PHYSICAL REVIEW E 67, 046121 (2003
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In lattice Hamiltonian systems with a quartic couplipg a critical valuey* may exist such that, when
= y*, the leading irrelevant operator decouples from the Hamiltonian and the leading nonscaling contribution
to renormalization-group invariant physical quantitievaluated in the critical regigrvanishes. The N
expansion technique is applied to the evaluation/offor the lattice Hamiltonian of vector spin models with
O(N) symmetry. As a byproduct, systematic asymptotic expansions for the relevant lattice massive one-loop
integrals are obtained.
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[. INTRODUCTION Nevertheless, we still seriously believe thé&l ¥xpansion
to be, from a theoretical point of view, probably the most

The quest for better analytical and numerical methods infelevant expansion scheme that can be applied to any quan-
the theoretical evaluation of measurable physical quantitiesym and statistical field theory, in that there is no known
such as critical exponents and amplitude ratios, is one of thebstruction to summability of the series expansion in powers
lasting tasks of statistical field theory. of 1/N for the values of physical quantities.

In recent years substantial progress in this field has been Therefore, we decided to explore the conceptual and nu-
made by the introduction of a method based on the strongMerical consequences of performing a systemabtebpan-
coupling lattice expansion of improved Hamiltonidag (for ~ sion of the critical parameter, for the class of three-
a review, cf. Ref[2]). The essential feature of this method is dimensional OK) spin models, in order to check the actual
the possibility of removing all leading nonscaling contribu- 'élévance of the drawbacks that we mentioned above.
tions to physical quantities, in the neighborhood of criticality, _/AS & consequence of our analysis we found that the criti-
by a specific choice of a parameter in the lattice HamiltoniarF@! Parameter can be formally computed within the expan-
(critical coupling. The convergence of analytical and/or nu- sion with no I|m|t<_a1t|on r_elate_d_ to t_he sign of its largévalue
merical evaluations is therefore impressively faster than iri'Jlnd for space dimensionalities in the intervat@<4. In

any other variant form of the models under inspection peParticular, we found that the sign of the firsNléorrection is

longing to the same universality class positive, and one may then hope to find a valesuch that

The main limitation of this method | in the absen fthe parameter itself vanishes. However, the numerical indi-
ﬁ? : at I a OI to h S ef Oth a)(/jst _eat_se Cfetr? cation following from our computation is far from the value
an efficient analytical technique for the determination of they _ 5 o 6 suggested by Monte Carlo simulations. There-

critical parametgr. Congeptual reasons for. this limitation ma}focre, higher-order effects are expected to be very relevant,
be found in the impossibility of as expansion for the value 514 it is still unclear that the predictions of theN1éxpan-
of the qutlcal parameter, both. in the<e and in the 2+ ¢ sion may be extended to the regibi<N, .
expanSIon SChemeS. In praCUCe, one must resort to an ex- As a byproduct of our analysis we obtained new more
trapolation from numerical Monte Carlo finite-size eV&'Ua-efﬁcient expressions for the asymptotic expansions of many
tions of some physical quantity, typically the Binder cumu-important functions entering our calculations. We presented
lant[1,2]. these results with some details, because they might be rel-
Another well-known analytical approach to the study of evant to other computations of critical and subcritical quan-
critical lattice models is the W expansion, which applies, in tities.
particular, to the physically very important class of N)( In Sec. Il we introduce the lattice ) models and their
spin models in three dimensions. However, it is known that1/N expansion. In Secs. lll, IV, and V we discuss on general
in exactly three dimensions and for nearest-neighbor intera@rounds the relevant asymptotic expansiégap equation,
tions, the critical parameter in the largelimit is a negative ~ €ffective propagator, and renomalized couplirig Secs. VI
number[3]. Since the critical parameter controls the large-and VII we specialize these expansions to the case of the
field behavior of the interaction potential, a negative valueStandard nearest-neighbor interaction, with the help of some
would naively imply an unbounded Hamiltonian. In practice useful integral representations. A few numerical results are

this would prevent a Monte Carlo simulation of the system,Presented in Sec. ViIl. In Sec. IX we compute thé or-
; Lection to the improvement parameter, and finally in Sec. X

whole approach. we discuss the meaning and relevance of our results.

Il. THE EFFECTIVE HAMILTONIAN

. . L . AND THE GRAPH EXPANSION
*Electronic address: Massimo.Campostrini@df.unipi.it

"Electronic address: Pietro.Parruccini@df.unipi.it Our starting point will be the usu@l-componentg? lat-
*Electronic address: Paolo.Rossi@df.unipi.it tice Hamiltonian ind dimensions:
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1 1 The above approach is quite general, and it leads to a sys-
H=2 [E > V()Y ,h(x)+ E,U«%(/’Z(X) tematic 1N expansion of the correlation functions and of the
X K’ physical quantities for arbitrary values of, and y.
However, we want to focus our attention on the critical
' ) domain, and in particular we want to evaluate the coupling
v* such that the first nontrivial corrections to scaling turn
out to vanish in the computation of physical quantities in the
scaling region.
To this purpose it is convenient to parametrize the cutoff
dependence of correlation functions and renormalized cou-
plings in terms of the lattice spacirsgwhich can be made to

1
+ 7790(6200)?

whereV, ¢(x) is some(local) form of the lattice gradient; in
the standard nearest-neighbor formulatidh¢(x) = ¢(x
1) = d(X).

Following Ref.[4] we define the rescaled couplings

6#3 3 appear explicitly in calculations by a rescaling of the cou-
B=— aN' 7" oN pling and momentum dependence.
Y0 90 Around criticality the dependence aris not analytic, and

as a consequence we need asymptotic expansions in order to
identify the scaling and leading nonscaling contributions to
any computable quantity.

