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Percolation on two- and three-dimensional lattices
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In this work we apply a highly efficient Monte Carlo algorithm recently proposed by Newman and Ziff to
treat percolation problems. The site and bond percolations are studied on a number of lattices in two and three
dimensions. Quite good results for the wrapping probabilities, correlation length critical exponent, and critical
concentration are obtained for the square, simple cubic, hexagonal close packed, and hexagonal lattices by
using relatively small systems. We also confirm the universal aspect of the wrapping probabilities regarding
site and bond dilution.
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[. INTRODUCTION Unfortunately, for most lattices, one does not know the
exact wrapping probabilities and, in using them, the problem
Among the several methods for treating disordered sysmust be tackled in a different way. One of the wrapping
tems and geometrical problems, percolation theory is cerProbabilities—R{", which is the probability that a cluster
tainly one of the most important. Due to its similarities with Wraps around one specified axis, but not around the other
transitions that occur in many other systefnet only physi- ON€S—is particularly useful. In this case it is not necessary to

cal, but biological, social, etg.percolation has been used in know its exact value at the critical concentration for the in-
stuaies within a Ié\rge va,riety of fields. Forest fifds, bio- finite system, since it has a maximum from which the critical

logical evolution[2,3], epidemics[4], social influencel5], ~ PCINt can be obtained. The method, however, is indeed ca-
and dilute magnetisnié] are only a few examples of the pable to properly estimate the other wrapping probabilities

id licability of this th I lati which do not exhibit a maximurtin such cases there is just
wide applicabiiity of this theory, as well as percola i@ng., a crossing region close to the critical threshofdn the other
in porous medipitself [7].

. , . ._hand, as we will see below, there are still some probabilities
Although easily defined, percolation presents theoreticaj,, qimensions higher than two that present, besides the maxi-

and computational_difficulties. For ins_tance, the percol_atio_r].num, a crossing region from where critical behavior is also
threshold for the site problem on a simple square lattice igchieved.

not known exactly. Therefore, approximate solutions are nec- |n this work we compute the percolation threshold and the
essary, and much effort has been dedicated in this directiogorrelation length exponent, as well as the set of the un-
From the theoretical point of view, one can utilize mean-fieldknown wrapping probabilities using the Newman-Ziff algo-
[8,9] and renormalization groufdl0—13 techniques, among rithm. These quantities are evaluated by employing the usual
others. In particular, computer simulations constitute a powfinite-size scaling as well as a cell-to-cell scheh@]. After
erful tool in this area, since their application to percolation issummarizing the Newman-Ziff approach in the following
simpler than for many other problems in statistical physicssection we describe, in Sec. I, the method that enables us to
[14]. Typically, one can obtain a valid configuration by sim- evaluate such geometrical quantities and we apply it to site
ply populating sitegor bonds in a given lattice. To measure and bond percolations on the square, simple cubic, HCP
quantities of interest, such as the percolation threshold or thdexagonal close-packgdand simple hexagonal lattices.
mean cluster size, it is necessary to identify all clusters in thé&oncluding remarks are given in the final section.
configuration. For this purpose, many algorithms have been
developed, the best known perhaps being that devised by
Hoshen and Kopelmai5]. Other algorithms, like hullgen-  To determine the percolation transition, this algorithm
eration[16,17, can also be used, but only to answer someuses the wrapping probabilif,_ (p), which, for a given site
specific questions. More recently, Newman and Ziff pro-(or bond occupationp, is basically the probability that a
posed a new algorithrfiL8], which is general and quite effi- cluster wraps around a system with periodic boundary con-
cient, both in its computational requirements and in its accuditions on a lattice of linear dimensidn This wrapping can,
racy. Although the algorithm can be used to obtain anyhowever, be defined in various manners, each with its own
observable of the problem, in their papers they have used probability. For instance, on two-dimensional lattices one
to calculate the so-called wrapping probabilities to investi-has:(i) R{"™ andR{"), the probabilities that a cluster wraps
gate a number of aspects of the problem. For example, usinground the system in the horizontal or vertical direction, re-
exact values of the wrapping probabilities, a high-precisiorSpectively(on a square lattice these quantities are eqial
result for the site percolation threshold on the square lattic&®® . the probability that the cluster wraps around the lattice
was obtained18]. eitherhorizontallyor vertically (or both; (iii) Rf_b) for wrap-
ping in both horizontaland vertical directionsyiv) R(,_l) for
wrapping aroundone specified direction bunot the other
*Email address: phim@fisica.ufmg.br and pla@fisica.ufmg.br  one. Different lattices can allow for further geometrical

