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Can simple renormalization theories describe the trapping of chaotic trajectories
in mixed systems?
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We investigate the relation between the chaotic dynamics and the hierarchical phase-space structure of the
standard map as an example for generic Hamiltonian systems with a mixed phase space. We demonstrate that
even in ideal situations when the phase-space structure is dominated by a single scaling, the long-time dynam-
ics is not dominated by this scaling. This has consequences for the power-law decay of correlations and
Poincare´ recurrences.
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I. INTRODUCTION

Generic Hamiltonian systems are neither integrable
chaotic @1#, but rather exhibit a mixed phase space, wh
regular and chaotic regions coexist. Each island of reg
motion is surrounded by infinitely many chains of smal
islands. As the same holds for any of these smaller islan
very complex hierarchical phase-space structure is found
generic Hamiltonian systems, which is well understood@2#
and nowadays appears in textbooks on classical mecha
@3#.

The dynamical properties of these systems, however,
still poorly understood. The most fundamental statisti
quantity for characterizing the dynamics is the decay of c
relations in time. It determines transport properties and
directly related to the distribution of Poincare´ recurrences
P(t), which is the probability to return to a given region
phase space with a recurrence time larger thant. This prob-
ability decays on average like a power law@4#

P~ t !;t2g, ~1!

due to the trapping of chaotic trajectories in the hierarc
cally structured vicinity of islands of regular motion. Th
power-law decay is a universal property of Hamiltonian s
tems. It has dramatic consequences for transport@5# ~anoma-
lous diffusion! and quantum mechanical properties@6# ~con-
ductance fluctuations and eigenfunctions!, which sensitively
depend on the value ofg. The exponentg, as determined
from finite time numerical experiments, seems to be nonu
versal, varies with system and parameter, and typic
ranges between 1 and 2.5@4–6#. It is a fundamental question
of Hamiltonian chaos, how the exponentg of the dynamics
is related to the structure of the hierarchical phase space

Recently, it was argued by Chirikov and Shepelyans
that for asymptotically large times the exponent is indep
dent of the specific system and parameter and is given by
universal exponentg53 @7#. Their arguments are based o
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the universal presence of critical tori in phase space and
supported by a numerical investigation of the standard m
~kicked rotor!,

qn115qn1pn mod 2p, pn115pn1K sin qn11 , ~2!

at kicking strengthK5Kc50.971 635 406 31. At this param
eter value, the golden torus is critical, i.e., it can be destro
by an arbitrarily small perturbation. The self-similar vicinit
of the critical golden torus@see Figs. 1~a,b!# has been studied
using renormalization methods@8# and the asymptotic value
g53 for the power-law decay ofP(t) was predicted long
time ago@9,10#. The fact that it has never been observed
to the speculation that the universal decay should appea
larger times@11#. In Ref. @7#, the onset of this decay wa
estimated by a numerical approach.

In addition to the sticking of trajectories in the vicinity o
critical tori, the trapping of trajectories in island-aroun
island structures has been studied@12,13#. Zaslavskyet al.
@13# showed that for the kicked rotor atK5K*
56.908 745, the phase space possesses an island-ar
island structure of sequence 3282828••• @see Fig. 3~a!#.
They used this self-similarity to derive the trapping expon
g52.25 by renormalization arguments@14#, which was re-
cently supported numerically@15#.

In fact, these renormalization approaches for single s
similar phase-space structures can be considered as sp
cases of the more general phase-space model by Meiss
Ott @16# for the trapping in the neighborhood of regular i
lands@17#. In this binary tree model a chaotic trajectory ca
at any stage of the tree either go to a boundary circle~level
scaling! or to the island-around-island structure~class scal-
ing!. The universal coexistence of the two routes of ren
malization at any stage led to the exponentg51.96 @16#. In
contrast, the recent findings claim that justoneof these scal-
ings is relevant for the trapping mechanism: While in R
@7# it is argued that in the case of a typical border invaria
curve ~and in particular forK5Kc) the level scaling should
©2003 The American Physical Society09-1
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dominate, in Ref.@13# it is claimed that forK5K* the class
scaling describes the trapping mechanism.

