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Transfer operator approach on three-dimensional quantum billiards with SO(2) symmetry
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This work demonstrates the application of Bogomolny’s transfer operator method on three-dimensional
dynamics. Motivated by experimental observations of lenslike metal clusters, the quantum billiards bounded by
a flat bottom and an upper surface with SO(2) symmetry are studied. A precise determination of the energies
with error less than 0.05% and exact predicted degeneracies in the special case of the half-sphere billiard
confirm the efficiency of this method. Furthermore, the spectra and degeneracies of lens billiards with varying
heights are explicitly determined.
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[. INTRODUCTION dynamics(to the best of the author’s knowledgdhe only
one 3D system studied has SO(3) symmetry and was re-

Bogomolny’s transfer operator method is a well-knownduced to a 2D problem in the investigatifs.
quantization method in the study of quantum chab§ The current work demonstrates the application of the
along with other methods such as Gutzwiller’s trace formularansfer operator method on 3D trajectories. The geometry is
and dynamicak function, which relate the energy spectrum motivated by recent experimental observations of various
of a quantum system to its classical dynamical sysfgin  metal clusters shaped like lengé$]. A peculiar phenomena
This method is not only conceptually appealing, because o¢xhibited in several of these clusters is the magic size of the
its connection between the quantum and classical worlds, bwlusters, due to particularly stable numbers of atoms in the
also practically important, because it provides an efficienclusters. This result is attributed to a combination of different
method of quantization. The basic idea of this method is teeffects, among which the quantum size effect plays an essen-
convert the eigenvalue problem of a Hamiltonian in atial role. The simplest model for this effect in these clusters
k-dimensional real space to the eigenvalue problem of a coiis that of a single particle confined within a 3D quantum
responding transfer operator on la-{1)-dimensional Poin- billiard bounded by a flat bottom and an upper surface with
care section, in the spirit of the boundary integral methodSO(2) symmetrysee an example in Fig).IThe application
[1], from which the transfer operator method was derivedof the transfer operator method will be presented on those
This conversion considerably reduces the dimension in nugeometries.
merical work and hence the computational effort, especially The SO(2) symmetry enables the reduction of the Hamil-
for asymmetric systems, in which the Hamiltonian cannot bgonian from a 3D problem to a 2D problem. This reduction
factorized. Moreover, the transfer operator is relatively easyprovides analytical solutions in the special case of the half-
to construct, since for proper Poincasections, it is defined sphere quantum billiard. The validity of applying the transfer
only on a finite number of classical trajectory segments, iroperator method in this special case is confirmed by precise
contrast to most semiclassical methods based on infinitelgnergy determinatior(decreasing error at least less than
many periodic orbits, which are difficult to determine sys-0.05% by increasing the dimension of the discretized transfer
tematically, e.g., due to the exponentially proliferating num-
ber of orbits with their length in ergodic systefizs3]. Such
a complex application procedure can be seen in the example
of applying the trace formula to the three-dimensiof&i)
Sinai billiard [4].

Despite these two advantages, the transfer operator
method is correct only up t6? in the stationary phase ap-
proximation. It is exact only in the semiclassical linit
—0 and a general error estimation for finite-0 is absent.
This fact raises the question of how reliable this method is in
practice. This question has been clarified for various systems,
to which the transfer operator has recently been applied, in-
cluding billiards with hard boundaries such as rectangular
billiards [5], Limagon billiards[6], circle billiards[7,8], an-
nulus billiards[9,8], triangular billiardq 10], wedge billiards
[7,11] and systems under potentials such as the Coulomb
potential[8], harmonic oscillator$8,12], the Nelson poten-
tial [13], and geodesic flow on Riemann surfaces of constant FIG. 1. A lens quantum billiard is a particle confined by a cut
negative curvaturgl4]. However, the transfer operator in all plane and the upper part of a half-sphere above this cut plane. The
of these studies were constructed on two-dimensio2B) particle inside is reflected elastically by the hard boundary.
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FIG. 2. Poincaresection2, and crossing pointg’ andq in the - : T e A
transfer operator method. ‘ -
Y o : ,
operatoy and correct prediction of degeneracies. Further- ’ ’:0 % -1

more, the energy spectra and the degeneracies of lens quai ]
tum billiards with different heights are determined.
FIG. 3. Representation afin the coordinate systent (#) on B

Il. THE TRANSFER OPERATOR METHOD and the coordinate system,(,q,) on F.