Il. THE NEWMAN-ZIFF ALGORITHM
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choices forR (p). For example, on a simple cubic lattice, 1-°
besidesR(™), we can defin&R{*) as the probability that there o
exists a cluster that wraps the system in two directions, but 08

not around the third one. Analogously & , we haveR(®)
for wrapping around the three directions.

In order to evaluate these quantities it is necessary to gen oz
erate many independent realizations of the algorithm, each o

0.4

0.0
them consisting of the following steps. 0
1.0

(2) Initially, all sites are empty. sl

(2) Sites are chosen to be occupied at random.

(3) When a new site is added, one must check all its 06
neighbors to verify if the new site forms an isolated cluster® 44
(all neighbors empty or if it joins together two or more
clusters. In the first case, we need to do nothing. In the latter
we have to update the cluster listing. Clusters are stored in ¢ 09
tree structure, with one site of each cluster considered the
root site. All sites in a given cluster, other than the root, have
a pointer to some other site in the same cluster, such that by
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FIG. 1. Wrapping probabilitie®, as a function of occupation

following a succession of such pointers one can ultlmateI)Pr(?bab”'ty for site percolation on: square lattices R™ and (b)

reach the root. In order to join two clusters we simply add .
pointer from the root of the smaller cluster to the root of the
larger one.

(4) Each time stef3) is repeated, we evaluate the quan-
tities of interestQ' as a function of the number of occu-
pied sitesQ|' may be any of the wrapping probabiliti& .

first occurs in a given realizatioQ|' represents the fraction
of realizations in whicm’ is less than or equal to. Using

): and hexagonal lattice&) R™ and (d) R("). For the square
lattice the data have been obtained by taking<4.0° MCS and
lattice sizesL =32, 48, 64, 96, 128. For the hexagonal lattice the
data have been obtained by taking:8100° MCS and lattice sizes
L=10, 12, 16, 20, 24. In all figures the error bars were omitted for
a better visualization. Vertical dashed lines represent the lowest and

¢ ° ! ~ the greatest values ¢f we have utilized for evaluating wrapping
Letn’ be the number of occupied sites for which percolationprobabilities.

provides the estimate qn% for thatL. In the critical region,

all Qs so evaluated, it is possible to calculate the functionone knows that the estimatpg converge to the thresholal,
Qv(p) for all possible values df in the range between 0 and according to

1 by a convolution with the binomial distributidd 8]:

N
QL(p)=§n) (n)p”(l—p)N”QE- (1)

pl(; —Pc L= l/V-

()

For square systems, using the known value 4/3 of the expo-
nenty and /=2, as obtained in Ref18], we havep:—p,

~L 4 By a finite-size scaling, Newman and Ziff obtained
For the bond percolation problem, we just replace sites byp.=0.592 746 21(13) for the infinite system. This procedure

bonds in the above steps.

is more complicated in higher dimensions. Since neither

The evaluation of the statistical errors can be done in aor v are known, one has to vary the scaling exponent to
conventional fashion. As discussed in Ref8] the standard obtain a straight line. In Ref/18], it was found that the

deviation of the binomial distributiofil) is given by

estimates of the percolation threshold for a simple cubic lat-

tice scale ag. ~2. Thus, it seems to be not so easy to deter-

Qu(P)1-Qu(p)]

Novcs @

Q. (M~

where Q, (p) in the above equation has been taken as th
mean value of the corresponding wrapping probability an
Nucs is the number of Monte Carlo steps per site.

