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Short-time critical dynamics of the Baxter-Wu model
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We study the early time behavior of the Baxter-Wu model, an Ising model with three-spin interactions on a
triangular lattice. Our estimates for the dynamic exporeste compatible with results recently obtained for
two models which belong to the same universality class of the Baxter-Wu model: the two-dimensional four-
state Potts model and the Ising model with three-spin interactions in one direction. However, our estimates for
the dynamic exponerf of the Baxter-Wu model are completely different from the values obtained for those
models. This discrepancy could be related to the absence of a marginal operator in the Baxter-Wu model.
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[. INTRODUCTION hibits the same static critical exponentg=fv=2/3 andy
=1/4) [10] as those of the two-dimensional four-state Potts
Since the work of Jansset al.[1] and Husd2] pointout  model and of the Ising model with three-spin interactions
that universality and scaling are present at the early stage @fMTSI) in one directior{ 11]. However, finite-size studies of
the time evolution of dynamic systems, several statisticathe BW model have good convergence, without running into
models have been investigated using the Monte Carlo simuthe known difficulties encountered in the studies of these
lations in the short-time regimi8]. This kind of investiga- other models. Several authdis2] have attributed that dif-
tion avoids the critical slowing down effects and provides anference to a dangerous marginal operator present in the four-
alternate method for calculating the dynamic exporzetite  state Potts and IMTSI models which does not have a coun-
static exponentg and » as well as the new dynamic expo- terpart in the BW model.
nent @ that governs the anomalous behavior of the nonequi- Although the static critical behavior of these systems is
librium magnetization when the system is quenched to thevell understood, only a few results are known regarding dy-
critical temperaturel,.. Using this different approach the namical properties. For instance, much work it is needed to
kinetic Ising and Potts mode[g —8] were exaustively stud- unravel the interesting question of a possible extended uni-
ied in order to confirm available results and to enlarge ouwersality, i.e., if these three modéBW, four-state Potts, and
knowledge of critical phenomena, including the critical re-the IMTSI) exhibit the same exponent Previous estimates
laxation of the early time dynamics. of the critical exponent for the four-state Potts model are
In this paper, we revisit the Ising model with three-spinscattered between 2 and#3]. The most recent results, how-
interactions on a triangular lattice, called Baxter-\(BW) ever, suggest values close to 213},15. Short-time simula-
model after its exact solution obtained 30 years gJoThe  tions for the BW model were first performed by Santos and
motivation arises from the disagreement between results fdfigueiredo[16], who foundz=2.071), avery small value
the exponent obtained for the BW model and for two other when compared to the values obtained for the same expo-
models—the two-dimensional four-state Potts model and theents of the four-state Potts and IMTSI mod¢lst,15].
Ising model with three-spin interactions in one direction—Moreover, they stress that this valuezif very close to the
which are known to belong to the same universality classdynamic exponent of the the two-dimensior@D) Ising
The BW model consists of Ising spin§ €& £1) on a trian-  model when a Glauber dynamics is uddd]. For the new

gular lattice with the Hamiltonian dynamic exponent related to the critical initial slip of the
order parameter, situation is even worse. Okahal. have
H=-3> sSS, (1) conjectured 4] that for the four-state Potts model the expo-
(o T nentd should be negative and close to zero. This result was

only recently confirmed18]. For the IMTSI model, two in-
where the sum involves the product of the spins on eachkiependent estimates were obtaifd®,19 and fall in the
triangle of the lattice. As the Ising model on a square latticerange— 0.04< §<0.07, whereas estimates for the BW model
this model undergoes a phase transition at the critical temare not available.
perature K,=J/kT,=0.5In(1+2). The ground state is Motivated by our recent results for the IMTSI modi&b],
fourfold degeneratésee Fig. 1 and the relevant symmetry is we decided to investigate the short-time critical dynamics of
semiglobalthe Hamiltonian is invariant under reversal of all the BW model in order to check the value of the dynamic
of the spins belonging to two of three sublatices into whichexponeniz and the utility of the exponert in detecting the
the original lattice can be decompogetihe BW model ex- presence of a marginal operatd,6,2d. In the following
section we calculate the exponehstudying the evolution of
the order parameter for different values of the initial sublat-
*Email address: everaldo@dfm.ffclrp.usp.br tice magnetizationmy=(3/N)Z;S;(0), where the indexi
"Email address: drugo@usp.br runs over only one kind of sites of the triangular lattice
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ks FIG. 2. Power law behavior of the magnetization for samples
with initial magnetizatiormy= 0.01. The error bars were calculated
over 10 sets of 60 000 samples.
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found in two- and three-dimensional Ising modé¢fs22],
two-dimensional three- and four-state Potts modé&k,23
as well as in irreversible models with synchronous and con-
tinuous dynamicg21,24,23. In addition, nonuniversal be-
havior was detected for the exponehi5,6,26,27 although
A ™ always accompanied by a marginal operator.
In this paper we estimate the dynamic expongibly two

