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Phase diagram of symmetric binary mixtures at equimolar and nonequimolar concentrations:
A systematic investigation
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We consider symmetric binary mixtures consisting of spherical particles with equal diameters interacting via
a hard-core plus attractive tail potential with streng#s, i,j=1,2, such thate;;= €,,>€;,. The phase
diagram of the system at all densities and concentrations is investigated as a function of the unlike-to-like
interaction ratiod= €1,/ €1, by means of the hierarchical reference theory. The results are related to those of
previous investigations performed at equimolar concentration, as well as to the topology of the mean-field
critical lines. Asé is increased in the interval06<1, we find first a regime where the phase diagram at equal
species concentration displays a tricritical point, then one where both a tricritical and a liquid-vapor critical
point are present. We did not find any clear evidence of the critical end point topology predicted by mean-field
theory asé approaches 1, at least up #=0.8, which is the largest value & investigated here. Particular
attention was paid to the description of the critical-plus-tricritical point regime in the whole density-
concentration plane. In this situation, the phase diagram shows, in a certain temperature interval, a coexistence
region that encloses an island of homogeneous, one-phase fluid.
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[. INTRODUCTION the features of their phase behavior hinge on the invariance
with respect to the exchange of the two species, and are not

A major difference between the phase behavior of onefound in the phase diagram of real mixtures. As has already

component fluids and binary mixtures is that, even if ong?€en observedll], symmetric mixtures are better seen as a

considers just simple systems with a spherically symmetricandel for a one-component fluid, whose particles have been

Lennard-JonestLJ) like interaction profile, the qualitative endowed with a two-state, spinlike variable in addition to

features of the phase diaaram of mixtures depend very se their translational degrees of freedom, so that their mutual
P 9 P Y S€lkteraction depends both on their relative position and on

sitively on the parameters of the microscopic potential. If theyqir “internal” state, namely, whether the interacting par-
interaction between a particle of specieand a particle of cles belong to the same species or not. As such, this model
specieg is modeled as the sum of a hard-core repulsion angnixture is closely related to other models of dipdl2y3] and
alonger-ranged attractive tail, the relevant parameters are theagnetid4—7] fluids, especially Ising-spin fluid8—10]. In
hard-sphere diametets; and the strengths;; of the attrac-  these systems, the phase behavior results from the interplay
tive contributions,i,j=1,2. This parameter space is drasti- between the liquid-vapor phase separation and the additional
cally reduced by focusing on a particular class of systemsransition, e.g., para-ferromagnetic, associated to the spinlike
generally referred to asymmetric mixturessuch thato;; degrees of freed_om. In symmetric mixtures, the latter corre-
= 0= 01p= 0, €11= €= €. Since the quantities and e sponds to the mixing-demixing transition.

can be included into the definition of the temperattirand Because of the relative simplicity of this model compared

e . ) .. to a generic binary mixture and of the possibility of generat-
number densitiep; by introducing standard reduced units ing the whole spectrum of phase diagrams by acting on just

pi=pio®, T*=kgT/e, kg being the Boltzmann constant, it one parameter, symmetric mixtures have been widely studied

follows that the only parameter affecting the phase diagranpoth by mean-field theorjl] and by numerical simulations

is the ratio of the interaction strengths between unlike andi1,11-16. A situation which has been given special attention

like speciesd= e,/ e. is that of equal species concentration=p,/(p1+ps)
Clearly, symmetric mixtures appear quite artificial when=1/2. In this case, accurate numerical simulatiphshave

considered as a model of real binary fluids. In fact, some ofjualitatively confirmed the mean-field scenario for the phase
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diagram as the parametéris varied in the interval &5  fluids. This theory has already been successfully applied to
<1. This will be considered in detail in Secs. Ill and IV. the description of the critical behavi¢t7], crossover phe-
Here, we just recall that the mean-field phase diagram dtomend17,18, and phase diagrafi9] of simple fluid mix-
equal species concentration presents both a first-order coeirés. Few results for the phase behavior of symmetric mix-

: : ) : : ures have also been report¢d9,20, but a systematic
sence by whchsepastes aowdensty T fom 122 U818 355,051 [OOEO, b p et

. " . . . yet. In our opinion, HRT is especially well suited for such a
demixing critical points. Beyond the line, the fluid actually study, with particular regard for the tasks stated above. In

consists of two demixed fluids in equal amounts, one at act,"the aim of this approach is determining how the Helm-
certain concentratiorx, and the other at concentration 1 holtz free energy of the mixture is affected by the introduc-
—X, so that the overall concentration of the two species retion of de_nS|ty and concentration fluct_uatlons. This is
mains the same. For large enough(s,<o<1 with & achieved via a renormallzanon-gro(lEG) like procedure, .
—0.708 according to the mean-field resid) the coexist- where the long-wavelength Fourier components of the mi-

ds | liauid itical poi hile 1h croscopic interaction are gradually introduced into the hamil-
ence curve ends into a liquid-vapor critical point, while e 1,3 of the mixture. Any intermediate stage of this process,

line intersects the coexistence curve at a point of first-ordeg,ch that only Fourier components with wave vectors ex-
transition, thereby terminating into a critical end point. At ceeding a certain cutof® have been taken into account,
small § (0< 6< 5, with §,=0.605 in mean fieldl1]), on the  physically corresponds to suppressing fluctuations on a
other hand, the point at which the coexistence curve meetgngth scaleL>1/Q. Long-range fluctuations are recovered
the \ line coincides with its critical point. The latter is then in the limit Q— 0, when the free energy of the fully inter-
referred to as a tricritical point, since on approaching thisacting system is obtained, while the mean-field free energy
point from low temperatures, one observes the simultaneougnters as the initial condition &=cc. The main advantage
coalescence of three phases, namely, the low-density vap6f HRT over other liquid-state theories is that it embodies
and the two demixed high-density fluids. Finally, in a narrowseveral features of the RG description of critical phenomena
interval of § values 5,< 5< &, intermediate between those N @ treatment based on the microscopic Hamiltonian of the
corresponding to the two topologies described above, onfBuid- These include scaling, nontrivial critical exponents,

has the occurrence of both a liquid-vapor critical point and 2nd the correspondence between universality classes and dif-
tricritical point q P P erent fixed points of the RG floWl7]. A fact of particular

Despite the qualitative agreement between the mean—fielﬁﬂevarf“fe for the in\f/lestigat.ion pﬁrsueﬁi hefrfe is ﬂ;at the inc;lu—
: . : . ion of long-range fluctuations has the effect of preserving
scenario and the simulation results, there are still sever : .
points that deserve further investigation. First, mean-fiel e correct convexity of the free energy in the whole thermo

. ; . o ~“dynamic space. Whenever phase coexistence occurs, one
theory and simulations show considerable quantitative dISay b b

. . o -~ ~does not find any domain of instability as in the mean-field
crepancies, which concern both the position of the C”t'calapproximation, and the conditions of thermodynamic equi-

loci and the values oé at which the changes in the topology jibrium between the phases at coexistence are enforced by
of the phase diagram occur. This is in itself not surprising, asne theory itself. At each given temperature, the coexistence
mean-field theory cannot be expected to be quantitativelyegion is then immediately recovered as the locus in the
very accurate. Therefore, one would like to go beyond it bydensity-concentration plane where the chemical potential of
means of a theoretical treatment which includes fluctuationgach component is constant along the lines of fixed pressure,
in the order parameter of the transition, be it of the liquid-with no need of imposing this conditioa posterioriby a
vapor or mixing-demixing kind. Two relevant issues in this Maxwell construction. For binary mixtures, the latter proves
respect are whether the mean-field scenario is qualitativelyo be quite cumbersome already at the mean-field level, and
recovered even after fluctuations have been taken into a¢gs much more so for more sophisticated integral-equation
count, and which is the extent of the quantitative changesheories, in which the occurrence of phase separation gener-
involved. Moreover, the case of equal species concentratioally entails the presence of some forbidden domain, where
corresponds just to a certain plane, albeit undoubtedly ofhe theory cannot be solved at all. Therefore, the ability of
special interest, of the space of thermodynamic states. Simutraightforwardly mapping the phase diagram is a valuable
lation studies of the phase diagram have indeed been pessset of HRT. This is especially true in the present case
formed also at fixed density and variable concentration  where the topology of the phase diagram is very sensitive to
[14,1€], but mapping the phase diagram in the whole therchanges ins, while at the same time, as will be seen in the
modynamic space for different values of the parameier following, the features that allow one to discriminate be-
would require a very large number of simulation runs, andween different topologies are often detectable only in a nar-
therefore hardly appears as a viable strategy in view of theow window of the thermodynamic space. Because of the
computer time required. It is then tempting to resort to theorylack of a solution defined for everyl(p,x) state, pinpoint-
in order to explore the phase diagram at general density an@g all these features by conventional integral-equation theo-
concentration and find out how it changes by changingo  ries would undoubtedly prove extremely difficult, perhaps
as to see what the phase diagrams corresponding to the thregen impossible.
regimes outlined above look like, as one moves away from In this work, we have considered symmetric mixtures of
the x=1/2 plane. additive hard spheres interacting via an attractive Yukawa
We aim to address these topics in the present work byail potentialw;;(r) = —oe;e %"~ Y/r, wherer is the in-
means of the hierarchical reference the@dRT) of binary  terparticle distance anzlis the inverse range of the interac-
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tion, which has been fixed to the value- 1.8 for both like  tem. For a hard-core plus tail potential, the natural choice for
and unlike species. This hard-core Yuka@#CY) form has the reference system is just a binary mixture of additive hard
been preferred to the square-well potential used in Rgf.  spheres, which can be described by the Mansoori-Carnahan-
The latter lends itself well to simulation, but the very slowly Starling-Leland equation of staf@5] and the corresponding
decaying behavior of its Fourier transform makes it someVerlet-Weis parametrization for the two-body correlations
what tedious to use in HRT. The HCY potential has alread){26,27]. We remark that here we will not be concerned with
been adopted in a number of studies of symmetric mixturea possible demixing transition occurring in the hard-sphere
based on the mean spherical approximatig$A) [21], the  mixture, since such a transition may come along only as a
optimized random phase approximati@RPA) [22], and  consequence of depletion interactions when the particles dif-
the  self-consistent  Ornstein-Zernike  approximationfer widely in size. In the present case of equisized particles,
(SCOZA) [23], all of which yielded for the phase diagram at the reference system reduces to a one-component hard-
equimolar concentration the same behavior found in mearsphere fluid, and all the fluid-fluid transitions displayed by
field theory. The scenario that comes out of our investigatiorthe system are necessarily due to the attractive perturbation
by HRT agrees qualitatively with the mean-field one in pre-w;;(r). The HRT differs from the conventional liquid-state
dicting that, ass is increased, the phase diagram at equimo-approaches in the way this perturbation is dealt with. In order
lar concentration exhibits first a tricritical point, and subse-to accurately describe the long-range fluctuations that are
quently both a tricritical and a liquid-vapor critical point. important in criticality and phase separation, the attractive
However, we did not find any clear evidence of the occur-part of the interaction is switched on gradually by introduc-
rence of the mixing-demixing critical end point given by ing a Q systemwith a modified interactiorvi?(r)=uﬁ(r)
mean-field theory a$ approaches 1, at least up &-=0.8, +Wi‘j?(r), where wﬁ’(r) is defined in such a way that its
above _which further invest_igation i_s hindered by the finite g, ey transformw2(k) coincides with that of the original
resolution of the density grid used in our numerical calcula- _ 2L .
tion. Besides the scenario sketched above at equal speci@gract've pqtentlawvij(k) for k>Q.’ anql vanishes fok

