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Direct scattering processes and signatures of chaos in quantum waveguides
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The effect of direct processes on the statistical properties of deterministic scattering processes in a chaotic
waveguide is examined. The single-channel Poisson kernel describes well the distribusiomatix eigen-
phases when evaluated over an energy interval. When direct processes are transformed away, the scattering
processes exhibit universal random matrix behavior. The effect of chaos on scattering wave functions, eigen-
phases, and time delays is discussed.
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[. INTRODUCTION billiard connected to a single lead at one dsde Fig. L
The ripple billiard is particularly well suited to the use of the
In 1957, Wigner proposed the use of statistical measureseaction matrix theory approach to scatterfdg], because a
to analyze complex nuclear scattering dgth It was soon simple coordinate transformatidd 9,20 allows us to con-
found that, in some nuclear scattering data, the spacing betruct a Hamiltonian matrix and thus an eigenvalue equation
tween scattering resonances was distributed in a manndéor the basis states inside the cavity. We will compare the
similar to the spacing of energy levels of a Gaussian randomesults of deterministic scattering from the chaotic cavity to
Hamiltonian[2]. In the 1960s, extensive work was done to some recent predictions of random matrix theory as regards
develop a systematic theory of the statistical properties ofhe scattering process. The open geometry of the waveguide
random Hermitian matricels3,4] and random unitary matri- in Fig. 1 ensures that direct processes will play an important
ces[5,6]. The general criterion for constructing these randonrole in scattering. We show that the contribution of the direct
matrices is that they minimize information. In 1979, the ap-processes to the scattering can be transformed out and the
pearance of random matrixlike behavior in quantum systemstatistical properties of the reactive part of the scattering pro-
was linked to underlying chaos in the classical deterministicess can be compared to random matrix predictions. Our
dynamics of these systemi—10. Since then a large body discussion focuses on quantum particles and we will use pa-
of work has developed linking the statistical properties oframeters appropriate for electrons in waveguides made with
bounded and open quantum systems to underlying determitGaAs, for which a number of experiments have been done
istic chaog11-13. [21-23. However, our results also apply to electromagnetic
Historically, there have been two different approaches tavaves in flat microwave cavities, because the eigenmodes in
describing the statistics of quantum scattering processes ihese cavities satisfy a Schrodinger-like equafi@h—26.
chaotic systems. One approdd#] begins directly with the We begin in Sec. Il by reviewing the reaction matrix
Hamiltonian and uses it to build the scattering matrix. Thetheory of deterministic scattering in the ballistic waveguide
other approact{15,1€ begins directly with the scattering and we study some properties of the cavity basis states. In
matrix. In both cases, random matrices are used to descrilfeec. Ill, we study various statistical properties of the eigen-
scattering processes and the statistical properties of thghases of the waveguide scattering matr& rhatrix). We
eigenphases of the scattering matrix and partial delay timeshow that, when the cavity dynamics is chaotic, the deter-
can be obtained and compared to experiment. There has begtinistic Smatrix eigenphases exhibit level repulsion and
considerable success in recent years to link the results antleir distribution is well described by a Poisson kernel. In
predictions of these two approacHds]. Sec. IV, we compare the distribution of partial delay times
The connection between the statistical properties of scafor the deterministic scattering process to the predictions of
tering processes and underlying chaos is not straightforward
because scattering events may involve either reactive pro-
cesses or direct processes. Reactive scattering processes are
those for which an incident particle becomes engaged with
the dynamics in the reaction region, and may be delayed
there for a considerable time. Direct processes are those for
which the particle passes through the reaction region without
becoming significantly engaged in the reaction region. One
prediction of the random matrix theolRMT) of scattering
is that, if the scattering process is truly chaotic, the average
value of theS matrix will be zero. However, if direct pro-
cesses are present this will not happen. FIG. 1. The geometry of the two-dimensional ballistic wave-
In this paper, we will study the deterministic scattering of guide used in our calculationa;is the half-width of the rippled is
a quantum particle in a two-dimensional ballistic waveguidethe width of the lead and the average width of the cavity. The ripple
which has a classically chaotic cavity formed by a ripplecavity extends fronx=0 to x=L.
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random matrix theory. Finally, in Sec. V we give concluding boundary conditiong¢;(x,y)=0] at the walls. We obtained
remarks. the eigenfunctiong;(x,y) and the associated eigenvalugs

using the transformation technique discussed in R&d],

REACTION MATRIX DESCRIPTION OF SCATTERING Sec. V.
In Fig. 2(a), we show a Poincare surface of section for a

