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We investigate diamagnetic fluctuations in percolating granular superconductors. Granular superconductors
are known to have a rich phase diagram including normal, superconducting, and spin-glass phases. Focusing on
the normal-superconducting and the normal-spin-glass transition at low temperatures, we study the diamag-
netic susceptibilityy*) and the mean square fluctuations of the total magnetic mogféhof large clusters.

Our work is based on a random Josephson network model that we analyze with the powerful methods of
renormalized field theory. We investigate the structural properties of the Feynman diagrams contributing to the
renormalization ofy® and x(?. This allows us to determine the critical behavioryét) and y(® to arbitrary

order in perturbation theory.
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. INTRODUCTION normal and the SG phase pgis approached at low (this
transition will be referred to from now on as transition. Il
The discovery of high-temperature superconductivityThe SG phase is characterized by a vanishing average con-
raised hope of an important role of this phenomenon in apdensate wave function but nonvanishing Edwards-Anderson
plications requiring high current densities, such as powebrder parameteli5].
transmission lines and high-field magnets. The most severe Early theoretical work on the transition | dates back to the
factor limiting current densities is that all practical materialsbeginning 1980s. It was predicted by de Genf&sand Al-
contain defects such as impurities, grain boundaries, andxander{7] that the configurationally averaged diamagnetic
other extended defects. Thus, it is important to investigatgusceptibilityy(*) diverges as
the role of disorder in superconductivity. i B
Percolation theonf1] plays a predominant role in the xH~[p—pc ¢ (119
study of disordered systems. In the course of years, it ha\ﬁ/ith
been applied to granular superconductors in many Ways
The diamagnetic properties of disordered composites of su- p=2v—t, (1.1b
perconducting and nonsuperconducting materials can by ) ) )
studied in terms of a percolation model where superconducf/herev is the percolation correlation length exponent &nd
ing grains are located on the sites of dxdimensional hy- ist the conductivity exponent of the random resistor network
percubic lattice and where Josephson junctions occupy neafRRN)- A few years later John, Lubensky, and WaldgW)
est neighbor bonds with a given probabilify. In the [8] presented a renormalization group anegS|s of the RIN
following, we will refer to such a network as a random Jo-Pased on a replicated Landau-Ginzburg-Wilsb@GW) }ype
sephson networkRJIN) [3]. continuum model introduced in Re{_ﬂ]. They stud|ed(( ) as
The phase diagram of the RIN has a rich structure devell as the mean square fluctuatiog’ of the total mag-
pending on the occupation probabilipy the temperaturd, netlc moment'for transmo'ns I and Il. Their results obtained
and an external magnetic fieB. This phase diagram was N a_pe_zrturbatlon calculation to_ one-loop _order support _the
explored in a seminal work by John and Lubengky) [4]. prgdlctlon (1.1. .I.\/Ioreover,lthew calculafu.ons reszulted in
Viewing the unoccupied bonds as normal conductors, ong'~=0 for transition | andy")=0 for transition I1.x'*) was
has a normal phase, a Meissner phase, and a spin{§igss found to diverge at transition Il as
phase. For type Il superconducting materials, one has in ad- xP~|p—pgltz-2" 1.2
dition an Abrikosov flux lattice phase. Fprbelow the per- ¢ ’
colation thresholg,, there can be only finite superconduct- wheret, is a crossover exponent distinct framRoux and
ing clusters and hence there is no macroscopitHansen[9] carried out numerical work to calculate for d
superconductivity. Fop exceedingp., there exists at least =2 dimensions. As JLW, Roux and Hansen relied on linear-
one spanning cluster and the phase depend®.0As p ized network equations. Their resuft=1.36+0.02 agrees
—p at B=0, one encounters for sufficiently low tempera- well with the scaling relatiori1.1b) if the established values
tures a transition from the normal to the Meissner phasdor v andt are inserted. Wang and Lubensk0] utilized a
(henceforth, we refer to this transition as transitignThis  low concentration series expansion to determineor d
Meissner phase has its typical hallmarks, viz., expulsion of=2. Their result¢=1.21+0.03, however, is inconsistent
magnetic flux and a nonvanishing average condensate wawdth the scaling relation(1.1b. Recently, Knudsen and
function. ForB>0, the system crosses over between theHansen[11] carried out numerical simulations avoiding the
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linearizations involved in Ref44,8,9. They obtaing=1.2  loop expansion. At the end of Sec. lll, we describe the renor-

in agreement with the series expansion result of Rif]. malization of y(*) and y(?), set up the corresponding renor-
Last but not least in our little historical reminiscence we malization group equations, and determine the scaling be-

quote experimental values for the exponent Misra and havior. In Sec. IV, we give a brief summary and concluding

Misiak measuredp=1.32[13] and ¢=1.45[14]. remarks. Technical details on the derivation of the full
It appears that a linearization of the network equations ha&aussian propagator for the RIN can be found in Appendix

a crucial effect ird=2, whereas it gives consistent results in A.

higher dimensions. To our opinion this is plausible because

the RIN is intimately related to the dilutedy model[12]. Il. THE MODEL
Hence, one should expect that vortex excitations become im-
portant ind=2 and that a linearized description, correspond- A. The random Josephson network