Q. Inspection of the diagrammatic series of the Helmholtz

concentration, other interesting features of the phase diagra X 4 )

emerge as we move off the=1/2 axis. For instance, the '¢€ €Nergy of th_e mixture in terms of the perturbatiay(r)

intermediate regime where both a critical and a tricriticaland .the corrglatlon functpns of the refer ence ;ystem_shqws
that introducing such an infrared cutoff in the interaction is

point are found forx=1/2 is marked in thep-x plane by a hvsicall val inhibiting i . ith ch
coexistence region which in a certain temperature intervaPnysically equivalent to inhibiting fluctuations with charac-

contains a “hole” or “island” of homogeneous, mixed fluid. teristic lengthsL>1/Q. If Q is made to evolve fronQ

Double critical points and, for a certain value dftricritical ~ — <+ € Q systems evolve from the reference system by

points are also observed for unequal species concentrationacq“iring fluctuations of longer and longer wavelengths. The

The paper is structured as follows: the HRT for a binaryf“"y interacting system is_ rgcqvered as tge-+0 limit Of.
fluid is described in Sec. Il. Mean-field theory is recoveredSUCh a process. Only in th's limit true long-range porrelanons
within this approach as a zeroth-order approximation, and'® aIIowec_j to devel_op in the fluid. The equation for the
the mean-field results for the critical lines of a symmetricCorrésponding evolution of the Helmholtz free eneAgy of
mixture as the parametet is varied in the interval & & therystems can bg detgrmmed exactly and is related to the
<1 are shown in Sec. Ill. The HRT phase diagram for dif-ttractive  perturbation in - momentum spacé;; (k) =
ferent values o is discussed and compared with the mean-—8W;;(k) where 3=1/(kgT), and to the direct correlation
field predictions in Sec. IV. Finally, in Sec. V, we summarize function of theQ system in momentum spaeg(k). We
our findings and draw our conclusions. recall that the direct correlation function is related to the

structure factor of the fluid by the Ornstein-Zernike relation.
If we denote bycq(k) the 2X2 symmetric matrix with ele-
Il HRT EQUATIONS mentsci?(k), for a binary mixture this relation reads

Here, we briefly review the HRT approach for a binary
fluid. A more detailed derivation can be found in previous [co'(K)Tij=—Vpip;ST(K), (1)
works[17,19,24. _ . . . .

We consider a model mixture consisting of particles Ofwhe.rech(k) is the inverse matrix of (k) andS?(I_() is the
two species interacting via a two-body spherically symmetrid®@rtial structure factor of th@ system. Here, unlike in the
potentialv;;(r), where the indices j label the particle spe- convention commonly adopted in liquid-state them&(k)
cies. The derivations presented in this section do not hingeontains its ideal-gas contribution &;; /p;. The evolution
on the fact that one is dealing with a symmetric system sucigquation for the Helmholtz free energy is most easily formu-
that v14(r)=v.xr), so they are equally valid for nonsym- lated in terms of a modified free energy, and direct cor-

metric systems. We assume thaf(r) can be split as the relation functionCo(k) defined as
R

sum of a singular contribution;;(r) which accounts for the BA; 1 2

short-range repulsion between the particles, and a longer- AQ:__Q+_ E pipj[(I)ij(kzo)_(DiQ(k:O)]
ranged, smooth attractive tai;(r) which may induce fluid- v 271 .

fluid phase separation. The properties of the mixture interact- 2

: : : R ; 1 d3k

ing via the repulsive potential;j(r) alone are considered as _— p_j —— [®,(k)—DUK)] )
known, so that it acts as a “reference” or unperturbed sys- 2= oem3 " AR

046116-3



PINI et al.
CR(K)=cF (k) + @y (k) = PF(K). ()
The HRT equation fordg is then
% == —Zln{de(l—cal(@cb(o)]}, 4
A

where again®(Q) andcal(Q) are 2<2 symmetric matri-
ces, the latter being the inverse of the mafiiXQ), andlis
the unit matrix. We note that fap—0, i.e., at the end of the
evolution processp (k) and® (k) coincide, so that in this
limit the modified quantitiesdq, Cq Yyield, respectively, the
true free energy and direct correlation function of the fully
interacting system. FoQ=c< instead one hag,(k)=0,
and Aq andCq are nothing but the mean-field free energy

PHYSICAL REVIEW E 67, 046116 (2003

A
CO(k=0)= "

—, i,j=1,2.
Ipidp; :

(6)
By determiningvi? so that Eq.(6) is satisfied, one immedi-
ately finds from Eq(5)

7*Aq
Ipidp;

CR(k)=ci/%(k) + —ci%(k=0) |g;j(k),  (7)
where we have sep;; (k) = ®;;(k)/®;;(k=0). Equation(7)
ensures that the Helmholtz free energy obtained by integra-
tion of Eq.(4) is consistent with the compressibility route to
the thermodynamics given by E¢6). This thermodynamic
consistency condition plays a key role in the implementation
of HRT. In fact, by substituting,’fj?(k) as given by Eq(7)

into the HRT equatiori4), a closed partial differential equa-

and the random-phase approximatid®PA) direct correla- tion _(PDE)_for _AQ is obtained, which involves bpth the first
tion function in the presence of the full perturbing potentialPartial derivative ofAq with respect toQ, and its second
®(k). These play the role of the initial conditions of the Partial derivatives with respect to the densities p,. In
evolution equatior(4), which then describes how the mean- Order to integrate this equation numerically, we found it most
field estimate for the free energy is affected by the inclusiorfonvenient to cast it into a form where the partial derivatives
of fluctuations. This equation is manifestly not closed, since?f the unknown function appear only outside some “coeffi-
the evolution of the free energyy, is related to the matrix of ~ cients” that may depend both on the independent variables
the direct correlation functio€o(k), which is itself un-  P1, P2, Q and on the unknown function itself, but do not
known. In fact, Eq(4) is just the first equation of an infinite Contain its derivatives. This allows us to take advantage of
hierarchy for the direct correlation functions of increasingfinite-difference schemes especially devised for equations of
order: for instance, the evolution 6h(Kk) is related to the such aquasﬂmearform, which combine robustness with a
three- and four-body direct correlation functions in Fourier™oderate computational cof28]. Both of these are very
space[24]. A point of crucial importance in order to imple- important requirements in our case. In fact, in order to deal
ment a viable HRT scheme consists then in supplementin@"th the divergence of the compressibility at criticality and

Eq. (4) with some closure relation involvingy (k). Here, as p_hase co_existence, one has to resort_ to a very stf'ible algo-
well as in the previous applications of HRT, we have notfithm, while on the other hand for a diffusive PDE in three

resorted to the higher-order equations of the hierarchy. Inindependent variables like the one considered here, the di-
stead, we have adopted f6p(k) an approximate form in- mension of the vectors generated by the discretization pro-

spired by standard perturbative liquid-state theories: cedure becomes rapidly very large even for a relatively
coarse density stepp. Hence, we have to use a solution

scheme which is not too demanding computationally to pre-
vent computer time from increasing beyond control.