The basic technique for asymptotic expansions in powers
of mpa is described in Ref[6]; here we shall discuss its

N applications to the cases of interest for the present paper.
Heﬁ=E[Tr LnB(=V,V,tia)—iBa+ ya?]. (2 We only recall that, in order to regularize the generic lat-
tice integral

and introduce an auxiliary field in order to eliminate the
quartic term in the Hamiltonian.

After a trivial Gaussian integration the resulting effective
Hamiltonian is

In the limit y—0 this Hamiltonian reduces to the usual = dp
effective largeN expression for the nonlinear model. In I(k;moa)zf TJF(k;moa,p),
the nearest-neighbor formulation, it is also known as the -n(2m)

a(g()efl—l[%senberg model; its largd-limit was investigated wherek is any collection of external momenta, we can make

The saddle-point condition on the effective Hamiltonian use of the formal identity

leads to the so-called gap equation (ks Mo) = | (K; Moa) + | cor( K; Mod),
d
map 1 where
+2 mzzj =5, 3
Pr2vme= | 2m? 2 me ©

T ddp
— | k;ma=J —gF(k;mga,
where p? is the Fourier transform of the lattice Laplacian a ki Moa) —a(2m) (kimoa.p)

operator—V,V, , which in the nearest-neighbor case takes

. AV o ddp
the formp?=23 ,(1—cosp,). —f adﬁT('R)F(k;moa,pa)
The gap equation allows for the elimination gfin favor — (2m)
of the new parametan, (largeN inverse correlation lengih
in the Feynman graph expansion. and
In the largeN limit criticality corresponds to the vanish- + ddp
ing of m3, and the criticality condition may then take the Icon(k;moa)=adf ———[F(k;mpa,pa)
form ~= (2m)
TV E()-
- dip 1 TYE(k;mpa,pa)].
Be= J, H(2m)8 ? The T=TIR 4+ T(V) gperation amounts to a Taylor series
expansion of the integrand in powers ofa, TR and
corresponding to a finite value ¢f. for all d>2. T(UY) corresponding, respectively to the IR and UV singular

The graph expansion for this model, in the formulationterms in the expansion. .
based on the effective Hamiltonian, requires defining the Itis possible to prove that the expansiond gf (the “lat-
(bare propagatorA for the effective fielda; by standard tice contribution’) andl , (the “continuum contribution)

manipulations one obtains are individually and fully regular; the nonanaliticity of the
expansion is factored out in ti& term multiplying the con-
D(k,mg,y)=A"*(k,mg,7) tinuum contribution.
» dd
= Ef : pd — 1 1 +y. Il ASYMPTOTIC EXPANSION OF THE GAP EQUATION
2)-#(2m)° p2+m3 (p+k)2+m3

For the purposes of the present paper and in order to show
(4) an explicit example of the asymptotic expansion procedure
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let us consider the gap equation in the lahgdimit.

Let us assume a generic lattice Laplacian such E?at
~p?+cp*+0(p®), where p'=3 p2": in the nearest-

3
Be— B~—bo(Moa)*~?+2(y— yo)mja’— - chomba’

neighbor versiorc= — . . — Sompa*+0((mea)?*?), (6)
From the previously derived results we obtain the follow-
ing relationship: where
= dip 1
— 242 d
— B=mpa = +2vy].
S f—w(zﬂd p(p?+mia?) F(l_ E)
bp=——-.
Let us now define (4m)%2
G _ mga’ From the asymptotic expansion of the gap equation we
(p1m0a)_52(52+m3a2) immediately learn the following lesson: it is possible to

choose for the quartic coupling the special valueyy such
and perform the relevant expansions up to the first few nonthat the first nonscaling contribution to the lafyesaddle-

trivial terms: point condition vanishes.
By this procedure we have identified the lafgecritical
g 2 3a4 . coupling for these versions of the model. In fact any change
TG(p.mea)~ =~ = 3+O(m036), in the form of the local interaction, reflecting itself in the
(PH* (P9 detailedp dependence of the bare lattice massless propagator
171 1 1 1 without changing its singular part, leads to a finite change in
G(pa,mod)~ — — — ——— —cp“[ s ——— the numerical value o, without affecting its formal repre-
’ a’| p® p°+mg (P9 (p=+mp) sentation.
+O(a2 It is especially interesting to consider the class of models
(@), characterized by next-to-nearest-neighbor interactions, and
w2 1 m2 whose propagator of the fundamental excitations is obtained
TG(pa,mpa)~ _g[_z 2 _203} in the form
a“[(p)° (P9
d
2 3m} — 5 1 1
—mécp? T (p2)04 +0(mg,a?). pzzﬂzl (60+ > —8|c+ 3 cosp,+2| c+ 17/ €0s 2,
By grouping together the IR singular terms we therefore eI P i ~4
obtain the lattice contributions P /P
2mga’(y— yo) ~mga’,+0(mga®), where
where we defined the following numerical constants:
d
- - - . P
72 ) semt (2 )@ () g
q g . Note thatc=—+: corresponds to the standard nearest-
s Ej” dp 1 _f”) d’p ( 1 _3cP ) neighbor interaction, while=0 corresponds to th©(a?)
T ) 2mi ()3 ). 2mil(p?)P (p9H*)” Symanzik tree-improved version of 8] models[7].
(5 In three dimensions we have numerically explored the

range— ;53 <c=<0: our results are presented in Figs. 1 and 2.
On the other side, by grouping together the UV singular et us notice, in particular, that the choice=
terms, we obtain the following continuum contributions: —0.033321D... corresponds to vanishing,, and it is
p therefore, at least in the lard¢dimit, an alternative version
f*“ dp ad-2 _ 1 n 1 of a spin model where the leading corrections to scaling
w (27r)a p2+ mo2 52 are automatically made to vanish. In turn whes 0, we
) obtain y7=0.00332820 ..., which implies a small but
1 1 _, Mg nonvanishing leading scaling violation, andé,
(p?+m3)2  (pH? “(p?)° =0.00218146.... Compared to the standard=—7;
case this version has, however, the advantage of being nu-
We can perform the continuum integrals by standard diimerically testable also by Monte Carlo methods, singe
mensional regularization techniques. We then finally find >0.

