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Transitions from spatiotemporal chaos to cluster and complete synchronization states
in a shift-invariant set of coupled nonlinear oscillators
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We study the spatiotemporal dynamics of a ring of diffusely coupled single-well Duffing oscillators. The
transitions from spatiotemporal chaos to cluster and complete synchronization states are particularly investi-
gated, as well as the Hopf bifurcations to instability. It is found that the underlying mechanism of these
transitions relies on the motion of the representative points corresponding to the system’s nondegenerated
spatial transverse Fourier modes in the parametric Strutt diagram. A scaling law is used to demonstrate that the
compact interval of the scalar coupling parameter values leading to cluster synchronization broadens in a
square-power-like fashion as the number of oscillators is increased. The analytical approach is confirmed by
numerical simulations.
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[. INTRODUCTION In this paper we consider a ring of diffusely coupled
single-well Duffing oscillators and we aim to give an ana-
The study of the(non) synchronous behavior of coupled lytic insight into the various transitions that can occur be-
chaotic oscillators is currently gathering a growing amounttween the three possible dynamical states of the (&mR-
of important experimental and theoretical contributionstiotemporal chaos, cluster synchronization, complete
[1-7]. The interest devoted to that topic is motivated by itsSynchronization and instability when the coupling strength
potential relevance to pattern formation and coherent collecdS varied. However, our analytical study presents, within the

tive behavior in physic€Josephson junctions, granular hy- Same framework, the und_grlying structure of both the states
drodynamics chemistry (discrete reaction-diffusion sys- themselves and the transitions between them. This may have

tems, and biology (development of living organisms, Valuable applications in the thermodynamic limiM (
collective dynamics of biological cells aggregates — +©) for the phase transitions theory of one-dimensional

Beside the well known and intensively studied phenom-atom'c lattices, or for nonlinear transmission lines in com-

ena of spatiotemporal chap8] and completefull) synchro- munication engineering.
na ot spatl P ; b S5y The paper is organized as follows. In Sec. Il we perform
nization[9] in coupled chaotic systems, recent literature ha:

) . . ) he general stability analysis of the model, and we use Flo-
reported the existence of hybrid configurations consequent tauet theory to derive approximated analytical stability
symmetry breaking and spontaneous spatial

, : reordering, ,nqaries for the spatial Fourier modes of the ring. The
which are sometimes referred to as cluster synchronlzatloplopf bifurcations between the various dynamical states of

[4—6]. These intermediary states allow the chaotic oscillatorgye model will be particularly analyzed. Section Il deals

to synchronize with one another in groups, while there is nGyjth the extension of the study to the thermodynamic limit,

synchronization among the groups. Clustering is mostly wit-and with the application of the stability analysis to the spe-

nessed when the coupling is nonlocal or nonsymmetrigific cases of a positive and of a negative nonlinear stiffness

[5,10]. It consequently appears as more fascinating and moreoefficient. A scaling law is used to demonstrate that the

unconventional when it occurs in a system with local andransition boundaries of ani-ring can be recurrently de-

symmetric couplind4,6]. duced from the transition boundaries of the corresponding
Depending on the number of chaotic oscillators, the typawo-oscillators model. Finally, Sec. IV is devoted to the Con-

of coupling, and the boundary conditions, the dynamical syselusion.

tem can display a rich but limited set of different cluster

patterns. The stability of the various clusters is usually stud- || THEORETICAL STABILITY ANALYSIS, CRITICAL

ied through the variations of the sub-Lyapunov exponents  TRANSITION BOUNDARIES, AND NUMBERING

associated with their related submanifolds. Unfortunately, OF CLUSTERS
this numerical procedure is very time consuming and, more- - '
over, very repetitive, since the numerical simulation of the A. The stability analysis

sub-Lyapunov exponents has to be performed separately for The coupled system under study is a ringhofiiffusely

