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Anomaly of the height-height correlation functions in self-flattening surface growth
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By Monte Carlo simulations and scaling theories, we consider the height-height correlation function
G(r,t;L) of the one-dimensional equilibrium self-flattening surface growths, where the depdstiapora-
tion) attempt only at the globally highedbwes) site is suppresse@(r,t:L) is shown to satisfy the anoma-
lous scaling behavio®(r,t;L)=L2%g,(r/L%t/L? or G(r,t;L) =t2Ag,(r/t¥' ,L/t"?). Herea, B, andz are
the roughness, growth, and dynamic exponents, respectively, for the surface widtl,=it3 andz= o/
=3/2. Anomalous exponents and§ are found to satisfg’ =9/4 andé=2z/z'. We also show that anomalous
behavior of G(r,t;L) can be understood from a scaling theory based on the competition between local
random-walk-like behavior and the global-length-scale suppression.
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The equilibrium and dynamical properties of surfacesHowever,gg(x) of some growth modelgl,4—6 have been
have been studied extensively due to the theoretical impoishown to have an anomalous behavior wkenl, such as
tance of the scaling behaviors of statistical systems in addi-
tion to practical reasons of predicting the long time, large ga(X)~x*% for x>1. 4
scale surface morpholodyt]. For most surface models with
a stochastic dynamics such as growths, evaporations, or flughis anomalous behavior means that the corresponding
tuations with thermal noises, it is known that the surfacegrowth models have different roughening behaviors for local
configurations show scaling behaviors. The dynamic scalingr short length scalei{ <L) from that for the global length
hypothesis is that in a finite system of lateral sizethe  scaleL.

standard deviation or the root mean squ@nes) fluctuation In this study, we want to report another kind of the
W of the surface height starting from a flat substrate scales eanomalous behavior d&(r,t;L), which arises from the re-
[1-3] gime of the global length scale. We stu@(r,t;L) of the
self-flattening(SP surface growth$7], which is believed to
W2(t;L)=L2%g(t/L?), (1)  be physically related to the recently developed other surface

growth models with the global constraif®-10]. The self-

wherea andz are the roughness and its dynamic exponentdlattening model is the same as the restricted solid-on-solid
respectively. The scaling function has the asymptotic form ofRSOS model[11,12 except for one variation to incorpo-
gw(x) ~x?? for x<1 andgy(x) ~ const forx>>1 so that the ~ rate the global suppression: only when depositievepora-
width W(t;L) increases a#? initially (t<L? and saturates tion) is attempted at the globally higheowes} site, is the
to L® for t>L% whereB=alz. attempt accepted with probability and rejected with prob-

Another way to characterize the roughness of a surface i8Pility 1—u. At u=1, the ordinary RSOS model is recov-
through the height-height correlation functi@xr,t), de-  €red. In equilibrium when the deposition attempt probability
fined by the rms height differences between two sites sepd? iS the same as the evaporation attempt probabijjtsF
rated by the distance For stochastic dynamic modelg], ~ 9rowth models produce an ensemble of RSOS surfaces with

G(r,t) also shows a similar dynamic scaling behavior, ~ @n exponentially decreasing weight for increasing surface
width. The equilibrium SF model in a one-dimensiofiD)

@) substrate haa = 1/3 andz= 3/2[7], whereas the equilibrium
ordinary RSOS model belongs to Edwards-Wilkinson univer-
sality class witha=1/2 andz=2 [13].

Our measurement d&(r,t;L) for the 1D equilibrium SF
model shows an anomalous behavior. For the early-time re-
gime (t<L?%, G(r,t;L) is found to satisfy Eq(2) with dif-
ferent scaling exponenta’=1/2(+«) and z' =9/4(+2).
Furthermore we founds(r,t;L) for the saturation regime