We will explore the behavior of a particle of massin a  ¢jassical particle in a closed ripple cavity with the same

ballistic waveguide as it scatters from the ripple cavityshape as in Fig. 1, and with hard walls. We choake
shown in Fig. 1. A particle with energl¢ enters the cavity — 191 A, L=511A, and a=1.0A. We have plotted
from the left al_ong a stra_light lead that has infinitely hardgjrkhoff coordinatesp, /p=cos) versusx, each time the
walls. The particle wave is reflected back to the left by anparticle hits the lower wall at point(« is the angle between
infinitely hard wall located ax=L. The dynamics inside the - the wall and the momentumFor these billiard dimensions,
cavity, 0<x<L, can range from mixed to fully chaotic as the classical phase space contains a mixture of regular orbits,
the ripple amplitude is varied. The Schlinger equation, nonlinear resonances, and chaotic motion. If we increase the
which describes propagation of a particle wa¥gx,y,t), in  ripple amplitudea, there is a range of values affor which

the waveguide at timg is given by the classical motion appears to become totally chaotic. For

SV (XY.1) the scattering systertwith one end of the cavity opgnpe-
iﬁ—,y’:ﬂ\P(X,y’t) riodic orbits and nonlinear resonance regions cannot be
ot reached classically by a particle that enters from the left, but
2/ ) quantum mechanically tunneling into these regions is pos-

_|_ ﬁ_ ‘9_ ‘?_ sible as we will show in Sec. I\see also Ref.27]). In Figs.

TV(Xy) | P(xy,t), > 97

2m\ gx2 = gy? 2(b—e, we show Husimi plots of13] quantum Poincare

surfaces of sectiof28] of cavity basis statesp;(x,y), with
eigenvalues yggs=257.193% 1, 7vy9g5—=257.933%,, vogo
:258665E1, and Y990~ 258907E1, Where El
=h2m2/2md?. The Husumi plots in Figs.(2) and 2d) show
that these basis states reside on nonlinear resonances of the
underlying classical phase space. In Sec. IV, we will show

that these basis states give the primary contribution to sharp
R . ) . . resonances in the transmission at these cavity parameters.

=d+asin(Smxl) gives the contour of the rippl] is the Inside the lead, we must distinguish between propagating

average W'.dth of the cavity. is the Ier_lgth, andh is the and evanescent modes. The longitudinal component of the
ripple amplitude. In all subsequent sections, we take the pa@igenstates in the leads, for propagating modes, can be writ-
ticle mass to be the effective mass of an electron in GaA ' '

m=0.067m,, wherem, is the free electron mass. An energy nas

eigenstate|E) with energy E satisfies the equatiofi|E) b

=E|E), and evolves a® (x,y,t) =(x,y|E) e 'EVA, Toxn(X)= —=e ik —L giknx) (2.4)
As shown in Ref[20], the waveguide energy eigenstates \/k—n \/k—n

can be expressed in the form

(2.1

whereH is the total Hamiltonian of the particle in the wave-
guide andh is the Planck’s constant. The potenti(x,y)
has the following propertiesV(x,y)=« for (L=x<®);
V(x,0)=x for (—e<x<L); V(X,y=g(x))=c for (0<x
<L); and V(x,y=d)=o for (—o<x<0); where g(x)

an

where the wave vectdy, is given by

(YIE)= 2 %0y + 2 Taboxy). (22 omE a2
TN
The statesb, (x,y) are the basis states in the lead<0),
If there areN propagating modes then=1, . . . N. Here we

(2.3 use a unit current normalization. A particle propagating in
the nth channel has energy in the intervafE;<E<(n
+1)?E,, whereE;=#27%/2md?=0.0738 eV. All remain-
é'gg modesn=N+1, ... oo, are evanescent and can be rep-
fesented in terms of the states,

2 _[nmy
(X y)=(Xy|Pn)= aXn(X)Sm(T

(n=1,2, ... ). These will consist of both propagating and
evanescent modes, as we will discuss below. The stat
i (x.y)=(x,y|¢;) (j=1,2,...) are the basis states in
the cavity (0=x=<L). In practice, we truncate the number of

cavity basis states to some large but finite numiiderThe T, xn(X)= Cn o *nlx| (2.5
value of M is determined by the accuracy desired for the nXn \/K—n ' '
calculation. The coefficients,, and y; in Eq. (2.2 are de-
fined asT',=(®,|E) and y;=(;|E). where