FIG. 1. The Baxter-Wu model is defined on a triangular lattice different techniques. First we quench the system from a high
where the Ising spins§=*1) are coupled by nearest neighbor temperature td—c and follow the nonequilibrium relaxation
three-spin interactions. The lattice can be divided into three sublatof various realizations of the process with the same initial
tices, characterized in the figure by circles, squares, and stars. Eashiblattice magnetizatiom,. In Fig. 2 we show the behavior
symbol represents a class of spins which does not interact with eaalf the order parameter when,=0.01. As proposed by Jan-
other. The ground state is fourfold degenerate, corresponding to thesenet al. [1] it follows the power law
three configurations with up spins in two sublattices and down spins
in the other, besides the obvious configuration of spins up in all the
sublattices. M (t)=mgt?, 2)

(circle, square or star points in Fig. dndN is the number of -0.16
spins. In addition, we estimate the same exponent calculating

the time correlation of the order paramef2d]. In Sec. lll

we summarize our results for the dynamic critical exponent -0.17 - .
z In Sec. IV we list estimates for the correlation length ex-
ponentr and for the index3 of the magnetization. Finally, in
section V we present our conclusions. -0.18 4 s

Il. THE DYNAMIC EXPONENT @ 019
=1 e = -0.186+0.002 T

Jansseret al. [1] have shown on the basis of the renor- mTe
malization group theory that, at an early stage of the time
evolution, quantities such as the magnetization and its mo- 0207 7
ments follow a power law when the parameters of a dynami-
cal system are adjusted to their critical values. The exponen
0 that characterizes the time evolution of the magnetization
is independent of the known set of static critical exponents
and even from the dynamic exponemtHowever, like other
exponentsy seems to depend on general properties such as FIG. 3. Dynamic exponent as a function of the initial magne-
dimensionality of the spin and either symmetry of the Hamil-tization m, for the lattice sizeL=60. Each point represents an
tonian or the evolution rules. Such universal behavior wasverage over 10 sets of 60 000 samples.
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0.0002 v v v —————— IIl. THE DYNAMIC CRITICAL EXPONENT z
L =60 Santos and Figueiredd 6] obtained the exponemtof the
BW model by means of the second-order cumuldpt]8],

0 (M?)

I

1, 4

0.0001

J o ] starting from completely ordered samplemy&E1l). As
| tan ¢ =-0.185 + 0.001 S ] claimed by ZhengU, should behave at the critical tempera-
ture as a power law

Upoct??, ®)

0.00005 ; ; ; - which would allow us to estimate without using any other
10 100 critical exponents. Santos and Figueiredo fousd2.07(1)
t for mg=1 (all sublattices initially with spins upand 1.96(2)
for my=—1/3, i.e., spins are initially up in one sublattice
and down in the other two. These estimates, obtained with
Glauber dynamic$17], are very different from results re-
cently obtained for the four-state Potts mofdetf] and for the
) ) ] . ] Ising model with three-spin interactions in one directjas]
but hered is negative. Figure 3 exhibits the behavior of the ynich both yield values close to 2.3.
exponentd for different values oim,, as well as a linear fit This kind of disagreement has already appeared in the
that leads to the valué=—0.186+0.002. _ literature when the second cumulant was used to obtain es-
.The second techmqu_e consists of studying the time corr&jmates for the exponetfor the three-state Potts modé]
lation of the magnetization and the IMTSI mode[15]. Thus, in order to check if the BW
model(which also belongs to the four-state Potts model uni-
versality class exhibits indeed a different value for the dy-
C(t)=<2 S Sj(o)>, (3)  namic exponent, we have calculated this exponent using
' ! three other techniques. To begin with, we estimateby
collapsing the generalized fourth-order Binder cumulant

FIG. 4. Time correlation of the total magnetization for samples
with (M(t=0))=0. Error bars were calculated over 10 sets of
60 000 samples.

which was showii21] to behave as’ when(M(0))=0. In
Fig. 4 we show the time dependence of the time correlation (M%)