each possible cluster. Therefore, this approach can no longebupled single-well Duffing oscillator§SWDOS whose
be applied when the number of oscillators becomes prohibieyolution equations are

tively high.
5'(i + )\X, + X+ ’)/X?: F coswt+ K(XH_]__ 2Xi + X _1),
*Corresponding author. Email address: pwoafo@uycdc.uninet.cm i=1,...N. 1)
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ENET(L+3yxD)E=K(&41-26+E-1), i=1,.N,
@)

whereé; is the first order perturbation of . We can replace

in the first approximation th&l distinctx; chaotic variables

of the parametric excitation by a unique variallgwhich
represents the dynamics of an uncoupled oscillator. This sub-
stitution enables us to uncouple the variational E@.
through a Fourier transform diagonalizatif@, so that they
can be rewritten as

dx/dt

Lt NLeH|1+3yx3+4K siﬁ(%sﬂgs:o, s=0,..N—1,
(©)

(@
where thels are new variational variables expressed in the
diagonal base. The mode=0 is called the longitudinal
mode because it governs the dynamics of the perturbations
within the synchronization manifold, while the modes 0

are the transverse modes since they decide the linear stability
of the perturbations transverse to the synchronization mani-
fold.

The best deterministic candidates to replace the chaotic
variablex, in the parametric term of E¢3) are the unstable
periodic orbits(UPOg9 of the chaotic attractor. They are in
general multiperiodic, so that straightforwardly using them
for the stability analysis would imply the resolution of an
ordinary differential equatiofODE) with multifrequency
parametric excitations. Hence, analytic stability boundaries
may hardly be derived in that case. In fact, previous studies

x have shown that such a complexity can be avoided when the
®) fundamental Fourier component is strong relatively to the

FIG. 1. Phase plane for the chaotic oscillatéas y>0 case: harmonics of 'the external forcing frequency. .It has been
A=0.2; y=1.0; F=28.5; w=0.86, with initial conditiong0,0). (b) demonstrated |_rﬁ12] for Van der Pol qscnlators, in13] for
y<0 case:A=0.4: y=—1.0; F=0.23; ©=0.5255, with initial SWDOs, and in[14] for Rossler oscillators that for such
conditions(—0.3, 0.7 for the chaotic trajectory, antd, 0) for the ~ chaotic oscillators, a single period-one approximation of the
regular inner limit cycle. They>0 and y<O0 cases will aways UPOs is sufficient to describe accurately the stability pattern
refer to these parameters throughout the whole paper. of the coupled system. Figure 2 displays the Fourier spectra
of the uncoupled SWDOs in both the>0 andy<0 cases,
and it clearly appears that the fundamental spectral compo-
nent is predominant relative to the others, and is more likely
the damping, and is a nonlinear stiffness coefficient which to Pr°V°k.e the pgrametric resonance leading to desynchroni-
may be either positive or negative. Each oscillator of the ringZatlon or instability. A Shafp?‘f analysis wou_ld have also dem-
is excited by a periodic excitation of amplitudeand fre- O”St'?ated that the parametric resonances |r_1duced b_y t_he har-
quency w. At last, the positive parametés is the scalar monics ofw are easily stab|I|_zed by the n(_)nllnear_ variational
coupling strength. The system of Eq4) obeys the shift- terms we have negleqtgd n qu): Obviously, it results .
invariance conditiorx;, y=X%;. WhenK=0, each SWDO is fm”_‘ F'g' 2 that t_he \./".’Il'd'ty of the single-frequency approxi-
uncoupled and displays a rich variety of nonlinear behaviorsmation is more Justified for they<O case than for they
depending on the chosen sets of parametets Figure 1 >0 case. . . . .
presents the typical chaotic oscillations that can be observe?1 Therefore, we approximate the chaotic variakiewith
in SWDOs for both they>0 and y<0 cases. As one can 1€ uniperiodic functiorx,, defined as
notice in Fig. 1b), the y<0 oscillator is a bistable system,

dx/dt

X;j(t) is the instantaneous deviation of tita oscillator from
the stable and trivial equilibrium state=0. \ stands for

since the nonlinear oscillations may be either chagigter Xper(t) =Ag COf 0t —@). (4)
attractoj or periodic (inner regular limit cycl¢ depending
on the initial conditions. The analytic amplituded, can be determined through the

