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Direct scattering processes and signatures of chaos in quantum waveguides
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The effect of direct processes on the statistical properties of deterministic scattering processes in a chaotic
waveguide is examined. The single-channel Poisson kernel describes well the distribution ofS-matrix eigen-
phases when evaluated over an energy interval. When direct processes are transformed away, the scattering
processes exhibit universal random matrix behavior. The effect of chaos on scattering wave functions, eigen-
phases, and time delays is discussed.
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I. INTRODUCTION

In 1957, Wigner proposed the use of statistical measu
to analyze complex nuclear scattering data@1#. It was soon
found that, in some nuclear scattering data, the spacing
tween scattering resonances was distributed in a ma
similar to the spacing of energy levels of a Gaussian rand
Hamiltonian@2#. In the 1960s, extensive work was done
develop a systematic theory of the statistical properties
random Hermitian matrices@3,4# and random unitary matri
ces@5,6#. The general criterion for constructing these rand
matrices is that they minimize information. In 1979, the a
pearance of random matrixlike behavior in quantum syste
was linked to underlying chaos in the classical determini
dynamics of these systems@7–10#. Since then a large bod
of work has developed linking the statistical properties
bounded and open quantum systems to underlying deter
istic chaos@11–13#.

Historically, there have been two different approaches
describing the statistics of quantum scattering processe
chaotic systems. One approach@14# begins directly with the
Hamiltonian and uses it to build the scattering matrix. T
other approach@15,16# begins directly with the scatterin
matrix. In both cases, random matrices are used to desc
scattering processes and the statistical properties of
eigenphases of the scattering matrix and partial delay ti
can be obtained and compared to experiment. There has
considerable success in recent years to link the results
predictions of these two approaches@17#.

The connection between the statistical properties of s
tering processes and underlying chaos is not straightforw
because scattering events may involve either reactive
cesses or direct processes. Reactive scattering process
those for which an incident particle becomes engaged w
the dynamics in the reaction region, and may be dela
there for a considerable time. Direct processes are those
which the particle passes through the reaction region with
becoming significantly engaged in the reaction region. O
prediction of the random matrix theory~RMT! of scattering
is that, if the scattering process is truly chaotic, the aver
value of theS matrix will be zero. However, if direct pro
cesses are present this will not happen.

In this paper, we will study the deterministic scattering
a quantum particle in a two-dimensional ballistic wavegu
which has a classically chaotic cavity formed by a ripp
1063-651X/2003/67~4!/046202~10!/$20.00 67 0462
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billiard connected to a single lead at one end~see Fig. 1!.
The ripple billiard is particularly well suited to the use of th
reaction matrix theory approach to scattering@18#, because a
simple coordinate transformation@19,20# allows us to con-
struct a Hamiltonian matrix and thus an eigenvalue equa
for the basis states inside the cavity. We will compare
results of deterministic scattering from the chaotic cavity
some recent predictions of random matrix theory as rega
the scattering process. The open geometry of the waveg
in Fig. 1 ensures that direct processes will play an import
role in scattering. We show that the contribution of the dire
processes to the scattering can be transformed out and
statistical properties of the reactive part of the scattering p
cess can be compared to random matrix predictions.
discussion focuses on quantum particles and we will use
rameters appropriate for electrons in waveguides made
GaAs, for which a number of experiments have been d
@21–23#. However, our results also apply to electromagne
waves in flat microwave cavities, because the eigenmode
these cavities satisfy a Schrodinger-like equation@24–26#.

We begin in Sec. II by reviewing the reaction matr
theory of deterministic scattering in the ballistic wavegui
and we study some properties of the cavity basis states
Sec. III, we study various statistical properties of the eig
phases of the waveguide scattering matrix (S matrix!. We
show that, when the cavity dynamics is chaotic, the de
ministic S-matrix eigenphases exhibit level repulsion a
their distribution is well described by a Poisson kernel.
Sec. IV, we compare the distribution of partial delay tim
for the deterministic scattering process to the predictions

FIG. 1. The geometry of the two-dimensional ballistic wav
guide used in our calculations;a is the half-width of the ripple,d is
the width of the lead and the average width of the cavity. The rip
cavity extends fromx50 to x5L.
©2003 The American Physical Society02-1
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random matrix theory. Finally, in Sec. V we give concludin
remarks.

II. REACTION MATRIX DESCRIPTION OF SCATTERING

We will explore the behavior of a particle of massm in a
ballistic waveguide as it scatters from the ripple cav
shown in Fig. 1. A particle with energyE enters the cavity
from the left along a straight lead that has infinitely ha
walls. The particle wave is reflected back to the left by
infinitely hard wall located atx5L. The dynamics inside the
cavity, 0,x,L, can range from mixed to fully chaotic a
the ripple amplitude is varied. The Schro¨dinger equation,
which describes propagation of a particle wave,C(x,y,t), in
the waveguide at timet, is given by

i\
]C~x,y,t !