HS/ s - ) o The method we adopted to rewrite Eg) supplemented
where ¢;;7(k) is the Fourier transform of the partial direct by the closure relatior{7) in quasilinear form has already
correlation function of the hard-sphere reference systempeen illustrated in Ref19], to which we refer the reader for

which has been represented by the above-mentioned Verlegetails. Here we recall that, instead 4f,, we use as un-
Weis parametrization. The functional form of E§) for the  known function the quantity

direct correlation function is similar to that of the widely

used RPA, which is recovered fa)fj?.=1. In particular, both U=In{def1-Co"(Q)P(Q)1}. (8)
of them rely on the Ornstein-Zernike ansatz, i.e., the direct _ __

correlation function has always the same range as the poterthis is found to satisfy a quasilinear PDE of the form
tial, so thatci?(k) is always analytic irk, including at the

CRk=cS(k)+ vid;(k), (5)

.. . . . 2 2
critical points of the system, where the real direct correlation v _ oY U Y ©
function is instead expected to be nonanalytic @+ 0. aQ (9p§ dp19p2 (9,)3 '

However, unlike in the RPA, the amplitude’ of the pertur-

bation is regarded as an unknown quantity, to be determinegthose “coefficients’K, L, M, N, which will not be reported

in such a way that eac® system satisfies the compressibil- here, depend on the variablpg, p,, Q both explicitly and

ity sum rule. In a one-component fluid, this relates the isoimplicitly via a set of three auxiliary variables. These can be
thermal compressibility to the zero-wave vector value of theidentified either with the eigenvaluas, X\, of the symmet-
structure factor, or equivalently of the direct correlation func-ric matrix Co(Q) and the anglex of the rotation that casts
tion in momentum space. Such a rule is readily generalized,(Q) into diagonal form, or with the corresponding quan-
to binary systems, and in terms of the modified quantitiegities A,, A,, @ for the symmetric matrix of elements
Ag, Co(K) it reads (92AQ/(?pié’pj . As discussed in Ref19], the use of one or
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the other set of auxiliary variables is dictated by the differentz back to the variableg, x, we obtain a PDE in the variables
behavior of the interaction in the high- and I&@fegion. At  Q, x on the boundary¢= &,a, Whose solution yields the
high Q, where the Fourier transform of the attractive pertur-high-density boundary condition of E(P).
bation¢;;(Q) typically displays oscillations, thereby vanish- ~ The numerical integration of E¢9) supplemented by the
ing for certainQ values, it is better to adopt as auxiliary equations for the evolution of the auxilary variables was per-
quantitiesA, A,, 6. At small Q instead, when most of the formed on a grid in the §,x) plane containing 150150
attractive interaction has been included into the system anohesh points. The integration with respect to the varidble
phase coexistence may occur, thesgt \,, « is the more  was carried out by settin@=Qqe !, t=0, where the initial
appropriate choice. In both cases, the derivative of each ofalue of Q corresponding ta=0 was typically fixed aQ,
the auxilary variables with respect @ can be expressed in =30 ¢~ 1. The variablet was discretized using a stefpt
terms of the variables themselves and the partial derivatives: 10~ 2 and the iteration it went on until convergence in the
of U with respect top,, p,. At any givenQ, the resulting quantity U was achieved outside the coexistence region. At
equations are used to update, \,, a (or Ay, Ay, 0), low temperature this requirement can be satisfied Gor
while the PDE(9) is used to updaté). Since the matrix <104 o 1.
Co(Q) that appears in Ed8) can be expressed either hy,
N, a or, via Eq.(7), A4, Ay, 0, it follows thatU and the IIl. MEAN-EIELD CRITICAL LINES
set of the three auxiliary variables are not mutually indepen- . . . )
dent. The relation betweeld and the auxiliary variables is _ The phase diagrams of binary mixtures are usually classi-
used throughout the integration procedure as a check of tHéed according to the topology of their critical ling29,30.
accuracy of the calculation. We then begin the discussion of the phase behavior of the
In order to perform the numerical integration, we found it SYymmetric mixtures as a function of the interaction param-
convenient to replace the independent variaplgsp, with ~ €ter by presenting the different shapes of the critical lines
the related variableg=(p;+ p,) 03, X=po/(p1+ps). At that are pr_edlcted by the mean-field approximation. We will
any givenQ, U is then defined in the rectangular domain 0 then_ consider the_HRT_ results for the phz_ase dlagram and
<x=<1, 0<£&<&a, Where the high-density boundagya, elumdgte the relatlon_smp between. the critical IQC| and the
was chosen equal to 1. At the beginning of the evolutiorP@havior of the coexistence domains on changing the tem-
process, i.e., for suitably larg®, the matrixCo(k) can be perature. In domg so, we will also_bg in a position to com-
identified with the RPA expression for the direct correlationPare the mean-field and HRT predictions. o
function which, as said above, is obtained from E3).for As observed above, the mean-figldF) approximation
Q=c. This gives the initial condition foU via Eq.(8). The  ©nters the HRT as the initial condition @=c, when no
boundary conditions fot) needed for the integration of Eq. fluctuations have been introduced into the system:
(9) are determined as follows: faf=0 the diagonal ele- 2

ments of the matrix’o(Q) diverge because of the ideal-gas  _ %:A = 'BAH5+ 1 > pipi®ii(k=0)
oL c . . Vi Q== Vv 2 PipPj IJ(

contribution to the direct correlation function d;; /p;, so 1

thatU(£=0x) vanishes identically. For=0 andx=1 only 3

one of the two species is present. The corresponding bound- _ E E J d>k @, (K) (10)

ary conditions are then given by the solution of the HRT 24P (2m3 "

equation for a pure fluid, which can be integrated numeri-

cally by specializing the procedure sketched above to a onéFhe equations for the MF critical loci are also obtained
component system. The high-density boundary condition fowithin HRT as the lowest-order approximation to the require-
&= &max IS Nontrivial because, unlike in pure fluids, we must ment that the RG flow generated by the evolution equation
allow the occurrence of phase transitions even at high den4) drives the free energy of the mixture towards its fixed
sity. As a consequence, we have to rule out the possibility opoint. This gives the following equatior47]:

using forU at &= ¢,,,.x @ simple approximation such as the

RPA, as already done for the one-component case, because 7 | BAvE
; ; ; — =0, (1)
such a form would behave unphysically in the coexistence PYANRY
region. In general, we expect that at high density the com- !
pressibility of the fluid will be small, and concentration fluc- 2 (BA
tuations will become more important than density ones. This _( 'V'F) =0, (12)
corresponds to the transition becoming less liquid vapor and (91,//? \4
more mixing demixing in character. For the symmetric mix-
tures considered here, such an expectation holds rigorously: 32 BAME
: . =0, (13
in fact, because of the special symmetry of the model, the I,V

high-density transition are of pure mixing-demixing type. As

a consequence, we expéadtto be much more sensitive to a wherey, i, are obtained from the original densitigsg, p»
change in concentration than in density. Accordingly, for via ana priori unknown rotation such that EqL3) is satis-

= £max the partial derivatives o) along & in Eq. (9) have fied. Equations(11) and (12) are formally similar to the
been disregarded with respect to those along the conjugaggjuations for the critical point of a pure fluid, except that
directionz=(p;— p,) o°. By switching from the variableg, here the density has been replaced by the varialgle. We
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note that Eqs(11) and (13) amount to requiring that the b=
hessian determinant of the free energy must vanish at the " (a)

critical point, and that the vanishing eigenvalue corresponds %3 [
to the eigenvector directed alorg. This is the linear com- 06 |
bination of the densities that gives the direction of strongest,, |
fluctuation, and identifies the order parameter of the transi- ,

tion. For the solutions of Eq$11)—(13) to yield actual criti- L
cal points, a further constraint has to be imposed, i.e., the o2 1
condition of thermodynamic stability ensuring that even a
critical point is an equilibrium state of the system, and as 0 — :
such is stable against density and concentration fluctuations '

The stability conditions at a critical point rei7] 08 ) 8065338
9 [ BA 06 -
- i VMF)>0, 14« |
P, 04 L
7 (ﬁAMF) f 1P (IBAMF) * (ﬁAMF)<O 02 r
kg, V AR AN ol
(15) lr— T T T
M (e) 6=0.8 po?
The three equationgl1)—(13) with the conditions(14) and 08 - 7
(15 contain four unknowns, namely;, p,, T, and the 06 L ]
state-dependent anglg of the rotation that identifies the ' LLLTILLLL