The stability of the coupled system can be studied througlRitz variational criterion as 3.323 for thg>0 case. For the
the linearization of Eqs(1) around the states;, according y<<O0 case, we rather havA,=0.343 for the inner limit
to cycle andA,=0.864 for the chaotic trajectory.
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Frequency (in units of ) FIG. 3. The S_trutt diagram. The _Iingarly stable area is darkly
@ shaded, the nonlinearly stable belt is lightly shaded, and the un-
stable area is blank. The periodic boundaries are denoted by thick
2 " " " " lines while the 2r periodic boundaries are denoted by thin lines.
The representative points of four nondegenerated modes have also
1t 1 been represented.
os | 1 3yA3
L a=——>.
=1
E .l do
§ One should notice that the feedback paraméteand the
< ot 1 number of oscillatord only influenceds and nota anyway.
From Floquet theory, it can therefore be demonstrated that a
02| 1 given modes is linearly stable if the following double in-
equality is fulfilled[13,15]:
0 MAA' L FYAREY | q y [ q
[ 1 2 3 4 5 int? N7 R AT
) Frequency (in units of @) —SI 2w <T(85,a)<+cos 4o’ 0
FIG. 2. Fourier spectréa) y>0 case andb) y<O0 case. where
The meaning of Eq(4) is not to suppose initially a syn- A(&,a)siﬁ(lw\/g) if =0
chronous motion in the ring, even though it may seem to be (5 )= 2
its most obvious consequence: the essence of the substitution (8,)= 1
(4) is spectral and not dynamical, and hence, we implicitly —A(é,a)sinhz(zm/—ﬁ) if <0
assume that the spectral properties of the oscillators are not 8a)
drastically modified by the coupling. In that case, the varia-
tional equationg3) can be rewritten in their turn under the gng
form of canonical Mathieu equations
2ip —2igp
e ?opn_1te 1)
) A((S,a)= S 4 a( m,n—1 m,n+1)H.
2, m 5—(2m)? H
W—I—[ﬁS-I-ZaCOS(ZT—Z(p)]nS:O, s=0,..N—1 (8b)
5
® A(6,a) is the infinite Hill determinant evaluated on a peri-
with the following rescalings: odic bou'nda'ry ofp. The 5n.m are the Kronecker symbols)
andn being integers varying from-o to +o.
From a conventional approach, the parametric pl@he)
7= ot, is divided into two areas: the area of linear stabilit§ (
—0) and the area of linear instability{{— *=o). The
AT boundaries between these two zones can be eitlpariodic
7s(7) = {s €X %0 lie., {(t)=¢((t+mlw)] if F(é,a)z—sinl’?()\_q-rmw) or 2w
©) periodic  [i.e., () =¢(t+27 w)] if I'(s,a)

) =+ coslf(\m/4w). The corresponding stability diagram is
A (77_5” sometimes referred to as the Strutt diagram and is repre-
N L

3
+ - yAZ— —+ [ A , . P
1 2 Ao 4 4K sirf sented in Fig. 3. The linearly stable area is enclosed within

1
5323
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the = and 2r periodic boundaries, and has been uniformly Strutt diagram. Since the uncoupled system is chaotic, it
shaded. It is known that crossing these periodic boundarieslearly appears that the poiM, is situated within the non-
corresponds to Hopf bifurcatiof43,15. In Fig. 3 four non-  linear stability area. AK is increased, th&l— 1 transverse
degenerated modes have been represented e=eonst modes represented in the Strutt diagram by the points
straight horizontal line. The leftmost point represents the lonM(Js,a) independently begin to move along the straight
gitudinal mode, while the remaining three others are transhorizontal line of equatiorr=const with a “velocity”

verse modes.

