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Short-time critical dynamics of the Baxter-Wu model
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We study the early time behavior of the Baxter-Wu model, an Ising model with three-spin interactions on a
triangular lattice. Our estimates for the dynamic exponentz are compatible with results recently obtained for
two models which belong to the same universality class of the Baxter-Wu model: the two-dimensional four-
state Potts model and the Ising model with three-spin interactions in one direction. However, our estimates for
the dynamic exponentu of the Baxter-Wu model are completely different from the values obtained for those
models. This discrepancy could be related to the absence of a marginal operator in the Baxter-Wu model.
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I. INTRODUCTION

Since the work of Janssenet al. @1# and Huse@2# point out
that universality and scaling are present at the early stag
the time evolution of dynamic systems, several statist
models have been investigated using the Monte Carlo si
lations in the short-time regime@3#. This kind of investiga-
tion avoids the critical slowing down effects and provides
alternate method for calculating the dynamic exponentz, the
static exponentsb andn as well as the new dynamic expo
nentu that governs the anomalous behavior of the noneq
librium magnetization when the system is quenched to
critical temperatureTc . Using this different approach th
kinetic Ising and Potts models@4–8# were exaustively stud
ied in order to confirm available results and to enlarge
knowledge of critical phenomena, including the critical r
laxation of the early time dynamics.

In this paper, we revisit the Ising model with three-sp
interactions on a triangular lattice, called Baxter-Wu~BW!
model after its exact solution obtained 30 years ago@9#. The
motivation arises from the disagreement between results
the exponentz obtained for the BW model and for two othe
models—the two-dimensional four-state Potts model and
Ising model with three-spin interactions in one direction
which are known to belong to the same universality cla
The BW model consists of Ising spins (Si561) on a trian-
gular lattice with the Hamiltonian

H52J (
^ i , j ,k&

SiSjSk , ~1!

where the sum involves the product of the spins on e
triangle of the lattice. As the Ising model on a square latt
this model undergoes a phase transition at the critical t
perature Kc5J/kTc50.5 ln(11A2). The ground state is
fourfold degenerate~see Fig. 1! and the relevant symmetry i
semiglobal~the Hamiltonian is invariant under reversal of a
of the spins belonging to two of three sublatices into wh
the original lattice can be decomposed!. The BW model ex-
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hibits the same static critical exponents (a5n52/3 andh
51/4) @10# as those of the two-dimensional four-state Po
model and of the Ising model with three-spin interactio
~IMTSI! in one direction@11#. However, finite-size studies o
the BW model have good convergence, without running i
the known difficulties encountered in the studies of the
other models. Several authors@12# have attributed that dif-
ference to a dangerous marginal operator present in the f
state Potts and IMTSI models which does not have a co
terpart in the BW model.

Although the static critical behavior of these systems
well understood, only a few results are known regarding
namical properties. For instance, much work it is needed
unravel the interesting question of a possible extended
versality, i.e., if these three models~BW, four-state Potts, and
the IMTSI! exhibit the same exponentz. Previous estimates
of the critical exponentz for the four-state Potts model ar
scattered between 2 and 4@13#. The most recent results, how
ever, suggest values close to 2.3@14,15#. Short-time simula-
tions for the BW model were first performed by Santos a
Figueiredo@16#, who foundz52.07(1), a very small value
when compared to the values obtained for the same ex
nents of the four-state Potts and IMTSI models@14,15#.
Moreover, they stress that this value ofz is very close to the
dynamic exponent of the the two-dimensional~2D! Ising
model when a Glauber dynamics is used@17#. For the new
dynamic exponentu related to the critical initial slip of the
order parameter, situation is even worse. Okanoet al. have
conjectured@4# that for the four-state Potts model the exp
nentu should be negative and close to zero. This result w
only recently confirmed@18#. For the IMTSI model, two in-
dependent estimates were obtained@15,19# and fall in the
range20.04,u,0.07, whereas estimates for the BW mod
are not available.

Motivated by our recent results for the IMTSI model@15#,
we decided to investigate the short-time critical dynamics
the BW model in order to check the value of the dynam
exponentz and the utility of the exponentu in detecting the
presence of a marginal operator@5,6,20#. In the following
section we calculate the exponentu studying the evolution of
the order parameter for different values of the initial subl
tice magnetizationm05(3/N)( iSi(0), where the indexi
runs over only one kind of sites of the triangular latti
©2003 The American Physical Society23-1
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~circle, square or star points in Fig. 1! andN is the number of
spins. In addition, we estimate the same exponent calcula
the time correlation of the order parameter@21#. In Sec. III
we summarize our results for the dynamic critical expon
z. In Sec. IV we list estimates for the correlation length e
ponentn and for the indexb of the magnetization. Finally, in
section V we present our conclusions.