+a% p*

+0(ad+2)).
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0.005 T T T T T T T T T T T T
T T T 1

= dip 1 1
Ao(K,y)=

2) 2 P (prk?

(7 d% 1 1
Auk)=— fw(Zw)d (p?)2 (p+k)2

+)/,

0.000
Yo

Fao dp 1 1
. (2m® (p?)? )2’

—0.005

A (k)_r dp 1 1 . 1 1 1
s 306 -Co|.04 ) 0.00 ? _77(277)‘1 (52)3 (p+k)2 2 (52)2 ((p+k)2)2
» dd 1 1 4
FIG. 1. yo Vs C. _J+ P ~ 3 P2
L 2mi (PP T (PR

IV. ASYMPTOTIC EXPANSION OF THE EFFECTIVE

PROPAGATOR 1 1/ 1 1 1
2T 2 o o) e
In order to perform an asymptotic expansion of the (k%)
O(1IN) contributions to physical quantities we must com-
pute one-loop graphs involving the effective propagator bg 1 3¢
A(k,mg, 7). Bo(k)=355,  Bu(k)=-bo Wﬂj‘)(k)_iﬁ :
We therefore need to evaluate the asymptotic expansion ®)

of A or, more conveniently, oD(k,mg,vy). It is easy to

recognize, from the definition d and from the general rule |\ 1are we defined
of the asymptotic expansion, that in general we may express

the result in the form

1 92 1
C(k,mp)= R ——
. (kMo = 2 % k2 K2+ mj
D(k,ma, y)= > [Aq(K)(Mea)2"+ B, (K)(mea)2"9-2],
n=0 L 2 62 )
” o=tk 2d % ak2 K2
whereA,(k) have the form of lattice contributior{and only Trivial manipulations allow to express, (k) as pure lat-

A, depends ory), while B,(k) are continuum contributions tice integrals:

that can be analytically computed, e.g., in dimensional regu-

larization. = dip 1 [1 1 Yo
We shall not repeat the derivatiqsome details can be Al(k)=J 58 22| 51+ 2=,

found in Ref.[6]), but only quote the relevant results: -=(2m)7 (p?)?|k*  (p+k) K

0003 ———+——7—+—— 77— A(k)J’ 1 1 1 1
' i ? E (P2 (PPK

1 8o
0.002 _(Ez)zco(k) +E_270C0(k)
5, +de[11 1 11 1
—2(2m9 2 (P22 [(p+K)Z? 2 (p?)? (K2)2
0.001
1 1 1 Yo
i —2—. 9
2[(p+k)%? (K92 (k)? ©

From our general considerations it should be by now clear

0000 -Col.04 =& o that we shall also need a different expansiorDpthomoge-
neous in powers o andk.
FIG. 2. 8y vscC. Without delving into the details, we find that
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D(k 1u-4j+‘”ddp 1 1
(kamoa V=327 | @m? p+ e (p K7+

+(y—y0)+0(a%"?).

Notice that the integral can be analytically computed in

all dimensions, and the final result is

1 dr2—2
D(ka,moa,y)wdo(Zk2a2+m§a2
d131
X 2F1 2—5:5'51? +7v= =D,

(10

wheredy=3(1—d/2)b,, ,F; is the Gauss hypergeometric
function, and¢= \/1+4mZ/k2.

Let us, in general, denote by the labal™the quantities
occurring in the leading order in the homogenedasn-
tinuum) expansion oD, and in particulary.=y— v,.

Following Ref.[8], we can exploit identities between hy-

PHYSICAL REVIEW E67, 046121 (2003

DOE D(O,moa: 7) ~ dO( mOa)d_4

3d

8 chy(moa)?~2— symga?,

+ye— (12

and as a consequence

DOcEdO(mOa)d_4+ Yec-

V. ASYMPTOTIC EXPANSION OF THE RENORMALIZED
COUPLING

We now recall from the literature the expression of the
O(1/N) contribution to the(unrenormalizef self-energy of
the fundamental quanta:

21(Pp,Mg) =Z14(P,Mp) + = 15(P, M),

where

pergeometric functions to recast the above result into the

form
_ _ 0
Dc.=ap&" 3(ka)* 4+7c+m
S (mea)=2, (11
201 2 1 121 52 0 1
where
I d 1 2F 2 d)
1712 2
ap=5
2 (4mU¥r(d-2)

Ford=3, Eq.(11) reduces to

1 1 k
D°:_16ak + Y~ 87ak arccotz—mo.

