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Chaotic diffusion on periodic orbits: The perturbed Arnold cat map

Itzhack Dana and Vladislav E. Cherriov
Minerva Center and Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 4 December 2002; published 10 April 2003

Chaotic diffusion on periodic orbitéPOg9 is studied for the perturbed Arnold cat map on a cylinder, in a
range of perturbation parameters corresponding to an extended structural-stability regime of the system on the
torus. The diffusion coefficient is calculated, using the following PO formyBsthe curvature expansion of
the Ruelle? function; (2) the average of the PO winding-number squaret], weighted by a stability factor;

(3) the uniform(nonweightedlaverage ofv?. The results from formulagl) and(2) agree very well with those
obtained by standard methods, for all the perturbation parameters considered. F@nuiles reasonably
accurate results for sufficiently small parameters corresponding also to cases of a considerably nonuniform
hyperbolicity. This is due taniformity sum rulesatisfied by the PO Lyapunov eigenvaluediatd w These

sum rules follow from general arguments and are supported by much numerical evidence.
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[. INTRODUCTION wheren is the smallest integer for which E¢B) holds with
integerw,, the winding numberof PO p. Since Eq.(1) is
Understanding to what extent chaotic motion in Hamil- essentially periodic inx;!) with period 1, & ,1{) can be
tonian systems exhibits random properties such as diffusiorestricted to a unit torus,—0.5sxgp),lgp)<o.5. The en-
is a problem of both fundamental and practical importancesemblel/, may be viewed as an invariant “leval’ approxi-
The existence of deterministic chaotic diffusion has been apmation of the chaotic region and the diffusion ratel/, is
proximately established, using a variety of approachegjiven by[10]
[1-20]. A systematic approach is based on the hierarchy
of periodic orbits (PO9 embedded in the chaotic region 1 ) )
[10—20. Let us summarize the main ideas of this approach ~ P(M)= 2nN(n) p; o= 2nN(n) % Nw(mw?, - (4)
by considering, for definiteness, the kicked-rotor maps on the "
cylinder whereN(n) is the total number of POs itt, andN,(n) is
the number of POs i, with w,=w. Similarly, one can
It 1= I T (X)) Xms1=Xm+lme1 mod 1, (1) associate diffusion rates with subensembles/pfhaving
well-defined dynamical characteristidd0,11. For uni-
wherel is the angular momentunx is the angle, and the formly hyperbolic systems, Eq4) is expected to approxi-

force function f(x) satisfiesf(x+1)=f(x) and f(—x)= ma;e well the diffusion c_oefficierﬁZ)_ asso_ciated with ge-
—f(x). The diffusion coefficient for the mafd) is formally ~ Neric ensembles of aperiodic chaotic orbits. In fact, in the
defined by case of the cat and sawtooth m#g§ Eq. (4) gives the exact
value ofD for the cat maps and approximates very vizzflor
((In=10)2) the sawtooth mapflO0].
D= limDgm), Dgm)=—— Sy 2) The diffusion coefficient for generic chaotic ensembles in
m—oo 2m hyperbolic systems is given by the exact PO formula
[16,19,21:
where() ¢ denotes average over an ense (Xg,lp)} of
initial f:z)gnditions in a chaotic region. Wemwtr)\ Srgblems _ 1PCNBIIp? 5
in a reliable numerical calculation @ are (1) the roundoff 2 9:7YB,s)lds ,stfo.

errors caused by the chaotic exponential instability &2)d

the ambiguity in the choice of and the iteration timen.  Here ¢(,s) is the Ruelle function[21],

These problems are systematically soly&d] by choosing®

as the ensembld, of all the primitive POs of period in the . 4

chaotic region andn=n. For the map(1), a POpel, is ¢ (B'S):l_p[ [1-expBwy—snp)[Ag|~*], ()

generally defined by initial conditions({” 1) satisfying
where the product is over all the primitive PQs, is the