]t
5ĤC~x,y,t !

5F2
\2

2m S ]2

]x2
1

]2

]y2D 1V~x,y!GC~x,y,t !,

~2.1!

whereĤ is the total Hamiltonian of the particle in the wav
guide and\ is the Planck’s constant. The potentialV(x,y)
has the following properties:V(x,y)5` for (L<x,`);
V(x,0)5` for (2`<x<L); V„x,y5g(x)…5` for (0,x
,L); and V(x,y5d)5` for (2`,x,0); where g(x)
5d1a sin(5px/L) gives the contour of the ripple,d is the
average width of the cavity,L is the length, anda is the
ripple amplitude. In all subsequent sections, we take the
ticle mass to be the effective mass of an electron in Ga
m50.067me , whereme is the free electron mass. An energ
eigenstateuE& with energy E satisfies the equationĤuE&
5EuE&, and evolves asC(x,y,t)5^x,yuE& e2 iEt/\.

As shown in Ref.@20#, the waveguide energy eigenstat
can be expressed in the form

^x,yuE&5(
j 51

`

g jf j~x,y!1 (
n51

`

GnFn~x,y!. ~2.2!

The statesFn(x,y) are the basis states in the lead (x<0),

Fn~x,y![^x,yuFn&5A2

d
xn~x!sinS npy

d D ~2.3!

(n51,2, . . . ,̀ ). These will consist of both propagating an
evanescent modes, as we will discuss below. The st
f j (x,y)[^x,yuf j& ( j 51,2, . . . ,̀ ) are the basis states i
the cavity (0<x<L). In practice, we truncate the number
cavity basis states to some large but finite numberM. The
value of M is determined by the accuracy desired for t
calculation. The coefficientsGn and g j in Eq. ~2.2! are de-
fined asGn5^FnuE& andg j5^f j uE&.

A complete set of basis states,f j (x,y), inside the ripple
cavity has been obtained by solving the Schrodinger eq
tion in the cavity, using Neumann boundary conditio
@(df j /dx)x5050# at the entrance (x50), and Dirichlet
04620
n
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boundary conditions@f j (x,y)50# at the walls. We obtained
the eigenfunctionsf j (x,y) and the associated eigenvaluesl j
using the transformation technique discussed in Ref.@20#,
Sec. V.

In Fig. 2~a!, we show a Poincare surface of section for
classical particle in a closed ripple cavity with the sam
shape as in Fig. 1, and with hard walls. We choosed
5101 Å, L5511 Å, and a51.0 Å. We have plotted
Birkhoff coordinatespx /p5cos(a) versusx, each time the
particle hits the lower wall at pointx (a is the angle between
the wall and the momentum!. For these billiard dimensions
the classical phase space contains a mixture of regular or
nonlinear resonances, and chaotic motion. If we increase
ripple amplitudea, there is a range of values ofa for which
the classical motion appears to become totally chaotic.
the scattering system~with one end of the cavity open!, pe-
riodic orbits and nonlinear resonance regions cannot
reached classically by a particle that enters from the left,
quantum mechanically tunneling into these regions is p
sible as we will show in Sec. IV~see also Ref.@27#!. In Figs.
2~b–e!, we show Husimi plots of@13# quantum Poincare´
surfaces of section@28# of cavity basis states,f j (x,y), with
eigenvalues g9835257.1934E1 , g9855257.9339E1 , g989
5258.6655E1 , and g9905258.9072E1 , where E1
5\2p2/2md2. The Husumi plots in Figs. 2~c! and 2~d! show
that these basis states reside on nonlinear resonances o
underlying classical phase space. In Sec. IV, we will sh
that these basis states give the primary contribution to sh
resonances in the transmission at these cavity paramete

Inside the lead, we must distinguish between propaga
and evanescent modes. The longitudinal component of
eigenstates in the leads, for propagating modes, can be
ten as

Gnxn~x!5
an

Akn

e2 iknx1
bn

Akn

eiknx, ~2.4!

where the wave vectorkn is given by

kn5A2mE

\2
2S np

d D 2

.

If there areN propagating modes thenn51, . . . ,N. Here we
use a unit current normalization. A particle propagating
the nth channel has energy in the intervaln2E1<E<(n
11)2E1 , whereE15\2p2/2md250.0738 eV. All remain-
ing modes,n5N11, . . . ,̀ , are evanescent and can be re
resented in terms of the states,

Gnxn~x!5
cn

Akn

e2knuxu, ~2.5!

where

kn5AS np

d D 2

2
2mE

\2
.