A complete set of basis states;(x,y), inside the ripple
cavity has been obtained by solving the Schrodinger equa- 2 omE
tion in the cavity, using Neumann boundary conditions Kn= \ /(n_W) _£m i
[(d¢;/dX)x—o=0] at the entrancex=0), and Dirichlet d h?
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FIG. 2. Surfaces of section far=511 A, d=101 A, anda=1 A. (a) A Poincaresurface of section showing,/p=cos() vs x, each
time the particle hits the bottom wallb) Husimi plot of quantum surface of sectiéQSS for cavity eigenstate with j=257.1934&, . (¢)
QSS for cavity eigenstate with; =257.933%,. (d) QSS for cavity eigenstate with; =258.665%,. (€) QSS for cavity eigenstate with
N, =258.907E,.

j 1

In Ref. [20], we showed that the evanescent modes for this Let us now form anNX1 column matrixg (E) whose

system do not make a significant contribution to the scattermatrix elements consist of tH¢ probability amplitudegb,,}
ing properties that we are interested in. Therefore we WI||({an}) of the outgoing(incoming propagatingmodes. The

neglect the evgnescent modes 'h subsequent se.ctLons. waveguide scattering matriS(matrix) S is anN X N matrix
As shown in Ref.[20], the eigenvalue equatioH|E)  which connects the incoming propagating modes to the out-

=E|E) leads to the relation going propagating modeb=Sa.

52 1 N d For the case when there axepropagating modes in the
e (o)) X”) I,. (2.6 lead we can obtain aN X N Smatrix that may be written as
I 2m (E_AJ) n=1 ) \ dx Xx=0 _ _
o . . —  (In—iK)
Also, continuity of energy eigenstatesxat 0 gives S=— ———, (2.10
(InyTiK)
M N dX
Fan(O):Zl Y, $jn(0)= 2 Rn,n/( dxn Iy, where % is NXN unit matrix, and theNx N matrix K has
J net x=0 (277 ~matrix elements K, = VknRn.n vk and can be written as
where _ 1 _
K:WTiW. (211)
72 M g*(0);4(0) Elu=Hin
Ron=5— 2, — = (2.9 — . : =
Toz2mi=r (E-N) In EqQ. (2.11, 1y is the MXM unit matrix, H;, is an

. . . M XM diagonal matrix formed with the eigenvalugs (]
is the (n,n’)th matrix element of the reaction matrf8].

The qu_antity¢j,n(0) is a measure of_ the overlap between thet:rii’ ++ M) in the cavity, andw is anM XN coupling ma-
jth cavity state, and thieth channel in the lead, evaluated at = "
the interface, Wi -o0 Wiy
2 (d [nmy w=| :o, (2.12
?jn(0)= \/;fo dy¢j(0,y)sm(d). (2.9 Wi - Wy
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wherew; .= ¢; /(0)Vk, . With some algebra, th® matrix
can also be written in the form

S=—|1y—2iwf ———w]|. (213
N Ely—Hpp+iww' %,

In Ref. [20], we showed that if evanescent modes are in-
cluded, an additional term appears in the denominator in Eq
(2.13.

The reaction matrix approach to waveguide scatteringg
provides a very efficient means of computing the statistical *
properties of the scattering process because the Siciger
equation only needs to be solved once to obtain the basi:
states and eigenvalues in the cavity. Using these values§, the
matrix can then be obtained at all other particle energies
Typically for the ripple cavity in Fig. 1, we can obtain the
scattering matrix at 150diff9rent values of incident energy in FIG. 3. Eigenphases, vs E/E, for the energy interval 256
a reasonable amount of time on a Cray machine. <E/E,<272: (a) a=25 A, (b) a=1A.

One of the goals of this paper is to compare the statistical
properties of the deterministic scattering process in the ripple .
cavity to statistical properties of a hypothetical scatteringvalues ofHg.e have a constant density, %2 and the aver-

process in whict,, is replaced by a diagonal matrfty,, 29 S matrix (Sgoe)=0. Wheng#1, the averageS matrix
composed of theVl eigenvalues of aM X M Gaussian or- cannot be zero.

!

thogonal ensembléGOE) Hamiltonianl:lgoe, and theN col-
umns of the coupling matriw are replaced b\ of the M IIl. EIGENPHASES OF THE SCATTERING MATRIX

normalized eigenvectors da?léJoe to yield a coupling matrix o )
Weoo [4,29]. In this random matrix theory approach. the We have analyzed some of the statistical properties of the
goe L ne=r Yy app ' .eigenphases of th& matrix for the case of deterministic

sti\r/tzr:]g;t)h ?ﬁéhehgagﬂ'ggo?:t\i’ngn;?aemcavg_yhsndargaé?:? I%cattering from the ripple cavity for the cases when the in-
9 y P 9 P ege P ternal dynamics in the cavity is completely chaotic and when

g does not appear in the deterministic scattering process. I:ﬂris near integrable. In this section, we consider the energy

deterministic scattering, the strength of the coupling is en- — .
tirely determined by the geometry and the potentials at th interval 256, <E=28%, when 16 channels are present in

interface. The scattering matrix, obtained from the RMT, car‘?he I_eaq. Thes matrix IS a 16<16 matn)_(, and for e?fh value
. of incident energy it has 16 eigenvalueg'’« («
then be written as