C. We stress that this approach was shown to be valid when Uy(t,7,L)=1- W (6)
the evolution matrix has up-down symmetry which is not
valid in the present case. However, it is possible to sfzsy

. , _
that theZ(2)®Z(2) symmetry of the BW Hamiltonian is which should only depend on the ratdL® whenT=Te,

sufficient to preserve the above mentioned result. The valu‘leCCording to scaling laws valid in the beginning of the evo-
P : fution. In Fig. 5 we show the Binder cumulant as a function

of 6 obtained with this technique#& —0.185+0.001) cor- of the time for two different latticed —96 andL’=192,

roborates the value obtained directly from the behavior of th%mh starting from ordered statesid=1). We also plot in

[WZI?]Q;egljﬁg?éaxvemsg:gscsorgcz'{rwit:r?'[ téﬁiecv?/rer?jlgthooq r?;eetg? ig. 5 the cumulant for the larger lattice against the rescaled
y ! Jime t'=2%, wherez is defined via the relation

work with specially prepared initial configurationsvith
fixed mg) nor it is necessary to take the delicate limit
—0.

The results obtained with the two techniques are essen-
tialy the same and fall in the range0.188< =< —0.184.
They are completely different from the valug=—0.03
+0.01 encountered for the IMTSI modgl5] and from @
= —0.047+0.0033[18] obtained recently for the four-state
Potts model. Thus, based on our estimates for the expahent
of the BW model, we conclude that its dynamic behavior at U=
short time is completely different from that of the IMTSI and [M|?
four-state Potts models albeit both models have the same
static exponents as the BW model. Thus, at least in this casasing (mg=1) as shown in Fig. 6. The result in this case is
the exponent seems to be able to capture the subtle differ-z=2.291).
ence between models that have the same leading exponentsFinally, we used mixed initial conditions in order to ob-
but not the same corrections to scaling. tain the functionF,(t), given by

U4(2%,0L")=U4(t,0L). (7)

After interpolating the rescaled curve for the latticé,

the value ofz is selected using thg? test[29] yielding the

best estimate 2.285(10). We applied the same analysis to the
cumulant[8]

-1, (8
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FIG. 5. Binder cumulant,(t,0L) for lattice sizeL=96 and
’=192 and initial magnetizatiomy=1. The open circles on the FIG. 7. Time evolution ofF, for L=102 with mixed initial
continuous line show the cumulant for the bigger lattice rescaled irtonditions [Eq. (9)]. The error bars, calculated over 10 sets of
time with z obtained from Eq(7). 30000 samples, are smaller than the size of the points.
<M2>m0:o the results we repeated our simulations using the Glauber
Fo(t)= > , (9) updating and verified that our result remain essentially the
<M>m0:l same. In addition, we have used heat-bath updating to calcu-

late the time dependence of the second-order cum{izmt
which was showr14] to behave as??. This approach was (4)] where the average is always obtained from initially or-
recently proposed in order to obtain the exporewith high  dered samplesnf,=1). Our best estimate for is 2.03
precision. Actually, curves of, are straight linessee Fig.  +0.01, which agrees reasonably well with the result by San-
7) which do not depend on the lattice simme does not need tos and Figueiredo, indicating that this severe disagreement
to rescale the time Our estimate foiz using Eq.(9) and  stems from a difficulty from the scaling for the second cu-
taking values at each 5 stepszis 2.2946). This value isin  mulant method.
complete agreement with the reseit 2.290(3) recently ob-
tained[14] for the four-state Potts model and corroborates IV. THE THERMAL EXPONENTS » AND g
the above results obtained by different procedures.

It is worth stressing that all the results shown until now Taking the logarithmic derivative of the magnetizat[&h

were obtained with heat-bath updating, whereas Santos and
Figueiredd 16] performed simulations using the Glauber dy- M(t,7)=t "M (1t%7) (10

namics. In order to rule out any influence of the dynamics on _
with respect tor=(T—T.)/T., we obtain
0.008

a,InM(t,7)=t"29_ In(F(7')|, -0, (12)

which follows a power law that does not dependlgnwvhere
F(7') is a scaling function. Thus, a log-log plot of that de-
rivative versus time gives &z (see Fig. 8 Once we have
obtained the dynamical exponentthe thermal exponent
0.004- may be determined. Our estimate for the exponein the
short-time analysis is 0.650.01 which should be compared
to the exact value 2/3 from R€f30].