As an illustration, we show in Figs.(d and Xb) the
wrapping probabilitiesR(,_h) and R(,_l) as a function of the
concentratiorp of occupied sites for square lattices of differ-
ent sizes. The exact valu&s,(p.) of these quantities for an
infinite square system were derived by Pin$@f] and Ziff
[21]. In Ref. [18] it has been used these exact values to
obtain an estimate for the percolation threshold For each
system sizd., one determines thp value yielding a wrap-
ping probability equal to exact critical value. Thisvalue
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mine v and @ separately by this method.
One has to notgFig. 1(b)] that R(,_l) is different from the
other probabilities, as it exhibits a maximum. In this caxe,
can be estimated from the position of this maximift is
hen of particular utility in systems, for which the exact val-
ues are not known. We will see, moreover, that all the other
wrapping probabilities can also be used to estimate the per-
colation threshold, as well as the correlation length critical
exponent, on any lattice. There are, in addition, some quan-
tities like R{® in three dimensions which exhibit both a
maximum and a crossing region.

IIl. APPROACH AND RESULTS

We have applied the Newman-Ziff algorithm to site per-
colation on the two-dimensional2D) square, the three-
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TABLE I. Lattice sizes and run length@ICS) used in this i i
work. The smallest and largest figures correspond to the total num-
ber of sites or bonds. In parentheses we have the corresponding 601 hexagonal ’
lattice sizeL.
3
Lattice Smallest Largest MCGinits of 16) T:.E 140 | i
: : ke] square
Site percolation e
Square 10282 16 384129 4.0 k=2
Hexagonal 4 09@.6) 21 95228) 1.0-10.0 o% 120 - _
Cubic 4 09616) 21 95228 1.0-2.0 o
Bond percolation
Square 2 0482 32 768129 2.0-4.0
HCP 7684) 20 73612) 5.0 1903 13 18
Cubic 12 28816) 52 72826) 0.1-0.5 log,, L

FIG. 3. Maximum derivative of wrapping probabilitieRY’ for

. . | simole h | . | site percolation on the square lattice @it for site percolation on
dimensional simple hexagonal and simple cut8®) lat- the hexagonal lattigeas a function of system size. Error bars are

tices, and to bond percolation on squé2®), simple cubic,  gmajler than the symbol sizes. Linear regression of the data gives

and HCP(hexagonal c_Iose-pack)_athtticeS. Table | gives the  ;,—1 334(4) for the square lattice amd-0.866(1) for the hexago-
system and sample sizes used in our study. nal lattice.

Before discussing the results, we analyze the standard de-
viation of some particular quantities. Figure 2 shows thesions where the exadbr more accurajeresults are avail-
relative error ofR(") for the square lattice anR( for the  able. From Fig. (a) one sees that the derivativeR{" at the
hexagonal lattice as a function bf at the critical concentra- critical concentration increases as the lattice size increases.
tion. Apart from a strong dependence with smhjl we |n fact, one expects that the maximum derivative of any
clearly see that for larger lattice sizes the relative error isyrapping probability not exhibiting a maximum scales as
almost independent df, as predicted by Eq2) and previ- [22]
ously stressed by Newman and Ziff8], even for the three-
dimensional hexagonal lattice. Similar behavior is found for dR.
other wrapping probabilities, other three-dimensional lat- d_p
tices, as well as for the bond problem in different lattice
structures. Thus, the critical exponent can be estimated without any
Let us now discuss the evaluation of the critical exponentconsideration of the critical concentratigny by taking the
the percolation threshold, and the wrapping probabilities. Irscaling behavior of the derivatives of the thermodynamic

order to get an idea of the performance of the present aguantitiesR, . They can be straightforwardly computed from
proach, we will first apply it to the problem in two dimen- relation (1)