2-2
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FIG. 2. Surfaces of section forL5511 Å, d5101 Å, anda51 Å. ~a! A Poincarésurface of section showingpx /p5cos(a) vs x, each
time the particle hits the bottom wall.~b! Husimi plot of quantum surface of section~QSS! for cavity eigenstate withl j5257.1934E1 . ~c!
QSS for cavity eigenstate withl j5257.9339E1 . ~d! QSS for cavity eigenstate withl j5258.6655E1 . ~e! QSS for cavity eigenstate with
l j5258.9072E1 .
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In Ref. @20#, we showed that the evanescent modes for
system do not make a significant contribution to the scat
ing properties that we are interested in. Therefore we w
neglect the evanescent modes in subsequent sections.

As shown in Ref.@20#, the eigenvalue equationĤuE&
5EuE& leads to the relation

g j5
\2

2m

1

~E2l j !
(
n51

N

f j ,n* ~0!S dxn

dx D
x50

Gn . ~2.6!

Also, continuity of energy eigenstates atx50 gives

Gnxn~0!5(
j 51

M

g jf j ,n~0!5 (
n851

N

Rn,n8S dxn

dx D
x50

Gn8 ,

~2.7!

where

Rn,n85
\2

2m (
j 51

M f j ,n8
* ~0!f j ,n~0!

~E2l j !
~2.8!

is the (n,n8)th matrix element of the reaction matrix@18#.
The quantityf j ,n(0) is a measure of the overlap between t
j th cavity state, and thenth channel in the lead, evaluated
the interface,

f j ,n~0!5A2

dE0

d

dyf j~0,y!sinS npy

d D . ~2.9!
04620
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Let us now form anN31 column matrixb̄ (ā) whose
matrix elements consist of theN probability amplitudes$bn%
($an%) of the outgoing~incoming! propagatingmodes. The
waveguide scattering matrix (S matrix! S̄ is anN3N matrix
which connects the incoming propagating modes to the o
going propagating modes,b̄5S̄ā.

For the case when there areN propagating modes in the
lead we can obtain anN3N Smatrix that may be written as

S̄52
~ 1̄N2 i K̄!

~ 1̄N1 i K̄!
, ~2.10!

where 1̄N is N3N unit matrix, and theN3N matrix K̄ has
matrix elements K̄n,n85AknRn,n8Akn8 and can be written as

K̄5w̄†
1

E1̄M2H̄ in

w̄. ~2.11!

In Eq. ~2.11!, 1̄M is the M3M unit matrix, H̄ in is an
M3M diagonal matrix formed with the eigenvaluesl j ( j

51, . . . ,M ) in the cavity, andw̄ is anM3N coupling ma-
trix,

w̄[S w1,1 ••• w1,N

A A

wM ,1 ••• wM ,N

D , ~2.12!
2-3



in
E

in
ica

as
th

e
n

ic
p

in

e
d

F
en
th
a

s,
ue

-

l

the
c
in-
en
rgy
in

-
the
n-

r-
g
16

rgy.
are

l

re
the
ics

otic

the
dis-
ses.

G. B. AKGUC AND L. E. REICHL PHYSICAL REVIEW E67, 046202 ~2003!
wherewj ,n85f j ,n8(0)Akn8. With some algebra, theSmatrix
can also be written in the form

S̄52S 1̄N22iw̄†
1

E1̄M2H̄ in1 iw̄w̄†
w̄D . ~2.13!

In Ref. @20#, we showed that if evanescent modes are
cluded, an additional term appears in the denominator in
~2.13!.

The reaction matrix approach to waveguide scatter
provides a very efficient means of computing the statist
properties of the scattering process because the Schro¨dinger
equation only needs to be solved once to obtain the b
states and eigenvalues in the cavity. Using these values,S
matrix can then be obtained at all other particle energiesE.
Typically for the ripple cavity in Fig. 1, we can obtain th
scattering matrix at 105 different values of incident energy i
a reasonable amount of time on a Cray machine.

One of the goals of this paper is to compare the statist
properties of the deterministic scattering process in the rip
cavity to statistical properties of a hypothetical scatter
process in whichĤ in is replaced by a diagonal matrixĤgoe
composed of theM eigenvalues of anM3M Gaussian or-
thogonal ensemble~GOE! HamiltonianĤgoe8 , and theN col-

umns of the coupling matrixw̄ are replaced byN of the M

normalized eigenvectors ofĤgoe8 to yield a coupling matrix

ŵgoe @4,29#. In this random matrix theory approach, th
strength of the coupling between the cavity and the lea
given by the phenomenological parameterg. The parameter
g does not appear in the deterministic scattering process.
deterministic scattering, the strength of the coupling is
tirely determined by the geometry and the potentials at
interface. The scattering matrix, obtained from the RMT, c
then be written as

S̄goe52S 1̄N22igw̄goe
† 1

E1̄M2H̄goe1 igw̄goew̄goe
†

w̄goeD .