ing to a spin wave approximation, is insufficient in this case. As mentioned briefly in the Introduction, an RIN consists
Indeed, experiments on artificial RIN dh=2 without exter-  of superconducting grains located at the sitesof a
nal magnetic field show that the Kosterlitz-Thouless transid-dimensional hypercubic lattice. Bonds between nearest
tion of the two-dimensionaty model persists strong dilution neighboring sites are randomly occupied with probabitity
[15]. There exists additional evidence obtained by experiby Josephson junctions and, respectively, empty with prob-
ments[16] and simulationg17] that the properties of two- apility 1—p [19]. Each grain is characterized by a conden-
dimensional RJN differ significantly from the higher- sate wave function
dimensional case.
The previous paragraphs indicate that the status of dia- W= \pexpif). (2.9
magnetism in the RIN has several ramifications. On this ba-
sis, it is hard to draw reliable conclusions on the nature of théNote that the density of Cooper pairs on each grain is as-
diamagnetism in granular superconductors. Further work osumed to be a constapt and that only the phasé is al-
this subject seems to be in order. lowed to fluctuate. The fixed amplitude approximation ne-
In this paper, we determine the scaling behaviory6? glects charging effects due to quantum fluctuati®@. It is
and y(® for transitions | and Il in higher dimensions by the justified for grain sizes of the order of or smaller than both
powerful methods of renormalized field thedd8]. Our ap-  the bulk superconducting coherence length and the London
proach is based on the LGW-type Hamiltonian introduced bypenetration depth for the grains.
JL. Using dimensional regularization and minimal subtrac- The form of the wave functiof2.1) leads within the tight
tion, we explore the renormalization gf*) and y(?). Upon  binding model to a quantum-mechanical expectation value
analyzing the general structure of the Feynman diagrambor the total energy given by
contributing t?l )these rg?ormalizations, we derive the critical
behavior of and to arbitrary order in perturbation
theory. X X Y P H=-3 Kijcosa,). 2.2
The outline of this paper is as follows. In Sec. Il, we !
provide background on the model underlying our work. Aty  is a hopping matrix element for the Cooper pairs. Here it
first, we concretize the definition of the RIN and sketch itgg '

; ; - ) , a random variable that takes on the value 1 with probabil-
microscopic description. We mention the key physical quani 1 and the value O with probability£p. The sum in Eq.

tities that are implicit in the microscopic model, such as the;; 5 1ns over all nearest neighbor pafisi). The quantit
average tunneling current, and explain how they might be( 2 g palis). q y

calculated by using the replica formalism. Then we condense S =0 —0—A 2.3
; > : . i i i .

the microscopic into a mesoscopic model that is represented J J J

by a field theoretic Hamiltoniaft{. Our final expression for d

‘H is corroborated by a subsequent scaling analysis. In par-

ticular, the irrelevance of a certain coupling associated with i

T2 is revealed. Then we elaborate on several physical quan- A j:e*f A-dl. (2.9

tities that are native in the mesoscopic description. We give ’ i

their definitions and explain how to extract them in the rep-

lica framework. A brief review of the RIN phase diagram Heree* is an abbreviation for 2/®, with ® being the flux

concludes Sec. II. Section Il contains the core of our renorgquantum. The line integral is taken over an arbitrary differ-

malization group analysis. We gather the diagrammatic eleentiable curve from to j. A is the vector potential. We con-

ments that are the ingredients of our perturbation calculatiorsider the gauge fielé being entirely determined by a fixed

Then we take a short detour and outline the renormalizatioexternal magnetic field and neglect fluctuation&inExpres-

and the scaling behavior of the order parameter correlatiosion (2.2) governs the equilibrium statistical mechanics of

functions. This provides some background for our main taskthe RIN and represents a Hamiltonian in the sense of statis-

the analysis ofy(® and y(®. Next, we calculate the Feyn- tical mechanics. Note the following important featureHbfit

man diagrams contributing tg'") andy(?) at one-loop order. is invariant under the gauge transformation

Equipped with some intuition about these diagrams, we then

determine their structural properties for arbitrary order in the 0,— 6;+a(i), (2.5

escribes the phase difference between adjacent sites and
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A—A- i*Va, (2.6 [(lij)rlc= I|m (2.19

e ’ A(D[)

wherea is an arbitrary scalar function of the space coordi-The derivation of correlation functions in the replica frame-

nate. work requires a little caution. Note that
A fundamental role in the RJN is played by the tunneling
currents . FF,
Ci(Ejy'ﬁ): —lim W (215)
(9H - ' n—0 &AI’L; z9Ai’J-
=" A T T Ksin(a). (2.7) : . o o
splits up into a replica diagonal and a replica independent

part. Due to the permutation symmetry between the replicas
Their averages and correlation functions represent |nterest|r‘@(a B is of the form

observable quantities. Averaging over thermal degrees of "
freedom, henceforth indicated Hy- - ), may be discussed cleh—_cls +c@, 2.16
via the free energy L i a0
with
Fi=-TInz, (2.9

COH=T Y121 [(i )2} —E. (219
with the partition functionZ given by " . I’]>T - IJ)T o

and

Z:f Doexp(~T*H). 9 CA=T Ml pFc—[(1i)rIE (2.19

For convenience we have set the Boltzmann constant equdhe E, emerging in Eq(2.17) stands for the condensation
to one.[ D@ is an abbreviation fofI1;d6, , where the prod- energy
uct is taken over all lattice sites.

Of course, a meaningful characterization of the statistical E.=[(Kj;cog 4 j))rlc. (2.19
properties of the RIN requires more than just thermal aver-
aging. In addition, a quenched averdge- ] over all pos- B. Field theoretic Hamiltonian

sible configurationsC of the diluted network needs to be
performed. This average can be achieved with help of th%\]
replica trick.n copies of the network are considered simul-
taneously upon introducing the replicated Hamiltonian

Now we proceed towards a field theoretic model for the
N. The following derivation of a field theoretic Hamil-
tonian is guided by the work of JL.

Our starting point is the observation that thg"]- ap-
pearing in Eq(2.12 can be written as

H({8h= 2, H{sD=- 2 2 Kijcosafp),

(2.10 [z"]czf Do exp— T *Heg) (2.20
whered=(6W, ... ,6M). With this trick, the configuration- with an effective Hamiltonian
ally averaged free energy
Her= —In[ex — T *H({ &} 1lc - (2.20)
F=-T[InZ]¢ (2.11)
By virtue of the replica approach, we can perform the
can be written as qguenched average once and for all at this early stage. This
leads to
F=li ! F (2.12
=lim =F, . .
n—o Heﬁ=<iEj> K(3:,), (2.22
ith
" with
F,.=—TInN[Z"]¢. (2.13