Consider a particle with energye, moving in @ penyeeny’ andqis calculated. But one should keep in mind

k-dimensional real space. Selectie(1)-dimensional Poin- . o'\yhen counting the reflection points at the bound-

caresection(PS I in this space, such that almost all clas- ; - ,
sical trajectories pass this section. Figure 2 shows the ey betweerq’ andg. According to Bogomolny's theorfl],

ample of a 2D billiard k=2) with the boundaryx (solid (e Semiclassical fimiti 0, the zeros of the Fredholm
curve and a PS, (dashed curvewith a distances far from ’

X. Beginning with an initial positiorg’ on 3 pointing to- def1-7(E)]=0,

wards the inner side &, the next crossing point is the next

point at which the trajectory cross&s and points towards of the transfer operatof(E) are the energies of the corre-
the same side ok as it did atq’. Accordingly, the next sponding quantum system.

crossing point afteq’ in Fig. 1 isq, notq;.

The transfer operatdf(E) is defined as the integral op- ||, THREE-DIMENSIONAL QUANTUM BILLIARDS
erator[1], WITH SO (2) SYMMETRY ON A PLATE
, L One of the frequently observed shapes of the 3D metal
T(E)y(a) = LT(q,q B)y(q')da’, clusters can be described by the quantum billiard, bounded
by a flat circular bottonB on the xy plane and an upper
acting on some functiow/(q’') on . The integral kernel surfaceF with SO(2) rotational symmetry. A poir(X,Y,z)
on F can be represented in the polar coordirggte, ) on B,
1 with
T(a.q9".E)= P .
class. traj. (27if )~ 1)12 x=rcog#), y=rsin(@), and z=h(r),

wherer refers to the distance from the origin to the point on
B projected down frong e F, 6 represents the angular vari-
able of this projected point, artt(r) stands for the height of
g at radiusr (Fig. 3). Alternatively, the pointj can be repre-
sented in the coordinai®(q, ,q,) on the surfacd-, charac-

is defined as the sum over all possible classical trajectorietaerizecj by the path length, on F from the center of to g

from the initial pointq’ €% to the final pointge 3 in the and the path lengtly, on F in the rotational directionFig.
real space at energ§ without any crossing points in be- 3). Variables on these two coordinate systems are related by

#°S(q,q',E)
X det————
aqadq’

xexdiS(a,q' E)h—ivm/2] (1)

tween. The functiors(q,q’,E) in Eq. (1) is the action along 5

the trajectory frong’ to g and the Maslov index is related q, = J'r ; /1+ ih(r’) dr’

to the number of the points, at which the semiclassical ap- "o ar’ '
proximation is not valid1]. In billiard systems with a hard

boundary, this index is double the number of reflection points q,=r0. 2)

of the trajectory between’ and q at the boundary. In the

following, the distance: is assumed to be infinitely close to  Select a P inside the billiard and infinitesimally close
zero, such that the pointg, qe X can be regarded as on the to F. Given an initial pointy’ and a final poingon X, there
billiard boundary, when the length of the trajectory segmengexist only two trajectories frong’ to g without other cross-
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In concave billiards, or billiards wherein the angle betwEen
and B inside the billiard exceedsr/2, the so-called ghost
trajectories must be taken into account. Please refil]tfor
further detail. The Maslov index_ for y_ is 2 andv, for
v, is 4, since the trajectorieg. from g’ to q are reflected
once by boundary§ and twice byFUB, respectively. Con-
sequently, kerneT(q,q’,E) of 7Z(E) in Eq. (1) is explicitly
determined by considering all quantities discussed above,
where the sum in Eq1) includes only two trajectoriey- .