=1,...,16), and 16 eigenfunctions,|s,) (S 4,)

_ - o 1 . =e'%|5,)). The S matrix is unitary so that the eigenfunc-
Sgoe= — 1N—2igw;Oe — ————Wgoe|- tions|s,) form a complete orthonormal set. We can use the
Elp—Hgoet 19WgoeWgoe orthonormality of the eigenfunctions to follow each eigen-

phase,s,, continuously as a function of enerd@1]. The
(2.14 eigenfunctions, for twd® matrices evaluated at nearby ener-

. . ) gies, will be approximately orthogonal if they do not belong
It was shown in Ref[30], using supersymmetry techniques, 5 he same eigenphase. Thus we can plot each of the 16

tha:c for the case when the distribution of energy eigenvalueg;garent eigenphases as a function of the incident energy.
of Hgoeis centered aE =0 andM —, the averag&matrix  These are shown in Fig. 3 where the eigenphases, which are
can be written as defined as modz, are “unwrapped” and allowed to evolve
, continuously as a function of energy. In Figag we show
(Suod =51y with s= 1_g[fE/2+7””(E)] (2.15  the case with ripple amplitude,= 25 A, where the classical
90 N 1+g[iE2+7v(E)]’ cavity dynamics is chaotic, and in Fig(8 we show the case
a=1A where the classical cavity dynamics is mix&ke
where v(E)=="1J1—(E/2)? is the average density of en- Fig. 2). The case of mixed dynamics shows many more
ergy eigenstates. It is useful to introduce the quantity abrupt changes of phase as a function of energy than the
chaotic case. This is due to the fact that the mixed dynamics
(2.16 has many long lived resonances not found in the chaotic
' case. This was also seen in Rdf31,27. We shall return to
this feature in Sec. IV.
where u,=gva and u;=9(E/2), respectively, are the real Below we first discuss the effect of direct processes on the
and imaginary parts ofc. The case wheg=1 corresponds distribution of eigenphases, and then we determine the dis-
to ideal coupling. In the neighborhood &&=0, the eigen- tribution of nearest neighbor spacings of these eigenphases.

) 1-s E
m=p i = =gvrtig 5,
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A. Distribution of eigenphases which is just the distribution for the circular orthogonal en-
semble (COE) [5,6]. Thus, even for scattering processes

When a scattering process has a nonzero avelaggtrix Vs ) - . e
gp g:lch include direct processes, it is possible in principle to

(S), It indicates that direct processes may play a significan ransform away the direct processes and compare the eigen-
role in the scattering process. Direct processes are general

: . ; o ) istribution with that of th te that similar
scattering events which do not interact significantly with the; ase distributio at of the CORote that simila

; . . ) ideas first appeared in literature in REE5]). It is important
reaction reg|o_n(c.:av¢y) [32]. Whe” direct PrOCESSES ar€ 4, e that the transformation that removes direct processes
present, the distribution &matrix elements that minimizes

information about the scattering process is the Poisson keir§ not the same as the unfolding process that occurs on the
gp - ~energy spectrum of bounded systems to give a constant av-
nel. For the case of aN-channel process whose dynamics is

. : . . erage density.
time reversal invariant, the Poisson kernel has the form In our subsequent analysis, the case of scattering with

_ 1 [Det(l—(S)*(S))](N“)’Z only a single channel will be useful for analyzing data. For
Pn(S)= a ST (3.1)  the single-channel scatterinl & 1), theS matrix reduces to
|Det(1—(S)*S)| the complex functiorS=e'? and the Poisson kernel reduces
to [15
where(} is a normalization factor that ensures that the Pois- [15]
son kernel satisfies the normalization conditig,SPy(S) 1 [(1-s*s]
"y N PiS(8)= 53— ————— (3.5