Equation(11) is especially appropriate for the asymptotic
expansion oD, because all the nonanalytic dependence o
mpa is explicitly factored out in the last term. In particular
(after a rescalingca— k), we obtain the following behav-
iors:

Agc=ag(k?) %2+ y,,
ar| T2

1 2

nt (d—l
I|—=-n

2
Finally notice also that the zero-momentum valueboi

AnC: ao(kZ)d/2727n_

= d%  A(k,mg,y)
—=(2m " (p+k)Z+mg’

2l.’:l(pvrno):

1 = di
Elb(mo)ZEA(o,mo,V)f_WW

J
XA(k1m01’y)(9_rn(2)A71(k1m01’Y)'

Again we might perform an asymptotic expansion of this
expression, on the lines traced in Ri@], recovering in the
scaling limit the (unrenormalized continuum contribution,
and in principle we might evaluate the first nonleading con-
tribution.

However, for our purposes it is much more convenient to
work directly with quantities chosen in such a way that all
renormalization effects are automatically removed, i.e.,
quantities whose scaling limit is a finite, renormalization-

r(szroup invariant, amplitude.

The simplest such object is the so-called “renormalized
coupling” g, , whose continuungscaling valueg; has been
computed taO(1/N) in Ref. [4].

Actually the formal expression derived in R@#] is cor-
rect also for the lattice versions of the model, when con-
tinuum propagators are replaced by their lattice counterparts.
Parametrizing the result in terms of the renormalized mass
m, we therefore obtain

1
vl

(13

d—4 1 (1)
gr(m,y)=mA0M, )| 1+ 597 (M, )+ O

related to the derivative of the gap equation with respect to

the mass, and we can obtain the relationship

whereg!" is given by
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JA~1(0,m, y) Renormalization-group theory insures us about the ex-
gﬁl)(m,y)zA(O,m,y)—2 3 1.(0m) +3 (M) pected properties of these contributions. In particular, the
Jm leading continuum term should be finite, and should there-
fore require no UV counterterms. Its evaluation will, how-

,021a 9215(0mM) 92 gp(mM) ever, allow us to identify the IR counterterms needed in order
B Jp2 + Im2 + am? to regularize the lattice term.
0 The lattice contribution in turn should not affect the lead-
9314 ing (scaling order, sinceg; is an invariant amplitude which
-2 5 —2A"Y0m,y)T(m) |, (14 should not depend on the detailed form of the Hamiltonian.
P, In turn, trivial power counting ina shows us that the first

correction to scaling is generated by the leading lattice con-

and we defined tribution, which isO((ma)*~9).

» dik /A(k,mo,y) 2 ' We can prove the fqllowmg identities, corresponding to
T(my) = 1 —= similar results of Ref[4]:
—2(2m)% 2 m2
It is now a matter of trivial algebraic manipulations to D,

show that the expression fof") can be cast into the form (d—3)D;—Dge+ (4—d)ycl,

om2 ~ i@+ amal

1 9 [aD 2D,

W= - —+t =
2. gm?| gm® 24 m2

' DO *77(277)(1

D

1 (= ddk[l

aDOc: 9_ Doc— e
om? |2 m?

,Dg
—_—)2_ 2D0+m W C

(k2+m2 1 4 K2
Ce=12 VAR 7~ 1].
202 o (15)

As a consequence we obtain in leading order the follow-
In the asymptotic expansion gfl) we may again identify  ing continuum contribution, depending on the sing@lenen-

a continuum and a lattice contribution. sionles$ variablex= y,(ma)*
1 +wddkj d-3 ye 4-d D 3m? 2 (d—3)(d-5)
gt () ~=— -2 + L + ==
r.co Doc)—= (2m)9|  “|k®+4m? ' D k?+4m?2 " D, (k*+m?)(k?+4m?) (k?+4m?)?
ye(4—d)[ 2(d-5) 3 1 +1 4 1 +2yc(4—dyﬁ
Do |[(K+4m?)?2" 2 (KB+4m?) (K2 +m?) " 2|7 d) (K+m?)?|" D, d(k*+m?)?3
Doc m* [ 6(d—5) 3 d—8 2
R~y ey by 2t 52 AVTv ey Ty ey v A R (16)
D, k*+m?| (k*+4m?)? " 2 (k*+4m?)(k*+m?) = (k>+m?)
|
which can be shown to correspond exactly to the result pre- (ma)*~ 9 r+= d% I d—3 1y, 4—d]?
sented in Ref[4]. d f (277)"[_2 i ta 2
In particular the fixed-point value is obtained by setting 0 = 0c
x=0, corresponding ta/,=0, that is the condition for the d—13)(d— 1\ 4—
removal of the leading nonscaling behavior in the lakye- + #4‘ 2£(d—4— _)Tci)
limit. (k%) Aoc d/ (k%)
From the above result we may immediately read off the
structure of counterterms, just by taking the power series
expansion in powers of?, and in particular by replacin
with Ay, and D, with do(ma)?~*. The resulting(singulaj Let us now compute the lattice contribution. By applying
expression is the already defined asymptotic expansions, we obtain
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(1)

It is worth observing thag; /,(X) showed a nonanalytic-

oD 2Dy Ye 1 d—2 ) ’ r,co ;
—t = ~A;+2=—by| sCo+ =—=|m ity whose leading dependence was proportionalxia x.
am k2+ 2 k2 2 k2 2 N )
(k%) Correspondinglysg‘*)(y.) has a nonanalytig,In vy, depen-
dence. The coefficients of these singularities match properly
+2| A— _70 — O m2+ o(md) in order to reproduce an overall dependence proportional to
(k*)?2 k2 v.(ma)*~9In ma, as expected from general renormalization-
group arguments because of the anomalous dimension of the
and leading irrelevant operator.
1 9 [aD 2D, Do , Do
somlame TS| T e | 2 Do+m? -m2|C VI. INTEGRAL REPRESENTATION
om? om® 2+ m?|  (12+m?) m FOR THE GAP EQUATION
1 1 For the purpose of actual numerical calculations one must
~ 0 d-2 . o . . .
~A2_ﬁ—27c Co+ iy +O(m™ 7). find an efficient way of performing lattice momentum inte-

Notice that the most singular contributior@(md~4), have

been removed in the above combinations.
Let us now find out the leading IR singularities

terms appearing in the integral representifi,,. We must

only notice that, for allA,(k), the singular behavior

k—0 is determined by the corresponding behavior of
Anc(k), with corrections whose singularity is depressed by a

grals. In practice this may be obtained by resorting to para-
metric (Feynman and Schwingerepresentations of the lat-
tice propagators. These representations are especially useful
in the case corresponding to the standard nearest-neighbor
Hamiltonian.