II. THE DYNAMIC EXPONENT u

Janssenet al. @1# have shown on the basis of the reno
malization group theory that, at an early stage of the ti
evolution, quantities such as the magnetization and its
ments follow a power law when the parameters of a dyna
cal system are adjusted to their critical values. The expon
u that characterizes the time evolution of the magnetiza
is independent of the known set of static critical expone
and even from the dynamic exponentz. However, like other
exponentsu seems to depend on general properties such
dimensionality of the spin and either symmetry of the Ham
tonian or the evolution rules. Such universal behavior w

FIG. 1. The Baxter-Wu model is defined on a triangular latt
where the Ising spins (Si561) are coupled by nearest neighb
three-spin interactions. The lattice can be divided into three sub
tices, characterized in the figure by circles, squares, and stars.
symbol represents a class of spins which does not interact with
other. The ground state is fourfold degenerate, corresponding to
three configurations with up spins in two sublattices and down s
in the other, besides the obvious configuration of spins up in all
sublattices.
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found in two- and three-dimensional Ising models@4,22#,
two-dimensional three- and four-state Potts models@14,23#
as well as in irreversible models with synchronous and c
tinuous dynamics@21,24,25#. In addition, nonuniversal be
havior was detected for the exponentu @5,6,26,27# although
always accompanied by a marginal operator.

In this paper we estimate the dynamic exponentu by two
different techniques. First we quench the system from a h
temperature toTc and follow the nonequilibrium relaxation
of various realizations of the process with the same ini
sublattice magnetizationm0. In Fig. 2 we show the behavio
of the order parameter whenm050.01. As proposed by Jan
ssenet al. @1# it follows the power law

M ~ t !.m0tu, ~2!

t-
ch
ch
he
s
e

FIG. 2. Power law behavior of the magnetization for samp
with initial magnetizationm050.01. The error bars were calculate
over 10 sets of 60 000 samples.

FIG. 3. Dynamic exponentu as a function of the initial magne
tization m0 for the lattice sizeL560. Each point represents a
average over 10 sets of 60 000 samples.
3-2
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SHORT-TIME CRITICAL DYNAMICS OF THE BAXTER- . . . PHYSICAL REVIEW E 67, 046123 ~2003!
but hereu is negative. Figure 3 exhibits the behavior of t
exponentu for different values ofm0, as well as a linear fit
that leads to the valueu520.18660.002.

The second technique consists of studying the time co
lation of the magnetization

C~ t !5K (
i

Si~ t !(
j

Sj~0!L , ~3!

which was shown@21# to behave astu when^M (0)&50. In
Fig. 4 we show the time dependence of the time correla
C. We stress that this approach was shown to be valid w
the evolution matrix has up-down symmetry which is n
valid in the present case. However, it is possible to show@28#
that theZ(2)^ Z(2) symmetry of the BW Hamiltonian is
sufficient to preserve the above mentioned result. The va
of u obtained with this technique (u520.18560.001) cor-
roborates the value obtained directly from the behavior of
magnetization. We stress that the time correlation met
@21# is numerically more convenient, since we do not need
work with specially prepared initial configurations~with
fixed m0) nor it is necessary to take the delicate limitm0
→0.

The results obtained with the two techniques are ess
tialy the same and fall in the range20.188<u<20.184.
They are completely different from the valueu520.03
60.01 encountered for the IMTSI model@15# and from u
520.04760.0033@18# obtained recently for the four-stat
Potts model. Thus, based on our estimates for the exponeu
of the BW model, we conclude that its dynamic behavior
short time is completely different from that of the IMTSI an
four-state Potts models albeit both models have the s
static exponents as the BW model. Thus, at least in this c
the exponentu seems to be able to capture the subtle diff
ence between models that have the same leading expo
but not the same corrections to scaling.