~2.14!

It was shown in Ref.@30#, using supersymmetry technique
that for the case when the distribution of energy eigenval
of Ĥgoe is centered atE50 andM→`, the averageSmatrix
can be written as

^S̄goe&5s1̄N with s5
12g@ iE/21pn~E!#

11g@ iE/21pn~E!#
, ~2.15!

wheren(E)5p21A12(E/2)2 is the average density of en
ergy eigenstates. It is useful to introduce the quantity

m5m r1 im i5
12s

11s*
5gnp1 ig

E

2
, ~2.16!

wherem r5gnp and m i5g(E/2), respectively, are the rea
and imaginary parts ofm. The case wheng51 corresponds
to ideal coupling. In the neighborhood ofE'0, the eigen-
04620
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values ofĤgoe have a constant density, 1/2p, and the aver-
age S matrix ^S̄goe&50. WhengÞ1, the averageS matrix
cannot be zero.

III. EIGENPHASES OF THE SCATTERING MATRIX

We have analyzed some of the statistical properties of
eigenphases of theS matrix for the case of deterministi
scattering from the ripple cavity for the cases when the
ternal dynamics in the cavity is completely chaotic and wh
it is near integrable. In this section, we consider the ene
interval 256E1<E<289E1 when 16 channels are present
the lead. TheSmatrix is a 16316 matrix, and for each value
of incident energy it has 16 eigenvalues,eida (a
51, . . .,16), and 16 eigenfunctions, uda& (S̄uda&
5eidauda&). The S matrix is unitary so that the eigenfunc
tions uda& form a complete orthonormal set. We can use
orthonormality of the eigenfunctions to follow each eige
phase,da , continuously as a function of energy@31#. The
eigenfunctions, for twoS matrices evaluated at nearby ene
gies, will be approximately orthogonal if they do not belon
to the same eigenphase. Thus we can plot each of the
different eigenphases as a function of the incident ene
These are shown in Fig. 3 where the eigenphases, which
defined as mod2p, are ‘‘unwrapped’’ and allowed to evolve
continuously as a function of energy. In Fig. 3~a!, we show
the case with ripple amplitude,a525 Å, where the classica
cavity dynamics is chaotic, and in Fig. 3~b! we show the case
a51 Å where the classical cavity dynamics is mixed~see
Fig. 2!. The case of mixed dynamics shows many mo
abrupt changes of phase as a function of energy than
chaotic case. This is due to the fact that the mixed dynam
has many long lived resonances not found in the cha
case. This was also seen in Refs.@31,27#. We shall return to
this feature in Sec. IV.

Below we first discuss the effect of direct processes on
distribution of eigenphases, and then we determine the
tribution of nearest neighbor spacings of these eigenpha

FIG. 3. Eigenphasesda vs E/E1 for the energy interval 256
<E/E1<272: ~a! a525 Å, ~b! a51 Å.
2-4
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A. Distribution of eigenphases

When a scattering process has a nonzero averageSmatrix

^S̄&, it indicates that direct processes may play a signific
role in the scattering process. Direct processes are gene
scattering events which do not interact significantly with t
reaction region~cavity! @32#. When direct processes ar
present, the distribution ofS-matrix elements that minimize
information about the scattering process is the Poisson
nel. For the case of anN-channel process whose dynamics
time reversal invariant, the Poisson kernel has the form

PN~S̄!5
1

V

@Det~12^S&* ^S&!# (N11)/2

uDet~12^S&* S̄!u(N11)
, ~3.1!

whereV is a normalization factor that ensures that the Po
son kernel satisfies the normalization condition,*dS̄PN(S̄)
51.

The S matrix can be diagonalized by a unitary matrixŪ
and, as mentioned earlier, the eigenvalues of theSmatrix are
denoted byeida, a51, . . . ,N. In terms of the eigenphase
da , the normalization condition for the Poisson kernel, E
~3.1!, can be written as

E dS̄PN~S̄!5E •••E dd1•••ddNPN~d1 , . . . ,dN!

5
1

VU
E •••E dd1•••ddN

3 )
1<a,a8<N

ueida2eida8 u

3S ~12s* s!N

)
a51

N

~12s* eida!~12se2 ida8!D (N11)/2

51, ~3.2!

where VU is a normalization constant. Note th
PN(d1 , . . . ,dN) is the joint probability density to find the
angles,da , in the intervalsda→da1dda (a51, . . . ,N).

In Ref. @33#, it is shown that if the following change o
angles is introduced,

tanS ua

2 D5
1

gpn F tanS da

2 D1g
E

2G , ~3.3!

and if one assumes ideal couplingg51, then Eq.~3.2! re-
duces to

E dS̄PN~S̄!5E •••E du1•••duNPN~u1 , . . . ,uN!