Next the sectiork, is discretized intdN cells, in which the
nth cell has the ared,,. Under the basi$y,} with

FIG. 4. Two trajectoriey- from the initial pointq’ to the final
pointg on a PSY in the half-sphere billiard system. 1
—— for qgenth cell
ing points in between. Figure 4 shows an example in which Q)= \/A_n
F is a half sphere. The first trajectony_ is reflected by the 0 otherwise,
upper boundary once, shortly before it reaches The sec-
ond trajectoryy ., is reflected once af,, by the bottorB and  the transfer operatdf is discretized into amN-dimensional
once byF, shortly before arriving afj. The trajectory seg- matrix with entries
mentqg,Ugmg’ of y, is of the same length as the segment

q"9mUaqma’ from g’ to the imageq” of q reflected by the \/ ﬁzs(qa,qlg- )
mirror B. Tap= 2 |h 49,99
All points g, 9’, 9", q.,, and trajectoriesy- are on the «p
same planéthe gray plane in Fig. 4 Thus, the length of/+ xXexdiS(q, ,q;; JE)h—ivml2], (©)]
fromq'(r’,0")=q'(x',y',z") to q(r,0)=q(x,y,z) can be
easily calculated: whereq,, is the center point of theth cell.
For the systems with SO(2) symmetry considered here,
the basiq ¢} can be explicitly selected as follows. First, the
1:(9,0" E) = V(x=x")2+(y—y")?+ (2% 2')? surfaceF is divided inton, stripesF(, i=1,...n,. The
\/T ith stripeF( is bounded by two cylinders centered at the
=Vé&1+ & axis with radiir; _, andr;, wherer,=0 andr;_,<r;. Fig-
ure 5 shows the example of a half sphere divided imto
with =3 stripes, which are bounded by the cylinders with radii
ro, r1, ro, andrz (ro=0). Radiir;'s are selected such that
the widths

E1=r?=2rr'cog 0 —60)+r'?+h(r)>+h(r")?

&=2h(r)h(r"). Fi—1.1i): —f \/1+(—h r )) (4)

of all stripesF " along theqg, direction are equal. The area of
theith stripeF() constructed in this way is then

Si(q!q’!E): \/ZMEli(qiquE)
A<'>—2wf 1+ —h(r )

from (r,0) to (q,,q,) by relations(2) and deviatingS
=S(a(ar,d),9'(qy ,ap),E) by g, andqy, respectivelyq;  Next, the first stripe=®) (in fact a ha} is divided into four
andq), yields cels F&) j=1,... 4, ofequal areaA=AM/4. Theith

Changing variables in the action
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FIG. 5. Discretization of a half-sphere billiard with the height
functionh(r) = y1—rZ, the stripe numben, =3, and the cell num-
ber N=30. The first stripeF™) (in fact a hat consists of four
cells—1, 2, 3, and 4. The second strip€ consists of 11 cells—
from 5 to 15. The third strip&(® consists of 15 cells—from 16 to
30.

stripe F) is divided inton,; cells such that the cell area
AW/n, is the closest value td\. Accordingly, the whole
surfaceF is a union of all cellsF(),

F= U UM FOD),

These cell&=()) are ordered from the first to theth stripe

PHYSICAL REVIEW E67, 046201 (2003

FIG. 6. Profile of lens quantum billiards bounded by a bottom
(solid line) and an upper surfagsolid arg with width H.

The construction discussed so far is general and valid for
all billiards bounded by a flat bottom and an upper surface
with SO(2) symmetry. The following applies this construc-
tion to the special case of lens quantum billiards, in which
the upper boundF is part of a sphere.