K(8)=—In

1+ uexp( T*Zl cog 5@))) } (2.23

The key benefit of this procedure is that the problem of av-
eraging InZ is basically replaced by the easier task of aver-
agingZ". From the free energy, various quantities of interestwherev=p/(1—p). In Eq. (2.22, we have dropped a con-
can be extracted upon taking derivatives. The average custant termNgIn(1—p), whereNg stands for the number of
rent is given by bonds in the undiluted lattice.
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Next, we adopt ideas developed by Stepl2h| in the o
context of the RRN. The idea here is to introduce the quan- K(\)= -
tity (2m)

fdnaexp(m HK(3). (2.30

. R - o In writing Eq. (2.29, we have dropped a constant term
yx(i)=expix-6),  1#0. (2.29 K(0). To evaluate Eq(2.30 further, we insert Eq(2.23

As we go along, this quantity will grow into the role of an and expand the logarithm. We arrive at

order parameter field. The appearing in Eq(2.24) is an e ) R

n-component vector in replica space=(\", ... A(M). K(N)=2, | JFI(N), (2.31

The dot product in Eq.(2.24 is defined asX-6

=3"_ A (@6 The conditionx #0 is imposed in order to ~ with

quallfy Yx(i) as an order parameter. This is simply because

¢i(i) is equal to 1 and hence, being a constant, not capable Fi(N)= 1 f" dns

of sensing a phase transition. The componasts are cho- : (2m)n) -
sen to take on integral values. With this choice, the iexp( n
-5) represent a complete set of orthonormal functions satis- X ex 2 [N 5@+ 1T~ cog 51|
fying the orthonormality and completeness relations a=1
(2.32
(277)”f d"6exp(ix- 6)= 65 6 (2253 The integral in Eq.(2.32 can be evaluated in the low-
temperature limit by employing the saddle point method.
and Note that this step amounts to linearization of the network
equations, or in other words, to a spin wave approximation.
1 Forn—0, this procedure leads to

oo % exp(—i\- 6)=a(0). (2.250 K(N)=7+WN2+0(T?), (2.33

Based on these relations, one can define the replica spat@€r® 7=7(p) and w=w(p,T)~T are expansion coeffi-
Fourier transform cients. In Sec. Il C, we will show explicitly that higher-order

terms in Eq.(2.33 lead to irrelevant contributions in the
R o field theoretic formulation, and that, hence, their omission is
d(6,i)=>D exp(—iN-0)y(i) (2.26  justified.
N0 Collecting we find the following expression for the effec-

L tive Hamiltonian:
of 5 (i). Note that the conditioi #0 on (i) transforms

into the condition ; Z G () expl( — in. AIJ){TJFW)\z .Y
Li) x#0
(2.39

At this stage, we carry out a gradient expansion. We have to
_ . pay regard to the fact that the effective Hamiltonian as given
on ¢(6,i). Thus, ¢(6,i) can be interpreted as @ontinu-  in Eq. (2.34) is invariant under the gauge transformation
ously indexedl Potts spin22]. .

Now we expandK (4, ;) in terms of ¢5(i). Rewriting () — (i) exdin-a(i)], (2.353
K(Ei'j) as

zw)”f d"04(6,i)=0 (2.27

. 5 1 .

i A()—A(i)— —Va(i). (2.35H
K(Ei,j)zf d"5 K(8)8(3-3,), (2.28 €
7 Hence, we must keep only those terms in the gradient expan-

we obtain after a little algebra sion that comply with this invariance. We obtain

K(8.)= 2 vl w s(Dexs —ix-A PR Het=3 2 E 2 0l
A#0 (2.29) o
X 1+§[bi-(V—ie*)\-A(i))]2
K(X) is defined as the replica space Fourier transform of B
K(4), X g (D{T+wN2+ -}, (2.36
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where the second sum runs over all lattice vechprb;etween *
sitei and its nearest neighbors. K(V,N,A)=7+WN2+ D, whK—[V—iX-A]2
We proceed with the usual coarse graining step and re- k=2
place (i) by the order parameter field;(x). The order (2.40

parameter field inherits the constraint 0. Then, a mesos- with w,~TX. We facilitate our scaling analysis by setting

copic free energy ir_1 the spirit of Landau i§ devised. 'Guide \ b~ !X, whereb is some scaling factor. Upon substituting
by Eq.(2.36), we write down the Landau-Ginzburg-Wilson— , = % : Lo
type Hamiltonian Iy (X) = ¢, -1;(X) into the Hamiltonian, we get

HL Y, 1,00, A00; 7w {wi} ]
H= fdd | > P OOK(V N A) ()

N#0 :f ddX

1 N
5 2 U OK(V XA gL ip(x)
AN#0

g
te . & z/f_);(x)z/;_);r(x)wg+g,(x)], .
, /’ ’ O
M S-S0 SRR AT QAR ¢
6
(2.39 M AN #0
where terms of higher order in the fields have been neglected X ‘!’l—le—lX'(x)] . (2.4)
since they turn out to be irrelevant. The kernel appearing in

the Eq.(2.37) is given by R R
Renaming the scaled replica variables=b~*\ leads to

K(V,X,A)=7+WN2—[V—iX-A]% (2.39 -

HL (), AX); 7, W, {wy}]

The coefficientsr andw should be understood as the coarse

grained analogs of the original coefficients featured in Eq. =j [

(2.36. Similarly, the A in the kernel (2.38 is a coarse

grained version of the original gauge field. The coarse 9 ) + N

grainedA is defined so that it incorporates the chaeje te . & Y lﬁfi,f(x) lﬂﬁﬂw(x) . (242

It must be emphasized that is invariant under the gauge AT NN #0
transformation

2 Y OK(V, bR A) ! (%)

A#0

Now we are going to exploit an important feature of the
summations over the replica variable. In the low-

YR = gr(x)exdin-a(x)], (2.393 temperature limit, i.e., fow—0, the summatior® ;.- - -
. . . can be replaced by the integratigii..d"\ . ... Poisson’s
A(X)—A(x)—Va(x), (2.39b  summation formula guarantees that the neglected terms are
of the order exp{constiv) [27]. In the continuum formula-
with the components dd being arbitrary scalar functions of tion, the rescaling leads to/”.d"\" . . .. Hence, the scal-
x. This gauge invariance will have important consequence#lg factorb drops out in the limin—0 and we can identify
as we go along. X with X. We are led to the conclusion