proper axesy;, i,. As vy is varied, they will generate a set
of lines in the thermodynamic space. We must observe that
when several critical lines are present, one should also checl o2
that a critical point does not fall into the coexistence region
originating from another critical line. In mean-field theory, ol 1
. . . . . i 02 04 06 08 1
this circumstance can occur without violating the stability p0°
conditions(14) and (15), when the point considered lies be-
tween the binodal and the spinodal surfaces of a neighboring FIG. 1. Density-concentration projection of the mean-field criti-
transition. In such a situation, a solution of Eq$1)—(15) cal lines of a symmetric mixture for several values of the interaction
corresponds to a critical point which, while still locally parametes=e;,/e;;. The total density is the sum of the densi-
stable, is however globally metastable with respect to firstfiesp1, p, of the components, and the concentratide defined as
order phase separation. In order to assess this possibility, ome/p- The open dots mark the locations of the local minima in the
should then determine the mean-field binodal surfaces by gfitical temperature. The arrows indicate the direction of the order
Maxwell construction. This has not been done here. HowParametersee text
ever, we can discriminate between stable and metastable re-
gimes, at least for equimolar concentrations, by comparingnixing-demixing transition may appear. Therefore, both
our results with those obtained in Ret], where mean-field liquid-vapor and mixing-demixing critical lines are expected.
binodals were determined. We recall that at the mean-fields the unlike-to-like interaction ratiod is lowered, the
level the phase behavior as a functiondai independent of mixing-demixing transition becomes more favored, and the
the profile of the attractive interactioh;; , since this enters corresponding critical line will move to lower density. The
in the approximation only via its spatial integral. A change inprojections of the mean-field critical lines on the density-
the form of ®;; is then taken into account by simply rescal- concentration plane for a relatively small valued# 0.4 are
ing the temperature. reported in Fig. a). The open dots mark the positions of the
Let us now consider the critical lines of the symmetric minima of the critical temperature, while the arrows drawn
mixtures we are interested in. Because of the attractive intelong the critical lines give a graphic representation of the
action between the particles, we expect that for suitable tenrelative weight of density and concentration fluctuations,
perature, density, and concentration, the system will undergthereby showing the direction of the order paramegtgde-
a liquid-vapor transition. This is certainly true for states attermined by Eqs(11)—(13). Specifically, the anglep be-
low or high concentration, where one of the two species willtween the arrows and the density axis gives the fluctuation of
play a minor role. On the other hand, since the interactiorthe order parameter corresponding to a given fluctuation of
between unlike particles is weaker than that between likehe total densityp and concentratiorx as 8y, = dp COS¢
particles, the internal energy will tend to promote demixing+p dxsin ¢. Arrows parallel to the andx axis then indicate
between the two species. For high enough density, this inpure liquid-vapor and mixing-demixing transitions, respec-
crease in the absolute value of the internal energy may ovetively. Figure Xa) shows a mixing-demixing critical line at
come the loss in entropy implied by the demixing, and aequal species concentratigs 1/2. On the low-density side,
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this intersects another critical line that connects the criticatuations are taken into accoufsee Sec. IV, and we regard
points of the pure species. As one moves from the pure spsuch an occurrence as rather unlikely. In summary, it is
cies to the equimolar mixture, the direction of the order pafalusible that the valué=0.605 obtained in Ref1] sets the
rameter changes continuously from pure liquid-vapor to purghreshold for the appearance in the mean-field equilibrium
mixing demixing. The critical temperature, not shown in thephase diagram of the whole crescent-shaped critical line be-
figure (see the lower panel of Fig. 5 for the similar case sides the point ak=1/2. The critical temperature along the
=0.5), initially decreases until it reaches a minimum at twocrescent-shaped line changes very little, typically by few per-
points symmetric with respect to=1/2, after which it starts ~ cent, and it presents a shallow minimunxat1/2. Along the
increasing and keeps on doing so along the mixing-demixingther critical lines the qualitative behavior of the temperature
line as the density is increased. This behavior of the criticals the same as in Fig.(d). For relatively lows, the minima
temperature is related to the change in the order parameter of the critical temperature located along the critical line aris-
the transition. Close t8=0 orx=1, where phase separation ing from the pure species are higher than the temperature at
is essentially of liquid-vapor type, increasing the amount ofthe ends of the crescent-shaped line, while the converse is
the dilute component increases the weight of the interactiotrue for ¢ larger than about 0.64.
between unlike species in the internal energy. Since here we As ¢ is increased, the crescent grows towards larger and
have §< 1, this leads to a decrease of the overall attractivesmaller concentrations, until f@=0.653 38 the critical lines
contribution to the internal energy, resulting in a lower criti- meet each other, resulting in the topology shown in Fig).1
cal temperature of the liquid-vapor transition. On the otheWhené grows above this value, the former critical line origi-
hand, the same argument implies that for a transition whichnating from the pure components splits: the portions at low
is mainly mixing-demixing in character, approaching and high concentration, where the transition is mainly liquid
equimolar concentration increases the gain in internal energyapor, join the crescent-shaped line so as to form a liquid-
entailed by the demixing, so that the critical temperature invapor critical line ranging fronx=0 tox=1, while the part
creases as one moves towands 1/2. Once the mixing- at intermediate concentration, where demixing prevails, re-
demixing critical line has been reached, an increase of thenains connected to the demixing linexat 1/2 and detatches
density at constant concentration similarly favors the enerfrom the liquid-vapor line, giving a fork-shaped critical lo-
getic contribution to the free energy and leads to an increaseus. The situation just described is illustrated in Figl) for
of the critical temperature. 6=0.7. The liquid-vapor critical line has just one tempera-
As § is increased, the mixing-demixing line, as notedture minimum aix=1/2, in agreement with the above obser-
above, moves to higher density, and so does that portion ofation that for a liquid-vapor transition, increasing the con-
the line originating from the pure species where the transieentration of the dilute component leads to a decrease of the
tion is predominantly of demixing type. At abodit=0.46, a  critical temperature. The two temperature minima symmetric
new feature appears in the critical lines, namely, a crescentvith respect toc=1/2 are now located along the fork-shaped
shaped line at low density and concentration spanning atine. The relative temperature change along this line is how-
interval centered at=1/2, where the transition is essentially ever quite small, as already observed for the crescent-shaped
liguid vapor. This is shown in Fig. (b) for §=0.65. The line of Fig. 1b). For é just above the value 0.653 38 that
occurrence of such a critical line can be intuitively explainedmarks the boundary between the topology of Fig)land
as follows: if § were equal to 1, the mixture would reduce to that of Fig. 1d), the critical temperature at the tips of the
a one-component hard-sphere fluid with attractive tail interfork-shaped line is higher than the minimunmxat 1/2 on the
action. If § is not too small, a nearly equimolar mixture may liquid-vapor line, while the converse is true at high&rin-
still behave like a sort of “effective” one-component fluid cluding the values=0.7 to which Fig. 1d) refers. A similar
displaying a liquid-vapor transition. In order for this to hap- behavior is found when comparing the minimum on the
pen, however, the density has to be low enough, so that theuid-vapor line with the temperature at the intersection of
smaller gain in internal energy resulting from choosing athe fork with the mixing-demixing line.
liquid-vapor phase separation at intermediate concentration If & is further increased, the liquid-vapor line becomes
instead of a mixing-demixing one can be compensated by emore and more similar to a straight segment, as is to be
larger entropy. We must point out that, on the basis of theexpected sinc&d=1 corresponds to a one-component fluid,
investigation performed in Refl] and the discussion made whose critical density is obviously independent of the con-
here below Eqs11)—(15), we do not expect this critical line centration. At the same time, the fork-shaped line shrinks and
to appear in the equilibrium phase diagram right abéve moves to higher density, together with the mixing-demixing
=0.46. In fact, the interval 0.465<0.605 corresponds to line. Strictly speaking, the fork disappears from the critical
the hidden-binodal regime of Refl], where the critical lines only in the one-component limft— 1. However, when
point atx=1/2 of the crescent-shaped line is metastable. O% gets larger than a valué, between 0.75 and 0.76, this
course, knowledge of the behavior of the point at equimolatocus is certainly metastable, as the pressure along it is ev-
concentration alone is not sufficient to deliberate about therywhere negative. We observe that this is a sufficient con-
fate of the whole critical line. In principle, some portions of dition for metastability, but not a necessary one. In fact, ac-
it might become stable fow different from the valuesd  cording to Ref.[1], the portion of the fork near equimolar
=0.605 reported in Ref.1]. However, this would imply a concentration has already disappeared from the equilibrium
change in the topology of the critical lines with respect tophase diagram fo6>0.708. We are then left with two dis-
that shown in Fig. (b) which we did not observe when fluc- connected critical lines: the mixing-demixing one, that ter-
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FIG. 2. Isothermal sections of the coexistence region of a sym- F!G. 3. Same as Fig. 2 in the pressure-chemical potential plane.
metric HCY mixture in thep-x plane according to the HRT. The A#=#1— 4 is the difference between the chemical potentials of
inverse interaction range is equalze 1.8 and the interaction ratio "€ components. Note how the points of the coexistence regions

is equal to5=0.65. The dots mark the locations of the critical shown in Fig. 2 collapse into lines as a consequence of the condi-
points. tions of thermodynamic equlibrium.

minates at an end point, and the liquid-vapor one at lowelVe stress that this is essentially different from what is found
density, as shown in Fig.(& for §=0.8. Fors—1, this In mean-field-like approaches, where phase separation is
topology evolves into that expected for the one-componenfarked by the appearance of spinodal surfaces i tpex
fluid, as explained above: the mixing-demixing line eventu-space, which give spinodal lines upon intersecting with a

ally disappears, and the liquid-vapor line becomes a segmeRfane at constari like those of the figure. Inside the regions
at constant density. bounded by these lines, the hessian of the free energy attains

unphysically negative values. In the HRT, on the other hand,
the hessian does not become negative, but it vanishes iden-
tically in a region of finite measurg32]. If we consider a