Let us first consider the integral appearing in the gap
equation

of the

when

factor ofk?. As a consequence we obtain in the IR limit 2 = d 1 — 2
B+2ymg= —— =E(mg).
. ~a(2m) 2
A1+2 2 —|d—3+(4— d)
Ao k k AoC . . . .
Introducing Schwinger’s proper time representation, we
obtain
L2 oy | oo —
3 A RN TOE s P
= = —am
=, {(d 3)(d—5)+| d—4 )(4 d) } =(mo) fo dae Oﬁw(zw)a
N _ _ 4
(k%) Aoc
17 xex;{—Za% (1—cosp,)

These singularities are perfectly matched by the terms
coming from theT("® expansion of the continuum contribu-
tion, as expected. As a consequence we are able to write

down an exact, finite representation of the leading lattice
contribution tog™™, taking the form wherel is the standard modified Bessel function, admitting

for large values of its argument in the following asymptotic

= fwdae*“mé[e*Z“IO(Za)]d, (20)
0

(ma)*~d expansion:
OF (M, y0) = — 39 7e), (18
1
where 1 - (ZDTnt3]
e 2 (2a)~ s Z 1 )
(1) ddk o 1 ma) s n!F(E—n)
69 (vc)—f e Az—ﬁ—Zyc c0+W

e 2 +e ddk 2 By a proper change of variables the numerical evaluation of
— = Ai+2= —f S d 72 the above integral is now possible even in the smglre-
2| Ao k? —= (27)° (K%) gime

Whend=3 it is also possible to obtain an analytical ex-

A } pression for=(0) [5], which was first derived in Ref9]:
0

(d—3)(d— 5)+(d 4——)(4 d)

2 2
{d 3+(4- d)AOJ) (19 BC=E(0)=K—;2—1K2(K), (22)
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k=(2—/3)(y3—2), and the resulting numerical value is
B:.=0.252731 009 858 65. . .

We can computeZz ( mé) as an asymptotic expansion
aroundm3=

whereK is the complete elliptic integral of the first kind and fm (—a)"
da

E: o(d)a” ] (25)

E(md)=2>, a,md"+b,m3"td-2, (22)
n=0 in the corresponding power series expansion is a finite, UV

and IR regulated integrals for amlyin the range 2.d<4. In

turn, the integration of the second contribution may be rep-

It is conceivable that whed=3 the coefficients, of the | egented, after trivial resummations and rescalings, in the
expansion can be computed analytically in terms of ellipticy,

integrals, but we contented ourselves with a numerical cal-
culation of the “lattice terms” appearing in the analytic part
of the expansion, while it is always possible to obtain closed
form expressions for the coefficienits, of the nonanalytic
part.

We can obtain explicit expressions for the coefficients in
expansion(22) by subtracting a proper number of terms of
the asymptotic expansion of the Bessel function raised to the
powerd. Let us label the coefficients of this expansion ac-where
cording to the equation

[

(47T)d/ 2 d)k d)(m )n+d/2 l

—2a . . = ” —n— d/2
[e 29 o(2a)]%~ n )d/ §=‘, Nda™ (23 kn(d) Jodxx

the coefficients can be computed recursively from the equa

tions are finite UV and IR regulated integrals in the range @

<4; integrating by parts we obtain a recursive equation for
k,, which can be solved immediately, obtainikg=1"(1
co(d)=1, —d/2—n), and consequently

k

1
(—Dr| =+ bn:ﬁcn(dﬂ“(l—g—n). (26)
n

cn(d)= Cnk- (29

:'SII—\

n
Z (kd—n+k)
- k
4 k!F( 5 k)
It is now trivial to setd=3 in Eq.(24) to obtain an explicit
recursive expression fdy, .
~ Let us add to the integrand in E€O0) the formally van- To compute numerical values @, in d=3, it is not
ishing term practical to use Eq.25), given the slow convergence of the
integration for largex. We found it more convenient to split
the a integration in Eq.(20) at a=1. For a<1 we can
_ E co(d)a™ expand in powers ofn3 under the integration sign and inte-
(4ma)¥2i=0 Nt @m0 grate term by term. Fow=1, we subtracin+I terms of
expansion23), expand the integrand in powersmﬁ up to
o oo _ 2xm on ! . .
1 2 (d)a " 2 (—amp) O(mg"), and integrate term by term; while the resulting in-
(4ma)¥2 7=0 n m=nd+1 mt tegrals converge for any=0, it is useful to set=3 to
ensure fast convergence of the integration for latgerhe
integral of the regulator can be computed analytically in
where we have only interchanged the order of the summaerms of the incomplet& function, and the singular part of
tions in the two contributions. It is now possible to group theits asymptotic expansion reproduces the singular part of ex-
first contribution with the original integrand and recognize pansion(22).
that the resulting combination defines an analytic function of ~Collecting all numerical and analytical results, we obtain
mg, since each coefficient, for d=3 the following asymptotic expansion:
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1 1 1
E(M§)=Bo— 4 Mo—0.012 164 158 583 028+ 55— Mj-+0.000 837 762 406 062 8% — 5= -~ mo