FIG. 4. Time correlation of the total magnetization for samp
with ^M (t50)&50. Error bars were calculated over 10 sets
60 000 samples.
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III. THE DYNAMIC CRITICAL EXPONENT z

Santos and Figueiredo@16# obtained the exponentz of the
BW model by means of the second-order cumulantU2 @8#,

U25
^M2&

^M &2
21, ~4!

starting from completely ordered samples (m051). As
claimed by Zheng,U2 should behave at the critical temper
ture as a power law

U2}td/z, ~5!

which would allow us to estimatez without using any other
critical exponents. Santos and Figueiredo foundz52.07(1)
for m051 ~all sublattices initially with spins up! and 1.96(2)
for m0521/3, i.e., spins are initially up in one sublattic
and down in the other two. These estimates, obtained w
Glauber dynamics@17#, are very different from results re
cently obtained for the four-state Potts model@14# and for the
Ising model with three-spin interactions in one direction@15#
which both yield values close to 2.3.

This kind of disagreement has already appeared in
literature when the second cumulant was used to obtain
timates for the exponentz for the three-state Potts model@8#
and the IMTSI model@15#. Thus, in order to check if the BW
model~which also belongs to the four-state Potts model u
versality class! exhibits indeed a different value for the dy
namic exponentz, we have calculated this exponent usin
three other techniques. To begin with, we estimatedz by
collapsing the generalized fourth-order Binder cumulant

U4~ t,t,L !512
^M4&

3^M2&2
, ~6!

which should only depend on the ratiot/Lz when T5Tc ,
according to scaling laws valid in the beginning of the ev
lution. In Fig. 5 we show the Binder cumulant as a functi
of the time for two different latticesL596 andL85192,
both starting from ordered states (m051). We also plot in
Fig. 5 the cumulant for the larger lattice against the resca
time t852zt, wherez is defined via the relation

U4~2zt,0,L8!5U4~ t,0,L !. ~7!

After interpolating the rescaled curve for the latticeL8,
the value ofz is selected using thex2 test @29# yielding the
best estimate 2.285(10). We applied the same analysis to
cumulant@8#

Ũ5
^M2&

uM u2
21, ~8!

using (m051) as shown in Fig. 6. The result in this case
z52.29(1).

Finally, we used mixed initial conditions in order to ob
tain the functionF2(t), given by

s
f

3-3
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E. ARASHIRO AND J. R. DRUGOWICH de FELI´CIO PHYSICAL REVIEW E67, 046123 ~2003!
F2~ t !5
^M2&m050

^M &m051
2

, ~9!

which was shown@14# to behave astd/z. This approach was
recently proposed in order to obtain the exponentz with high
precision. Actually, curves ofF2 are straight lines~see Fig.
7! which do not depend on the lattice size~one does not need
to rescale the time!. Our estimate forz using Eq.~9! and
taking values at each 5 steps isz52.294(6). This value is in
complete agreement with the resultz52.290(3) recently ob-
tained @14# for the four-state Potts model and corrobora
the above results obtained by different procedures.

It is worth stressing that all the results shown until no
were obtained with heat-bath updating, whereas Santos
Figueiredo@16# performed simulations using the Glauber d
namics. In order to rule out any influence of the dynamics

FIG. 5. Binder cumulantU4(t,0,L) for lattice sizeL596 and
L85192 and initial magnetizationm051. The open circles on the
continuous line show the cumulant for the bigger lattice rescale
time with z obtained from Eq.~7!.

FIG. 6. Ũ cumulant forL596, L85192 and initial magnetiza-
tion m051. The open circles correspond to the rescaled cumu
for the larger lattice withz52.29(1).
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the results we repeated our simulations using the Glau
updating and verified that our result remain essentially
same. In addition, we have used heat-bath updating to ca
late the time dependence of the second-order cumulant@Eq.
~4!# where the average is always obtained from initially o
dered samples (m051). Our best estimate forz is 2.03
60.01, which agrees reasonably well with the result by S
tos and Figueiredo, indicating that this severe disagreem
stems from a difficulty from the scaling for the second c
mulant method.

IV. THE THERMAL EXPONENTS n AND b

Taking the logarithmic derivative of the magnetization@8#

M ~ t,t!5t2b/nzM ~1,t1/nzt! ~10!

with respect tot5(T2Tc)/Tc , we obtain

]t ln M ~ t,t!5t1/nz]t8 ln~F~t8!ut850 , ~11!

which follows a power law that does not depend onL, where
F(t8) is a scaling function. Thus, a log-log plot of that d
rivative versus time gives 1/nz ~see Fig. 8!. Once we have
obtained the dynamical exponentz, the thermal exponentn
may be determined. Our estimate for the exponentn in the
short-time analysis is 0.6560.01 which should be compare
to the exact value 2/3 from Ref.@30#.