5
1

VU
E •••E du1•••duN

3 )
1<a,a8<N

ueiua2eiua8u, ~3.4!
04620
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which is just the distribution for the circular orthogonal e
semble ~COE! @5,6#. Thus, even for scattering process
which include direct processes, it is possible in principle
transform away the direct processes and compare the ei
phase distribution with that of the COE~note that similar
ideas first appeared in literature in Ref.@15#!. It is important
to note that the transformation that removes direct proce
is not the same as the unfolding process that occurs on
energy spectrum of bounded systems to give a constant
erage density.

In our subsequent analysis, the case of scattering w
only a single channel will be useful for analyzing data. F
the single-channel scattering (N51), theSmatrix reduces to
the complex functionS5eid and the Poisson kernel reduce
to @15#

P1s~d!5
1

2p

@~12s* s#

u~12s* eid!u2
, ~3.5!

with normalization condition*2p
p ddP1(d)51. Under the

transformation above,P1(d)→P1(u)51/2p, which is the
COE prediction.

Having obtained numerical values of the eigenvalueseida

as a function of energy, we can compute an average value
each of the 16 eigenvalues,

sa5^eida&5
1

h (
k51

h

eida(Ek), ~3.6!

whereh is the number of energy values used. The appare
continuous eigenphase curves actually consist of ab
40 000 discrete energy points. The approximate orthonorm
ity of S matrix eigenvectors for neighboring energies h
been used to sort the eigenphases. Thus, the eigenphase
eigenvectors have an energy interval over which they
correlated, and we have used that fact in our sorting proc
On the other hand, this correlation of theSmatrices at neigh-
boring energies can prevent us from obtaining statistics
can be compared to the RMT predictions. Comparison to
RMT requires use of independent data points. Therefore
order to study the statistical properties of the eigenpha
we must choose values of the eigenphases separated i
ergy a distance greater than the correlation length. For e
eigenphase curve we select points that have an energy s
ing DE50.495E1 . We choose this spacing based on
analysis of the delay time correlation discussed in Sec.
~The delay time autocorrelation function is the second
rivative of the eigenphase autocorrelation function.!

We have computed a histogram of the number of eig
phasesN(d)5hPN(d) versus value of eigenphaseda in the
16-channel region, whereh is the number of data points. In
order to improve the statistics, we use data from four diff
ent ripple amplitudes,a525 Å, 30 Å, 35 Å, 45 Å, all of
which lie in the chaotic regime. All eigenphases lie in t
energy interval 256,E/E1,289 and have energy spacin
DE50.495E1 . Thus the histogram includes 6731634
54288 data points. We have found that the distribution
eigenphases, along a given eigenphase curve, is well
scribed by the Poisson kernel for the single-channel case
2-5
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proceed as follows. We compute the average eigenvaluesa
5^eida&, for each eigenphase curve. We can form a his
gram using the 67 data points from a single eigenph
curve. We do this for each of the 64 eigenphase curves, u
the same number of bins and bin width for each curve.
then add these 64 histograms together to form a single
togram, which is shown in Fig. 4~a!. The solid line in Fig.
4~a! is the single-channel Poisson kernelP1(d), but with
^s&5(1/64)(a51

64 sa . We can use Eq.~3.3! to transform away
the effects of the direct interactions and find the distribut
of the transformed angles,ua . If we use Eq.~2.16! and
obtain m from the numerically calculated values ofsa
5^eida&, then the transformed anglesua are given by

tanS ua

2 D5
1

m r
F tanS da

2 D1m i G , ~3.7!

with m r andm i computed numerically fromsa . In Fig. 4~b!,
we show how the histogram in Fig. 4~a! changes if we trans
form each eigenphaseda using Eq.~3.7!. In this case distri-
bution is approximately constant and equal to the ar
N/2p. Thus, having transformed away the contribution fro
the direct processes, we obtain the COE eigenphase dist
tion for this chaotic scattering process, with fairly high co
fidence level.

For a51 Å the plots of the eigenphase distributions lo
very similar to the chaotic case shown in Fig. 4, and it a
pears that the eigenphase distribution is not as sensitiv
indicator for underlying chaos as is the nearest neigh
spacing distribution, at least with this type of analysis.