2560r
0.000 066 743211 781 1687 + 81 {+5.788448812 444810 5m§ o
' 43008Gr 0> Mo~ 65536ar ©
—5.320777 18047810 'mg+ 18 mg’+5.107 544 566 044 10 8m3*— ﬂ 23
' 0 " 403701766r © ' 0 193776844 8¢ Mo
o(mg?, (27)
|
Which gives an error smaller than 1# in the range 0 Alternatively we might use the Schwinger representation
<mO 0.1. directly and obtain
It is immediate to extract from this expansion thd 3
largeN nearest-neighbor model values 1
e e (stym?
o~ —0.006 082 079 291 511 3, D(k,mp,0)= zfo dsfo dte 15"V 1;[
8p~0.000837 762 406 062 93. X[ 260 (2\s?+ 2+ 2stcosk,,)]

The asymptotic expansion & (m3), thenth derivative
of E(m3) with respect tom3, is easily obtained from the that can be reduced to the previous one by the variable
above expression. There is an obvious precision loss, but ibhanges=xa, t=(1—X) .
the above-mentioned range the error in the second derivative The direct numerical evaluation of E¢28), and espe-
is still smaller than 10, cially of its derivatives with respect tmg, in d=3 is diffi-

In the following, we will need to comput&™ in a fast cult, particularly for small values ok or m,; the conver-
and accurate way, for generic valuesrﬁ; to this purpose, gence can be improved dramatically by adding and
we tabulatedE for values ofmg on a uniform grid with step  subtracting a symmetric combination of Bessel functions,
h=10"3, and comput& (M (m?) by (n+4)-point Lagrange
interpolation.

D(k, mo,O)——f de daae™ *(E+m) H lo(2az,)
VII. INTEGRAL REPRESENTATIONS FOR THE
EFFECTIVE PROPAGATOR >
s . —| 1(r 1 _ [mp+6
Let us now recall from Ref6] the following basic result: —15(2az) | = Efo dX?E = _1> :
171 (= di (29)
ok 0=3 ) ox|

wherez=3(z,+ z,+z3); the subtracted integral and its first
2> few derivatives with respect tmé can now be computed
accurately by Gauss-Legendre integration on a small grid;
the integration ik of 2’ and of its derivatives is also easy,
= once a few singular terms of ER2) have been subtracted.
V1=x(1=x)k,. In order to identify the lattice contributions to the
asymptotic expansion dd we must expand the integrand in
11 . (" dig powers ofmg. The IR singular.ities turn into unsuppressed
D(K,mg,0)= _f dxf daae™ ™ | 2o positive powers ofa, present in the large- regime when
2)o 0 2m) z,—1. These smgulantles become worse and worse with
mcreasmg powers ah3. In order to classify them according
to their degree we need to consider the homogeneous expan-
sion of the integrand in powers af ! and of \/1—zi
- . , =x(1-x)k2.
=§f0 dxfo dace ™[] [e2*Iy(2az,)]. Recalling once more the asymptotic expansion of the
K Bessel function, we can write down the homogeneous expan-
(28) sion in the form

X

mg+2>, (1-2,c0sq,)
“w

wherez, =
Using Schwinger representation we then obtain

xex;{ —2a2, (1-z,co0sq,)
w
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e—oz)((l—x)ﬁ2 dl
—2a nm_
e “Nyaz,)~—————— =—ln_1m-
l/:[ 0 # (47Ta/)d/2 dmé noLm
Therefore, we only need to evaluate

X >, Cn[d,ax(l—x)Ri]afn,
n=0

B0y (md)= %fldx[x(l—x)kz]m
0

where in turn
2n ) @ )kz 5 al—d/2+m
~ A~ —aX(1l—X —am
cn[d,ax(l—x)k,i]EmE:O Yom( D[ ax(1—x)k2]™ (31) Xfo dae A
andy,(d) may show a dependence on the rak8¥ (k?)P. rlo— 9+ m .
. . . 1 2 1 1— k2 m
Repeating the procedure developed in the preceding sec- 1 y [X(1=x)k]
tion we may now obtain the following decomposition: 2 (4792 0 "[mgjLX(l_X)Rz]zfdmm
D(kmo0)= X Ry(kmi™+D(kme),  (32) ) r(z_g) .
=5 e T o
where 2 (4m) ok
(D", (= 1 dx
R (k)E—f dxf da a"t? e 2% y(2az,) xf _ ) 3
" 2n! Jo "Jo 1;[ e 0 [mg+x(1—x)k?]>~ 42 47

—ax(1-x)k? n
€ A trivial comparison with previous results shows that the

ST > Cma_ml (33 . e .
(47a) m=0 last integral is directly related to the continuum propagator

2 2 a2
is that part ofA,(k)=R,(k)+ S,(k) which shows a regular Y thzeAzepIaceme.nk —k% and therefore, setting”=1
dependence ok in the k—0 limit, and +4mg/k=, we obtain