_ 27 |(1-s*e'?)|?
The S matrix can be diagonalized by a unitary mattix
and, as mentioned earlier, the eigenvalues oRhwatrix are  with normalization condition/” _d&P.(58)=1. Under the

denoted bye'’«, a=1, ... N. In terms of the eigenphases transformation aboveP,(8)— P,(6)=1/2z, which is the
d,, the normalization condition for the Poisson kernel, Eq.COE prediction. .
(3., can be written as Having obtained numerical values of the eigenvalelés

as a function of energy, we can compute an average value for

f dgpN(g):f 3 f 45, - dBPy(By. . .. 5y) each of the 16 eigenvalues,

. 14 .
1 Se=(€%x)== > g%l 3.6
[ dnas, (=" 2 3.6
U

where is the number of energy values used. The apparently
X H |e%a—¢ 5;| continuous eigenphase curves actually consist of about
1<a<a’'s<N 40 000 discrete energy points. The approximate orthonormal-
. N (N+1)/2 ity of S matrix eigenvectors for neighboring energies has
(1-s"s) been used to sort the eigenphases. Thus, the eigenphases and
N s s eigenvectors have an energy interval over which they are
Hl (1-s*e'%)(1—se ') correlated, and we have used that fact in our sorting process.
“ On the other hand, this correlation of tBenatrices at neigh-
=1, (3.2 boring energies can prevent us from obtaining statistics that
can be compared to the RMT predictions. Comparison to the
where Q, is a normalization constant. Note that RMT requires use of independent data points. Therefore, in
Pn(81, ... ,6y) is the joint probability density to find the order to study the statistical properties of the eigenphases,
angles,s,, in the intervalss,— 6,+dé, (a=1,... N). we must choose values of the eigenphases separated in en-
In Ref. [33], it is shown that if the following change of ergy a distance greater than the correlation length. For each
angles is introduced, eigenphase curve we select points that have an energy spac-
ing AE=0.495,. We choose this spacing based on an

X

0. 1 O E analysis of the delay time correlation discussed in Sec. IV.
ta 2] gmv ta 2 +g§ ' (3.3 (The delay time autocorrelation function is the second de-
rivative of the eigenphase autocorrelation function.
and if one assumes ideal coupligg-1, then Eq.(3.2) re- We have computed a histogram of the number of eigen-
duces to phases\(6) = nPy(6) versus value of eigenphagg in the
16-channel region, wherg is the number of data points. In
J Jp (§):J J 46, - doPy(8 o) order to improve the statistics, we use data from four differ-
N ! A ent ripple amplitudesa=25 A, 30 A, 35 A, 45 A, all of
which lie in the chaotic regime. All eigenphases lie in the
:if "'fdal’ .. doy energy interval 256 E/E;<289 and have energy spacing
Qy AE=0.49%,. Thus the histogram includes B216x4
=4288 data points. We have found that the distribution of
X H |efa—glfa|, (3.9 eigenphases, along a given eigenphase curve, is well de-
l<a<a'<N scribed by the Poisson kernel for the single-channel case. We
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FIG. 4. (a) Histogram of number of eigenphasi$s) vs 6 for
the 16-channel energy interval 25&/E,<289, and for four dif-
ferent ripple sizesa=25 A, 30 A, 35 A, 45 A. The solid line is a FIG. 5. Histogram of numbeN(o), of nearest neighbor scaled
plot of the single-channel Poisson kernel wi) =35 ,(e'%) and  eigenphase spacings, for the chaotic regime witki=101 A, L
normalized to the number of eigenphasés. Histogram of trans- =511 A. The average spacidg’) is obtained for each eigenphase
formed eigenphaseg, for all 64 eigenphase curves. For all cases, curve. The histograms contain a total 0fX467=1005 data points
d=101 A andL=511 A. A x° test result is also shown for both averaged over four different ripple sizes=25 A, 30 A, 35 A, 45
plots with 17 bins taken into account. A. (We obtain a histogram for each of the four values of the ripple

amplitude. We then add them and divide by fpia) Before direct
proceed as follows. We compute the average eigenvajue, processes are transformed away. The thin solid line is the Brody
=(e'%), for each eigenphase curve. We can form a histodistribution with 3=0.635. (b) After direct processes transformed
gram using the 67 data points from a single eigenphaseway. The thin solid line is the Brody distribution wig=0.865. A
curve. We do this for each of the 64 eigenphase curves, usir‘[g2 test result is also shown for both plots with 13 bins in it taken
the same number of bins and bin width for each curve. Wénto account
then add these 64 histograms together to form a single his-
togram, which is shown in Fig.(4). The solid line in Fig. neighbor eigenphase spacings if we obtain eigenphase spac-
4(a) is the single-channel Poisson kerre|(5), but with  ings for a sequence of different energies in the range 256
(s)=(1/64)254 |s,. We can use Eq3.3) to transform away ~<E/E;<289. In Fig. §a) we show histograms of 1005
the effects of the direct interactions and find the distribution(15X67) nearest neighbor spacings for eigenphases com-
of the transformed angled],. If we use Eq.(2.16 and Puted at energy incrementsE=0.49F, and obtained by
obtain x from the numerically calculated values of, ~ @veraging over histograms for each ripple amplitude,