B. Nearest neighbor eigenphase spacing

In this section, we consider the nearest neighbor spac
between eigenphasesda of the scattering matrix for the 16
channel case in the energy interval 256,E/E1,289. For
any given value of the energy, theS matrix only has 16
eigenphases. However, we can form a histogram of nea

FIG. 4. ~a! Histogram of number of eigenphasesN(d) vs d for
the 16-channel energy interval 256<E/E1<289, and for four dif-
ferent ripple sizes,a525 Å, 30 Å, 35 Å, 45 Å. The solid line is a
plot of the single-channel Poisson kernel with^S&5(a51

64 ^eida& and
normalized to the number of eigenphases.~b! Histogram of trans-
formed eigenphasesua for all 64 eigenphase curves. For all case
d5101 Å andL5511 Å. A x2 test result is also shown for bot
plots with 17 bins taken into account.
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neighbor eigenphase spacings if we obtain eigenphase s
ings for a sequence of different energies in the range
,E/E1,289. In Fig. 5~a! we show histograms of 1005
(15367) nearest neighbor spacings for eigenphases c
puted at energy incrementsDE50.495E1 and obtained by
averaging over histograms for each ripple amplitude,a
525 Å, 30 Å, 35 Å, 45 Å. We have fit the histogram to th
Brody distribution@29#

PB~s!5AS s

^s& D
b

expF2jS s

^s& D
11bG

with

j5F 1

^s&
GS 21b

11b D G11b

, ~3.8!

^s& is the average spacing between nearest neighbor ei
phases, andG(x) is the gamma function. In Fig. 5~a!, the
solid line is a fit to the Brody distribution forb50.635. In
Fig. 5~b!, same calculation is performed after direct pr
cesses were transformed away. In this caseb50.865. Note
that the GOE prediction (b50.95) for the closed system
eigenvalue spacings is fairly close to our value ofb, after the
effects of direct processes are transformed away. In R
@28#, the nearest neighbor energy eigenvalue spacings f
closed ripple billiard were fit to the Brody distribution wit
b50.806. In that case, the deviation from the GOE pred
tions was found to be due to bouncing ball orbits. Our res
also contains bouncing ball contributions. It is useful to no
that in our scattering system there is no long range ene
correlation for the 16-channel region~we have explicitly re-

,

FIG. 5. Histogram of number,N(s), of nearest neighbor scale
eigenphase spacings,s, for the chaotic regime withd5101 Å, L
5511 Å. The average spacing^s& is obtained for each eigenphas
curve. The histograms contain a total of 1536751005 data points
averaged over four different ripple sizes,a525 Å, 30 Å, 35 Å, 45
Å. ~We obtain a histogram for each of the four values of the rip
amplitude. We then add them and divide by four.! ~a! Before direct
processes are transformed away. The thin solid line is the Br
distribution with b50.635. ~b! After direct processes transforme
away. The thin solid line is the Brody distribution withb50.865. A
x2 test result is also shown for both plots with 13 bins in it tak
into account
2-6



e

ra
er
st

ac
li-
p

or
i-

te
u-
ion

in
m
y
th
ec
p
ry

u
, t
tia
en
e
ri

ial
on-
the
ed

in
l 96
nel
tion

en
the
lay

the
en-
the

ial
e

-

av

th

od
h

6-

li-

n is
ose
the
ge

s the
of

DIRECT SCATTERING PROCESSES AND SIGNATURES . . . PHYSICAL REVIEW E 67, 046202 ~2003!
moved energy correlations by taking data points at large
ergy increments!, in contrast to the case reported in Ref.@34#

We also obtained a nearest neighbor spacing histog
for the case with mixed phase space in the 16-channel en
interval. In Fig. 6~a!, we show the histogram of neare
neighbor eigenphase spacings fora50.5 Å, 1 Å, 2 Å, 3 Å, 4
Å, 5 Å in the energy interval 256,E/E1,289 before direct
processes are transformed away. We use an energy sp
DE50.495E1 and obtain 1005 data points for each amp
tude. We then average over the histograms for the six rip
amplitudes. The solid line is a fit to the Brody distribution f
b50.2. In Fig. 6~b!, the same histogram is shown after d
rect processes are transformed away. The Brody parame
this case isb50.116, which is closer to a Poisson distrib
tion ~the Brody distribution becomes a Poisson distribut
for b50).

The distribution of nearest neighbor eigenphase spac
has been computed for a energy independent scattering
trix in Ref. @35# for a very different physical system. The
also report close agreement with the COE predictions for
chaotic region, although they do not have to deal with dir
processes. It is clear that direct processes can play an im
tant role in causing deviations from random matrix theo
predictions for scattering processes.