1P =P +w,, xP=x{P), (3)  period of POp, and A, is the associated Lyapunov eigen-

value (Ap|>1). One can express E(f) as a power series
in exp(—9):
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where then>1 terms are known as “curvature$19]. The 0.5 gz
convergence of Eq(7) is generally better than that of Eq. ;
(6). Formula(5) with a (truncated curvature expansiofi7) '
has been applied to several systdih3,14,16—-2Q0 For uni- 03[
formly hyperbolic maps with a complete symbolic dynamics
(i.e., whose grammar is unrestricted by “pruning rulg<ill
the curvature terms in Eq7) vanish identically and the ex- 01 B
act value ofD from Eq. (5) coincides precisely with the =
diffusion rate(4) for n=1. Examples of such trivial systems
are one-dimensional piecewise linear ma{ds,14 and
chains of coupled baker mapl5,21]. The application of Eq.
(5) and other PO formuldd 5] to a more realistic system, the
periodic Lorentz gas, gives resufts8] that are within 8% of
the values oD obtained by standard methods. For standard
maps (1), the quasilinear(strong-chaoslimit of D is ap-
proximated by using just POs of perind=1 andn=2 [17]. '
For the cat and sawtooth maps, the quasilinear approxima- 05 ¢ 03 o1 01 03 _5
tion of D is reproduced by formulas related to E§) [20]. X

In this paper, chaotic diffusion on POs is studied for a )
nontrivial Hamiltonian system exhibiting a transition from _ FIG. 1. Mixed phase space for the perturbed Arnold cat map
uniform to nonuniform hyperbolicity as a parameter is var-lEd- (1) with Eq. (8)] for x=2.
ied. This is the perturbed Arnold cat map on the cylinder,

defined by Eq(1) with by standard methods, the results from formul@sand (2)
appear to be more accurate than those in previous works. The
f(x)=fo(X)+ %sin(wa), (8) relative difference between the PO and standard results is not

larger than 0.4% when formul€) is used and not larger
than 1.7% when formulgl) is used. Formul&3) gives rea-
where fO(X):.X for |X|<Q'5’ fO(_o'5)EO'. fo(x+1) .. sonably accurate resultaithin 2% of the standard results
=1o(X), andx is a perturbation parameter. This system, Wlthfor sufficiently small values ok corresponding also to cases

the definitionfo(~0.5)=—0.5, is usually considered on a of a considerably nonuniform hyperbolicity. This is due to
torus,—0.5=x,1<0.5. Perturbed cat maps on the torus have . . g .

. : “ uniformity sum rulesatisfied by the PO Lyapunov eigenval-
attracted much attention recently in the context of “quantum

chaos”[22—24. Anosov theoreni25] states that the dynam- ues affixed winding number wrhese sum rules follow f_rom _
ics on the torus for sufficiently smak, x< «., is topologi- general arguments and are supported by much numerical evi-
cally equivalent to that of the unperturbee= 0) system(in dence.

particular, the system is completely chaotic fox k). This

expresses the well-knowstructural stability of cat maps

(see more details in Sec. I, where we determirg Il. CAT MAPS AND STRUCTURAL STABILITY

~0.437). Actually we provide numerical evidence in Sec. Il

that the structural-stability regime extends, at least approxi- Consider the unit torusl?: —0.5<x,1<<0.5 and letz
mately, beyondk., up to k~1. A fully chaotic regime is =(x,|). The hyperbolic cat maps di* are defined by the
observed up tac~1.5. For larger perturbations, stability is- map ¢,: z’=Az modT?, whereA is a 2X 2 integer matrix
lands born by bifurcation, leading to a significant mixedwith det(A)=1 and TrA)>2. While these maps are uni-
phase space fot>1.7 (see Fig. 1L We emphasize that un- formly hyperbolic, they feature a very nontrivial symbolic
perturbed cat maps already feature a very nontrivial symdynamics [26]. As a result, all the curvature terms in
bolic dynamics with nonexplicit pruning rules given by an ;_fynction expansions are nonvanishing. We show this here
infinite set of inequalitie$26]. As a result, all the curvature by deriving an exact expression &f 1(0,s) for ;. First, the

terms in¢-function expalnsions are nonvanishing. See, €.9.yniform hyperbolicity implies that the Lyapunov eigenvalue
an exact expression @f ~(0,s) for cat maps derived in Sec. A, of any PO with periodh is given byA ,= A", whereA is

Il. The relevant dynamics on the cylinder can be easily in,q largest eigenvalue @ Then, from Eq.(6)
ferred from that on the torus. ' ’ Y