111 s e—arx(l—x)&2 3 m
Dg(k,mg)= EJO dXJ’O da’m Iom(m(Z)):(_R2)m( E) aogd—S(RZ)dIZ—Z
o n—-1 2\m
2 (—amp) _
S | gmemi_ C gdn by [d-1 d 1| .
nZO m=o0 m! n® @2&(7:15:1_? mg~?|, (39
(34)

is a well-defined quantity, which includes all the singularWhere we must appreciate that the above expression is natu-

dependence ok and admits an asymptotic expansion in therally decomposed into an analytic and a nonanalytic term,
which implies that we can immediately relate all coefficients

form
. S, (k) to the derivatives with respect & of £9-3(k?)42-2,
Ds(k,mo)”E [S,1(k)m§”+Bn(k)m(2)”+d‘2]. _ Strglghtforward manipulations lead to the general rela-
n=0 tionship
In order to comput® s(k,my), let us notice that it may be d—1
also expressed in the form non (—1)91“(—) S\ p
_ 30 rrana| 4 2 k
zoon Sn(k)= — (k%) = 27
_ 2 n! k p=0 d 1 4
Dy(kimo)=2 2 Yam( Dl am(M), (35 I —=—n+p
n=0 m=0 2
where d
- 2p (—1)9T E—l—n+p
111 . s e~ ax 1-x
|nm(m§)z—J dx[x(l—x)kz]mJ do——— XEO d Ypa(d)- (39)
2Jo o (4ma) [l5-1-n+p-q
n—-1 2\m
— am? (—amp) -
x|e mo—mz,o T} attmmn o (36) The above expression brings into evidence a peculiar fea-
ture exhibited by the function§,(k) when d=3. In this

enjoys the property case the arguments of the functib{1l—n+p) appearing in

046121-10



EVALUATION OF THE IMPROVEMENT PARAMETER IN . .. PHYSICAL REVIEW E67, 046121 (2003

the denominator are integer nonpositive numbers whenever 1 Ao A .
p#n, and therefore the corresponding contributions to the — A,(k)= S8 =5+ 21 a,,|(k2)¥2 24 Ry(K),
. .. 2\2 2 '
sum vanish, giving (k<) k
(45
1
a 2n (=15 where
0 rol—
K)=(—1)"=(k?) 12>, ———=7nq(3).
S=(CAGE . e 2= 4(0-3)(d-5),
r E—q ’
(40) (d-3)(d-12) (d-3)(d—6)(d—8) (S
a = ~ 1
Whend=3 the singular contributions t8,,(k) are pro- 2t 8 8 (k?)2
portional to &2) Y2 for all n, and this is basically a conse-
quence of the vanishing dependenceédn the analytic part (d—16)(d—8) (d—4)(d—6)(d—8) k*
of the continuum propagator. az = 512 + 256 (k2)2
The simplest example of this procedure is offered by the
integral representation @,(k,0), (d—4)(d—6)(d—8) K°
+ =
Ao(k,0)=ap(k?) 22+ Ry(k), (41) o4 (k?)?
where L (d=4)(d=6)(d—8)(d~10) (k*)?
512 (k&4
! f ' f ) IT e 24142
Ro(k)==| d d “«
o(k) 2)o X o m & "lo(2az,) and we obtain
efozx(lfx)k2 111 ”
- 42 =_ 3 —2a
Gma) (42) R, (k) 4f0 ole0 dea ];[ e 2%y(2az,)
This representation merits a few observations. Notice that e~ ax(1-x)k?
the explicit term might be simply obtained from the expres- - ﬁ[lﬂz‘l(k)ﬂz‘z(k)] , (46)
sion of Ay, by the replacemert?—k?, and therefore it re- (4ma)
produces exactly the singular behavior &Af when k—0. :
MoreoverRy(k) has, by construction, a finite limit when where in trm
—0. It is easy to check thaRy(0)= —yq, thus verifying d 1 1
explicitly that the choicey= 1y, leads to theO(a* %) im- roa(k)=——+ ~x(1—x)k?— = ax?(1—x)?k*,
provement of the lattice massless propagator. 16a 4 4
By the same technique, we obtain
_d(d+8) 1 <
A= 2(d—3) (6—d)(4—d) k* (8-d) r2dK)= <757+ g (d+2)x(1=x)k
1(k)=2a, k2 * 16 (k22 16 1
. +—2(k?)%+(8—d)k*]x3(1—x)?
X(kZ)d/272+ Rl(k), (43) 64
1 ae an
where - Eax3(1—x)3(2k6+ k*k?)
Ruk=— = [ax [ "d 2 TT e 2142 + .
1( )= 2o X o oo y e 0( CYZM) + 3—261’2X4(1—X)4(k4)2.
e—ax(l—x)QZ d 1 An obvious. rglationship exists petween the valeg§0) _
— —(1+ —+ —x(1—x)k? and the coefficients of the analytic part of the asymptotic
(4ma)¥? 16 4 expansion of the functiorE’(m2). One easily finds that

1 Rn(o):%(n+l)an+l-
T 201 o\ 24 It should be by now clear that a trivial generalization of
ax“(1—x)°k*| |. (44) ) o .
4 the same technique allows for an explicit, albeit more cum-
bersome, evaluation of all the functiom, (k). We could
Again we notice that the explicit term reproduces the leadingrerify that the correct expressions Bp(k) and B4 (k) are

singularities, and moreové®;(0)= — &,. reproduced, and we computd}(k) for a better accuracy
We also mention the result foh,(k), since it will be  check of our numerical estimates. The result is too cumber-
needed in the evaluation @dig®): some to be reported here.
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FIG. 3. g™ (solid line) andg{"),+ g% (dashed lingvs m for
v.=0.

In practice Ag, A;, andA, can be computed numerically
in d=3 exploiting subtractiori29); since

e 1 14(2az,)—13(2az)
o

3k*—(k?)?