In order to clarify these contradictions and to che
whether it is sufficient to describe the dynamics by the sc
ing of a single structure, we numerically investigateP(t) for
the kicked rotor atKc andK* for very large times. We find
considerable deviations from the predictions of the renorm
ization theories that rely only on the scaling of a single str
ture. The Poincare´ recurrencesP(t) for K5Kc have already
been published in a short note@18#. In addition, we analyze
where chaotic trajectories are trapped in phase space, w
allows us to understand these deviations. For large times
majority of trajectories is not trapped in those phase-sp
regions that are described by the simple renormaliza
theories. This indicates that the decay ofP(t) cannot be
captured by solely inspecting a single structure, be it leve
class scaling. In particular forK5Kc , the self-similar vicin-
ity of the critical golden torus does not dominate the trapp
mechanism for large times and thus even in this ideal si
tion the proposed universal exponentg53 is not found. For
K5K* , the majority of long trapped trajectories does n
follow the island-around-island structure, and we find

FIG. 1. ~a! Phase space of the symmetrized standard map aK
5Kc . As the phase space is symmetric aboutp5p only the lower
half of one unit cell is shown.~b! By stretching the phase space
p direction according to the distancepc(q)2p to the critical golden
torus pc(q), the self-similar phase-space structure in its vicinity
visualized. The winding numbers of the principal resonances
proaching the golden torus are shown on the right.~c! Poincare´
recurrencesP(t) ~solid! for the standard map withK5Kc , deviat-
ing from the prediction of Ref.@7# ~dashed line!. The winding num-
bers above each arrow specify the hierarchy level that a trajec
with the indicated trapping time should reach according to
renormalization prediction of Ref.@7#.
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smaller exponent than predicted. Although the phase-sp
structure in both cases is dominated by a single scaling,
analysis shows that it does not necessarily dominate the
namics.

II. THE CASE KÄKC

A. Statistics of Poincarérecurrences

The standard map as defined by Eq.~2! has a 2p-periodic
phase space inp direction and forK5Kc the dynamics is
bounded inp direction by the golden torus, which is critica
@8# @Figs. 1~a,b!#. The route towards the critical golden toru
is determined by the principal resonances given by the
proximants of the golden means5(A521)/2 and the scal-
ing has been analyzed in detail@8#. The dynamics along this
route was described by a Markov chain leading tog53.05
@9# and alternatively via the scaling of the local diffusion ra
leading tog53 @10#.

In order to check the prediction forP(t), we started sev-
eral long trajectories initially located near the unstable fix
point (q,p)5(0,0). We measured the timest for which an
orbit stays close to the critical torus by monitoring succ
sive crossings of the linep50, as was also done in Ref.@7#.
The total computer time corresponds to 1531012 iterations
of the standard map, which came from 15 trajectories
length 1012. We have checked if our statistical data for lar
times are sensitive to the unavoidable finite numerical pre
sion, by comparing data for double ('16 significant digits!
and quadruple ('32 digits! precision@19#. We found no dif-
ference and present a combination of both data sets in
1~c!.

In Fig. 1~c!, we compare our numerical findings forP(t)
with the predictionP(t.107)53.931012t23 as extracted
from Ref. @7#. The predicted power law is not compatib
with our data, even though we are in the time regimet
.107, where it should be observable according to Ref.@7#.
For 105<t<109 we rather see an exponentg'1.9. We also
studied Poincare´ recurrences for trajectories approaching t
critical torus from the other side in the same way as in R
@7#. In the range from 108,t,109 we find a very slow decay
(g'1.2), so thatP(t5109) is more than three orders o
magnitude bigger than the predictionP(t)5431013t23

from Ref. @7# ~see Fig. 1 in Ref.@18#!.

B. Why renormalization fails

The failure of the renormalization theories in describi
the decay ofP(t) may be due to at least two reasons:~i! the
renormalization theory correctly describes the trapping alo
the considered phase-space structures, but the negle
structures give more important contributions to the trapp
time statistics;~ii ! the trapping is dominated by the consi
ered phase-space regions but the renormalization fails to
scribe the associated dynamics correctly. This could be
case if, for example, the mixing time at each level is bigg
than the exit time to the next level, making the dynam
between the levels non-Markovian.