In Sec. Ill, we calculate accurately the diffusion coeffi-
cientD for k up tok=1, using several PO formulagl) the o
curvature-expansion formul&g. (5) with Eq. (7)], (2) the Y0s)= H [1-p"(s)]NM, (9)
average ofvvg weighted by a stability factofthis formula n=1

was used in Ref§15,18 and we give a derivation of it from

Eqg. (5)], (3) the nonweighted-average formul&. The con-

vergence of each formula as the ordeof approximation is  wherep(s)=A ~lexp(—s) andN(n) is the number of primi-
increased is verified. When compared with results obtainetive POs of perioch. For p(s)<1, we find from Eq.(9) that
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TABLE 1. g’l(0,0) to ordem=1, ...,14 ofcurvature expansion for several valuesxof
10, 0)
n xk=0.086 xk=0.258 k=0.43 xk=0.602 k=0.774 xk=0.946
1 —0.36790 —0.34306 —0.32172 —0.30313 —0.28676 —0.27220
2 —0.29773 —0.31199 —0.33060 —0.35530 —0.38853 —0.43399
3 —0.17097 —0.17537 —0.17565 —0.17293 —0.16915 —0.16734
4 —0.08734 —0.09026 —0.09120 —0.08990 —0.08641 —0.08143
5 —0.04179 —0.04339 —0.04390 —0.04242 —0.03686 —0.02308
6 —0.01918 —0.02003 —0.02043 —0.01995 —0.01786 —0.01328
7 —0.00856 —0.00899 —0.00925 —0.00909 —0.00795 —0.00478
8 —0.00374 —0.00395 —0.00410 —0.00408 —0.00360 —0.00222
9 —0.00342 —0.00688 —0.00995 —0.01261 —0.01476 —0.01621
10 —0.00002 0.00104 0.00185 0.00249 0.00306 0.00375
11 0.00025 0.00130 0.00237 0.00350 0.00480 0.00643
12 —0.00002 0.00020 0.00042 0.00059 0.00073 0.00087
13 0.00019 0.00061 0.00097 0.00125 0.00147 0.00164
14 0.00012 0.00038 0.00062 0.00083 0.00099 0.00103

o)

IN[¢%(08)]= 2>, N(j)In[1-pi(s)]

=1

o

-3

=1

o P
=- N(j),
2 %J (i)

n

NG,
=1 1]

(10

where j|n means that the positive integgrdivides n. We
now use the general relation

% iN(}))=P(n), (1)

whereP(n) is the number of periodic points of period For
the cat maps one h428]
P(n)=|Tr(A") —2|=A"+A""-2. (12

Using Eqgs.(11) and(12) in Eq. (10), we obtain, fors=0,

p"(s)
n

H0s)= exr{ — n§=)1 P(n)

_[1-exp(—s)][1- A" %exp(—9)]
- [1- A~ lexp—s)]? '

(13

The explicit curvature expansion d@f *(0,s) for s=0 is
easily found from Eq(13):

oo

740s)=1—-P(1) Zl nA~"exp(—sn). (14

Thus, all the curvatures,(0), n>1, are nonvanishing.
A perturbed cat map orfl? is given by ¢,:z'=Az
+ kF(z) mod T?, whereF(z) is a smooth vector field peri-

odic onT?2. Anosov theoreni25] states that for sufficiently
small x, <k, ¢, is topologically conjugate tap, by a
continuous near-identity mad,., ¢,=H,° ¢00H;1. Thus,
any orbit O, of ¢,, in particular a PO, can be written as
0,=H,0q, where(O, is some orbit of¢py. We emphasize
that the relationqbkzH,(quooH;l doesnot imply that the
Lyapunov eigenvalud , of a POO,=H 0, is equal to that
of Oy, since the maH, is not differentiable[25]. Bound
ke is generally determined by the inequality:
max,_2(|kdFldz-Z|l|z])<1— A", where |z]=(x?
+1%)12. ChoosingA=(2,1;1,1) (corresponding to the Ar-
nold cat mag 25]) and F(z) = (1/27)sin(27x)(1,1), we see
that ¢, is just the map(1) with Eg. (8) and the definition
fo(—0.5)=—0.5[instead off,(—0.5)=0]. In this case A
=(3+/5)/2 and |9F/9z-z|=\/2|x|cos(27X). From the
above inequality we then ge&t<<«.~0.437.