) NL]./V. (4)

dQ N N

3 T _L= n—-1:14 _ N—n__ _ n

@ dp 2[(n)np (1-p) (n)(N n)p

SiEl 1

o X(1=p)" " QL. 5
s 1r 1

aé" In Fig. 3 we plot, on logy, scales, the maximum value of the

s derivative ofR(L”) as a function of system size, for site per-
({ %0 . 100 1?0 colation on the square lattidghe hexagonal lattice will be
! discussed later a linear fit yields »(*)=1.3344). Other
quantities give independent estimates of the expoftet
corresponding data are too close to thoseRﬁYP to be dis-
tinguished on the scale of Fig).3We find »"'=1.3312);
1r . v(P=1.3394); and »(®=1.3271). Combining these four
estimates we obtaim=1.3335), in very good agreement
0 : ' ' with the exact result 4/3.
° 10 1|_5 20 % Figure 4 illustrates the approach for evaluating the critical
concentration, as well as the wrapping probabilitiepat
FIG. 2. (a) Relative error ofR{"), whereAR{") =0 for site  applied again to the site percolation problem on the square
percolation on the square lattic) Relative error ofR™ , where lattice, through a cell-to-cell estimate. For a fixed probability
AR(LX)=0RE for site percolation on the hexagonal lattice. occupatiorp, we compute the specified wrapping probability
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FIG. 4. Wrapping probabilityR{") as a function of the lattice FIG. 5. Wrapping probabilityR®™ as a function of the lattice
sizeL for site percolation on square lattices. Different lines corre-size L for site percolation on hexagonal lattices. Different lines
spond to different concentrations The best constant horizontal correspond to different concentratiopsThe best horizontal line is
line is represented by full triangles yielding,=0.5928(2) and represented by full triangles, yielding.=0.2624(4) andR{
R("’=0.5234). Error bars are smaller than the symbol sizes. =0.4295). Error bars are smaller than the symbol sizes.

as a function of the lattice size. Figure 4 shoR/S) as a uitous in the literature. In particular, we treat the simple cu-
function of L. For p<p., R(L“) decreases with increasing bic, simple hexagonal, and the HCfhexagonal close-
lattice size. Fomp>p,, it increases. Exactly gb, one ex- packed lattices. To our knowledge, there are no results
pects the wrapping probability to be independent of systenavailable for the wrapping probabilities on such geometries
size. Thus, by varying in the critical region and searching as well as no indication of their universal aspect regarding
for a constanR{") we obtain an estimate fqr,. The vertical ~ site and bond dilution.
dashed lines in Fig. (&) represent the limits on the values As an example, we show in Figs(cl and Xd) the wrap-
studied. From the data f&®"?, in Fig. 4, we have thep,  ping probabilitiesR{” andR{" as a function op for various
=0.5928(2) and?(”)—o 5234). Combining this estimate lattice sizes, for site percolation on the simple hexagonal
with those coming from the other quantities we obtain thelattlce The corresponding scaling behavior of the derivative
values listed in Table II. The results are quite close to thedf R( is depicted in Fig. 3; an estimate for the critical ex-
exact or expected ones, despite the small systeinss upto  ponentr may be extracted from these data. In Fig. 5 we
128x128) and short rungsee Table )l Table Il also gives show the estimate fqu. as well as the value of the wrapping
the results obtained from the present procedure to the borrobability R™ . The combined results are listed in Table Il
percolation problenfwhich is easily implemented in the al- together Wlth the values for the simple cubic lattice and those
gorithm) with an excellent estimate of the known critical obtained for the bond percolation on the HCP and simple
concentration. Moreover, the wrapping probabilities, withincubic lattices. One can clearly see that the wrapping prob-
the error bars, are the same for site and bond problems, coabilities are distinct for different geometries, as is the critical
firming the universal character of these quantities. concentration. Not only are oy, estimate comparable to
Having demonstrated the good performance of theéhe values obtained previously, but the critical exponents
method in cases where exact results are available, we studiéaund here are close to the expected result for this universal-
some three-dimensional lattices where data are not so ubidgy class, namelyy=0.83(5) from serie$23], »=0.88(1)

TABLE II. Results for site and bond percolation on the square lattice. Errors in parentheses affect the last
digits. For each case, the first row shows the results described in Sec. Il and for the second row those from
the modified approach briefly discussed in Sec(itthe latter method the exact value for the exponent

is used.
Two dimensions
Lattice RM R®) R R(®) v p. (this work) Pe
Site 0.5174) 0.5234) 0.6943) 0.3474) 1.3335) 0.592 11) 0.592 7@
0.5219) 0.5246) 0.6957) 0.3535) 0.592 93) 0.592 72
Bond 0.5212) 0.5183) 0.691(3) 0.3512) 1.3313) 0.499 9%15) 1/2°
051711 0.51913) 0.68416) 0.3486) 0.499 §4) 1/2P
Exact? 0.5211 0.5211 0.6905 0.3516 4/3
3Referencd 18].
bReferencd 24].
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TABLE Ill. Results for site(s) percolation on hexagonal and simple cubic lattices and for onpercolation on simple cubic and HCP
lattices. Errors in parenthesis affect the last digits.