We point out thatH resembles for vanlshmg the form
of the field theoretic Hamiltonian for the RRN as studied by [ #p-15(X),A(X); 7,W,{W;}]
Harris and Lubensky23] and the present autho[24,25. ) o o
For vanishingA, the only formal distinction resides in the =HL$3(9,bAG); 702w (b Wy . (2.43

different domains Oi. In the limitw—0 [26], however, this Next we consider the imp"cations of E(Q43 on the

difference has no consequence and the perturbation expaftee energy. In the present field theoretic formulation, the
sions for the RIN and the RRN coincide. Ro=0, in par- Helmholtz free energy is defined as

ticular, both models reduce to purely geometric percolation.
f[A(x);T,T,W,{Wk}]= -TinZz (2.44

C. A note on relevance . . .
) o o with the partition function
Here we will show that it is indeed justified to truncate the

expansion(2.33 at first order inT. In other words, we will . R
show that the higher-order terms are irrelevant in the sense of 2= J Dipexp(— T “H[ 4y (X),A(X); 7,W,{W,}]).
the renormalization group. Our actual tool will be a scaling (2.45
analysis in the replica variabbe.

Now suppose we had retained higher-order terms in th&lere, Dy indicates an integration over the set of variables
expansion2.33); then the kernel of{ would be of the form  {¢y(x)} for all x andX. Equation(2.43 implies that
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FAX):T, 7w {Wk}]=f[bA(X);T,T,bZW,{bZKWk}]. Seve(al of these averages can bg extracted from the free en-
(2.46 ergy introduced in Sec. Il C. This free energy can be ex-
panded as

Of course, we are free to choose the scaling parameter to our
liking. With the choiceb?=w"1, we obtain . S
. AAT=A101- [ a3 00)A 00

> 1% Wi
HA(X);T’T’W’{WK}]:J{W mA(X);T’T’l’[WH' — 5[ 0o @t et xAoAP )
(2.47)

We learn from Eq(2.47) that the coupling constants, ap-

pear only in the combinatiow,/w*. A trivial consequence here the summation convention is understood for the indi-
of the fact that the Hamiltoniai’ must be dimensionless is o labeling space and replica coordinates:

thatw?>~ u? andw,\ %~ 12, whereu is an inverse length ’
scale. In other wordsyA? andw,\?¢ have a dimension 2.

Thus, w, /wk~ x?~2¢ and hence thev,/wX have a negative (3 (x)y= -
dimension. This leads to the conclusion that igw are :
irrelevant couplings and that the leading critical behavior of

the free energy is described by

+ ..

. (2.52

— 2.5
SA) | ;s (253

is the average replica current density. The second-order term

FA):T,7w]=f[w Y2R(x): T, 7], (2.48 features the correlation function

wheref is some functional ofv™Y2A(x). CleP(x—x') =~ S*F
The fact thatv, appears only in an irrelevant combination SAL () SAP (X) | 5 s
was overlooked in Ref8]. This ultimatively led to an erro- N
neous prediction for the scaling behavior gf. =T HIP)IP (X)) = (I(x))

. o N X(AP (X))} = 8(x—x')
D. Current density, magnetization, and related quantities

In this section, we elaborate on various physical quantities XS 2 NONB () (X)),
embedded in the field theoretic model. We provide, within M M
the replica framework, definitions of the current density and (2.54

the magnetization along with their averages and correlation
functions. We explain the physical content of replica quanti-
ties and describe how it can be extracted.

The role occupied in the original microscopic model by
the replicated tunneling current$“ is taken in the field
theoretic formulation by the repllcated current density

The relation between the field theoretic average of the replica
current density and the thermal and configurational average
of the physical current density is straightforward:

lim (3(x)) =[(J;(x)]c. (2.55
(SH n—0

(@) ()= — S
H00=- g

(2.49

As far as correlation functions are concerned, the situation is
somewhat more subtle. The structure of the correlation func-
tions must be so that they are invariant under permutations of

the replicas. Hence the two-point functions are of the form

Note that the index specifies here the component of the
current density ind-dimensional space and should not be
confused with the sité
The current density has a very important feature. It repre- (a.p) (D) , )
sents the Noether current associated with the gauge invari- ~ Cij" (X~ X)=Cij(x=X") 84,5+ Cij(x=X")
ance of the Hamiltoniaft{. Hence, it satisfies the conserva- (2.56
tion relation
with
V-J@(x)=0. (2.50
CHYO=X) =T H[({J3i(03;(X))7le
Averages in the field theoretic formulation are declared by (D)
means of the functional integral —[(Ji)T(I(X"))7lch = 6 jo(x—Xx")E¢,
(2.57

1
.>:§f Dy --exp(— T YH). (2.5))

and
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CR=x) =T H[(300)r(I(x))7]c with
— (i)t (x"))v]c} Fki=B(10i 2~ 6k 26i 1)- (2.67
- 5i,j5(x_x')E(c2)v (258 with help of this expression, we obtain the free energy as a

where the replica limin— 0 is understoodE") andE® are ~ function of the replicated field amplituds:

the replica diagonal and the replica independent part of
f(§)=f(6)—f dxM(@(x)B(®
ESP =2 NONOro0y 5(x)). (2,59

X#0 1
__f ddxf A9 (@) (x—x")B@BA 1 . ..,
From Eq.(2.57), one learns that 2

2.
Ci(,lj)(x_x'):[ci,j(x.x')]c (2.60 (2.68

for n—0, i.e., the replica diagonal part &% (x,x') cor- where
responds to the average of the physical density current cor- 1
relation functionsC; ;(x,x’) over all configuration<. The M () (x)= E[(J({‘)(x))xl—<J(1“)(x)>x2] (2.69
physical content oC{% will become clear below.

Now we shift focus and turn from the current densities to
the magnetization and its correlations. An external magnetic

field can be introduced into the model via @B (x—x")=Cl@B) (x—x"). (2.70

Fi,j00= 914100 = A (x). (2.6 Adopting the usual definition of the magnetization in the
For d=3, this reduces to the usuBk=rotA with the com- homogeneous field setup to the replica framework, we have
ponents of the magnetic field given IBg=F,, and so on.