B. Transition boundaries between the cluster states - dds _ izsin2<w—s) s=1..N-1 (10)
S ] yrun .
In fact, the Strutt diagram may be divided into two only at dK o N
the linear approximation. When the variational equations aim

to decide the stability of a nonlinear system, the nonllngarHence, depending oKk andN, the pointsM are distributed

) ol domi bilizi le. thereby leading to th MNSetween the three different areas of the Strutt diagram, i.e.,
(2) play a pre ominant stabilizing role, thereby leading to the, -, yransverse mode may be either linearly stable, nonlin-
emergence of a third area in the Strutt diagram. Ef'fectlvelyearly stable or unstable

due to these nonlinear variational terms, there is a buffer Therefore, depending oK and N, three distinct sets of

zone between the !inearly St‘?‘.b'e a_md_linearly unstgble ar€afode distributions, which are unambiguously equivalent to
Itis arg)larear?f nonlmgar stab|I|(gvh|ch IS, howeve:},l Iglearly the three dynamical states of the ring, can be distinguished.
unsta é,_ w _ere|_§5| 0es not decay to zero and does Noti, e first case, all the transverse modes are within the area
grow to infinity either. The inner boundaries of this buffer of nonlinear stability: it corresponds to the regime of spa-

%btemporal chaos. For the second case, certain transverse

yvh|le Its outer bouqdanes with the unstgble area aré Very,sdes are in the area of linear stability while all the others
irregular and sometimes fractal-like. In Fig. 3 this area ofa e in the zone of nonlinear stability: it is the regime of

nonlinear Stal.)'“ty has_ been represented as a lightly shad uster synchronization. For the third case, all the transverse
belt surrounding the linearly stable area, while the U”Stabl‘?‘nodes are linearly stable, and then, the ring is in the com-

one remains blank. Among the four modes repre;ented, t'}ﬂete synchronization state. Hence, the mode distribution of
first and th|rd modegstarting frqm the leftare nonlinearly Fig. 3, for example, corresponds to a cluster synchronization
stable while the two others are linearly stable. Let us assumg;o "t |ast when at least one transverse mode is in the

that the I(‘Ichll width of this belt is\ (5™, a), where the instability area, the whole coupled system becomes unstable,
couple (6", @) is the related point situated onkar peri- o “the state variables indefinitely grow to infinity. The

odic boundary of the Strutt diagrank< 1 or 2. ASsuming  pyrincipal advantage of reasoning through the Strutt diagram
that the transverse modes are in the right-half plane, the angs hat increasing the number of oscillators does not require

lytical condition of nonlinear stability can be approximated 5 1o sketch different stability maps, but just to conveniently
for each of them by add supplementary transverse modes on the same diagram.

We emphasize one more time that the validity of our
9A(%s,a) modal approach for the study of the ring’s dynamical behav-
30s |5 _ skm ior strongly depends on the nature of the Fourier spectra of

S . .. . .

the individual uncoupled oscillators. It is only because the

a sin(ary/ 8%™) ) fundamental Fourier component is overly strong relatively to

7 WA@( ™, a) all the others that we can, for example, interpret in first ap-
proximation the spatiotemporal chaos state as the result of

(=D 8s—6%™) sinz(%w 5<k”>)

linearly unstable spatial Fourier modes. In the general case, it
N . h L .

A(g(km,a)cos;‘( 2_) is known that this interpretation is absolutely not valid.

w

<

|67 — 52| : ©)
C. Numbering of clusters

Here (5™, a) is the nearest boundary point relative to the |t appears from the above analysis that cluster synchroni-
representative poiril¢(J, @), while |6(™ — 57| inthe ths  zation is the result of the distribution of the transverse modes
of Eq. (9) is the length of the segment laying within the petween the linear and nonlinear stability areas of the Strutt
nearest stability interval. For the geometrical reasoning, th%iagram. From the discrete eigenfrequency spectrum of Eq.
local belt width A(6%™,a) can be replaced without any (3), one can deduce that the number of nondegenerated trans-
inconvenience by its average valie verse modes i®N/2 if N is even and ll—1)/2 if N is odd.