%efax(lfx)kz)(Z(l_X)Z ,
48(47704)3/2

@7

the subtraction is enough to regulariag and A,. Let us
consider, e.g.A;; by straightforward manipulations we ob-
tain

11 1 . 6
Al(k)z—zfodx fodaae @

x| IT 10(2az,) - 1¥(2a2)
)73

+ 1‘—'77(6 l)
3\

1
- = ; (48)
167 x(1—X) k2]3’2]
-33 T T
34 -— -
g

3.5 -
_3‘%- . P I ST RS S T R .

.0 0.1 02 03 04

m

FIG. 4. g (solid line) andg{"),+ g{*} (dashed lingvs m for
Ye=— Yo, I-€., for the nonlinearr model.
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207 . T
-2,55—
gil)—S.O_
-3.52—
"4'%;\ ' S T R 04

FIG. 5. g™ (solid line) andg{"),+ g, (dashed lingvs m for

v.=0.1.

it is useful to over-regulate the integration by subtracting
the right-hand side of Eq47), integrated over. For A, we
follow the same procedure; the subtractions are more com-
plicated and not worth writing here. The computationAgf
is similar but of course easier.

We verified explicitly thatA,, computed in this way, and
B,, are consistent with Eq7) for n<2.

VIIl. NUMERICAL RESULTS

It is worthwhile to present a selection of the numerical
results that we obtained id=3 for the nearest-neighbor
formulation €= —75).

In Figs. 3, 4, and 5 we compags')(m, y,), obtained by
direct evaluation of Eg.(15), with g\ (y.(ma* 9
+g"(m, yc), obtained from Eqs(16), (18), and(19), for
three values ofy.; of special interest is the value,
=—1,, I.e., y=0, corresponding to the nonlinearmodel.

59(y.) is plotted in Fig. 6; of special interest is the
value

59™)(0)=0.004 9699 . ..

()]
dg.

0.2 0.3 04 0.5

Y

0.0 0.1

FIG. 6. 5™V vs ;.
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IX. CONSTRUCTION OF THE IMPROVED HAMILTONIAN We might now obtain an estimate for the valNg for which

v* vanishes. The numerical value of the present estimate is

As we mentioned in the Introduction, the improvement : o ) .
) X . admittedly not very promising, but, as we mentioned in the
procedure aims at a systematic cancellation of the next-tg

leading effects in the invariant amplitudes. The Introduction, the essential feature ¢f is its positive sign,

renormalization-group theory insures us that a single choicéugges’tfIng tha, may feﬁs;[\ﬁend pos_S|ny be within the
of y exists such that this cancellation occurs in all ampli-"aN9€ of convergence o theNLexpansion.

tudes. It is therefore sufficient to find the valge= v*, for The physical .lnterpre:tatlon o, amounts to the .state-
which the cancellation occurs in the renormalized coupling.MENt that, for this special value &, the nearest-neighbor

In the context of the M expansion we may assumé to Ia}ttice \_/ersion of the nonlineas modgl (72 0) in three
admit an expansion in powers of\L/ Q|men3|ons shows the absen_ce of Iea}dlng |rrelleva.nt operators
in the expansion of the Hamiltonian into scaling fields.
1 1 For all valuesN<N_., one would gety*>0, and as a
Y=+ NY’{ +0 ﬁz) . consequence one may proceed to analyze the models in their
improved version, both by numerical Monte Carlo methods

We have already recognized in Sec. Il thét=y,. We and by perturbative expansion techniques. Numerical evi-

may therefore define dence shows that this is actually the case for the physically
interesting casebl=<3. It might be interesting to perform a
. 1 numerical study with the purpose of estimatiNg. A naive
Ye=Y TV extrapolation from the known numerical valuesyf(N),
Substituting this result in the expression @f and ex- . .
panding in powers ofn we then obtain ¥*(1)=0.01593), ¥*(2)=0.00782),
L1 1 11 .
g/(ma,y*)~ do 1+ {9rcod O+ d—0(591(0)— Y1) ¥*(3)=0.00434), y*(4)=0.00217),
4—d 2.2 1 : : :
X(ma)* “+0(m-a“)+0 it obtained from Refs[1,10—13, respectively using the for-
mula y=ﬂ§/(8)\N), suggestN.=5 or 6. If this value is to
We then recognize that the condition for the cancellatiorPe predicted by the W expansion, large contributions must
of the first nonleading contribution is come for higher-order terms. They are, however, not unex-
pected, since the first coefficients seem to be particularly
¥y =6891(0) small, due to peculiar cancellations in the integrals.

Concerning the extension of theNLlexpansion itself to
the regionN<N., we must cautiously mention that some
dramatic change in the analytical behavior of the function
v*(N) may certainly occur aN=N.. It is not possible to

1 2

Ro

_F ddk A S| 1[A;
TR M) T2\,

-

+= d% 4(d-3) perform a strong-coupling expansion of the models wien
f_x 2m)9 (k)7 <0, as one may immediately realize from an analysis of the
gap equation.
whereAy,=A,(K, vo). We would like to mention that the numerical evaluation of
higher orders of the NN expansion is technically not beyond
X. CONCLUSIONS reach, along the lines traced by REE3] and exploiting the

more accurate results for the effective propagator obtained in
In the case of the three-dimensionalND(models with  the present paper.
standard nearest-neighbor interactions, our analytical results Finally, as a consequence of the discussion of the previous
led us to the prediction sections, it should be clear that, in the class of models with
next-to-nearest-neighbor interactions, it is always possible to
find a choice of Hamiltonian parameters such that improve-
ment becomes possible for arbitrary valued\of

1 1
y*=—0.006 082 0%  0-004969 9 o( N—) . (49
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