IV. LENS QUANTUM BILLIARD

Consider a 3D billiard with SO(2) symmetry described

by the height function
h(r)=V1+H*-r?-H, (5)

parametrized by a widthl indicated in Fig. 6. The radius of
the circular bottomB of this billiard specified by Eq(5)
remains 1 ad#d varies. ForH =0, which impliesR=1, the

shape described by E(b) is a half sphere. Figure 7 plots the
absolute value of the Fredholm determingatef 1 — 7(E) ]|
with a matrix dimensiorN=395, obtained by setting=1

counterclockwise, as shown in Fig. 5, where the first, secontand=1 in Eq. (3).

and third stripe consist ofiy =4, n,,=11, andn, ;=15
cells, respectively. The total numb(N:Einglnm of the

cells, uniquely determined by, , is the dimension of the
basis{¢,} and of the discretized matriX,z, which equals
30 in the example in Fig. 5. The region of thkéh cell, k

=j+=""4n, ., in theith stripe and thgth position, is rep-
resented by the half-open set
) 2T 27
re[ri_q,r;) and fe|(j—1)—, j—
Ngi " Ng,i

in the polar coordinate systenr,f), with the area’
=F®/n,; and its center point is located at

— ., 27
air, (J 2)n_a,i :
where the center positiane[r;_y, r;) of theith stripe ing
direction satisfiesL(r;_,,r)=L(r,r;). In fact, the center
pointr can be replaced by an arbitrary poitits [r;_4,r;) in

the numerical approximation, because the discretized matrix

The nth zeroE,, of the function ddtl—7(E)], with E,
<E,.1, is thenth approximated energy of the half-sphere

6

| det[1-T(E)] |

30 40 50

Energy E

20

FIG. 7. Absolute value of the Fredholm determinajatef 1
T(E)]|, of the transfer operatdf{E) vs energyE for the half-

T,z under different choice of” approaches the same opera- sphere billiard, where the functigde{1—7(E)]| is dimensionless

tor 7 by increasing cell numbex.

and the energ¥ has the unit:?/(xR?) in Eq. (6).
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TABLE I. Ordered semiclassical energi€s,, exact energies [ 0.2 r 0.25
E} , the zerosx, of the Bessel functions, exponerds of def1 ' _ 0.2
—7(E)] near the zerog,, degeneracied} of E} , and the semi- 0151\ d2_2 d3=3
classical error raté, of the half-sphere quantum billiard, calculated 0.1 015
for dimensionN=1715. 0.1

0.05 0.05
n E, E} Xn d,=d} S (%) o o
1 10.099  10.095  4.493 1 0.05 s W 24 245 25
2 16.614 16.609 5.763 2 0.03
3 24.424 24.416 6.988 3 0.03 0.015
4 29.848 29.838 7.725 1 0.03 d=4
5 33.489 33.481 8.183 4 0.02 0.01
6 41.372 41.360 9.095 2 0.03
7 43781 43768  9.356 5 0.03 0.008
8 54.275 54.255 10.417 3 0.04
9 55.280 55.260 10.513 6 0.04 33 335 34 0 41.3 414 415
10 59.467 59.450 10.904 1 0.03
11 67.969 67.945 11.657 7 0.04 FIG. 8. Asymptotic behavior didef 1— 7(E)]| near zero points
12 68.524 68.505 11.705 4 0.03 E, (solid curve$ and asymptotic polynomial§E — E,)%| (dashed
13 75.950 75.930 12.323 2 0.03 curves. Units are the same as those in Fig. 7.
1‘51 gi'ggg gi'ggg g;z% ?, 8'82 syste_ms._Notany, the high dimensidd= 1715, in the cal_—
’ ' ' ' culation, is used to pursue the upper bound of the semiclas-