HavingF; ; at hand, we can rewrite the expansion of the free M@= — i oF =E|v|§g? , 2.7
energy as Vo@|. .V
B=0
FA]=70]- f d%( I (x))AL (x) whereV stands for the volume of the system ad® is the

replica version of the total magnetic moment
1
_ZJ ddxf dx’ CleP(x—x")FO(x)FE(X")
Mm=J d M(x). (2.72
+... (2.62

The physical magnetizatiov is retrieved by taking the limit

In recasting the second-order term, we have exploited thatnﬂo_ From Eq.(2.69, one obtains immediately that van-

ﬁici(f}.ﬁ)(x)zo (2.63 EQ\/e; forB=0. Turning to the diamagnetic susceptibility, we
by virtue of the gauge invariance and its manifestation
(2.50. Due to EQq.(2.63), the Fourier transform (@.8) 1 PF
XTIV gB@ge®) |

ClrP(k)= f dixCleP (xjexp(—ik-x)  (2.64

=£f ddxf d%’ (A (x—x") (2.73

of C{4P(x) is of the form \Y ' '
E:i(f}'ﬁ)(k)=(k25i,j—kikj)“é(“'ﬁ)(k). (2.65 A glance at Eq(2.70 brings about two important observa-

tions. First, we see that
The C(*A)(x) in the expansior{2.62 is defined as nothing
but the Fourier transform oE(*#)(k). (@B =C*P) (). (2.74
In the remainder of this paper we will be concerned with

a homogeneous external magnetic field perpendicular to th€his relation will play an important role in our actual calcu-

1-2 plane -y plang. In three dimensions, this corresponds lations. The second observation is that the diamagnetic sus-

to aB field pointing in the third directionZ direction. We  ceptibility should have the same replica structure as the cur-

formulate the envisaged magnetic field by setting rent density correlations, i.e.,

A(X) = 3%F (2.66 x P =xWs, s+ X2, (2.79
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FIG. 1. Schematic phase diagram of the R&xbitrary units.
The critical surfacg1) separates the insulating and the supercon-
ducting phase. The critical surfa¢®) lies between the insulating
and the SG phase. Both surfaces merge in a line of bicritical point

PHYSICAL REVIEW B57, 046115 (2003

In the following, we will assume that the external magnetic
field is replica symmetric and writB=B(®) for every a.

Obviously, the lowest eigenvalue is associated vgjth
=0, . Now assume thatv>0 andB>0. By inspection, one
finds following two modes associated with vanishing eigen-
values.

(i) One withx,=(1,0, . .. ,0) andn=0. Itis soft, i.e., its
eigenvalue vanishes, far+ w+B=0.

(i) One withX,=(1,—1,...,0) andarbitrary m that is
soft for 7+2w=0 (note, that 7+w+B=7+2w for B
=Ww).

Kl and KZ should be understood as representatives for a
set of equivalenti.e., identical up to a permutation of the
components replica vectors. We identify two critical sur-
faces. The surface specified by=—(w+B) and B<w

separates the insulating and the superconducting phase. The

(solid), where the insulating, the superconducting, and the SG phasrder parameter for this transition is

meet. Forw=0, there is a critical linddashegl separating the in-

sulating and the SG phase. At the origin, there is a critical point

(dot) between the three phases.

In the replica limit,y*) has the physical content

X(l): (2.76
with y being the diamagnetic susceptibility for a given con-
figurationC. x(® contains the fluctuations of the total mag-
netization. Fom—0, one has

[xlc,

1
(=g ] @[ abeTmoomoc e

~[M)1IM(X) et =T HIMEdc—[Moldd}-
2.77

In the following, we will refer tox*) and x?) in a brief
fashion as susceptibilities.

E. Review of the phase diagram

n—0

(x,(0)) = [(e"™)1]c -

The surface corresponding to= —2w and B>w separates
the insulating and the SG phase. Here, the order parameter is

of the Edwards-Anderson type,

n—0
(¥, (¥)) — [(e™)r(e” ™)7]c.

The two critical surfaces merge at a line of bicritical points,

given by 7= —2w= —2B, where the insulating, the super-
conducting, and the SG phase meet.

Now we come to the transitions | and Il that are the main
concern of this paper. Admittingg=0, one finds a critical
line specified byr=w=0. Crossing over this line by tuning
70 (p<p.) to 7<0 (p>p.), one gets from the insulating

to the SG phase. This is our transition Il. The order param-

eter here ig ¢(x)) with all X0 satisfying="_,\()=0.
Finally, there is the critical point=w=B=0 that represents

In favor of a self-contained presentation, we now brieflythe terminus of the two critical lines. Tuning>0 to 7<0

review the phase diagram of the RJM], see Fig. 1. In

about this point, one crosses over from the insulating to the

mean-field theory, the phase diagram can be mapped out uperconducting phase. This is our transition I. Its order pa-

determining those combinations of the paramefers, and

B for which the Gaussian part 61 develops the eigenvalue
zero. For convenience, we write the space coordinates
=(Xx,y,X,), wherex, lies in the d—2)-dimensional sub-
space perpendicular to they plane. In the following, we
use the Landau gauge, i.e., we §€éb<)=(0,x,OL). The ei-
genvalues of the Gaussian pattte Landau leve)scan be
determined by standard textbook methods. One finds

E(d, ,N,m)=7+q"+W\2+(2m+1)|w(N)]. (2.78

The momentuny, is the Fourier transform of, . m labels
the Landau levels and takes on the valies0,1,2 . ...

w()f) is a cyclotron frequency given by

(2.79

rameter is{ (X)) with arbitrary x #0.