We can now analyze through the Strutt diagram what isHence, distributing\/2 [or (N—1)/2] points amongst two
happening in the coupled system when the coupling strengthareas vyields »? (or 2(N~172) different possibilities. Pro-
K is increased. WheK =0, the system is uncoupled and all vided that spatiotemporal chatal the transverse modes are
the transverse modes# 0 degenerate into the longitudinal nonlinearly stableand complete synchronizatidithey are
mode s=0. Therefore, the whole coupled system is repre-all linearly stabl¢ are excluded, the number of possible clus-
sented by a single poir¥l, of coordinates §,,«) in the ter states can be deduced as
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oN2_o if N is even may be possible in some particular cases that the nonlinear
N=1_(N—1)2 , , where N=2. (11)  variational terms we have discarded in E®) succeed in
2 —2 if N is odd, . . . . .
destroying the partial degeneracy of the linear Fourier eigen-
frequency spectrum, thereby inducing a number of figurative
It is, however, important to notice that mathematically, spafoints higher tham/2 or (N—1)/2. Therefore, the exponent
tiotemporal chaos and cluster synchronization correspond tof 2 in Eq.(11) increases so that new “unconventional” clus-
an N cluster and to a one cluster, respectively. For smalter states do emerge, such alsch for example, wherN

values ofN, the following results are obtained. Whéh=2  =4. This phenomenon can be identified to a kind of nonlin-
or N=3, linearly stable clustering is not observed: we noticeear mode-locking.
either spatiotemporal chadsb and abc state$ or a com- Consequently, since E@11) does not take into account

pletely synchronous motioaa and aaa). For N=4, two  these considerations, can just be considered as an order of
cluster states are foreseen by Efjl); anyway, symmetry magnitude. However, one can expect that this quantitative

considerations allow thabab state to exist, while the state estimation may be useful for the statistical approach of the
aabbis unstable and is not observglb]. The same reason- qadel in the thermodynamic limit.

ing applies foN=5 as well. The casBl=6 has been inten-
sively studied by Zhang and co-workers [i] for Rossler
oscillators. Five different cluster patterns have been observed
(while X=6), since the sixth stateaabbbis always un-
stable. Note that the mode distribution of Fig. 3 can corre- We focus in this section on some of the corollaries of the
spond to a ring of 6 or 7 oscillators. above theoretical stability analysis for the specific cases of a
WhenN is further increased, the number of possible clus-yositive and of a negative nonlinear stiffness coefficient, re-
ters grows exponentially according to HGL). Anyway, it gpectively. As we have earlier noticed, the number of clusters
should be stressed that some of these clusters are scarcely;Qfoy when rings of only few oscillators are concerned. For
not observed during numerical simulations or in practicéage cases, numerical simulation can be performed to study
Three main reasons can explain that. The first reason is thab ., ojyster state as well as the transitions amongst them.

some cluste_rs are very weakly stable, SO that they rapidlﬁowever this approach does not hold anymore wheis
degenerate into compatible clusters of higher symmigty, T : . . .
significantly increased, since it becomes quite complicated to

less complicated and more stable patterighis explains . .
why for a givenkK, it is sometimes possible to obtain many identify thg various clust'ers.. .Moreover, _the_se clusters be-
come less interesting as individuals wheris high.