In order to check what causes the deviations ofP(t) from
the predictions, we calculate the density in phase space

p-
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trajectories that are trapped for long times. Two examples
shown in Figs. 2~a,b!. Figure 2~a! shows a trajectory of
lengtht'53107 that follows the route to the critical golde
torus up to the principal resonance with winding numb
55/144. This is consistent with the renormalization theo
according to the data presented in Ref.@7# @see arrows in Fig.
1~c!#. In contrast, the trajectory shown in Fig. 2~b!, although
trapped for the same time, approaches the critical torus o
up to the resonance 3/8 and is predominantly trapped aro

FIG. 2. ~a! Phase-space density of a trajectory with trapp
time t'53107 for the symmetrized standard map atK5Kc plotted
in logarithmic style as in Fig. 1~b!. The density is determined on
2503250 grid, gray shadings are on a logarithmic scale. The
jectory follows the self-similar phase-space structure given by
principal resonances approaching the golden torus.~b! A represen-
tative counterexample, which is not trapped in the hierarchy
principal resonances as predicted by the renormalization appro
although it has the same trapping timet'53107. Instead, the tra-
jectory is trapped around a nonprincipal resonance~inset!. ~c! The
fraction f r(t) of trajectories with trapping timet following the route
of renormalization. The decay shows that the main contribution
P(t) do not arise from trajectories that are trapped in the pha
space structure given by the class scaling of the principal re
nances.
04620
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a nonprincipal resonance@inset in Fig. 2~b!#. The contribu-
tion to P(t) of such trajectories is not captured by the ren
malization theory. In order to quantify their influence w
determine from all trajectories with trapping timet the frac-
tion f r(t) that follows the route of renormalization. Iff r(t)
approaches unity for large times, the asymptotic trapping
dominated by trajectories that follow the route of renorm
ization. If f r(t) decays to zero, however, other phase-sp
regions dominate the asymptotic trapping.

Numerically, we determinef r(t) by considering trajecto-
ries with trapping times in an interval aroundt. We classify
these trajectories, as was done for the examples in F
2~a,b!, according to their phase-space densities: For a tra
tory with trapping timet the renormalization theory togethe
with the numerical findings in Ref.@7# predict that it should
approach the golden torus up to a certain hierarchy le
characterized by its winding number@arrows in Fig. 1~c!#.
When the trajectory reaches this level or the one before,
classify it as following the route of renormalization and
contributes to f r(t). We find that f r(t) decays for t
.23107. While att51.53106 more than 60% of all trajec-
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FIG. 3. ~a! Phase space of the symmetrized standard map aK
5K* with successive magnifications showing the island-arou
island structure.~b! Poincare´ recurrencesP(t) ~solid! for the stan-
dard map withK5K* for various initial conditions~vertically
shifted for better comparison!. The upper curve shows the recu
rences for trajectories started randomly on the lineq5p. The other
curves belong to trajectories started randomly in small boxes
three different positions close to the island as indicated by the
rows in ~a!. All four curves show the same power-law behavio
including the log-periodic oscillations, and deviate from the pred
tion g52.25 from Ref.@13# ~dashed!.
9-3
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tories follow the route of renormalization, att'108 only
10% do so@Fig. 2~c!#. This indicates that for large times th
majority of trajectories does not follow the route of reno
malization towards the golden torus given by the princi
resonances, but are trapped around nonprincipal resona
@like the example shown in Fig. 2~b!#. Since the renormal-
ization theories that lead tog'3 consider only the trapping
around principal resonances they miss for increasing t
more and more trajectories that carry the long-time beha
of P(t). In view of that, the renormalization theory is n
applicable for predicting the decay ofP(t).

Nevertheless, the renormalization theories correctly
scribe the contribution toP(t) due to the trapping aroun
principal resonances, as can be seen as follows: From
ratio of the predictedP(t);t23 for the trajectories trapped
in the self-similar phase-space structure and the obse
P(t);t21.9, we expect the fractionf r to decay asf r(t)
;t21.1 for large times. This is consistent with our numeric
data in Fig. 2~c!. We thus find from our numerical analys
that the failure of the renormalization approach is due
reason~i! mentioned at the beginning of this section and n
due to reason~ii !.

We find that the majority of trajectories is trapped arou
nonprincipal resonances, which is in agreement with the
nary tree model@16#. This is in contrast to the conclusions o
Ref. @7# that are based on the computation of exit times fr
the vicinity of unstable fixed points of principal resonanc
The analysis of the mean exit time of a phase-space regio
well as the investigation of the local diffusion rates in th
region @20# can only give information about trajectorie
trapped in the considered region. While the mean exit time
a region in phase space determines the time when this re
contributes toP(t), it cannot tell how important the contri
bution is for the global trapping mechanism.

III. THE CASE KÄK*

A. Statistics of Poincarérecurrences

We now carry out the same analysis forK5K* , where
the phase space consists of two small accelerator modes
bedded in an otherwise chaotic phase space@Fig. 3~a!#. Each
accelerator mode shows an island-around-island structur
sequence 3282828••• @13#. This scaling was used to pre
dict the exponentg52.25 @13#.