The POs of a perturbed cat map for k. can be calcu-
lated very accurately as follows. First, the POg of the cat
map are determined exactly, using the techniques in Ref.
[27]. The perturbed PO®,=H,0O, are then computed by
applying toO, the mapH . constructed iteratively from the
nonlinear functional equation satisfied by it, starting from the
solution H(®) of the “homological equation’(see details in
the proof of the Anosov theorefi25]). In this way, we have
calculated all the PO®),=H,O, of the perturbed Arnold
cat map with periods1i=<14 with an accuracy of at least
10 1% this accuracy was checked by direct iteration of the
map. As a matter of fact, we found no problems in extending
these calculations beyone.~0.437. We have thus verified
that all the PO1D,=H,0O, with n<14 exist at least up to
k=0.946. In order to check to what extent these POs cover
the set ofall POs withn=<14 for k. <x<0.946, we have
used the "1(0,0)=0 test[16—19: the curvature expansion
(7) for £7%(0,0), restricted to the set of PQ8,=H,0O,,
was calculated up to order=1, . . . ,14, for sixvalues ofx
uniformly distributed in the interval € x<0.946. The re-
sults are shown in Table I. We see that the behavior of

046203-3



I. DANA AND V. E. CHERNOV PHYSICAL REVIEW E 67, 046203 (2003

TABLE Il. Number N(n) of relevant POs of period, having no point orx=—0.5.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N(n) 1 2 2 10 24 48 120 270 568 1500 3600 8543 20880 50700

£71(0,0) asn increases is basically the same for bath The Hannay—Ozorio de Almeida uniformity sum r{#,29

> k. andk< k¢, and there is a general trend|gf 1(0,0) to ~ implies that lim__g(n)=1. Then, the limit in Eq(15) ex-
decrease. This indicates that the POs=H, O, form, at ists only if Dy, (n) converges td. For sufficiently largen,
least, a large fraction of all the POs fag<«<0.946, i.e., Dya(n) in Eq.(17) is just the average 05,2/(2n) (peld,)
almost no bifurcations take place in this interval. Thus, thGWelghted by the stability factofA | 2. Such approxima-
structural-stability regime appears to extend, at least approxtions toD have been used in the previous wofk$,18.
mately, up tox=0.946. On the basis of this observation,  Formula(17) reduces essentially to E¢) in the case of
only the POsO,.=H,O, were used in our calculations for uniform hyperbolicity. Consider, however, an equivalent ex-

0<k=<0.946. pression for Eq(17):
On the cylinder, the system is described by the riBp

with Eq. (8) andfy(—0.5)=0. The discontinuity of Eq(8) 1

atx=—0.5 can be viewed as an infinite-slopertical) seg- Dwa(n)= 2nN(n) % Ny (M) Su(Mw?, (18
ment. It is then easy to show that the POs with pointscon

=—0.5 must have an infinite value df,. Thus, they will whereN(n) andN,,(n) are defined as in Ed4) and

not contribute to Eq(6) and will not be considered. Clearly,

the initial conditions for the relevant PQbkaving no point nN(n) |Ap
on x=—0.5) can be chosen as points of torus POgs %(n):mpeu < m (19
=H,O, lying in the domain/x|,|1|<0.5. The numbeN(n) nee P

of the relevant POs used in our diffusion calculations in SecThe quantity in Eq(19) is a natural restriction of Eq16) to
lll'is listed in Table II. The winding numbew,, is calculated the subset of POs with given winding number. If we now

from Eq.(3). Strictly speaking, there iso structural stability — assume, in analogy to lim _g(n)=1, the uniformity sum
on the cylinder, sincev, generally changes whenis varied

in any interval, in particular (@,).

|—1

rules at fixed winding number w

lim S,(n)=1, (20)
Ill. RESULTS FOR D AND UNIFORMITY SUM RULES n—co

We start by deriving a general formul&q. (17) below]  formula (18) may reduce to Eq4) alsoin cases of nonuni-
giving an approximation td in terms of all the primitive  form hyperbolicity. We found much numerical evidence for
POs of period n. Let us calculate the derivatives the validity of Eq.(20) in our system. Part of this evidence is