G(r,t)=r2«"gg(t/r?),

wherea’ andz’ are the wandering exponent and the wan-
dering dynamic exponent, respectively. Normaly= « and

z' =z are expected. The scaling function is also normally
expected to have the following, asymptotic behavior:

x26  for x<1

9s(X)~ &) (t>L? is found to show the scaling behavi@(r,t;L)
G const for x>1. =L2%f(r/L°% with 6=2/3. These anomalous behaviors for
G(r,t;L) will be shown to be understood from a scaling
theory based on the competition between the local random-
*Corresponding author. Email address: ykim@khu.ac.kr walk-like behavior and the global constraint.
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The dynamic properties of the equilibrium SF model are 40 F '

studied by Monte Carlo simulations. Since the finite size o0 | ]

effects on the height-height correlation functions are strong 0

when periodic boundary conditions are imposed, free bound-
ary conditions are applied. Starting from a flat surface, i.e., 4

G
[=2]
T T TTTTTT

hy=0 for allk=1, ... L att=0, whereh, is the height of x
thekth column, a site is chosen randomly. Since we study the 2 .
equilibrium SF model only, we try to add or subtract the 1 ] "1'0 '5'0

column height by one with the same probability 1/2, i.e., we
set p=q=1/2 throughout the simulation. If the height
change violates the RSOS condition, the tried attempt is re- FIG. 1. The height-height correlation function for the ordinary
jected. Otherwise, we check if the height change brings @quilibrium RSOS model withu=1 [11-13 in the saturated re-
new extremal height. If it does not, the new configuration isgime (>L?. The solid line given byG(r;L)=3r fits the data
accepted with probability 1. If it does, the acceptance probperfectly, indicating the wandering exponent=1/2.

ability of the new configuration is reduced by a factor of

u(<1).

=3/2. Although the exponents are are different from the con-

For the equilibrium RSOS model without the suppressiorventional values otx=1/2 andz=2 for the random-walk-

(u=1), it is well known that thew? follows the scaling
form of Eq. (1) with a=1/2 andz=2 [13]. We measure the

height-height correlation functioB,(r,t;L) at sitek defined
by

Gi(r,t;L) =([ () = s (D 7). (5)

like surfaced[13], they satisfy the generic scaling form of
Eq. (1) very well.

However, the height-height correlation functio@g(r;L)
in the saturated regimet%LZ') for u=1/2 shows quite dif-
ferent behaviors from the conventional cases. According to
the generic scaling form of Ed2), G4(r;L) is expected to
be the form of

If one uses the periodic boundary condition for the simula-
tion, G,(r,t;L) is expected to be independent lofbut the

finite size effector the dependence db,(r,t;L) on the . . .
system sizeL] are rather strong for most of (say, r in free boundary cond|t|on sin@r;(x) in EqQ. (2) becomes a

>L/10) for the feasible system sizes. Therefore, we use theonstant for largex(t>r?') for the conventional cases. Fig-

free boundary condition and meas@g(r,t;L) for different ~ Uré 2 shows that this is not the case for our model with
k values. Unlesk or k+r is very close to the boundary sites, =1/2. The saturated height-height correlation functions

~ ] . ... Gg(r;L) are shown in(a) for the system sizek =32, 64,
Gy(r,t;L) for systems with the free boundary .cond|t|on, is 128, 256, and 512. We note thay(r:L) doesdepend on the
also expected to be independentkofWe numerically con-

firm that this is the case—no noticeable differences in

Gy(r,t;L) are observed for different values kfunlessk or
k+r is very close to or at the boundary sites. We measure

Gy(r;L)~r2® @

20:

Gy(r,t;L) for r<L/2 overL/4 different values ok=(L/8) T 10¢
+1,(L/8)+2,...,(2/8) and then average them to obtain o
G(r,t;L):
3L/8 1
Grtl=r > hdrtL). (6)
k=(L78)+1

Figure 1 shows the saturated height-height correlation func-
tion G4(r;L)[=G(r,t>L?%] for u=1 with the systems sizes
L=32, 64, 128, and 256. All the data collapse to a single
curve andGg(r;L) increases linearly withr indicating '
=1/2. In equilibrium, the model withi=1 corresponds to a
random walk and therefor&4(r;L)~r is expected11,12. 0.01¢ -
The solid line given byG4(r;L)=2r fits the data perfectly. el
There is no finite size effect due to the free boundary condi- 001 0'1r/L5 !
tion.