different clusters, depending on the initial conditi¢As The . L . . o
second reason is that for a fixed number of oscillatdys The appropriate approach in this case is to identify in the

may be impossible to witness a given cluster state becaugrametric plan&l-K the areas corresponding to each of the
the transverse modes do never fit with the related mode dighree dynamical states of the ring. A scaling law is generally
tribution in the Strutt diagram, whatever the valuekofs. ~ used for that purposigl,2], and we hereafter proceed in that
The third and last reason is that when the cluster state corra&vay to derive the stability pattern of tié-oscillator system
sponds to a situation where only very few nondegeneratetiom the stability pattern of the two-oscillators model. The
modes are linearly stable, a global correlation between thpotential interest of such a scaling law is high in the thermo-
ring variables is witnessed, rather than localized mutual syndynamic limit: it means that the dynamical states and the
chronization states. In that case, the ring is said to be in thphase transitions of a one-dimensional lattice model can be
“rotating wave state.” Here and throughout the whole paperdeduced from the experimental or theoretical data obtained
we refer to any spatial ordering, either by effective synchrothrough the study of the two-oscillators model interactions.
nization of some items of the ring or by a global correlation
between the state variables, as cluster synchronization, since
the above analysis shows that both the “hard” cluster syn-
chronization (almost all the transverse modes are linearly Let us first consider the>0 case. FoiN=2, numerical
stablg and the “rotating wave statefonly a few of them are simulations show that the coupled system is nonsynchro-
linearly stablg¢ have exactly the same mathematical naturenized when K<K;(2)=0.34, and synchronized foK
even though the related dynamical consequences are differz Ky,(2)=1.15. ForKy,(2)<K<Ky,(2), intervals of syn-
ent. From our Strutt diagram approach, the emergence fromhronized and nonsynchronized behavior are intermingled.
spatiotemporal chaos occurs when the fastest Fourier modehis may easily be understood from the Strutt diagram inter-
becomes linearly stable while all the others remain nonlinretation. For a two-oscillator system, there is a single trans-
early stable. Hence, one can conclude that emergence fromerse mode moving along the=const straight horizontal
spatiotemporal chaos first passes through an “ordering,” i.e.line. Its representative poiil, starts from a nonlinear sta-
a bifurcation to a “rotating wave state.” bility area, and then alternatively passes through linear and
Another marginal phenomenon can be reported. The nurmonlinear stability zones. Finally, this point remains in the
bering of the cluster states in E(L.1) relies on the fact that last semi-infinite segment laying within the linear stability
the eigenfrequency spectrum is approximately half-region, leading to synchronous motiph3].
degenerated, since the number of figurative transverse mode For N>2, the number of transverse modes becomes
points in the Strutt diagram /2 or (N—1)/2. In reality, it  greater and the fastest of them has a velocity

IIl. NUMERICAL SIMULATIONS

1. The y>0 case
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4 25
if N is even
(1)7 12 2r Area of CoS only
Vtast™ 4 2 N—1 N y (123 sl
— —_— i is o
wz Sl 2N n 1
g Area of SpC, CIS and CoS
while the slowest has a velocity X os
g ° ° ° M ° * ° ° *
4 (= or °
VS|0W=;2'SII']2(N). (12b) s ke
We can deduce from the stability analysis that wheris At Area of SpC only
(very) low, all the transverse modes point; are spread s
within the initial nonlinear stability area, and therefore the 5 10 15 20 2 %
ring displays a spatiotemporal chaotic dynamics. As soon as @ N

the fastest transverse mode poMt,s oversteps its first

Hopf periodic boundary, the ring enters into the clustering
regime and when the slowest mobik,,,, oversteps its last

Hopf periodic boundary, the coupled system becomes com- Area of CoS only
pletely synchronized. The consequence of this transition
mechanism is that it is impossible for the ring to become 1
unstable, whatever the values Kfand N are. In fact, this