cl<g>

:<ei 5a>, then the transformed ang|@§ are given by =25 A, 30A, 35 A, 45 A. We have fit the histogram to the
Brody distribution[29]
0 0
tar(—“ =— tar(—a + o, (3.7) o \# o \M*P
2 2 =Al — —f—
Mr Pg(o)=A <0_ €X & <0_>

with u, andu; computed numerically frors, . In Fig. 4(b),

we show how the histogram in Fig(a&} changes if we trans- with

form each eigenphas®, using Eq.(3.7). In this case distri- 1 PR RERY:

bution is approximately constant and equal to the area, f=|—T|—— ' (3.9
N/27. Thus, having transformed away the contribution from (o) (148

the direct processes, we obtain the COE eigenphase distribkl— is th . iah .
tion for this chaotic scattering process, with fairly high con-(?) i the average spacing between nearest neighbor eigen-
fidence level. phases, and’(x) is the gamma function. In Fig.(8), the

Fora=1 A the plots of the eigenphase distributions look S°!id line is a fit to the Brody distribution f08=0.635. In
very similar to the chaotic case shown in Fig. 4, and it ap-F19- 3b), same calculation is performed after direct pro-
pears that the eigenphase distribution is not as sensitive &$SS€S were transformed away. In this cAse0.865. Note
indicator for underlying chaos as is the nearest neighbof1@t the GOE prediction £=0.95) for the closed system

spacing distribution, at least with this type of analysis. eigenvalue spacings is fairly close to our valugofafter the
effects of direct processes are transformed away. In Ref.

[28], the nearest neighbor energy eigenvalue spacings for a
closed ripple billiard were fit to the Brody distribution with

In this section, we consider the nearest neighbor spacing8=0.806. In that case, the deviation from the GOE predic-
between eigenphasey, of the scattering matrix for the 16- tions was found to be due to bouncing ball orbits. Our result
channel case in the energy interval 256/E,<289. For also contains bouncing ball contributions. It is useful to note
any given value of the energy, th& matrix only has 16 that in our scattering system there is no long range energy
eigenphases. However, we can form a histogram of nearesbrrelation for the 16-channel regidwe have explicitly re-

B. Nearest neighbor eigenphase spacing
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FIG. 6. Histogram of numbeN(o), of nearest neighbor eigen- -02; o 4 = - 5
phase spacingsr, for the near-integrable regime with=101 A, AE

L=511 A. The histograms contain a total of 1005 data points av- ) . . .
eraged over six different ripple sizes=0.5 A, 1A, 2 A, 3 A, 4 A, FIG. 7. The autocorrelation function of time delays in the 16-

5 A. (a) Before direct processes are transformed away. The thil’fh‘"‘nm_el energy interval 2_56'5/'_51<289' Th_e thin line i§ obtained_
solid line is the Brody distribution withB=0.2. (b) After direct numerically for the chaotic regime, using six dlffert_ant rl_pple ampli-
processes are transformed away. The thin solid line is the Brody"des"a:22 A 23 A 24 A, 25 A, 26 A, 27 A, with F:hrect pro-
distribution with 8=0.116. Ay? test result is also shown for both Cesses transformed out of the data. An autocorrelation function is
plots with 8 bins taken into account obtained for each partial time delay curve and the average of those
96 autocorrelation functions is shown. The dotted-dashed line is the

. . . GOE result for perfect coupling with 16 modes with the average
moved energy correlations by taking data points at large efgensity of states chosen equal to 1.25. The thick line represents the

ergy increments in contrast to the case reported in R84 yymerically obtained autocorrelation function in the region of
We also obtained a nearest neighbor spacing histogramixed phase space fa=0.5 A, 1 A, 2 A, 3 A, 5 A,

for the case with mixed phase space in the 16-channel energy

interval. In Fig. &a), we show the histogram of nearest persymmetry techniques, and is given by

neighbor eigenphase spacings#é+0.5 A, 1A, 2A 3A 4

A, 5 A in the energy interval 258 E/E;< 289 before direct

processes are transformed away. We use an energy spacing p(T):(l/N)g (87— 7a))goe

AE=0.49%, and obtain 1005 data points for each ampli-

tude. We then average over the histograms for the six ripple (1/2N? exd — 1/ m1{(7))]

amplitudes. The solid line is a fit to the Brody distribution for “T(N2) oz (4.)
B=0.2. In Fig. b), the same histogram is shown after di- (7(7))

rect processes are transformed away. The Brody parameter | _
this case is3=0.116, which is closer to a Poisson distribu- wrhere<r) L.