IV. PARTIAL DELAY TIMES

In this section we compare the partial delay time distrib
tion, computed for the deterministic scattering process
values obtained from the random matrix theory. The par
delay times are given by the energy derivative of eig
phases,ta5\(dda /dE) @36#. The average partial delay tim
density for a scattering process governed by the scatte
matrix, S̄goe, has been computed in Refs.@37,33#, using su-

FIG. 6. Histogram of number,N(s), of nearest neighbor eigen
phase spacings,s, for the near-integrable regime withd5101 Å,
L5511 Å. The histograms contain a total of 1005 data points
eraged over six different ripple sizes,a50.5 Å, 1 Å, 2 Å, 3 Å, 4 Å,
5 Å. ~a! Before direct processes are transformed away. The
solid line is the Brody distribution withb50.2. ~b! After direct
processes are transformed away. The thin solid line is the Br
distribution withb50.116. Ax2 test result is also shown for bot
plots with 8 bins taken into account
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persymmetry techniques, and is given by

r~t!5~1/N!(
a

^d~t2ta!&goe

5
~1/2!N/2

G~N/2!

exp@21/2~t/^t&!#

~t/^t&!N/212
, ~4.1!

where^t&51/N.
Before showing the distribution obtained for the part

delay times, it is useful to discuss energy correlations c
tained in the partial delay time curves. In Fig. 7, we show
autocorrelation function for the partial delay times obtain
in the 16-channel energy regime 256,E/E1,289 and aver-
aged over six different ripple sizes,a522 Å, 23 Å, 24 Å, 25
Å, 26 Å, 27 Å. For each partial delay time curve we obta
an autocorrelation function, and then we average over al
curves. We also show the GOE prediction for the 16-chan
case as well as the partial delay time autocorrelation func
for the near-integrable regime (a51 Å). The GOE predic-
tion is obtained after performing the triple integration giv
in Ref. @38#. The energy scale is adjusted to correspond to
relevant scale for our data. We also note that the partial de
time autocorrelation function is the second derivative of
eigenphase autocorrelation function. Therefore the eig
phase autocorrelation function decays more slowly than
partial time delay autocorrelation function.

In Fig. 8~a!, we show a histogram of the scaled part
delay times,t/^t&. We again consider the energy regim
with 16 channels and vary the energy in the interval 256E1

-

in

y

FIG. 7. The autocorrelation function of time delays in the 1
channel energy interval 256,E/E1,289. The thin line is obtained
numerically for the chaotic regime, using six different ripple amp
tudes,a522 Å, 23 Å, 24 Å, 25 Å, 26 Å, 27 Å, with direct pro-
cesses transformed out of the data. An autocorrelation functio
obtained for each partial time delay curve and the average of th
96 autocorrelation functions is shown. The dotted-dashed line is
GOE result for perfect coupling with 16 modes with the avera
density of states chosen equal to 1.25. The thick line represent
numerically obtained autocorrelation function in the region
mixed phase space fora50.5 Å, 1 Å, 2 Å, 3 Å, 5 Å.
2-7
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,E,289E1 . To obtain enough values to build good stat
tics, we use four different ripple sizes,a525 Å, 30 Å, 35 Å,
45 Å. For these ripple amplitudes, the ripple cavity dynam
is chaotic. We used 100 energy points per specific ripple s
and therefore an energy increment ofDE50.33E1 . The av-
erage delay timêt& is obtained numerically for each partia
delay time curve. Then the histograms for 64 scaled pa
delay times are combined into one histogram by simply a
ing values in the corresponding bins. The solid line in F
8~a! is a plot of the RMT prediction,N(t)5h8r(t), where
h8 is the area under the curve and^t&51/N. The agreemen
is not good because our data contain the effect of di
scattering processes. In Fig. 8~b!, we show the partial delay
time density obtained from the eigenphasesua , which no
longer contain the effect of direct scattering processes.
solid line is a plot ofN(t) with ^t&51/N @37#. The agree-
ment is very good. Finally in Fig. 8~c!, we plot histogram of
4000 partial delay times obtained from a 16316 S̄goe by
using different realizations. Again, the agreement betw
the data and Eq.~4.1! is very good. Thus, after the remov
of the effects of direct scattering processes our determin
scattering from the chaotic ripple cavity behaves very mu
like the RMT prediction.~It is useful to note that in Ref
@20#, we compared theWigner-Smithdelay time distribution
with numerically computed predictions of the RMT. Th
Wigner-Smith delay time is defined as tws

5(1/N)(a51
N ta .)

In Fig. 9, we show the delay time distributions for th
near-integrable case,a51 Å. We have used energy incre
mentsDE50.1E1 justified from Fig. 7. The delay time dis

FIG. 8. Histogram of number of scaled partial delay time
N(t), vs t/^t&, for the 16-channel energy interval 256<E/E1

<289, with d5101 Å andL5511 Å. Data for ripple amplitudes
a525 Å, 30 Å, 35 Å, 45 Å is included in the histograms. Da
points are taken at energy intervals,DE50.33E1 . ~a! Histogram of
scaled partial delay times taken from eigenphase curves forda . A
scaling factor̂ t& is obtained for each eigenphase curve.~b! Histo-
gram of scaled partial delay times taken from eigenphase curve
the transformed eigenphases,ua . ~c! Histogram of partial delay

times obtained from the 16316 S matrix S̄goe ~includes 4000 data
points!. A x2 test result is also shown for the plots~b! and~c! with
13 bins taken into account.
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tribution for the near-integrable case deviates significan
from the random matrix result and the results for chao
cavity shown in Fig. 8.