As we said in the Introduction, HRT calculations were curve at given temperature and pressure irnptheplane, it is
performed for an interaction that consists of a hard-sphereeadily seen that along the portion of this curve that lies
repulsive core and an attractive Yukawa tail, whose inverseinside the domain where the hessian vanishes, the chemical
range parameter was set taz=1.8 for both like and unlike potential of both species are identically constant. Therefore,
species. This value dafis appropriate for representing the LJ such a domain is indeed the coexistence region of the mix-
potential[31] and it has been widely adopted in the litera- ture. This clearly appears from Fig. 3, which shows that the
ture. We illustrate our results by considering, for differentdomains of Fig. 2 collapse into lines when they are plotted in
values of the parametef;, several isothermal sections of the the P-Au plane, whereP is the pressure, and pu=
phase diagram, each of which corresponds to a single HRF ., is the difference between the chemical potentials of the
run. In our opinion, this gives a clearer picture than the ondwo species. Because of the conditions of thermodynamic
that would be obtained by mapping the phase diagram aquilibrium, the coexistence regions in theP-Au space
given & on a single three-dimensional plot. In the following, appear as “sheets” bounded by critical lines. Intersecting
temperature and density will be identified with the corre-with a plane at constarit then yields lines like those of Fig.
sponding reduced quantiti@& =kgT/e, p* =po®, and the 3, terminating at critical points. Each point of these lines
asterisks will be omitted. Figure 2 shows the phase diagramorresponds to an isobar of the domains of Fig. 2, i.e., to a tie
on the density-concentration plane at four different temperakine. At a critical point, the tie line reduces to a single point.
tures for6=0.65. At each temperature, the shaded areas déAfe recall that in thep-x plane a critical point is not, in
note the coexistence domains. Because of the symmetry gieneral, an extremal point of the phase boundiay, either
the model considered here, the phase diagram is obviousin p or in x, and it cannot be detected by just considering the
symmetric with respect to the equal-concentration axis shape of the-x coexistence boundaries. Critical points have
=1/2. We already pointed out that in the HRT the conditionsbeen marked by dots in Fig. 2 and in the following figures
of thermodynamic equilibrium that define the coexistencehat show the phase diagram in thex plane for different
region are implemented by the theory itself. In fact, insidevalues ofé.
the shaded domains shown in the figures the hessian deter- Panel(a) of Figs. 2 and 3 shows the phase diagram at a
minant of the Helmholtz free energy is identically vanishing.temperature somewhat lower than the critical temperature

IV. HRT PHASE DIAGRAM
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(2) ° ]

6=0.65 x=0.5

T8~—~1.2 of the pure components. Three distinct coexistence
domains are present. The two at low density originate from
the coexistence regions of the pure components, and they 1.08
both terminate at a critical point. The high-density region at

1.1

o -

Ap=0, which is present also at temperatures abdfe B i o o demixed]
involves, at each fixed density, coexistence between two flu- S04 mixed fluid e e 4 4
ids at concentratior and 1— X, respectively, and terminates 1.02 - . * % —
at a mixing-demixing critical point at=1/2. Below a cer- - * * ]
tain temperaturd,=1.06, however, the demixing region bi- o AT S T
furcates into two branchdsee panel(b) of Fig. 3], each of 108 T T ]
which ends at a critical point withA u#0, x#1/2. The Lt (b) o 1
former mixing-demixing critical point at=1/2 has now be- 1og L =067 x=05 _
come a first-order coexistence boundary, at which a mixed . ]
fluid at equal species concentration coexists with a demixed > L ® demixed]
fluid at higher density similar to that found aboVeg, con- & 1.04 - mixed fluid  es fluid -
sisting of two phases with concentrations symmetric with I - ]
respect tax=1/2. At the temperatur&, at which the bifur- i on oo ]
cation develops, the critical line at=1/2 and the two criti- toer v . °.L.' R ]
cal lines generated by the symmetric branches TefT, R — :

meet at a tricritical point. These critical lines can be visual-
ized as the boundaries of the coexistence “sheets” in the

———
(e)

§=0.7 x=0.5

o

B, . 1L

T-P-A u space whose projections on tReA . plane at con- 1.04 - mixed fluid o d;l"'l'iic’lfe
stantT are shown in Fig. 3. At the tricritical point, the mixed w r PR o ]
fluid at x=1/2 and the two phases that constitute the de- Eﬂ - L 1
mixed fluid become critical simultaneously. Again, in e A 102 = * ° ]
plane the tricritical point does not display any special feature - . s o 1
that makes it immediately detectable. Inspection of ghe E v, o o i
phase boundary alone does not allow one to tell whether the - 2, L% .
high-density coexistence region displays a single critical 0 0.2 0.4 0.8 0.8

point atx=1/2, two symmetric critical points, or a tricritical po®

point. By further lowering the temperature, the high- and _ ) _
low-density coexistence regions expand and get closer, untjl F!G- 4. Phase diagram in theT plane of the HCY mixture for

at a temperaturdy=1.04 each of the low-density regions the special case of_ equimolar concentratienl/2 and several val-
meets the high-density one at a double critical point, The!€S Of the interaction parametér Open and full dots denote, re-
critical lines in thep-x plane have the same topology as in spectively, thex line and the first-order phase boundary. The letters

Fig. 1(a). In particular, the tricritical point corresponds to the Vi L denote, respectively, the vapor and mixed liquid phase.
intersection of the mixing-demixing critical line at=1/2  respectively. The HRT and the mean-field critical lines are
with the line that spans the concentration axis frem0 to  compared in Fig. 5 ford=0.5. This value ofs is small
x=1. The latter actually results from projecting on th&  enough to give the same topology of the critical lines in HRT
plane the two critical lines into which the mixing-demixing and mean-field theory, save for an extremely short line at low
critical line bifurcates belowl; and those originating from density and nearly equimolar concentration obtained in mean
the critical points of the pure species. The two symmetricfield, which belongs to the metastable regitsee the dis-
double critical points aff=Ty where these critical lines cussion in the preceding sectjoand has not been reported
meet in couples correspond to the temperature minima at here. The figure shows the projections of the critical lines
#1/2 located on the critical line of Fig.(4). We observe both in thep-x and in thex-T planes; in the latter case, the
that, unlike tricritical points, double critical points do not mixing-demixing line atx=1/2 has not been shown. For the
entail the intersection of topologically distinct critical lines. pure species, it is known from the comparison of the mean-
In fact, tricritical points are found in the model consideredfield results with accurate simulation data for the critical con-
here because of its special symmetry, but they do not occustants of the Yukawa fluid with the same inverse radge

in real binary mixtures, while double critical points are fre- =1.8 considered herlg5], that mean-field theory underesti-
quently found in real mixtures, including mixtures of noble mates the critical density by about 20% and overestimates
gases such as neon-krypt@8] and neon-xeno[B4]. Below  the critical temperature by about 10%. Basically the same
T4, the coexistence domain consists of one connected retifferences are found by comparing the mean-field and the
gion, without any critical point, as shown in panét$ and  HRT results, as the HRT provides a very good determination
(d) of Fig. 3. A section of the phase diagramxat 1/2 in the  of the critical point of LJ-like fluids[24,36,37. Figure 5

p-T plane is plotted in Fig. @), showing the same behavior shows that similar discrepancies between mean field and
as in Fig. Zd) of Ref.[1]. The tricritical temperatur&, and  HRT hold also for the critical loci of the binary system. We
densityp; are located at 1.07T;<1.08, 0.52% p;<0.533, observe that the direction of the order parameter is little af-
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FIG. 6. Same as Fig. 2 faf=0.665.

gated, and coalesce at1/2. The topology of the critical
lines is the same as in Fig(k), where the crescent-shaped
line at low density is that described by the new family of
critical points. We remark that, according to mean-field
theory, this line is extremely shallow with respect to the tem-
perature. This is confirmed by the HRT results just reported,
which give a relative variation of the critical temperature of
about 0.1%. BelowT4 [see paneld) of Fig. 6], the phase

mean-f!eld theory. Full dots.: HRT. In the upper panel, the solid ””ediagram presents an “island” of homogeneous, mixed fluid
is a guide for the eye obtained by smoothly interpolating betweer,rrounded by a “sea” of phase-separated fluid. A section of
the dots, and the arrows indicate the direction of the order paramyy,~ ~qaxistence region &= 1/2 shows that in this regime we

eter. The order parameter along the mixing-demixing critical line a
x=1/2 is not shown here for clarity and is parallel to thexis

according to both mean field and HRT. In the lower panel, the

mixing-demixing critical line is not shown.

fected by the inclusion of fluctuations, at least for the presen

ave two kinds of phase equilibria at equal species concen-

tration: on the one hand, below the tricritical temperaflire

a demixed fluid at high density coexists with a mixed one at
intermediate density as before. On the other hand, this mixed
{Juid coexists, at slightly lower density, with another low-

case where these do not change the topology of the critical

lines.
According to our HRT calculations, the valde=0.65 is
actually nearly coincident with the upper limit &f for the

03T 7 T "~ T[T T T T 1

[ (a) | (b)