IIl. RENORMALIZATION GROUP ANALYSIS
A. Diagrammatic elements

To set up a diagrammatic perturbation expansion, we need

to identify the elements contributing to our Feynman dia-
grams. Evidently, there is the vertexg/T. The Gaussian

propagator for the present problem is not straightforward to

determine, at least not in a nonapproximate and closed form.
This is due to the presence of the gauge field. A possible
approach is to expand the propagator in terms of the eigen-
functions belonging to the Landau eigenval2s/8. This
route was taken by Lawrig28] in studying the related prob-
lem of the LGW superconductor. By summing over all Lan-
dau levels, Lawrie brought the LGW propagator into an el-
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egant form that made multiloop calculations tractable. Incounterpart for the RRN. The conducting propagdtf)
Appendix A, we present a simpler approach that allows us t@educes formally to its analog for the RRN for vanishing
derive the propagator directly without resorting to a expan-cyclotron frequency,

sion in terms of Landau levels. Yet, our approach reproduces

the closed form found by Lawrie. We obtain _0=0 exgdik-(x—x")] .
GMx,x" \) — Tf ————, 5 =G(x—x',\).
. o(XN) k  7+wh“+k
GPM(x,x" ,\N)=Texgi 5 (x+x)(y=y") (3.5

. ComparingG(x—x’,X) to the full conducting propagator

><ka(k,)\)exp[ik-(x—x’)](l—5);,5) G"Yx,x’,\), it is apparent that the perturbation theory
simplifies tremendously for vanishing():). This simplifica-

(3138 tion will allow us to study the susceptibilities at transitions |

as the principal propagator for the RIN. Heffgijs the usual and Il with reasonable effort.

shorthand notation for 1/@)d%. G(k,X) is given by B. Order parameter correlation functions
Here we will discuss the renormalization and the scaling
G(k,N)= | —————— exg —s(r(X)+k?) behavior of the order parameter correlation functions
0 cosiw(\)s)

_ GN({X’K};T!WaByg):<‘//X1(X1), o (X)), (3.6
tanh(w(\)s) b
————(p°+q9)

, Ab
o) (3.1b

where we drop the redundant scaling variafldor nota-
tional simplicity. Though these correlation functions are not
wherep andq are conjugate ta andy, respectively.r()f) is the main concern of thi_s paper, t_hey desgrve some attentipn.
. -, T First, they are interesting in their own right. Second, their
a shorthand notation for+w\*®. The factor (1-656)  giscussion will provide some background for the subsequent
implements the constraint# 0. analysis of the susceptibilities. Most of the techniques we are
We annotate that one could discuss the RIN phase digpoing to use, such as dimensional regularization and minimal
gram by analyzing the infrared behavior of the propagatokubtraction, belong to the standard repertoire of renormalized
(3.1) instead of the minima of the Landau levé’s78. Ba-  field theory, cf. Ref[18].
sically, one just has to consider the linsit-cc and to deter- To remove ultravioletUV) divergences from the order

mine the parameter combinations for which the propagatoparameter correlation functions, we use the renormalization
becomes long range. Of course, one finds the phase diagrasgsheme

discussed in Sec. Il E.

We observe that the principal propagator decomposes into Y ioﬁ:Zl/zlﬂ, (3.79

two parts,
Gbold(x,xr,)_\'):Gcond(x,xr,):)_GinS(X_X/). (32) T—>;’=Z_1277', (3.7b
One of them w—>\7v=Z*12Ww, (3.70

con N w():) ’ ' o
G ) =T exp i ——(x+x')(y=y') g Q=2 32ZVeG L er-v2 e (3.7q)
xfé(k,i)ex;{ik-(x—x')] (3.3 B—B=Z""ZgB, (3.79
k

R where the ° indicates unrenormalized quantitigsis the
carries\. The other one usual inverse length scale=6—d specifies the deviation
from the upper critical dimension 6. The factds,
=(47) 9T (1+¢/2) is introduced for later convenience.

At first, we consider the role of the magnetic field. For the
closely related problem of the LGW superconductor, it was
does not. The notation we use here reflects the close analoggmonstrated by Lawrig28] in a two-loop calculation that

to the RRN, wherex plays essentially the role of a current. the B field does not require renormalization, i.e., tigat B

For the RRN, the decomposition of the principal propagatomup to second order ia expansion, and that the remainidg
culminates in a real world interpretatid24,25,29—-40in  factors are independent & One can show, however, that
that the Feynman diagrams are viewed as conducting nethe validity of these findings is not limited to second order;
works composed of insulating and conducting propagatorghey are valid to arbitrary order ig expansion. We will
The insulating propagato3.4) is identical in form to its address these points in some detalil in a forthcoming paper

. o5 6
G"‘S(x—x’)=Tfk 7-+NI22 exgik:-(x—x")] (3.9
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[41] on the LGW superconductor. The quintessential points
can be sketched as follows: the nonrenormalizatioB of a
consequence of the gauge invariance. Exploiting this invari-
ance, one can show that the current density renormalizes X Gn({X,N};7,w,B,u, ) =0. (3.10
trivially. Since the vector potential is conjugate to the current

density, it does not require an independent renormalization The RGE can be solved in terms of a single flow param-
factor also. In turn,B renormalizes triVia”y, i.e.,Zfl/ZZB eter¢ by using the characteristics

=1 to arbitrary order irz expansion. Th& independence of

the Z factors follows from the fact thaB is not dimension- _

less at the upper critical dimension. o — —

For the present problem, the reasoning of R&f] has to tog=m wD=n, (3.113
be modified somewhat. This is because the magnetic field
appears in case of the RJIN always in the combination
w~Y?B~ 4 as opposed to the pui@~ u?
LGW superconductor. As a consequence, the massgjuires
in the present problem an additive renormalization propor-
tional to B2. This subtlety has no consequence for our main ;
results and we will ignore it in the following. - — —

The most economic way to determideZ,, Z,,, andZ, tognm= k(). ()=, (3.119
is to exploit the close relation of the RIN to the RRN. As
indicated earlier, the corresponding two diagrammatic expan-
sions coincide foB=0 in the replica limit. Furthermore, the €i Inw= 7€), w(l)=w (3.119
RRN reduces fow=0 to purely geometrical percolation. ot ' ' '

Hence,Z, Z,, andZ4 are nothing but the usual percolati@n
factors known to third order ia expansiorf42]. Z,, may be
. g _
gleaned to second order i from our work on the RRN ¢— InZ=y(u(¢)), Z(1)=1. (3.118
[24,25. EY;