Three dimensions
Lattice RX) RY) R® R® R® v P (this work) Pe

Hexagonal(s) 0.4295) 0.3325) 0.1834) 0.46716) 0.1203) 0.86714) 0.262 52) 0.26232)
Simple cubic(s) 0.2545) 0.2555) 0.2545) 0.45@7) 0.0783) 0.87112) 0.311 §3) 0.311 60689) °
Simple cubic(b) 0.2656) 0.2646) 0.2656) 0.4718) 0.0844) 0.86811) 0.249 @2) 0.248 81265) °

HCR(b) 0.3316) 0.4436) 0.0933) 0.5617) 0.0523) 0.84833) 0.120 32) 0.11992) 2
3Referencd 25].

bReferencd 26].

‘Referencd 28].

[7], v=0.8765(16)[26] and »=0.893(40)[27] from Monte IV. CONCLUDING REMARKS

Carlo simulations. . .
. We have seen that the results obtained using the present
The data of Table Il are, up to our knowledge, quite new 9 b

. . . method are in good agreement with the exadben avail-
for these three-dimensional lattices. A byproduct of theable or expected ones. It is important to note that this pro-

present results concerns the universalityRyf(pc) at the  ceqyre has been implemented using relatively small systems
percolation threshold. One can clearly see that for site 0pnq short Monte Carlo runs; better results could be achieved
bond percolation the wrapping probabilities of the simplejn |arger-scale simulations. In addition, from the computed
cubic lattice are, within the error bars, the satas well as  wrapping probabilities ap, for the square and simple cubic
for the problem in two dimensions depicted in Table Tihis  |attices one can also confirm their universal aspect regarding
is in quite good agreement with the expected universal aspesite and bond dilution. The same should hold, of course, for
previously obtained for the spanning probability in generalthe other lattice geometries.
dimensions and with both free and periodic boundary condi- A slightly modified version of the present procedure, not
tions[29]. using the cell-to-cell estimate, can also be applied to prob-

Another interesting aspect of the three-dimensional latiems on two-dimensional lattices. Instead of tunimgone
tices is the behavior of the quantiB{z)(p) giving the prob-  can tune one of th&, in the critical region. For a given
ability of wrapping around two directions and not around thequantity R, (say, for exampleR{") we fix it at a specified
third direction. Figure 6 shows such behavior for the simplevalue R* on the vicinity of the critical point, and proceed
cubic site diluted problem. In this case one can obtain amnalogously to Newman and Ziff's original approach. Ob-
estimate of the critical concentration not only from the posi-serve thaR* is in this case a first estimate f&..(p.). One
tion of its maximum but also from the crossingspat It is can then compute, for eath the intercept between the func-
noted, however, that a more accurate value is achieved fronion R, (p), previously evaluated, with the fixeRl . Each of
the analysis of the crossingas done in Fig. bthan from the  these intercepts gives an estimate fior, which is expected,
location of its maximum. The same behavior occurs for othefor two-dimensional systems, to scale &s¢ with ¢
lattice structures. =11/4. Therefore, plotting’ vs L =14 for different values

of R*, we can estimate the trie, as well as the percolation

: ' threshold by looking for the value &* that yields the best
straight line. Table Il reports the critical values so obtained
for the two-dimensional lattice. The results are quite good
and comparable to those obtained in the preceding section
0.20 ] for both the wrapping probabilities and the critical concen-
tration. However, the errors are in general considerably

16

=
s larger. In three dimensions this procedure can be imple-
o mented only if we know the exponet beforehand.

0.10 - 1
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