Let us now return to the eigenphase curve in Fig. 3~b!. We
see that the curves for the near-integrable case have a
quence of fairly abrupt large changes of phase. These are
to resonance structures that cause larger than average d
of the particle in the cavity. In Fig. 10, we plot the Wigne
Smith delay time~which is an average over all partial dela
times! in the energy interval 257.4<E/E1<259.5. This en-

,

for

FIG. 9. Histogram of partial delay times for the 16-channel e
ergy interval 256<E/E1<289, with d5101 Å and L5511 Å.
Data for ripple amplitudes,a50.5 Å, 1 Å, 2 Å, 3 Å, 5 Å, is used to
construct the histograms. Data points are taken at energy spa
DE50.1E1 . A total of 400316 points is used.~a! Histogram of
scaled partial delay time curves taken from eigenphase curves
da . ~b! Histogram of scaled partial delay times taken from curv
for transformed eigenphases,ua .

FIG. 10. Plot of Wigner-Smith delay time in the energy interv
257.4<E/E1<259.5 for d5101 Å, L5511 Å, a51 Å. Crosses
show values of cavity basis state energies in this interval. In
show the spatial distribution of four cavity basis states, two at re
nance and two off resonance.
2-8
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DIRECT SCATTERING PROCESSES AND SIGNATURES . . . PHYSICAL REVIEW E 67, 046202 ~2003!
ergy interval contains two of the large phase changes in
eigenphase curves in Fig. 3~b!. We see that each large pha
change gives rise to a large peak in the delay time. T
crosses in Fig. 10 give the energies of the cavity basis sta
l j , in that energy interval. There appears to be one ca
state which lies at each resonance energy. In Fig. 10, we h
also plotted the configuration space distribution of four of
cavity eigenstates, two at resonance and two off resona
In Figs. 2~b!–2~e!, we have shown Husimi plots of the qua
tum Poincare´ surface of section for each of these four stat
The two states giving rise to the delay time resonance pe
lie in the dominant nonlinear resonance structures in the c
sical phase space. The quantum particle appears to tu
into these dynamical resonance structures, and is dela
there for a considerable length of time.

V. CONCLUSION

We have analyzed the statistical properties of a scatte
process in a waveguide with a cavity that allows a range
dynamics, including integrable, mixed, or chaotic. In th
waveguide, direct processes also play an important role.
‘‘ripple’’ cavity that we use has the special feature that
allows us to form a Hamiltonian matrix to describe the d
namics interior to the cavity. This, in turn, allows us to u
the reaction matrix approach to scattering for our determ
istic scattering process. The reaction matrix approach is
of the most efficient methods for obtaining the large amou
of data necessary to obtain good statistics. Until now, m
based models~such as the boundary element method, fin
element method, or recursive Green’s function method! were
the main numerical methods to deal with scattering pr
lems. However, these methods use an energy depen
boundary condition which makes it a formidable task to o
tain solutions for very large numbers of energy points. T
reaction matrix approach allows us to circumvent this pr
lem. It is also useful to note that the reaction matrix appro
has been used extensively to study properties of the com
gs

, J

nd

of

ex
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poles of theS matrix. This is discussed in some detail
Refs.@35,39–41#.

We have obtained a number of results. We find that, in
near-integrable regime, nonlinear resonances in the clas
phase space give rise to large eigenphase excursions
long delay times for quantum particles that can tunnel i
these dynamical structures.

We have focused much of our discussion on the ene
regime in which 16 channels are open in the lead. We h
been able to follow each eigenphase of theSmatrix continu-
ously as a function of energy. We have examined the sta
tical properties of the scattering process by gathering d
about each eigenphase at discrete energy intervals in the
channel regime. This assumes a kind of ‘‘stationarity’’ as
function of energy of the underlying scattering process.
have chosen the energy intervals so that our data points
statistically independent.

We have shown, for the scattering system conside
here, that the effect of direct processes on the eigenph
curves can be transformed away. We find that, for the c
where the cavity dynamics is classically chaotic, a par
time delay density histogram, formed from all 16 tran
formed eigenphase curves, agrees to 96% confidence
with a Brody distribution with Brody parameterb50.87.
Similar deviations from the GOE prediction ofb50.95 have
been seen in the nearest neighbor energy eigenvalue sp
distributions of closed ripple billiards@28# and in that case
are caused by bouncing ball orbits. We expect that the s
mechanism is having an effect here.
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