Having determined th& factors, we are now in the posi-
tion to infer the scaling behavior of the order parameter cor-These characteristics describe how the parameters transform
relation functions from their renormalization group equationif We change the momentum scale according to u
(RGBE). This RGE is a manifestation of the fact that the un-— u(€)=¢ . Being interested in the infrargtR) behavior
renormalized theory has to be independent of the arbitrargf the theory, we study the limi€ —0. According to Eq.
length scalew ™! introduced by renormalization. Hence, the (3.11h, we expect that in this IR limit, the coupling constant

unrenormalized correlation functions satisfy the identity ~ y(¢) flows to a stable fixed point* satisfying 8(u*)=0.
The IR stable fixed point solution to the RGE is readily

+ a+ a+ a+N
Pout ot eowt 27

Mo a7

in case of the gj_?zﬁ(i(g)), u1)=u, (3.11b

9 o e e 6o found. In conjunction with dimensional analysi® account
M%GN({X,)\};T,W,B,Q)ZO. (3.8 for naive dimensions it gives
Equation(3.8) translates via the Wilson functions GN({X,X};T,W,B,U,,u)

:g(d72+ n)N/ZGN({€X,X};€71/VT7€7¢/VW,€7ZB,U* ,,LL)
: (3.93 (3.12

0

d
=u—InZ
y.. (W) ronZ..

with the critical exponents for percolatiop=y(u*) and v
=[2—«(u*)]"* known to third order ine [42]. ¢p=1[2

Ju
BU)=p——! =uBy=y,~e), (3.9  —¢(u*)] is the percolation resistance exponent known to
Hlo second order i [24,25,43. We have not yet exploited the
freedom to choosé. By setting, for example{=|7|", we
glnr find that the order parameter correlation functions scale like
Kk(U)= =y—y., 3.9
(W=p— vl Y=Y (3.99 )
Gn({X,\}; 7w, B,u, 1)
dlnw — —(d—2+77)N/ZQ _1X, ¢/2VW1/2):; 2_¢/2VW_1/ZB),
(=n" ] =y, (3.9 ¢ vE TS
©ol, (3.13

(the |, indicates that bare quantities are kept fix while takingwhere ¢ is the correlation length anf}y, is a scaling func-
the derivativesinto the RGE tion.
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C. Susceptibilities derivatives. Next, we expand the weight exd{ *4) in

In this section, we discuss the renormalization of the susPowers of the coupling constagtT. At the zeroth order in
ceptibilities as well as their scaling behavior for transitions 19/T, We obtain
and Il. We start by analyzing the Feynman diagrams contrib- 1
uting to the susceptibilities. First, we consider the one-loop cleB) "N () (B fT—1r=bold g7 v ¥
: . . L LGP (x=x") =2, s NYNPHT T GP5(X XA\
order in some detail. More important than yielding concrete i ) % 2i L ( )
results, this provides us with some intuition about the general

structure of the diagrams. Then, this general structure is ana- X d; aj’Gb"'d(X,X',):)
lyzed for diagrams with an arbitrary number of loops. We bold o .
demonstrate how to renormalize the susceptibilities properly. — iGX, X", \) 3] GP(X" X, \) ]

Finally, we derive their scaling behavior. bold, m <
— 8(x—x") 8, ;G9(0,X)}. (3.15
Here it is understood that the bold propagator is evaluated at
density correlation functio{$'(x—x') in Eq. (2.54. At decompose the bold propagator into its conducting and insu-
first, we express this correlation function directly in terms of|ating parts. We recall that the insulating propagator contains
the order parameter field. Recall th@f]”)(x—x') is de-  afactors; 5. Due to the(\( in Eq. (3.15, all the terms
fined originally in terms of the current density containing insulating propagators drop out. We obtain upon
sendingx’—0

1. Diagrammatics: One-loop calculation

1
I =2 NP (X) g (X) = () a7 (¥)],
v 2! A ' ' (.14 clePo=2 %M‘”MB){T*1[G(x,>()aiaje(x,>2)
. A

where we have sét= 0. Being a composite field, the current —3,G(X,X)3;G(x,\)]— 8(x) 8, ;G(O,\)}.
density is inconvenient to handle in actual calculations. (3.16
Hence, we substitute E¢3.14) into the current density cor- '
relation function. TherCi(f}'ﬁ)(x—x’) is composed directly Next we switch to momentum space. Applying the usual
of correlation functions of the order parameter field and itsFourier transformation to Ed3.16) yields

_ 2q;q; bi
C@h =TS \@)\® _ L -— 3.1
GO00=T2 N fq{[rm+(q+k/2>2][f<x>+<q—k/2>2] r<x>+q2] G4

Since we are ultimately interested in the susceptibilities, we should lo@¢“#) (k) rather tharf:i(f}"ﬁ)(k). Via taking the
trace on both sides of E¢2.65), we find that

é(a,ﬁ)(k)zi 2 )\(a))\(ﬁ)J C]Z{ 1 ! ] (3.18
q

(d-1)k2 5 [7(%)+(q+ k2P 7(X) +(q—Kki2)2]  [7(X)+q?]?

Here we have used that We proceed with simplifying the summation over In
Schwinger representation, this summation is of the form

d 1
= = = (3.19
fq 7(N)+q° fq [r(M)+q°T? > NONB exd —sr(N)]. (3.21)
N

in dimensional regularization. By virtue of the relation
(2.74), we obtain upon expansion in the external momentumat this point, we find it convenient to introduce the short-

k hand notation
T A (@) (B) .
@h=—23 f —— (320 (=2 - ex—sT(\)] (322
X = . . T . .
6 < Ja[7(N)+0%2 "R
This is the replica susceptibility at one-loop order. Revisiting Eq.(2.75, we deduce that
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(NONB)Y, =as, s+b, (3.23  tumintegration. Since we eventually have to take the replica
’ limit n—0, we then expang® in powers ofn. Upon taking
wherea andb are coefficients that need to be determined. Bythe derivative with respect toand carrying out the integra-
analyzing the cases= B and o+ 8, we find tion over 6§, we get in the replica limit

1 R . e—ST 1 71_2
azm{”<“%‘< [

Tw BsW
1 R n 2
b=——n(n_1){<xz>r<(;l W’) >x :