2071 B,s)laB? andaZ~ 1(B,s)/ds in Eq.(5) for B=0 and  presented below. In general, the origin of Eg0) can be
s>0 by direct differentiation of the infinite produdb), understood as follows. In our notation, one has the approxi-
which is convergent and nonvanishing £+ 0 [16,21]. Be-  mate relation fom>1 (see, e.g., Appendix B in Ref30]):
cause of the inversion symmetry of El) [f(—x)=

—f(x)], for each PO with characteristica/g,A,,) there ex- 1 . w? i [AQI
ists a PO with characteristics-(w,,A ). This implies that A-nD M~ apnl~ _ “w (1—|AT 1.2’
L™ H(B,s)! 3P| g—0s>0=0. Using thls fact and taking the mn nr =t =w (1= Ap|™) (21)

limit of s—0*, we obtain the following expression f@:
wherer (an integer is the repetition index. The left-hand
S g(n)Dya(n’) side of Eq.(21) gives the probability distribution for a ge-
. 9 WA neric chaotic ensemble to diffuse a “distand/| in “time”
D= lim § , (15) n. Now, asn—x, there should be no essential difference
n—o E , between such an ensemble and the PO ensebgbleThe
~ g(n’) probability distribution above is then expected to be approxi-
mately equal taN,,(n)/N(n), provided|w| is not too close
where to the maximal value ofw,| [10]. We use this in Eq(21),
keeping only the dominant terms=€1) on the right-hand
A7t side. Recalling also the definitiofl9) and the uniformity
(18 sumrule lim _g(n)=1, Eq.(20) is obtained.

In our numerical calculations we have used the relevant

g(n)=n >,

pely 1_|Ap|7l,

|A,| "2 POs on the cylinder with periods<14, computed as de-
Dya(n)= > ®——w>. (170  scribed in Sec. Il. The following PO quantities were calcu-
20(n) p<t, (1—|Ap7Y lated accurately fok=0.08&, k=1, ...,11:(1) S,(n) for
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TABLE IIl. S,(n), Dce(n), Dya(n), andD(n) for k=0.258; Dg=0.04865.

>

So(n) Si(n) S(n) S5(n) Sy(n) Dce(n)  Dwa(n) D(n)

1 1.52221 0.00000 0.00000 0.00000

2 1.19039 0.00000 0.00000 0.00000

3 1.05180 0.00000 0.00000 0.00000

4 1.01987 1.02505 0.02724 0.05125 0.05000

5 1.03504 0.97134 0.03261 0.04047 0.04167

6 1.02088 0.98225 0.03350 0.03752 0.03819

7 1.01632 0.96115 1.13505 0.04102 0.05023 0.04881
8 1.02287 0.96467 1.06022 0.04410 0.04795 0.04768
9 0.99896 0.99316 1.04018 0.04487 0.04762 0.04695
10 1.01179 0.98401 1.01905 1.24670 0.04648 0.04807 0.04760
11 1.00966 0.98787 1.00285 1.17419 0.04726 0.04862 0.04811
12 1.00935 0.98897 1.00102 1.11421 0.04751 0.04819 0.04776
13 1.00981 0.98864 0.99965 1.08830 1.40865 0.04801 0.04873 0.04826
14 1.00658 0.99180 0.99950 1.05561 1.30305 0.04824 0.04861 0.04815

all possible values ofv=0 [note thatS_,,(n) =S,(n) from  example,D«(20) differs from bothD ¢(10) andD(30) by
inversion symmetrj; (2) the curvature-expansiofCE) ap-  no more than 0.05% for all the values sfconsidered. In
proximation toD, Dcg(n), obtained by using in Eq5) the  what follows,D ¢(20) will serve as our “standard” valuB g
expansion(7) truncated after the firsh terms;(c) Dya(n)  for D.
[weighted-average formulél?)]; (d) D(n) [nonweighted- In Tables IlI-V we list the four quantities above for three
average formuld4)]. The PO results foD were compared representative values &f, the corresponding value @fs is
with standard ones obtained from E@®) by choosingS as  also given. Table VI shows the quantitiBg(14), Dcg(14),
the entire unit torus. For this ensemble, which is obviouslyPwa(14), D(14), andDs for all the 11 values ok consid-
invariant under the torus map, one has the exact expansidifed. The results in Tables Ill-V, as well as similar results
[2] for the other values ok, indicate thaD cg(n), Dya(n), and
D(n) start to converge, in general, for>8. These quanti-
1 m-1 i ties vanish fom=3, since all the POs with periat= 3 have
Dg(m)==Cp+ Z (1__) Cj, m>1, (22 w,=0, even forxk=0.946. Table VI shows a very good
2 =1 m agreement betweddy,,(14) andD for all values ofx. This
agreement is generally better than that betweg(14) and
whereC;=(f(Xo)f(x;))¢ are the force-force correlations for Dg. The relative difference betwedhy,(14) andD s ranges
Eq. (8). These correlations were calculated very accuratelfrom 0.04% to 0.4%), while that betwedh.g(14) andDg
for j=<30 by a sophisticated integration bx,)f(x;) over  ranges from 0.16% to 1.7%.
the unit torus. In general, we found thag(m) in Eq. (22) Table VI also shows that the relative difference between
converges rapidly td, due to the fast decay of;. For the values ofD(14) andDs for k<0.43 is not larger than