. kT/e=1.03 | K,T/€=1.028

topology that we have just described. The scenario at slightly.w )
larger ¢ is illustrated in Figs. 6 and 7, which show the phase:g
diagram in thep-x and P-A u planes for6=0.665. At tem-
peraturesT above 1.023, the phase diagram evolves as be-
fore: on loweringT, the high-density coexistence region bi-
furcates at a tricritical point, and each of the resulting
branches merges with the low-density coexistence region:
that originate from the pure species, so that just below
=1.03 there are no critical points left in the phase diagram.
However, atT=1.023 two critical points reappear at low
density. In theP-A u plane, this is marked by the appearance
of two “twigs” that stick out of the low-density coexistence
region, each terminating at a critical point, as shown in panel
(c) of Fig. 7. By slightly loweringT, these twigs grow longer,
and for T=T4=1.022 they meet at a critical double point
located atA w=0. At the same time, the low-density lobes of
the coexistence region in thex plane become very elon-
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symmetric critical points, corresponding to the ends of the

density mixed fluid. The latter phase equilibrium terminateswigs. On further lowering, the twigs grow longer, and for
for T=Ty at a vapor-liquid critical point. Therefore, the T petween 1.015 and 1.01 each of them meets a branch of the
phase diagram at=1/2 exhibits both a critical and a tri- high-density coexistence region at a critical double point.
critical point. On further lowering the temperature beldyy, The low- and high-density coexistence domains then join at
the island of mixed fluid shown in Fig. 6 becomes smallertwo points symmetric with respect to=1/2, leaving be-
and smaller, until it is eventually swallowed by the coexist-tween them an island of one-phase flgke Fig. 8 that
ence region. Correspondingly, in theT plane the two phase eventually disappears at low temperature. This scenario is
boundaries ak=1/2 meet at a triple point, where the two somehow the converse of that previously described &or
mixed fluids at different densities coexist with the demixed=0.665, where the high-density coexistence domain merges
fluid [38]. Below the temperature of the triple point, the de-with the low-density ones originating from the pure compo-
mixed fluid at high density coexists with the mixed one atnents, and the one-phase island inside the coexistence region
low density. The phase diagram at equal species concentrgs formed because of the twigs meeting each othex at
tion is similar to Fig. 2c) of Ref.[1] and to that shown in  =1/2. The topology of the critical lines for the case just
Fig. 4(b) for the cases=0.67. From the picture given above, discussed is that of Fig.(d): this time the critical line that
it is clear that the low-density lobes of the coexistence regiorgoes fromx=0 to x=1 is not connected to the mixing-
meet at a temperature lower than that at which each lobgemixing critical line, and it has a temperature minimum at
meets the high-density region. This in turn is lower than thex=1/2, corresponding to the coalescence of the low-density
temperature at which the tricritical point appears. Thereforegoexistence regions into one connected domain. The mixing-
for the topology just discussed the liquid-vapor critical tem-demixing critical line intersects at the tricritical point two
peratureTy is always lower than the tricritical temperature symmetric critical lines as before, which however do not
Ti. In Fig. 4(b), the tricritical point is located at 1.84T;  meet those originating from the pure species. Instead, they
<1.05, 0.546<p,;<0.547, while for the liquid-vapor critical merge with the lines described by the family of critical points
point we have 1.0235T;<1.024, p4=0.34+0.003. that sprout out of the low-density coexistence region, result-

A different situation arises asgrows above 0.67. Figures ing in the fork-shaped line of Fig.(d). This presents two
8 and 9 depict the evolution of the phase diagram dor symmetric temperature minima at the valueTadt which the
=0.68. As before, a tricritical point is present>at 1/2, as  critical lines meet each other. As already observed for the
shown by the bifurcation of the high-density coexistence recrescent-shaped line of Fig(k, the temperature along the
gion. On the other hand, on lowering the temperature théork is actually almost constant, both according to mean-field
low-density branches of the coexistence region do not mergtheory and HRT, so that the minima are extremely shallow.
with the high-density one as before, but instead meet eaclihe topology of the phase diagram at equimolar concentra-
other at a critical double point betweeh=1.03 andT tion is similar to the previous one illustrated in Figh#for
=1.025. In this regime the isothermal sections of the phas&=0.67. In particular, in a certain temperature interval in-
diagram in thep-x plane consist of two disconnected do- cluding that where the two-phase region encloses a one-
mains, with that at lower density spanning the whole concenphase domain, there are two different phase equilibria at
tration axis fromx=0 to x=1. Just belowT=1.025, two  =1/2. For the coupling parameté=0.68 considered here,
twigs sprout out of the low-density coexistence domain inthe liquid-vapor critical temperatur€,, which is the tem-
the P-Au plane. In such a situation this domain presents twgperature minimum along the liquid-vapor critical line, is
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FIG. 10. Same as Fig. 2 fa$=0.67. FIG. 11. Same as Fig. 3 faf=0.67.

=0.68. We are therefore very close to the boundary between

smaller than the tricritical temperatullg, as for§=0.665.  the two topologies of the critical loci, that corresponds to the
However, in the present topology where, on lowernghe  scenario of Fig. (c). This is marked by the presence of two
low-density coexistence domains merge with each other bericritical points at nonequimolar concentration besides that
fore they merge with the high-density one, nothing preventgt x=1/2. In such a situation the growth of a secondary
the liquid-vapor critical point ak=1/2 from occurring at @  structure(the twig9 from an already existing onghe main
higher temperature than the tricritical point. In tReAx  branch is replaced by a bifurcation where both branches
plane, this corresponds to the high-density coexistence restem out of the tricritical point at the same temperature. For
gion bifurcating at a temperature lower than that at which thesontinuity reasons, we expect that in a very narrow range of
low-density branches meet. Such a scenario in fact comes values that includes 0.67 and is contained in the interval
along starting from aboub=0.7. The phase diagram &t 0.665< §<0.68, the configuration with six critical points
=1/2 for this value ofé is shown in Fig. 4c), and is the  shown in Fig. 11 can be found for the topology of the critical
same as that of Fig.(B) of Ref.[1]. The tricritical point and lines of both Fig. b) and Fig. 1d). If one considers the
the liquid-vapor critical point are located at £0;<1.01, critical lines of Fig. 1b), this occurs when the critical tem-
0.567<p;<0.573, 1.035:T4<<1.04, p4=0.33+0.003. perature at the ends of the low-density crescent-shaped line

The phase behavior of the system fintermediate be- s higher than the minima located along the line originating
tween the values 0.665 and 0.68 discussed above is worfiom the pure species. In the case of Fi¢d)1the require-
being considered in more detail. Figures 10 and 11 show thgent is that the local temperature minimumxat1/2 along
phase diagram fof=0.67. On lowering the temperature, the the liquid-vapor line must be lower not only than the tricriti-
low-density coexistence domains coalesce at ab®ut cal temperature, but also than that of the critical points lo-
=1.0235, and at a slightly lower temperature arouhd cated at the tips of the fork-shaped line. It may also be worth
=1.023 the resulting region coalesce with the high-densitypointing out that, strictly speaking, the watershed between
coexistence domain. The phase diagram ingheplane is  the density-concentration phase diagrams of Fig. 6 and Fig.
then similar to that already shown fé=0.68, except that 8, that represent the two different ways by which a domain of
here the low- and high-density domains meet at nearly thene-phase fluid can be enclosed into the coexistence region,
same temperature. However, if one considers temperaturéms not to coincide with the boundary between the critical
just aboveT =1.0235 it appears that, unlike what found for lines just discussed, although the two are expected to occur
the 6 studied above, the phase diagram displays six criticafor very similar values ob. In fact, according to mean-field
points, two for each of the disconnected domains thatheory, when the critical lines have the topology of Fi¢e)1
make up the coexistence region. This is clearly shown in thiae coexistence region in thex plane still looks like that of
P-Au plane of Fig. 11 fofT=1.024. In the present case it is Fig. 6. This implies that there is an extremely narrow range
not obvious to tell whether the topology of the critical lines of § where the topology of the critical lines is as in Figd}l
in the p-x plane is that of Fig. (b) or of Fig. 1(d), because it and the topology of the phase diagram in th& plane is as
is difficult to ascertain which is the part of the coexistencein Fig. 6. In theP-A u plane such a regime is marked by the
region in theP-A x plane that is sprouting from the other, twigs joining the bifurcation of the high-density coexistence
and consequently, whether the high-density branches of theegion at a temperature higher than that at which the low-
coexistence domain are bound to meet those originating frordensity branches meet each other. We have not checked
the pure species as faf=0.655, or the twigs as fod  whether this scenario comes along also in the HRT, or in-
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as the high- and low-density coexistence regions have
merged into one connected domain. The left panel also
shows the tie lines shrinking at the four critical points lo-
cated on the two symmetric lobes of the low-density coex-
istence region. An interesting feature that appears from the
arrangement of the tie lines in this region is the presence of
two more domains of three-phase coexistence, such that the
coexisting phases have concentrations that lie on the same
side of thex=1/2 axis. At temperatures at which the coex-
istence region is connected and encloses an island of homo-
geneous fluid as in the right panel, this sort of three-phase
FIG. 12. Coexistence region in thex plane for6=0.67 atT  equilibrium could be expected just on the basis of the fact
=1.024 (left pane) and T=1.023 (right pane}, corresponding to  that different tie lines cannot intersect each other. However,
panels(b) and (d) of Fig. 10, showing a few tie lines connecting the presence in the low-density region of the two critical
phases at coexistence. The diﬁerent shgdes of gray give a measurssints associated with the twigs in theA u plane implies
of pressure(black, low pressure; white, high pressure that three-phase coexistence is observed in this region even
t temperatures at which it has not yet merged with the high-
ensity coexistence domain. We also observe that in the
) . neighborhood of thex=1/2 axis where the two lobes of the
in the p-x plane has the topology of Fig. 8. low-density region coalesce, the tie lines are nearly horizon-