Whenever a chaotic trajectory is trapped to one of
island structures, it follows the dynamics of the accelera
mode and jumps to the neighboring unit cell inp direction.
The trapping timet of a trajectory is thus the time it jump
one unit cell per iteration in the same direction. We det
mine the probabilityP̃(t) of being trapped longer than a tim
t by starting trajectories randomly placed on a lineq5p
away from the accelerator modes@upper curve in Fig. 3~b!#.
From the set of trapping timest one determines the fractio
P̃(t) of orbits witht>t. This quantity decays with the sam
power-law exponent as the Poincare´ recurrencesP(t) and
was chosen for numerical convenience. In order to incre
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statistics for large times, we have started randomly pla
trajectories in three different small boxes close to the ac
erator mode in positive direction@arrows in Fig. 3~a!#. In
principle, the exponent of the asymptotic decay ofP(t)
might depend on the initial box, in particular, if it is chose
too close to the island. We find, however, that this is not
case for our choices, as all four curves show the same
havior ~including the log-periodic oscillations! for times t
.23103. The total computer time corresponds to 831012

iterations of the standard map, with about 20 trajectories
length 1011 started in each of the four ensembles. Averag
over the log-periodic fluctuations we find a power-law dec
of P(t) with g51.85 @Fig. 3~b!#, which is not compatible
with the renormalization predictiong52.25 @13#.

B. Why renormalization fails

In order to clarify the contradiction between the predict
and the numerically observedP(t), we investigate the

FIG. 4. ~a! Phase-space density of a trajectory for the symm
trized standard map atK5K* with trapping timet'23106. The
density is determined on a 2503250 grid and gray shadings are o
a logarithmic scale. The trajectory follows the island-around-isla
structure.~b! A representative counterexample with the same tr
ping time t'23106, which is not trapped in the island-around
island hierarchy used for the renormalization approach, but aro
an island chain of period 3317551 surrounding the period 3 is
lands. ~c! The fraction f r(t) of trajectories with trapping timet,
which follow the island-around-island hierarchy. The decay sho
that the main contributions toP(t) do not arise from the route o
renormalization.
9-4
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phase-space densities of individual trajectories. In F
4~a,b!, we show the phase-space densities of two long tra
tories. Although both trajectories have the same trapp
time, only the trajectory in Fig. 4~a! follows the island-
around-island structure, while the trajectory shown in F
4~b! is trapped around another chain of islands~see top of
third box!.

We have calculated the fractionf r(t) of trajectories that
follow the route of renormalization@Fig. 4~c!#. At t
553105 more than 80% of all the trajectories are consist
with the renormalization prediction, while att'107 this frac-
tion is decreased to 30%. The decay is consistent with
estimatef r(t);t22.25/t21.85;t20.4, i.e., the ratio of the pre-
dicted P(t);t22.25 and the observedP(t);t21.85. We note
that the difference between the predicted and the meas
value forg is not as big as forK5Kc . Therefore, the decay
of f r(t) is less strong and suffers from statistical fluctuatio
Still, the majority of trajectories is not following the dom
nant island-around-island structure. This indicates why
renormalization theory for the island-around-island struct
is not capable of explainingP(t). It should be noted that this
difference is not caused by the finite precision ofK* which
eventually leads to a breakdown of the sequence 32828
282••• on very small scales. We thus find forK5K* that
it does not seem to be a valid assumption that the rout
renormalization dominates the contributions ofP(t).
l
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IV. CONCLUSION

In conclusion, our analysis shows that even if the pha
space structure is dominated by a single scaling~level or
class!, it is not sufficient to describe the trapping mechanis
of chaotic trajectories by only this scaling, as was recen
claimed in the literature. We find that additional island stru
tures may dominate the trapping mechanism for large tim
and thus affect the power-law decay ofP(t).

Our analysis supports qualitatively the tree model
Meiss and Ott@16#, which allows for the coexistence of tw
routes of renormalization at any stage in the phase-sp
hierarchy, leading tog51.96. Given the fluctuations in
P(t), which render a precise determination of the expone
difficult, our numerical findings are consistent with this pr
diction. If for larger times our somewhat smaller numbe
were verified, this would be an indication that more isla
families have to be included in the statistical description
the dynamics, as this yields smaller exponents@16#.

It is thus necessary to examine the trapping of chao
trajectories in more detail and it remains an open questio
there exists a universal asymptotic exponent for the trapp
of chaotic trajectories in Hamiltonian systems.
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