— o
may be explained by a high value. § 0 ~ Area Ins and CoS
Mathematically, if we define &
Kp1(2) if N is even At
K (2) Area of SpC and CoS
b1 s
Kpi(N) =y ————M . . 13
bl( ) . N—1 if N is odd ( ) 2t o 6 o 6 6 o o o o o o o 4
Sin?| —— .
2N 5 10 15 20 25 30
and () N
Kip(2)  Kpa(2) FIG. 4. Boundaries delimiting the different dynamical states and
Kpo(N) = b2( = b22 N2 when N>2. (14) instability of the ring in the semilogarithmic diagranN
i m —logio(K). The analytical and semianalytical results are denoted
St N by solid lines, while the numerical results are denoted by squares

and crosses. “SpC” stands for spatiotemporal chaos, “CoS” for

It appears that the system is in the spatiotemporal regime gomplete synchronization, “CIS” for cluster synchronization, and
K=<K,,(N), in the completely synchronous state K “Ins” for instability. Note that for the numerical comparisons, the
=Kp,(N), and in the clustering regime whefy,;(N)<K drifts and deviations are accentuated by the logarithmic scale.
<Kpa(N). Hence, according to the scaling laws3) and ~ ¥>0 case(b) y<O0 case.
(14), the width[ Ky, (N) — Ky (N) ] of the clustering interval
broadens in a square power-like fashionNagends to infin-  quire the analytic determination &f,,(2). This is difficult
ity. The parametric plandl-K is therefore divided into three to achieve here becausg and the corresponding constant
areas, as displayed in the semilogarithmic diagram of Figvalue are so high that approximated or perturbation methods
4(a). Typically, we have spatiotemporal chaos for ld¢y  do not apply. Hence, for an analytic derivationkyf,(2), it
cluster synchronization for intermediate values, and finallywould be indispensable to compute the Hill determinant
complete synchronization wheK is high enough. One A(§,«) at a high order of truncatio(=18), or alternatively to
should anyway note that degenerated full synchronizatiomse the Mathieu special functions. However, the purely ana-
states can also be observed in the cluster area, depending lgtic comparison would have presented a little discrepancy
the initial conditions and on the number of oscillators. with the numerical results because E4p) does not qualita-

The numerical simulations confirm the above analysis. Iftively fit with the pseudo-double-well configuration of the
for example, we focus on the transition from the cluster tophase portrait of Fig. (8.
the completely synchronous states, we can notice the excel- If we now focus on the transition from spatiotemporal
lent coincidence between the numerical and the semiehaos to cluster synchronization, we can notice on Fig). 4
analytical curves in Fig. @). This good concordance is due the rather good qualitative concordance between semi-
to the fact thatK,,(2) has been determined numerically analytical and numerical results. In fact, since Et). does
(which is why we refer to this comparison as a semi-not dynamically take into account the complex spatial pat-
analytical ong A purely analytical comparison would re- terns of spatiotemporal chaos and cluster synchronization
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states, the bifurcation boundal§y;(N) is not as accurate as tricably intermingled stable and unstable areas, and a lower
Kp2(N), even thouglKy,(2) is also determined numerically. zone of complete synchronization and spatiotemporal chaos.
Nevertheless, its interest remains at least qualitative, howNaturally, the uncertainty oKy,;(2) andK,,(2) induces an
ever, since it predicts that the bifurcation values leading t@error when evaluating{,;(N) andK,,(N), but the square-
the emergence of ordering from spatiotemporal chaos argower broadening behavior is preserved, however, and the
roughly independent afl. It is also important to notice that scaling law remains at least of qualitative interest.
the good concordance of our semianalytical comparison |, Fig. 4(b) the uppermost double line stands for both the
proves that as we have earlier postulated, the spectral prognaytical and semianalytical results, and they indicate the
erties of the coupled osqlllators do not Qrastlcally differ from pif rcation boundary to the completely synchronous state.
those of the corresponding uncoupled items. These two solid lines are very near each other because of the
excellent concordance between the numerical and analytical
values ofK,,(2) which has been earlier demonstrated. How-
For they<0 case, numerical simulations also confirm theever, a deviation from the numerical simulation is noticed
theoretical analysis. WheN=2, one can numerically ob- due to the bistability of the system. Effectively, a quasiper-
serve a synchronous motion whét=Ky,(2)~0.13, and fect coincidence is observed uniil= 6, but beyond, the ring
whenK=K},,(2)~0.37. The crucial parameteks,;(2) and  locks into the inner limit cycle so that th&,,(2) values
Kp2(2) can here be determined analytically, thereby permitshould be calculated now withh,=0.343, and probably
ting a purely analytical comparison beside a semianalyticajround another resonance valfien?, n being an integer
one. Effectively, theA, values in they<O case are low greater than 1.
enough to enable an approximated analytical determination The same comment can be made for the bifurcation from
of bothKp;(2) andK,(2). At thefirst order approximation, spatiotemporal chaos to instability. The intermediate double
the two branches of them2 periodic boundaries around line stands for the semianalytical and analytical boundaries
=1 can be derived as corresponding to the chaotic trajectory, and the single lower
solid line stands for the bifurcation boundary related to the
inner limit cycle. Once again, the numerical comparison rap-
idly switches from the chaotic boundary to the periodic one.
Therefore, since in they<0 case the spectral invariance
condition is not fulfilled, several bifurcation boundary values
1 do coexist. Consequently, depending on the number of oscil-
Kp1(2)= E()\Z—37A§)=0.138, lators and on the initial conditions, the ring’s state variables
will bifurcate around various boundary lines related to the
(16) different spectral groups.