16 93.846 93.820 13.698 3 003 gjcal error as precisely as possible and is not necessary in
17 96.863 96.830 13.916 9 0.03 practical use. In fact, Bogomolny estimated the dimension
18 98.958 98.925 14.066 1 0.03 required to yield a good approximation:
19 100.958 100.919 14.207 6 0.04

N=V(E)/(2m7h)* 1,

quantum billiard, presented in the second column of Table lwhereV denotes the volume of the allowed phase space re-
The third column lists the exact energies gion of the k—1)-dimensional sectio® [1]. Accordingly,
the required dimensions in the half-sphere billiard &te
L 1 h2x; =20 for E;=10.099 andN =201 for E;4=100.958, which
n"o LR ®  are much smaller thaN=1715.

Figure 9 displays the energy spectra of general lens bil-
of the half-sphere quantum billiargwith R=1, x=1, and liards described by Ed5), with variousH. The energy spec-
#.=1). Therein,x,=x(n’,l), stated in the fourth column, trum is split into finer spectra due to symmetry breaking
represents tha’th zero of the spherical Bessel function of induced by the transition from the half-sphere billiard with
the first kind,j;(x), of thelth order. The ordering is such that
Xn<Xp, 1 for all possible values afi’ andl (see Appendix 100
The fifth column presents the degeneradiés=1 of E .

The sixth column shows the error ratés=(E,—E})/Ey .
induced by the semiclassical approximation. These errors arg,“gof
bounded by 0.05% from above fbi=1715 and decrease as =
N increases. Figure 8 magnifies the functiddefl
—7(E)]| in Fig. 7 in the neighborhood of zerds, for n
=1,...,6(solid curve$. The function behaves asymptoti-
cally like

7z

90F

Energy spectrum
[4,] [+2] ~
o o [=]

F
T

|def1-T(E)]|~|(E-En%| for E—E,,

where the exponert,, corresponds to the degeneracy of the

eigenvalue 1 of the transfer operat®{E,), which agrees 201
with the degeneracy} of the exact quantum enerds}, in 10 . . . . . . . .
Table I. The asymptotic polynomialéE —E,,)%| are plotted 0 o1 02 03 04 05 06 07 08
as dashed curves in Fig. 8. Width H
The consistency of energi&s, andEy and that of degen- FIG. 9. Energy spectra of lens quantum billiards vs differdnt

eraciesd, andd}, in the energy regime studied justify the in Eq. (5), with the unit/2/(2uR?), like that in Eq.(6), for E, and
successful application of the transfer operator to these 3[he unitR for H.

046201-5



CHENG-HUNG CHANG

H=0 to lens billiards withH>0. The sums of the split de-

PHYSICAL REVIEW E67, 046201 (2003

TABLE 1. Zeros x(n',l) of the spherical Bessel function.

generacies foH>0 coincide with the nonsplit degeneracy

for H=0. For example, the degeneracies of the first ten en- I\n’

ergies forH=0.75are 1, 2,2, 1, 2,2, 2, 2,1, and 1. The sum
of the degeneracies of the third and fourth energiesHor
=0.75 is 3, which equals the nonsplit degeneracy 3 of the
third energy forH =0. It is consistent with the plot in Fig. 9,
which shows thaE; andE, for H=0.75 are split fromE,

for H=0.

V. CONCLUSION

In summary, this work demonstrates how to apply the 4
transfer operator method on the systems with a 2D Poincare 10

section and 3D trajectories. The geometry studied is the 3D

1 2 3 4 5

0 T 2w 37 A 57
1 4.493 7.725 10.904 14.066 17.221
2 5.761 9.095 12.323 15.515 18.689
3 6.988 10.417 13.698 16.924 20.122
4 8.183 11.705 15.040 18.301 21.525
5 9.356 12.967 16.355 19.653 22.904
6 10.513 14.207 17.648 20.983 24.263
7 11.657 15.431 18.923 22.295 25.603
8 12.791 16.641 20.182 23.591 26.927
13.916 17.839 21.428 24.873 28.237
15.033 19.026 22.663 26.143 29.535