. Further mformaﬂc_m on the nature of the phase_ equ_'"b”atal, meaning that the concentration of the coexisting phases
is obtained by considering the tie lines, i.e., the lines in the

| that t the oh t ot i ¢ are very similar. At exactlx=1/2 azeotropy occurs, i.e., one
p-X plane that connect the pnases at coexistence at a certgify 5 purely liquid-vapor transition between two phases at

> &l . "
temperature and pressure. A few tie lines of the mixture WI'[hequal concentration, as already observed above in connection

0=0.67 are shown in Fig. 12 foT.=1.024(IefF pane) and with the phase diagram ai&=1/2 in thep-T plane. The criti-
T=1.023(right pane}, corresponding, respectively, to panels .|, int 1opning the liquid-vapor coexistence curve at

(b) and(d) of Fig. 10. We have chosen to report the tie Iinese imolar concentration in Fias(k and 4¢) is therefore an
for the cases§=0.67 because of its particularly rich phase au i 1on in g ) 40)i

: . azeotropic critical point.
diagram, several features of which are separately found also A4 s'increases above 0.7. the curvature of both the low-
for different values of5. In both panels of Fig. 12, the high- and high-density coexistence boundaries in the plane

density portion of the cgexistence re_gion is characterized bYapidly decreases, and the pressure at which the bifurcation
the presence of a demixed fluid which, as said above, COM5f the high-density coexistence region takes place gets closer

sists of t.WO phases at the same density and ponceptratloré%d closer to that of the coexisting vapor and liquid phases
symmetric with respect to the equal-concentration axis. As

stead it is replaced by the converse one, where the critic
lines have the topology of Fig.(), and the phase diagram

both | fer 1o t t below the tricritical t tion. One can then ask whether this feature of the phase
oth paneis reter 1o temperatures below the tricritica em'diagram will disappear at a certalig<<1, or instead only in
peratureT,, the phase equilibrium just described does no

; . tthe limit 5—1. The former case corresponds to a situation
gxtend down fo the left bo.undary.of the h|gh—den5|.ty.coex-where for 6> 6, the high-density coexistence region does
istence domain. At a certain densjty, the two coexisting

) ) _ e not undergo any bifurcation in tHe-A x plane, but it always
flq|ds at gymmetrlc concen_trauons 1—x_ coexist In U presents a mixing-demixing critical point at=1/2, Au

with a fluid at a lower densityy and equimolar concentra- —q_ At low enough temperature, this critical point meets the
tion. The densitiepy, pp are the boundaries of the first- |ow-density coexistence region at a first-order phase bound-
order coexistence domain that separates the mixed-fluid argjry. The topology of the critical lines in thex plane is that
demixed-fluid regions of Fig. #) for T<T,. In the p-x  of Fig. 1(e): the mixing-demixing line terminates at a critical
plane, this three-phase equilibrium takes place in a triangleang point where the low- and high-density coexistence re-
like domain bou_nded by thrEe tie lines meeting in couples a@ions meet. The phase diagramxat 1/2 corresponding to
the points pp,Xx), (pp,1—X), (pm.1/2). These lie very this scenario is that of Fig.(2) of Ref.[1]. As before, the
close to(but do not exactly coincide wilhthe two obligue  equimolar mixture displays both a liquid-vapor transition
lines and the leftmost vertical line shown in the high-densitythat occurs below a certain critical temperature and involves
region of Fig. 12. The two symmetric portions of the high-two mixed fluids of different densities, and a mixing-
density region of the left panel that lie above and below thedemixing transition at high density. In this case, however, the
three-phase domain correspond in tReAx plane to the transition between the mixed liquid and the demixed fluid is
branches of the bifurcation that stems from the linfAat  always second order down to the temperature of the end
=0 (see Fig. 11 Each of them presents coexistence betweepoint, below which the demixed fluid coexists with a mixed
two phases which differ both in density and concentrationyapor of much lower density. The situation where the contact
terminating at a critical point where the tie line reduces to eéetween the low- and the high-density coexistence region
single point. In the right panel the critical points are absentalways occurs at two distinct points symmetric with respect
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FIG. 13. Same as Fig. 2 fa$=0.8. The critical points in pandb) are not shown, because for this valuethe resolution of our

numerical calculation does not allow us to locate them.

to x=1/2 until § gets equal to 1 is instead consistent with theference between this behavior and that reported in RSl
phase diagram remaining qualitatively similar to that foundmost probably does not depend on some intrinsic difference
for §=0.7 with critical lines as in Fig. @), albeit the fork- between the two interactions, but just on the fact that the
shaped line will become vanishingly small &spproaches 1 higher resolution entailed by the 18@50 grid used in this

and the mixing-demixing line will be pushed to higher den-

sity. The phase diagram of the equimolar mixture in gH€ 03
plane will qualitatively look as that of Fig.(d). As a conse-
guence, as long as one has.1 there will be a small tem-

point, where the transition between the mixed and the de-%
mixed liquid is of first order. This is the scenario advocated 0.1
in Ref. [39] on the basis of modified hypernetted chain
(MHNC) calculations on a symmetric LJ mixture, while the
simulations performed in Refl] on a square-well system os
supported the existence of a critical end point at high enougt

6. Some calculations that we previously performed on a
hard-sphere LJ mixture using a 10Q00 density- 0.2
concentration gri19] also suggested that fo5=0.8 the X
phase diagram of the system presents a critical end poimﬁ
However, the present results for the HCY potential shown in
Figs. 13 and 14 indicate that fa¥=0.8, the mixture most
likely does not have a critical end point: in fact, in a certain 0

[ (2)

perature interval between the triple point and the tricritical » i

Kk T/€=1.087 |

[ (b)

177 17T 71

Kk,T/€=0.882 |

0.1

| (c)

" kgT/e=0.881 |

" kT/e=0.88

narrow temperature range the coexistence region irptke BZ 01 0z -0z -01 ﬁgﬂ 01 o2
plane still encloses a domain of one-phase fluid with concen- K
tration varying in a small interval around=1/2. Since the FIG. 14. Same as Fig. 3 fof=0.8. In panel(a), the high-

inverse range= 1.8 of the Yukawa potential considered here density coexistence region at.=0 does not appear as its pres-

gives a fair representation of the LJ interact[@1], the dif-  sures are outside the scale of the figure.
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work allows one to study the contact between the low- angoints located along the fork-shaped line, butfarlose to 1
high-density coexistence regions with better accuracy than ithey are certainly metastable since they correspond to nega-
Ref. [19], thereby uncovering the presence of a small onetive pressure. If instead the twigs disappear betdreaches
phase domain. To check that this is the case, we have reifd-, there will be a value of above which the critical points
vestigated the hard-sphere LJ mixture wifi=0.8 by the of the high-density coexistence region meet the low-density
larger 150< 150 grid in a narrow temperature interval that region at two points of first-order coexistence. As a conse-
brackets the value at which the low- and high-density regiongjuence, the contact takes place at two critical end points with
coalesce. We found that the resulting phase diagram has iwoncentrations symmetric with respectxte 1/2 rather than
deed the same topology as that of Fig. 13 for the HCY mix-at two double critical points. This is the situation considered
ture. We should observe that the case0.8 actually lies at in Ref.[39]. In such a case the critical lines in thex plane

the limit of resolution even for the larger grid employed here:have still the same topology as in Figd], except that the
the homogeneous domain inside the coexistence region itemperature minima along the fork-shaped line have now to
the p-x plane extends only one grid point in tpedirection,  coincide with the tips of the fork, which correspond to the
while the phase diagram in the-A . plane does not present two end points. It can also be worthwhile observing that, in
any of the features associated with the occurrence of suchptinciple, the twigs are not incompatible with a critical end
domain on the scale of the figure, so that it cannot be clearlypoint at equimolar concentration. In fact, this could even
distinguished from the kind of diagram one would expect ingive rise to a scenario where the presence of the end point is
the presence of a critical end point. In particular, there is ngonsistent with the high- and low-density coexistence re-
sign of the bifurcation of the high-density coexistence regiorgions meeting at nonequimolar concentration. Specifically, if
in the P-Ax plane that we expect if the low- and high- the critical points located at the ends of the twigs meet the
density regions have to meet at two points of nonequimolahigh-density region at two points of first-order coexistence,
concentration according to the scenario of Fig. 9. This mosthereby generating two symmetric critical end points with
probably depends on the fact that, for the relatively high# 1/2, nothing prevents the point at equimolar concentration
value of § considered here, the densities of the mixed andf this region from remaining critical, until it also meets the
demixed liquids at coexistence are so close, that their differlow-density region at a critical end point. We remark that
ence is comparable to the mesh size. As a consequence, thiech a possibility hinges on the presence of the twigs and the
differences in the pressures and chemical potentials of neighielated critical points on the low-density coexistence region.
boring but noncoexisting points will also become compa-In the converse situation where the critical end pointx at
rable to the numerical errors. A little numerical noise in the# 1/2 result from the contact between two points of first-
P-Au plane due to the finite mesh used in the calculation iorder coexistence on the low-density domain and two critical
in fact always present, as shown by close inspection of thgoints on the high-density one, the requirement that the point
relevant figures, but only at high does this become a hin- atx=1/2 be critical is untenable, as pointed out in R&8].
drance for a clear description of the phase behavior. We didhe scenario just depicted is somewhat suggestive, as it
not pursue any investigation fé>0.8, becausa fortiori in could account for both the presence of a critical end point at
such a regime the resolution allowed by the grid used herg=1/2 above a certain value af reported in simulation
would not enable us to discriminate between the occurrencstudies[1], and the failure to observe the low- and high-
of a critical end point, or an extremely small region of ho- density coexistence regions coalescingatl/2 found in the
mogeneous fluid that undergoes a first-order demixing tranpresent investigation as well as in REB9]. However, we
sition on slightly increasing the density. Therefore, we aremust point out that at the present stage we do not have any
not in a position to say whether a critical end pointxat solid evidence that this possibility does actually occur, so
=1/2 will eventually appear neaf=1, or instead a very thatwe must regard it as a purely speculative conjecture.
weak first-order transition will survive up t6=1. Another

issue that is diffi_cult to elucidate within the reso!ution_ of the V. CONCLUSIONS

present calculation concerns the fate of the twigs discussed

before in connection with the phase diagram topology of We have used the HRT to perform an investigation of the
Figs. 8 and 9. As noted above, even at temperatures at whigfhase diagram of symmetric binary mixtures as a function of
the low-density coexistence regions that originate from thehe unlike-to-like interaction rati@. The microscopic inter-
pure species have coalesced into one connected domain, taetion adopted consisted of a hard-core repulsion plus an
latter can still show two symmetric critical points. When this attractive Yukawa tail potential with inverse range 1.8.