2. The y<O0 case

S=1*a (15

so that for the outer chaotic trajectonpd=0.864), the bi-
furcation boundary values fad=2 are

1 2 2
Kpa(2)= 15 (\*~ 9¥A7)=0.416,

which are in excellent concordance with the numerical val- IV. CONCLUSION

ues 0.13 and 0.37. _ _ In this paper we have studied the various dynamical states
For the intermediate coupling strengths vallies., be- ot g shift-invariant set of diffusely coupled single-well Duf-
tween Ky, (2) andKpp(2)], intervals of instability and of = fing oscillators. A general stability analysis has led to an
c_omplete synchronization are intermingled. Here, the trans'tlncoupled set of canonical Mathieu equations, and Floguet
tions cannot be well determined because they depend on thgeory has been used with effect to derive analytical stability
initial conditions[13]. Effectively, the multistability is S0 poundaries for the spatial Fourier modes of the model. We
predominant in they<0 case that stable motion is witnessed haye also analyzed the Hopf transitions from spatiotemporal
only when the initial conditions of all the oscillators are ¢haos to cluster and complete synchronization states through
gathered within a small region of the ring phase space. Fronhe strutt diagram. At last, a scaling law has enabled us to
a Strutt diagram interpretation, we can say that the averaggequce the stability pattern of arly ring from the two-
width A is so thin that the nonlinear stability buffer zone is oscillators model Lyapunov spectrum.
almost exclusively fractal-like. Therefore, one can straight- This study can be extended to other models of coupled
forwardly deduce that clustering is practically impossible inoscillators, provided that they have a relatively strong funda-
the y<0 case for the chosen parameters, as well as spanental Fourier component, as is the case fos$Rar-like
tiotemporal chaos independently i§fand N. Consequently, oscillators[4,6,9. It would also be of great interest to de-
the coupled system is generally either unstable or completelyelop the statistical approach of the model in the thermody-
synchronous, except for very loW values, for which spa- namic limit, and also to extend the analytical study to the
tiotemporal chaos can be observed. Anyway, the fastest anélated continuous medium model. At last, more precise
the slowest transverse modes are expressed as fortlte  physical and biological models sometime require us to con-
case, so that the same scaling law reasoning applies. Hencsider nonlocal coupling$5] or long-range interactionf7].
if we defineK,1(N) and K,,(N) as in Egs.(13) and (14), For these latter cases, interesting new phenomena have yet
respectively, we can also divide tineK plane into an upper been observed through numerical simulations, and are wait-
zone of synchronous motion, an intermediate zone of inexing for accurate analytical explanations.
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