around I
nonprincipal resonances, which is in agreement with the bi-
nary tree mod€fl16]. This is in contrast to the conclusions of
Ref.[7] that are based on the computation of exit times from L
the vicinity of unstable fixed points of principal resonances. 0~0105 1(')6 1(')7
The analysis of the mean exit time of a phase-space region as 4
We” as the inVeStigation Of the |Oca| diﬁusion rates in th|$ FIG. 4. (a) Phase_space density of a trajectory for the symme-
region [20] can only give information about trajectories trized standard map a=K* with trapping timet~2x10°. The
trapped in the considered region. While the mean exit time oflensity is determined on a 25®50 grid and gray shadings are on
a region in phase space determines the time when this regianlogarithmic scale. The trajectory follows the island-around-island
contributes toP(t), it cannot tell how important the contri- structure.(b) A representative counterexample with the same trap-

bution is for the global trapping mechanism. ping time t~2x 10, which is not trapped in the island-around-
island hierarchy used for the renormalization approach, but around

an island chain of period 817=51 surrounding the period 3 is-
IIl. THE CASE K=K* lands. (c) The fractionf,(t) of trajectories with trapping time,
which follow the island-around-island hierarchy. The decay shows
that the main contributions tB(t) do not arise from the route of
renormalization.
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A. Statistics of Poincarerecurrences

We now carry out the same analysis #=K*, where o _
the phase space consists of two small accelerator modes efatistics for large times, we have started randomly placed
bedded in an otherwise chaotic phase sj&ig 3a)]. Each trajectories in three different small boxes close to the accel-

accelerator mode shows an island-around-island structure §fator mode in positive directiofarrows in Fig. 8a)]. In
sequence 3 8—8—8- - - [13]. This scaling was used to pre- Principle, the exponent of the asymptotic decay Feft)
dict the exponenty=2.25[13]. might depend on the initial box, in particular, if it is chosen

Whenever a chaotic trajectory is trapped to one of thetoo close to the island. We find, however, that this is not the

, : . ase for our choices, as all four curves show the same be-
island structures, it follows the dynamics of the accelerato

mode and iumos to the neiahboring unit celldrdirection avior (including the log-periodic oscillationsfor times t
' jump 19 ng Rroirection. 55108, The total computer time corresponds tex B0'2
The trapping timer of a trajectory is thus the time it jumps

! . L S iterations of the standard map, with about 20 trajectories of
one unit cell per |tgrat|on in the same direction. We deter1ength 18 started in each of the four ensembles. Averaged
mine the probabilityP(t) of being trapped longer than a time over the log-periodic fluctuations we find a power-law decay
t by starting trajectories randomly placed on a lige 7 of P(t) with y=1.85[Fig. 3(b)], which is not compatible
away from the accelerator modgspper curve in Fig. ®)].  with the renormalization predictiog=2.25[13].

From the set of trapping timesone determines the fraction

P(t) of orbits with 7=t. This quantity decays with the same B. Why renormalization fails

power-law exponent as the PoincaexurrencesP(t) and In order to clarify the contradiction between the predicted
was chosen for numerical convenience. In order to increasend the numerically observe®(t), we investigate the
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phase-space densities of individual trajectories. In Figs. IV. CONCLUSION
4(a,b), we show the phase-space densities of two long trajec-
tories. Although both trajectories have the same trappin
time, only the trajectory in Fig. (4 follows the island-
around-island structure, while the trajectory shown in Fig
4(b) is trapped around another chain of islaridee top of
third box).

In conclusion, our analysis shows that even if the phase-
%pace structure is dominated by a single scalilegel or
clasg, it is not sufficient to describe the trapping mechanism
‘of chaotic trajectories by only this scaling, as was recently
claimed in the literature. We find that additional island struc-
. ) . tures may dominate the trapping mechanism for large times
We have calculated the fractian(t) of trajectories that gnd thus affect the power-law decay Rft).
follow the route of renormalization[Fig. 4(c)]. At t Our analysis supports qualitatively the tree model by
=5X10° more than 80% of all the trajectories are consisteniMeiss and Otf16], which allows for the coexistence of two
with the renormalization prediction, while & 10’ this frac-  routes of renormalization at any stage in the phase-space
tion is decreased to 30%. The decay is consistent with thaierarchy, leading toy=1.96. Given the fluctuations in
estimatef (t) ~t =22yt~ 18~t704 je., the ratio of the pre- P(t), which render a precise determination of the exponents
dicted P(t)~t~ %25 and the observe®(t)~t~ 18 We note difficult, our numerical findings are consistent with this pre-
that the difference between the predicted and the measurdtiction. If for larger times our somewhat smaller numbers
value fory is not as b|g as foK = Ke. Therefore, the decay Werg_ verified, this WOU'd be gn |ndlcat|pn. that morg |.sland
of f,(t) is less strong and suffers from statistical fluctuations families have to be included in the statistical description of
Still, the majority of trajectories is not following the domi- the dynamics, as this yields smaller expond}. _
nant island-around-island structure. This indicates why the !t 1S thus necessary to examine the trapping of chaotic
renormalization theory for the island-around-island structurdr@€ctories in more detail and it remains an open question if
is not capable of explaining(t). It should be noted that this there exists a universal asymptotic exponent for the trapping
difference is not caused by the finite precisionkdf which ~ ©f chaotic trajectories in Hamiltonian systems.
eventually leads to a breakdown of the sequenee83 8
—8—--- on very small scales. We thus find fiir=K* that
it does not seem to be a valid assumption that the route of We thank R. Fleischmann for helpful discussions. M.W.
renormalization dominates the contributionsRy{t). acknowledges financial support from EMBO.
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