is the case, the low-density coexistence region inRhé& u Such a potential has been used many times in liquid-state
plane presents two small twigs, each of them ending at #eory to describe a simple LJ-like fluid. For each valué of
critical point. These twigs could either disappear at highconsidered, results for the coexistence regions were obtained
enoughs, or persist foréd arbitrarily close to 1. If a critical on the whole density-concentration plane at several tempera-
end point atx=1/2 never appears and the topology of thetures. The resulting phase portrait was related both to the
critical lines in thep-x plane is that of Fig. () until 6 gets  different topologies of the mean-field critical lines that come
equal to unity, the latter case corresponds to a situatiomlong asé is varied in the interval &46<1, and to the
where the low- and high-density coexistence regions willbehavior predicted by mean-field theory and simulation re-
always meet at two double critical points. As discussedsults[1] for a certain special class of the systems considered
above, mean-field theory indeed gives two double criticahere, namely, equimolar mixtures at molar fracticnl/2. A
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feature of the HRT that is particularly useful is that the do-the interaction profile which is intrinsic to the mean-field
mains of coexisting phases are straightforwardly obtained bphase behavior should always hold also for more sophisti-
the theory as the loci where the conditions of thermodynamicated approaches, specifically for the HRT. Moreover, one
equilibrium between different phases are satisfied, withoutan also imagine a scenario where the existence of a critical
any need of enforcing thei posteriori Fulfillment of these end point at equimolar concentration is not prevented by the
conditions is shown by the collapse of the isothermal secbehavior observed here for the phase diagram inghe
tions of the coexistence regions on lines of v n plane, plane, namely, the fact that, even for relatively highthe
P being the pressure anfiy the difference between the low- and high-density coexistence regions meet first at two
chemical potentials of the two species. This property makepoints symmetric with respect to=1/2 rather than ak
also easy to identify the critical points exhibited by the phase=1/2. However, the present limits in resolution of our nu-
diagram at a certain temperature. merical calculation do not allow us to say whether this con-
According to the results previously obtained by mean-jecture is actually relevant for the system studied.
field theory and simulations, the phase diagram of symmetric An interesting issue that was considered here is how the
mixtures at equimolar concentration is characterized by threphase portraits corresponding to the topologies mentioned
different regimes, depending on the value &f at low §  above look like, if one moves off the plane of equimolar
(6<0.605 according to mean-field theofft]) a mixing-  concentration. In particular, the intermediate regime is
demixing critical line joins a mixing-demixing coexistence marked by the presence, in a certain temperature interval, of
curve at the critical point, thereby generating a tricriticala phase coexistence domain with a hole of homogeneous
point. For & closer to 1 ¢>0.708 in mean field1]), the fluid inside it. This comes along according to two distinct
mixing-demixing critical line joins a liquid-vapor coexist- scenarios that can occur as the temperature is lowered: for
ence curve at a critical end point. Finally, in a narrow inter-0.65< §<0.67, the two low-density coexistence regions
val in § intermediate between the above regimes, the mixtureriginating from the pure species meet the high-density co-
shows both a liquid-vapor coexistence curve and a mixingexistence region associated with the mixing-demixing transi-
demixing one at higher densities, topped, respectively, by &on, and subsequentely they meet each other, leaving a do-
critical and a tricritical point. Our investigation clearly shows main of mixed fluid enclosed inside the two-phase region.
the tricritical point regime as well as the intermediate oneFor §>0.67, first the two low-density coexistence regions
The latter is predicted to occur starting from abofit meet each other, and then the resulting connected domain
>0.65, in agreement with the simulation results for a squaremeets the high-density coexistence region at two points sym-
well mixture[1], but it lingers on for larger values @gfthan  metric with respect to concentration=1/2, leaving some
those given by simulation: according to simulation, the endone-phase fluid in between. In the former case, the tempera-
point regime is reached fa¥>0.68, while according to HRT ture T4 of the liquid-vapor critical point ak=1/2 is always
6=0.7 is still in the “transition” or intermediate regime, as lower than the tricritical temperaturg, while in the latter
shown in Fig. 4c). As a matter of fact, we did not find any caseT4 can be either lower or higher thd, depending on
clear evidence of the end point regime, since our calculationsg. The present calculation givd§<T, starting from about
indicate that the mixture is likely to be in the intermediate §=0.7.
regime foré as high as 0.8. However, on increasifigthe Because of the existence of both a liquid-vapor and a
transition region quickly moves to high density, and the finitedemixing transition, the critical loci show both a line that
resolution allowed by the 150150 grid used here becomes spans the concentration axis and connects the critical points
insufficient to fully uncover the topology of the phase dia-of the pure components, and a mixing-demixing linexat
gram in this parameter range. For this reason, we did not1/2. The tricritical point topology corresponds to a situa-
investigate the behavior of the model f6r0.8. The results tion where these lines are connected, and the character of the
obtained in this work are in qualitative agreement with atransition changes continuously from liquid vapoxat0 or
study based on the MHNC integral equat{®9®], according x=1 to mixing demixing ak=1/2. In the end point regime,
to which no critical end point at equimolar concentration iswhich as said above was not observed in the present HRT
present up to at least=0.81. The HRT and MHNC calcu- investigation, the critical lines are instead disconnected, and
lations were performed on the HCY and on the LJ potentialthe transition along the line that connects the critical points
respectively, while in the simulations both the hard-spheref the pure species is essentially of liquid-vapor type. The
plus square-well1] and the LJ potentidll5] were used. For intermediate regime between these topologies is character-
the latter interaction, the simulation results showed the exisized by the presence of a further critical line at concentra-
tence of a critical end point fo6=0.7, similarly to what tions ranging in a certain interval centeredxat 1/2, which
found for the square-well potential. As observed in Sec. |, thavas referred to above as either the “crescent” or the “fork”
HCY potential was also employed in other investigationsline. The number of critical points that are found for a certain
based on the MSA21], the ORPA22], and the SCOZA23] isothermal section of the phase diagram depends on the rela-
theories, all of which yield for the phase diagram the sameive location of the temperature extrema along the critical
qualitative picture found in mean-field theory and simula-lines. The behavior found by the present HRT calculation
tions. Before drawing any definite conclusion about the re-agrees qualitatively with that given by mean-field theory. In
silience of the intermediate topology in the HRT, the role ofparticular, the system is predicted to have up to six critical
the specific interaction adopted should be elucidated. In facpoints at a certain temperature. According to HRT, this oc-
we do not see any general reason why the independency ofirs for a very narrow range aof values contained in the
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interval 0.665< §<0.68. At the boundary between the “cres- and pressure, in symmetric mixtures these transitions can
cent” and the “fork” topologies of the critical lines, the sys- instead be located in the same region of the thermodynamic
tem has two tricritical points at symmetric nonequimolarspace. As a consequence, they tend to compete with each
concentrations besides that at concentrakieril/2. In HRT,  other, so that even a small variation in the relative strength of
this particular topology occurs for a value &tlose to 0.67,  the interactions expressed by the paramétir sufficient to

to be compared with the mean-field resai=0.65338. In  pring about significant qualitative changes in the phase dia-
both cases, these values lie very near the boundary betwegpam. The results presented here are also relevant for Ising
the two different types of one-phase “holes” in the phaseferrofiuids in the presence of a magnetic field. More gener-
coexistence region described above. Whens such that a”y' they show that HRT is Capab]e of providing a compre-
mean-field theory and HRT predict the same qualitative tohensive description and resolving even subtle features of the
pology of the phase diagram, the quantitative discrepancphase behavior of the model. This ability could prove useful
between the critical loci given by the two approaches is simitg systematically study beyond the mean-field level also the
lar to that found for the pure species. phase diagram of more realistic, nonsymmetric model mix-

This inveStigation shows that Symmetric mixtures, deSpitQures that depend one more than just one parameter.
their conceptual simplicity, exhibit a very rich phase behav-

ior. Like real mixtures, these systems have both liquid-vapor

and m|X|ng-d¢m!X|ng transitions. H'O\'/vever, \(vhlle in .real ACKNOWLEDGMENT

mixtures the liquid-vapor and the mixing-demixing regimes

generally correspond to states that differ widely in density D.P. thanks N. B. Wilding for stimulating correspondence.
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