We now apply the same analysis for the SF model with F|G. 2. The height-height correlation functions for 1/2 in the
u=1/2. By simulations using free boundary condition andsatyrated regimet&L?). (a) G(r;L) for the systems of sizels
the system sizek =16, 32, 64, 128, and 256, we first con- =32, 64, 128, 256, and 512 are shown in logarithmic sc¢alThe
firmed that the surface widthV(t,L) satisfies the generic rescaled height-height correlation functiGg(r;L)/L?* against the
scaling form very well, W(t;L)/L%, with «=1/3 andz  rescaled distance/L’® with «=1/3 andé=2/3.

0.4k

G.(n /2
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system size. being different from the case of=1. Further-
more,Gg(r;L) is not linear in a log-log scale plot, implying
that it does not follow the scaling behavior of E@). There

seems to be another length scale over which the scaling an-
satz of Eq(7) should be modified. We rescale the correlation

functionsG4(r;L) by L2% andr by L? with §=2/3, and find
a nice scaling plot. In Fig. ®), G4(r;L)/L?* are plotted
againstr/L°. All data collapse to a single curve, implying a

new scaling law for the saturated height-height correlation

function:
Gg(r;L)=L2*f(r/L?). (8

Note f(x):xza'(a’=1/2) for x<1 andf(x)=const forx
>1. In other wordsG(r;L) increases as* for r<L?,
and reaches a constant value forL® with 6=2/3. This
implies that the saturated correlation lengéy(L)=&(t
>L17) is not the system sizk but only L°. There is a win-
dow of the new length scale®. Roughly speaking, the sur-

face shows a random-walk-like behavior up to the window 1.0 ¢ - - -
size, and then feels the global constraints of the suppression F (C)

over the window size.
Our analysis on the early tima<€L?) behavior of the

height-height correlation function also supports the conjec-

ture for &(L)~L?. Figure 3a) showsG(r,t;L) for an L
=1024 system at 16 different timeg=1,2,2,...,2!°
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=32768. When the height-height correlation functions at 10° 102 100 10 10!

small t[ §(t)<<&4(L)] are rescaled according to the scaling

form of Eq. (2) with o'=1/2 and z’'=9/4 (B=a'lZ’

r/t1/z'

FIG. 3. (a) Height-height correlation functions(r,t;L) for the

=2/9), they collapse to a single curve representing the early —= 1024 system fot=1,2,2, ...,2'5. (b) The rescaled height-

time scaling,
G(r,t; L) =t?Pf(r/tY?), 9)

as shown in(b). The correlation length grows a¥” at the
beginning and saturates t&® when it hits the window size

((t9¥# ~L?), where the saturation timg is estimated by

ts~(L%)Z ~L% . This should be the same as the saturatio
time for the surface width which is given ly according to
Eq. (1). Therefore, we have

z'=12/6. (10

Forr>tYz sinceG(r,t;L) is independent of, we expect
G(r,t;L)~t2"Z It should be proportional taV3(t), so
that

a'lz' =B. (12)
From the relatiom’/z' = B= alz we get
a'=allb. (12

However, as shown in the inset of Fig(b} the same
rescaled height correlation functioBgt?# do not collapse to

n

height correlation functiols(r,t;L)/t?# plots against the rescaled
distancer/t¥?" with B=2/9 andz’ =9/4 (o' =1/2) for smallt
<21%<| 2 The height-height correlation functions at different
times collapse to a single curve, indicating the validity of & for
smallt. The inset shows the same rescaled height correlation func-
tion vs the rescaled distance for all 16 different valuegsp'®
=L% The deviations from the smailcurve is clear for largé. (c)
G(r,t;L)/t28 vs r/tY2" with L/tZ3=2 att=23, 26 2° 212 and

215, All data collapse to a single curve indicating the validity of Eq.
(15).