. o . L Before showing the distribution obtained for the partial
;gnﬁ(tfg)Brody distribution becomes a Poisson dISmbl"t'ondelay times, it is useful to discuss energy correlations con-

The distributi ¢ t neiahb . h . tained in the partial delay time curves. In Fig. 7, we show the
€ distribution of nearest neighbor eigenpnase Spacings, 1,.qre|ation function for the partial delay times obtained
has been computed for a energy independent scattering M ihe 16-channel energy regime 256/E,< 289 and aver-

trix in Ref. [35] for a very different physical system. They . . .
: . ged over six different ripple sizes=22 A, 23 A, 24 A, 25
also report close agreement with the COE predictions for th 26 A, 27 A. For each partial delay time curve we obtain

chaotic region, although they do not have to deal with direc n autocorrelation function, and then we average over all 96
processes. It is clear that direct processes can play an impo?hrves We also show the éOE rediction for thge 16-channel
tarr;tdircci:inig fg?usiigg eﬂﬁviat:ggz strggw random matrix theorycase aé well as the partial delayliime autocorrelation function
P gp ' for the near-integrable regimex€&1 A). The GOE predic-
tion is obtained after performing the triple integration given
IV. PARTIAL DELAY TIMES in Ref.[38]. The energy scale is adjusted to correspond to the
relevant scale for our data. We also note that the partial delay
In this section we compare the partial delay time distribu-ime autocorrelation function is the second derivative of the
tion, computed for the deterministic scattering process, t@jgenphase autocorrelation function. Therefore the eigen-
values obtained from the random matrix theory. The partiahhase autocorrelation function decays more slowly than the
delay times are given by the energy derivative of eigenpartial time delay autocorrelation function.
phasesr,=1(dd,/dE) [36]. The average partial delay time | Fig. ga), we show a histogram of the scaled partial
density for a scattering process governed by the scatteringe|ay times,7/(7). We again consider the energy regime

matrix,§goe, has been computed in Ref87,33, using su-  with 16 channels and vary the energy in the interval 256
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FIG. 8. Histogram of number of scaled partial delay times, w<e

N(7), vs 7/(7), for the 16-channel energy interval 25&/E, FIG. 9. Histogram of partial delay times for the 16-channel en-
<289, withd=101 A andL=511 A. Data for ripple amplitudes ergy interval 256E/E,<289, with d=101 A and L=511 A.
a=25A, 30 A 35 A, 45 A is included in the histograms. Data Data for ripple amplitudess=0.5 A, 1 A, 2 A, 3A, 5 A, is used to
points are taken at energy intervals=0.33,; . (a) Histogram of  construct the histograms. Data points are taken at energy spacings
scaled partial delay times taken from eigenphase curves folA AE=0.1E;. A total of 400x 16 points is used(a) Histogram of
scaling factor 7) is obtained for each eigenphase curi®.Histo-  scaled partial delay time curves taken from eigenphase curves for
gram of scaled partial delay times taken from eigenphase curves fas_ . (b) Histogram of scaled partial delay times taken from curves
the transformed eigenphase,. (¢ Histogram of partial delay for transformed eigenphases, .
times obtalned from the 2616 S matrix Sgoe (includes 4000 data
points. A x? test result is also shown for the pldats) and(c) with tribution for the near-integrable case deviates significantly
13 bins taken into account. from the random matrix result and the results for chaotic
cavity shown in Fig. 8.
<E<28%,. To obtain enough values to build good statis- Let us now return to the eigenphase curve in Fifp) 3Ve
tics, we use four different ripple sizes=25 A, 30 A, 35 A,  see that the curves for the near-integrable case have a se-
45 A. For these ripple amplitudes, the ripple cavity dynamicsquence of fairly abrupt large changes of phase. These are due
is chaotic. We used 100 energy points per specific ripple sizep resonance structures that cause larger than average delays
and therefore an energy incrementXE=0.33E,. The av-  of the particle in the cavity. In Fig. 10, we plot the Wigner-
erage delay timér) is obtained numerically for each partial Smith delay timg(which is an average over all partial delay
delay time curve. Then the histograms for 64 scaled partiafimes in the energy interval 257<4E/E,<259.5. This en-
delay times are combined into one histogram by simply add-
ing values in the corresponding bins. The solid line in Fig. » ' ' ':' ' - —— '
8(a) is a plot of the RMT predictionN(7)=7%'p(7), where :
n' is the area under the curve afih=1/N. The agreement
is not good because our data contain the effect of direct
scattering processes. In Figlb we show the partial delay
time density obtained from the eigenphagks which no
longer contain the effect of direct scattering processes. The
solid line is a plot ofN(7) with (7)=1/N [37]. The agree- 3 » -
ment is very good. Finally in Fig.(8), we plot histogram of
4000 partial delay times obtained from a6 Sy,. by 235
using different realizations. Again, the agreement betweer
the data and Eq4.1) is very good. Thus, after the removal
of the effects of direct scattering processes our deterministic
scattering from the chaotic ripple cavity behaves very much
like the RMT prediction.(It is useful to note that in Ref.