TABLE IV. S,(n), Dcg(n), Dya(n), andD(n) for k=0.43; Ds=0.05380.

]

So(n) Si(n) Sy(n) S5(n) Sy(n) Dce(n)  Dwa(n) D(n)

1 1.47432 0.00000 0.00000 0.00000

2 1.21592 0.00000 0.00000 0.00000

3 1.04705 0.00000 0.00000 0.00000

4 1.03876 0.99752 0.02630 0.04988 0.05000

5 1.06682 0.92808 0.03128 0.03867 0.04167

6 1.02173 0.95875 1.27251 0.03923 0.05429 0.05208
7 1.02423 0.95049 1.13318 0.04692 0.05640 0.05476
8 1.02965 0.95429 1.07500 0.04871 0.05239 0.05185
9 0.99527 0.98363 1.06576 1.74814 0.05076 0.05433 0.05184
10 1.02227 0.97717 0.98799 1.35259 0.05216 0.05339 0.05253
11 1.01290 0.98137 1.00161 1.23369 0.05265 0.05426 0.05308
12 1.01111 0.98476 1.00131 1.13098 2.06872 0.05294 0.05318 0.05216
13 1.00872 0.98746 0.99941 1.08594 1.59230 0.05323 0.05372 0.05271
14 1.00869 0.98753 0.99789 1.07197 1.43866 0.05338 0.05378 0.05273

046203-5



. DANA AND V. E. CHERNOV

PHYSICAL REVIEW E 67, 046203 (2003

TABLE V. S, (n), Dcg(n), Dya(n), andD(n) for xk=0.946; Ds=0.07200.

n So(n) Si(n) S;(n) Ss(n) Sy(n) Ss(n)  Dce(n)  Dwa(n)  D(n)

1 1.37400 0.00000 0.00000  0.00000

2 1.42345 0.00000 0.00000 0.00000

3 1.03401 0.00000 0.00000 0.00000

4 1.19364 0.77294 0.01918 0.03865 0.05000

5 1.05191 0.75048 2.07839 0.05413 0.10055 0.07500

6 1.14789 0.70455 1.63690 0.06132 0.06993 0.06250

7 1.06410 0.72943 1.60419 0.06600 0.08195 0.06667

8 1.12569 0.80405 1.16902 1.83040 0.06826 0.06781  0.06389
9 0.94494 0.90200 1.33077 1.93640 0.07233  0.08259 0.06494
10 1.00057 0.98694 0.91645 1.64065 0.07232 0.06972 0.06433
11 0.96412 0.96616 1.09809 1.32642 1.94196 0.07138 0.07231 0.06485
12 1.01872 0.94809 1.02208 1.19621 2.92740 0.07175 0.07120 0.06448
13 0.97018 0.95294 1.10901 1.09196 2.04263 3.55700 0.07181 0.07262 0.06507
14 1.00396 0.94759 1.04419 1.11549 1.90135 253191 0.07188 0.07180 0.06505

2% despite the fact that the hyperbolicity fe«0.43 can be

sider the behavior 0§,,(n) for k<0.43 in Tables Il and IV.
While the convergence d§,(n) to 1 for |w|<2 is quite

evident, S3(14) andS,(14) are not sufficiently converged je., at least up tac=1. This extension, which was already

due to the relatively small number of POs with=3, 4.

leading to only a small difference betwedn(14) and
Dwa(14) (or Dg). As « is increased, a larger value of|
(Jlw]=5) appears for«>0.516 and the hyperbolicity be-
comes more nonuniform. Then, since the total nunilb@r)

of POs is constantdoes not depend oR), the convergence
of S,(n) is expected to deteriorate for all This is, in fact,
confirmed by all our numerical dataee the worse case for
x=0.946 in Table V with the exception ofv=0. As Table
VI shows,Sy(14) remains remarkably well converged for all
values ofx. We shall attempt to find an explanation of this
and other facts in a future work.