We investigate the dynamic scaling behavior of the
height-height correlation functions for genetakith a scal-
ing ansatz foiG(r,t;L). Since our model has a global con-
straint of extremal height suppression, we introduce a gen-
eral scaling ansatz where the system size can scale
differently from the local length,

G(r,t;L)=b2*'G(b r,b~%t,b~14L), (13)

whereb2¢' =%, andb~ 1 are the scaling factors for the
height correlation function, time, and system size, respec-

a single curve for largé. We can see the clear discrepancytively.

between the rescaled plots aapproaches ta.*. (The data

We first show that the choice of the above scaling factors

for t<L” are shown here. The deviation becomes even largeteproduce the scaling behaviors of E@¥) and (8). If we

for t>1L%)

choosep=L?, Eq.(13) becomes
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G(r,t;L)= LZ‘S“/G(L“Sr L —67't 1) length scaleg (L,t), beyond which one cannot see any local
v ' ' correlation or global constraint& (L,t) should satisfy
t
— LZDz —,—. 14 tl/Z for t< LZ
91| 5 Lz) (14 (L)~ (16)

L for t>L%

Now, the scaling of Eq(1) is obtained by considering the
spatial average dB(r,t;L) sinceW?(t;L) is proportional to
the average. Figure 2 can be also understood from(E4j.
by_considering a— oo !imit.. For a give system size, the G(r,t;L):G[r’E(L’t)]:bZa’G[b—lr’b—ﬂ&E(L’t)].
height correlation function is expected to be saturated even-
tually and, therefore, thg— oo limit of the scaling function (17
g1(x,y) must be exist. This limit if(x) in Eq. (8). By takingb=L? andE =L for t>L? we can reproduce the
The dynamic behavior of the height-height correlationscaling relatiorG(r,t;L)=L2?*f(r/L?%) [Eq.(8)] for the satu-
function is obtained by considerinm=t?" case of Eq(13).  ration regime from Eq(17). We can also reproduce the scal-
Then we have ing relationG(r,t;L) =t2Af,(t/r2") [Eq. (9)] for the early-
) time regime from Eq(17) by takingb=t?" and= =t for

Now assumeG(r,t;L)=G(r,E(L,t)). ThenG(r,t;L) res-
cales as

r L

1 t<L? From this result, we can understand that the anoma-
tl/Z” ,tllﬁZ,

lous behavior ofG(r,t;L) comes from the competition be-
tween local the random-walk behavior and the global sup-
2p r L pression. A similar behavior has also been found in the sort
=179, t17t17 : (19 of the local structure function of even visiting random walks
[8].
To check this dynamic scaling behavior, we consider the In summary, we measured the wondering exponeht

height-height correlation functions with fixed/t*2. Then ~1/2 and its dynamic exponent~ 9/4 from the height cor-
the rescaled correlatio®(r,t;L)/t?# should be a function of relation function for our model. These values are different

from the roughness exponeat=1/3 and its dynamic expo-
nent z=3/2 of the surface widths. This anomalous scaling
behavior can be understood by assuming that the saturated
correlation length is given by® with §=2/3. The correla-

tion length grows as'#’, and approaches a window sizé
asymptotically. We show that the usual way of determining
the universality class of surface model by the scaling behav-
ior of the surface width only can miss many important scal-
ing behaviors of the model.

G(r,t;L)th“"Z'G(

the the rescaled distancét? only. We measuré&(r,t;L)
for five different system sizes with/t*?=2, L=2% at t
=23 L=2%att=25 L=2" att=2° L=2%att=2%
andL =2 at t=215 and plotG(r,t;L)/t?# againstr/t'*".
As shown in Fig. &), all the scaled data collapse to a single
curve supporting the scaling behavior of Ef5). Note that
Fig. 3(b) implies thatg,(x,y) becomes independent gffor
largey or t<LZ? This g,(x,y) for largey corresponds to
fi(x) in Eg. (9). However, it depends ow in general, as
shown in the inset of Fig.(8). This research was supported in part by Grant. No R01-
One of the easy ways to understand the anomalous scalirgp01-000-00025-0 from the Basic Research Program of
behavior of G(r,t;L) is the scaling theory based on the KOSEF and Soongsil University.
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