i T
llm l
1 i

'.'I

\\

21 1 1 1 L 1 1 1 L 1 1
2574 2576 2578 258 2582 2584 2586 2588 259 2592 2594

[20], we compared th&Vigner-Smithdelay time distribution : : : * “EE

with numerically computed predictions of the RMT. The 1

ngner-S'{‘nlth delay time is defined as 7y FIG. 10. Plot of Wigner-Smith delay time in the energy interval
=(IN)Z,_174 ) 257.4<E/E,<259.5 ford=101 A, L=511 A, a=1A. Crosses

In Fig. 9, we show the delay time distributions for the show values of cavity basis state energies in this interval. Insets
near-integrable cas@=1A. We have used energy incre- show the spatial distribution of four cavity basis states, two at reso-
mentsAE=0.1E, justified from Fig. 7. The delay time dis- nance and two off resonance.
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ergy interval contains two of the large phase changes in thpoles of theS matrix. This is discussed in some detail in
eigenphase curves in Fig(t8. We see that each large phase Refs.[35,39-41.

change gives rise to a large peak in the delay time. The We have obtained a number of results. We find that, in the
crosses in Fig. 10 give the energies of the cavity basis statesgar-integrable regime, nonlinear resonances in the classical
\;j, in that energy interval. There appears to be one cavityphase space give rise to large eigenphase excursions and
state which lies at each resonance energy. In Fig. 10, we haveng delay times for quantum particles that can tunnel into
also plotted the configuration space distribution of four of thethese dynamical structures.

cavity eigenstates, two at resonance and two off resonance. We have focused much of our discussion on the energy
In Figs. 2b)—2(e), we have shown Husimi plots of the quan- regime in which 16 channels are open in the lead. We have
tum Poincaresurface of section for each of these four statesbeen able to follow each eigenphase of Swatrix continu-

The two states giving rise to the delay time resonance peaksusly as a function of energy. We have examined the statis-
lie in the dominant nonlinear resonance structures in the clagical properties of the scattering process by gathering data
sical phase space. The quantum particle appears to tunnabout each eigenphase at discrete energy intervals in the 16-
into these dynamical resonance structures, and is delayadhannel regime. This assumes a kind of “stationarity” as a

there for a considerable length of time. function of energy of the underlying scattering process. We
have chosen the energy intervals so that our data points are
V. CONCLUSION statistically independent.

We have shown, for the scattering system considered
process in a waveguide with a cavity that allows a range ofyrves can be transformed away. We find that, for the case
dynamics, including integrable, mixed, or chaotic. In thiSyhere the cavity dynamics is classically chaotic, a partial
waveguide, direct processes also play an important role. Th@ne delay density histogram, formed from all 16 trans-
‘ripple” cavity that we use has the special feature that it foymed eigenphase curves, agrees to 96% confidence level
allows us to form a Hamiltonian matrix to describe the dy-ith a Brody distribution with Brody parametgs=0.87.
namics interior to the cavity. This, in turn, allows us to usegjmilar deviations from the GOE prediction 8= 0.95 have
the reaction matrix approach to scattering for our determinpeen seen in the nearest neighbor energy eigenvalue spacing
istic scattering process. The reaction matrix approach is ongistributions of closed ripple billiardi28] and in that case

of the most efficient methods for obtaining the large amountgye caused by bouncing ball orbits. We expect that the same
of data necessary to obtain good statistics. Until now, mesk,echanism is having an effect here.

based modelg¢such as the boundary element method, finite
element method, or recursive Green’s function methogre

the main numerical methods to deal with scattering prob-
lems. However, these methods use an energy dependent The authors wish to thank the Welch Foundati@rant
boundary condition which makes it a formidable task to ob-No. F-105); the NSF(Grant No. INT-960297¢t and the
tain solutions for very large numbers of energy points. TheU.S. DOE (Contract No. DE-FG03-94ER144D%or partial
reaction matrix approach allows us to circumvent this prob-support of this work. We also thank the University of Texas
lem. It is also useful to note that the reaction matrix approactat Austin High Performance Computing Center for use of
has been used extensively to study properties of the complekeir computer facilities.
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