Next, we follow the decay of the sublattice magnetization
in initially ordered samplesnfy=1). The scaling law

cC?

z=2.29(1)

L'=192
Moct~A/vz 12

0

0 © 200 400 't 60 800 1000 allows us to obtairB/vz which in turn leads to the exponent
B by using the previous result for the product. We show
FIG. 6. U cumulant forL=96, L’=192 and initial magnetiza- a log-log plot ofM versus tin Fig. 9. A linear fit gives the
tion my=1. The open circles correspond to the rescaled cumulanvalue 0.0527 0.0005 for the ratig3/vz leading to the esti-
for the larger lattice witte=2.291). mate
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FIG. 8. Logarithmic derivative of the magnetization with respect

to the reduced temperatulEM (t) as a function of time. Data were FIG. 10. Time decay of Baxter’s order paramelg. Error
obtained for the lattice siz& =102 using temperature variation bars were calculated over 5 sets of 10 000 samples.
K.7=0.001. The slope corresponds to the ratiez]l /after Eq.(11).

The error bars, calculated over 10 sets of 30000 samples, afgaro aboveT,. In this senseMg functions as a disorder

smaller than the size of the points. parametef32] which goes to zero whefi— T, from above.
However, this new quantity has the same critical exponent as
B=0.079+0.002. (13)  the sublattice magnetization. Thus, the expongntan be

obtained following the evolution of Baxter’s order parameter.
The advantage is that we do not need to divide the system
into sublattices. In Fig. 10 we show the decay of the Baxter
Grder parameter as well as the value of the r@iez. In
order to eliminate the produatz from our result we start
again from ordered sampledg=1) and use Eq(11) re-
placingM by Mg to obtain 14z. Figure 11 shows the evo-

Mg= E SS; S, (14 lution of the derivative. Our new estimate forvt/is 0.651

(ijk) +0.006, yelding forv the value 0.6%0.01 in very good

where the sum is done over all triangles of the lattice and th@9reement with the exact result 268. The new estimate for
indicesi, j, andk denote sites composing an elementary tri-8 1S 0.08G=0.002 which is in fair agreement with our pre-
angle (plaquette. Barber and Baxtef31] have shown that Vious result and should be compared to the pertinent result
Mg is zero for temperatures beloWw, and different from 2.

We stress that our result f@ is in fair agreement with the
exact result 1/129].

Before closing this section we present another estimat
for the exponent® and v obtained from scaling of the so-
called Baxter order paramet®ty given by

0.9 y v T T v v v 0.02
L =402 L - 204
-1
Mo K.t = 0.001
0.01
DM, (t
tan ¢ = -0.0527:0.0005 tang < 0.651 1 0.006
0.002 v v v v v v r
0.8 r v v v T v v 20 100
20 100 t

t
FIG. 11. Logarithmic derivative of Baxter’s order parameter

FIG. 9. Log-log plot of the time evolution of the magnetization Mg . Data were obtained for the lattice sike- 204 using tempera-
for initially ordered samplesniy=1). The error bargcalculated ture variationK.7=0.001. Five sets of 10000 initially ordered
over 5 sets of 1000 samp)esre smaller than the size of the points. samples h,=1) were used in order to obtain the error bars.
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V. CONCLUSIONS estimates for the new dynamic expon@ndf the Baxter-Wu
We revisited the Baxter-Wu model using the short—time.mOdel are completely different from the values found for that

: . . “index when studying the two-dimensional Ising model with
Monte Carlo simulations, Our best estimate for the dynamlcthree-spin interactions in one direction and the four-state

critical exponent isz=2.294+0.006. It was obtained by a del hi h be abl
recently proposed techniqui@4] that combines simulations Potts model. In t. Is sense, the exponeiseems t9 ea .e_to
capture subtle difference between models which exhibit the

performed with different initial conditions. This result is . o . .
. . . ) . same leading critical exponents but different corrections to
compatible with recently obtained estimates Zon the case scaling

of the two-dimensional four-state Potts mofied] as well as
for the two-dimensional Ising model with three-spin interac-
tions along one directiofi5]. The result forzwas confirmed
by two other techniques based on the collapse of cumulants. We would like to thank T. Tome for discussions about her
In addition, using scaling relations for the order parameteresult concerning the validity of the correlation method for
and its derivative with respect to the reduced temperature the BW model prior to its publication. We would also like to
we were also able to estimate the static critical expongnts thank R. Dickman, N. Caticha, N. Alves, U. H. E. Hans-
andv. We have also obtained the exponesteind v using  mann, and N. Alves, Jr. for discussions and a careful reading
Baxter’s order parameter. The results for these exponents acd the manuscript. This work was supported by the Brazilian
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