In this paper, chaotic diffusion on POs was studied for the
perturbed Arnold cat map on the cylinder, in a relatively

IV. CONCLUSIONS

TABLE VI. Sy(14), D¢ce(14), Dya(14), D(14), andDs for all

large range of perturbationscorresponding to a “structural-
considerably nonuniform, see Fig. 2. To understand this, constability” regime of the system on the torus. Numerical evi-
dence indicates that this regime extends, at least approxi-
mately, significantly beyond the Anosov bourg~0.437,

noticed in a quantum-chaos context for a different perturbed

Precisely because of this last fact, however, the effect ofat map[22], is further supported by the very good agree-
S.3(14)—1 andS.4(14)—1 in Eq. (18 is not significant,

ment between the PO and standard resultf@lso for «
<k=<0.946, where only POs topologically conjugate to the
k=0 POs are used. In the absence of bifurcations, the varia-
tion of D with « is totally due to the change of the charac-
teristics (v,,Ap) of a constant number of POs. Thus, the
case studied in this paper is basically different from that
considered in Ref.17], i.e., standard maps in a strong-chaos
limit. In the latter case, bifurcations of low-period£€ 1 and
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Distributions of the Lyapunov exponents,

0.06240 = —In(|AJ)/n for all the primitive POs of perioth= 14 of the per-
0.06551 turbed Arnold cat map fork=0.258 (filled circleg, «=0.43
0.06873 (crosses and x=0.946 (triangles. Each distribution was calcu-

the 11 values ok.

K So(14) Dce(14) Dwa(14) D(14) Ds

0.086 1.00193 0.04350 0.04377 0.04356 0.04388
0.172 1.00431 0.04551 0.04618 0.04579 0.04622
0.258 1.00658 0.04824 0.04861 0.04815 0.04865
0.344 1.00752  0.05070 0.05109 0.05046 0.05116
0.43 1.00869 0.05338 0.05378 0.05273 0.05380
0.516 1.00807 0.05589 0.05642  0.05506 0.05656
0.602 1.00058 0.05841 0.05938 0.05736 0.05942
0.688 0.99577  0.06220 0.06228  0.05921

0.774 1.00191 0.06531 0.06548  0.06102

0.86 1.00014 0.06838 0.06848  0.06297

0.946 1.00396 0.07188 0.07180  0.06505

0.07200 lated by dividing the full range ok, into 100 equal intervals and
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counting the numbeAN of values of\, in each interval.
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n=2) POs are the main cause for the relevant variatiop of “tail” of the distribution (21) (|w| close to the maximal
with the parameter. The usual distinction between fundamenialue of|w,|). Here the discrepancy betwedl,(n)/N(n)

tal (n=1) and curvaturer(>1) terms[19] is not felt in our ~ and Eq.(21) leads to a value o§,(n) which is not well
case, sincev,=0 for n<3 and for all the values ok con- converged. We have shown that the effect of nonconverged

sidered. The convergence of the PO result©tgenerally ~ Vvalues ofS,(n) may be insignificant also in cases of a con-
starts only for ordefor period n>8. siderably nonuniform hyperbollplty. Then, formu(&?) re-

As in the case of the Lorentz gf&8], the most accurate duces essentially to the nonweighted-average forrla
PO results are obtained by using the weighted-average for-
m_ula_ (17). In general, by e_xpressi_ng this formula in the ACKNOWLEDGMENTS
winding-number representatiofl18), it becomes clear that
the effect of a nonuniform hyperbolicity is completely cap- We thank S. Fishman and J. M. Robbins for discussions.
tured by the basic quantiti€49). Since these quantities sat- This work was partially supported by the Israel Science
isfy the uniformity sum rule$20), the manifestation of this Foundation administered by the Israel Academy of Sciences
effect is essentially restricted, for sufficiently largeto the  and Humanities.
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