guantum billiards bounded by a flat bottom and an upper
surface with SO(2) symmetry, which is motivated by recent
observations of the lens-shaped metal clusters. A general
strategy for obtaining the energy spectrum of these billiards
using classical trajectories, without solving the Sclimger
equation, is presented. The spectra and the corresponding
degeneracies of the lens quantum billiards with a varying
billiard height, or widthH, in the low energy regime are
calculated. In the special case of the half-sphere billiard, the
zerosE,, of the function dgtl—7(E)], determined by the
transfer operator method, coincide with the exact quantum
energiesE’ with an error at least less than 0.05%. Further-
more, the degeneracies of the eigenvalue I{&,) coincide

with the degeneracies of the exact enerdis. All these
results confirm the validity and demonstrate the efficiency of
applying the transfer operator method to these 3D systems.
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APPENDIX

The exact energy eigenvalues of a particle with mass
bounded inside the sphere of radR$iave the same form as
that for the half sphere in Eq6),

2 2
Esphere_ 1A%
2, R2'

Supposex(n’,l) is the n’th zero of the spherical Bessel
function j;(x) of the Ith order, which is listed in Table II,
thenx,, is thenth smallest value among these zexga’,l).

The energy eigenfunction of the sphere is the product of
the radical function and the spherical surface functfop,

e.g.,
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Yoo 0, )=

Yio(0,¢)=

Yi+1(0,0)=

Yoo 0,¢)=

Y2+1(0,0)=

Y2i 2( 0, ¢) =

Y3O( 0, ¢) =

Y3+1(0,0)=

Y342(0,0)=

Y3+3(0,0)=

Yol 0,¢)=

Y4+1(0,0)=

1

A

g\/%cosw),

I\/Té\/%sin( g)e=' 9,
\/Tg\/%[Scos{H)z—l],
+—\[S|n(6)cos(0)ei'¢
@\/%sin( 0)%e*21 ¢,
\/77\/%005{0)[50050)2—3],
+—\[S|n(0)[ 5cog6)?+1]e ¢,
:@ %sin(a)zcosw)efz"%S
%\/%[3500$6)4—30c0$6)2+3],

I\/?g\/gsin(e)eii 3

x{12 cog 6)>—9[ 1 - cog #)?]cog )},
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\/ﬂ) 1 _ half sphere, €.9.Y10, Y20, Y2+2, Y30, Y3+5, €tc.; that is,
Yaz2(0,4)=F & \/:sin( 0)’[21cog0)>—3]e2' ¢, the energy form for the sphere and for the half sphere are the
m same, as in Eq6). Nevertheless, due to the symmetry break-
ing from SO(3) for the sphere to SO(2) for the half sphere,
3 +3i ¢ the degeneracies of the energies are reduced flonlZol.
Yaz3(0,4)=+ \/73”1( 6)°cod 6)e ' The cogunting of theath smallegt energy begins witke 0 for
the sphere and with=1 for the half sphere, because the
\/— s only one functionYyo( 6, ¢) for | =0 is not an eigenfunction
Y4:4(0,0)= 5'”(‘9) for the half sphere, since it does not sati¥fy 7/2,¢) = 0.
Therefore, thenth energyE;; in Table | comes from thath
The energy for the sphere has degenerdey 2, because of smallest value among aki(n’,l) with [=1 in Table Il. The
the relation—l<m=I| with 1=0. However, only the odd (n’,l) values of the first seven smallest energs are
functionsY),, in @ listed above, which disappear on the equa-(1,1), (1,2), (1,3), (2,1), (1,4), (2,2), (1,5) with the corre-
tor plane #= w/2, contribute to the wave functions for the sponding degeneraci¢s-1, 2, 3, 1, 4, 2, and 5.
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