Next, we follow the decay of the sublattice magnetizati
in initially ordered samples (m051). The scaling law

M}t2b/nz ~12!

allows us to obtainb/nz which in turn leads to the exponen
b by using the previous result for the productnz. We show
a log-log plot ofM versus tin Fig. 9. A linear fit gives the
value 0.052760.0005 for the ratiob/nz leading to the esti-
mate

in

nt

FIG. 7. Time evolution ofF2 for L5102 with mixed initial
conditions @Eq. ~9!#. The error bars, calculated over 10 sets
30 000 samples, are smaller than the size of the points.
3-4
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b50.07960.002. ~13!

We stress that our result forb is in fair agreement with the
exact result 1/12@9#.

Before closing this section we present another estim
for the exponentsb andn obtained from scaling of the so
called Baxter order parameterMB given by

MB5 (
^ i jk &

SiSjSk , ~14!

where the sum is done over all triangles of the lattice and
indicesi, j, andk denote sites composing an elementary
angle ~plaquette!. Barber and Baxter@31# have shown that
MB is zero for temperatures belowTc and different from

FIG. 8. Logarithmic derivative of the magnetization with respe
to the reduced temperatureDM (t) as a function of time. Data were
obtained for the lattice sizeL5102 using temperature variatio
Kct50.001. The slope corresponds to the ratio 1/nz, after Eq.~11!.
The error bars, calculated over 10 sets of 30 000 samples,
smaller than the size of the points.

FIG. 9. Log-log plot of the time evolution of the magnetizatio
for initially ordered samples (m051). The error bars~calculated
over 5 sets of 1000 samples! are smaller than the size of the point
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zero aboveTc . In this senseMB functions as a disorde
parameter@32# which goes to zero whenT→Tc from above.
However, this new quantity has the same critical exponen
the sublattice magnetization. Thus, the exponentb can be
obtained following the evolution of Baxter’s order paramet
The advantage is that we do not need to divide the sys
into sublattices. In Fig. 10 we show the decay of the Bax
order parameter as well as the value of the ratiob/nz. In
order to eliminate the productnz from our result we start
again from ordered samples (MB51) and use Eq.~11! re-
placingM by MB to obtain 1/nz. Figure 11 shows the evo
lution of the derivative. Our new estimate for 1/nz is 0.651
60.006, yelding forn the value 0.6760.01 in very good
agreement with the exact result 2/3@9#. The new estimate for
b is 0.08060.002 which is in fair agreement with our pre
vious result and should be compared to the pertinent re
1/12.

t

re

FIG. 10. Time decay of Baxter’s order parameterMB . Error
bars were calculated over 5 sets of 10 000 samples.

FIG. 11. Logarithmic derivative of Baxter’s order paramet
MB . Data were obtained for the lattice sizeL5204 using tempera-
ture variationKct50.001. Five sets of 10 000 initially ordere
samples (m051) were used in order to obtain the error bars.
3-5
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V. CONCLUSIONS

We revisited the Baxter-Wu model using the short-tim
Monte Carlo simulations. Our best estimate for the dynam
critical exponent isz52.29460.006. It was obtained by a
recently proposed technique@14# that combines simulation
performed with different initial conditions. This result
compatible with recently obtained estimates forz in the case
of the two-dimensional four-state Potts model@14# as well as
for the two-dimensional Ising model with three-spin intera
tions along one direction@15#. The result forz was confirmed
by two other techniques based on the collapse of cumula
In addition, using scaling relations for the order parame
and its derivative with respect to the reduced temperaturt,
we were also able to estimate the static critical exponenb
andn. We have also obtained the exponentsb andn using
Baxter’s order parameter. The results for these exponents
in good agreement with the exact values@9#. However, our
. B

l.

or.
e
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estimates for the new dynamic exponentu of the Baxter-Wu
model are completely different from the values found for th
index when studying the two-dimensional Ising model w
three-spin interactions in one direction and the four-st
Potts model. In this sense, the exponentu seems to be able to
capture subtle difference between models which exhibit
same leading critical exponents but different corrections
scaling.
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