To evaluatea andb further, we now look at transitions | and

Il separately. At the transition I, we ha®=0. ForB=0, : ; (2) - .
A ) i e . the following divergent parts for transition 1I:
the system is, like the RRN, rotationally invariant in replica ¢ gentp o
T2 G, [ A T]

n 2
T
>\<a>) > ., (3.29 @=— | oo
(121 \ X 12)o (47TS)d/2

] . (3.30
The remaining integration over the Schwinger paramster
(3.295 represents no difficulty. For the renormalization group treat-
ment that we have in mind, we will only need the UV diver-
gent parts ofy(?). These are extracted in form efpoles by
expandingy(® in powers ofe. This provides us finally with

space and hengg="_,\(9)?), =(x?), . Consequently, we )
havea=(1/n)(x?), andb=0. This leads for the suscepti- Xav= "W 126 |t 18w
bilities at transition | to

(3.3)

Note that the one-loop result foy'?) given in Ref.[8] is
(_ T f \? @_o (3.2 erroneous. It incorrectly featureg,.
X" " 6n = Ja[r)+ 22 x7=0. (3.29 x® for transition | can be calculated in an analogous
manner. We merely need to replace the integration that en-

At transition II, we have="_,\(¥=0 and thusa=0O(n°)  forces the constrain;_;\ (=0 by unity. This leads to the

andb=(1/n)(\2), . For the susceptibilities at transition 11, eSult
this leads to

1 T2 G, 33
T ):252n \a) o X W 12 ( . 2
yP=0, y@=-—_—> f — . (3.27) Lo
6n 7 Jq [7(N)+q?)? At this point, a comment on the dependence of the suscep-

tibilities is in order. From a technical point of view, dimen-
Now we are in the position to carry out the remaining sional regularization is the most convenient way of dealing
summations oven along with the momentum integration. With UV divergences. However, dimensional regularization
We outline the remaining steps at the instancey& at _has .som.e.unphysical features which are intimately related to
transition I1. Implementing the constrait®”_,\(¥=0 via  its simplicity. In the less economic but more physical cutoff

the integral (1/2) /™ d6 exp(6="_\ @), we have regularization, one tregts uv singularitie_s by introducing a
cutoff A and by replacing the full integratiofiy, by [q<x -

) T 1 This procedure leads typically to terms proportional té\In
X =" 6n E o de and terms varying as some power &f The logarithmic
A o7 divergences forA—« have their analog in dimensional

n N2 regularization in form of the poles. The terms algebraic in
><exp( 6> )\(“)) f —- (328 A, however, are unaccounted for in dimensional regulariza-
a=1 a[7(N)+0g7] tion. In case of the susceptibilities, this neglect conceals es-

. ) i . sential physics. Hence, the terms algebraicAinmust be
We find it convenient to use the Schwinger represemat'orihcorporated. We get

and rewritexy® as

T (= 1 (= J Xg.1>:I AN+ A A2T— ©. . (3.33
D= — — — Vo w 12¢ '
X 6nJo dSSZ_wJ',WdB qWdz ;
n and
Xexr{xwﬁz—s(r+w):2+q2)+i02 )\(“)} T G
O o LS Ca
(3.29
S . . T ™G,
At this point, it is useful to exploit Poisson’s summation +— BoA®+BjA%T+ByA2F2— 2|,
formula and approximate the summati@y by the integra- w 12(18¢)
tion [Z_.d"\. This integration is Gaussian and it can be (3.39)

evaluated straightforwardly by completing squares in the ex-
ponential. Next, we carry out the particularly simple momen-where theA’s andB’s are numerical coefficients.
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s exp[—wz KA ({},2)

n wdiz,=3 {x(a)} K

+i2| b ({6}) k(@ (3.37

FIG. 2. General structure of the Feynman diagrams contributing 2=0

to the susceptibilities. The hatched blob symbolizes an arbitrar)fOr the right-hand side of Eq3.36. The sums over and|’

number of closed loops composed of the vertey and conducting gyer the complete set of independent conducting loops
and insulating propagators. To the left and the right of the blob, we

have conducting propagators. The wavy lines indicate insertiorﬁ:orreSpOnding tofx}. A|’|,({s},z) and by({6}) are linear

points for external momenta into these propagators. The two bafdinctions of their variables. In case of transitionb|({ 6})
stand for a factoi- &', are all zero. Since we are interested in the limit-0, we

may apply Poisson’s summation formula, i.e., replace the
summations =, by integrations [, d«®). The so-
obtained integrations are Gaussian and hence straightfor-
Higher orders in the expansion of the weightward. They yield

exp(—"H) in powers of the coupling constagtcorrespond to

2. Diagrammatics: General structure

multiloop diagrams. In Schwinger representation, the 1 9 1 i .
Y : - i S| ———exg —b'A
\-featuring part of such a diagram is of the form exp{ b'A _>
N woz| \/de(wA) 4w o
(3.38
> K(“)?\’(B)GXF{—E SpWX,ZJ}- (3.35  Here, b stands for a column matrix constituted by the
{x} P

b|({6})_and,§ stands for a square matrix with the elements
A /({s},z). We extract the limitn—0 by expanding Eq.
Here,{x} stands for a complete set of independent loop cur{3-38 in powers ofn and find, up to a minus sign,

rents. The sums ovey are taken over all conducting propa-

gators. The current§p running through the conducting g

ibTA—1b+ In de{wA)
2w— = — =

propagators are linear functions of the loop currerit§, z=0

=Xp({«}). The currents\ andX’ are identical to particular 1 1 [delA)]

X, . In the one-loop example given in the preceding section =—b (A" bt ——=— (3.39
P ’ 4wz = = 2w defA)

there is one-loop current and the tonp as well asx’ are

identical toX. In writing Eq. (3.39), we use the shorthand notations
Of course, Eq(3.35 splits up into a replica diagonal and

a replica independent part. Generalizing the arguments given (A*l)’ziA*

in Sec. Il C 1, it is not difficult to deduce from E¢3.35 = 9z=

that y(?) vanishes at transition | to arbitrary order in the loop

expansion. The same goes fgt) at transition |l. Moreover, P

one finds that the-featuring part of nonvanishing diagrams [detA)]"=——del(A)

is of the structure

z=0

(3.40

z=0

The first term on the right-hand side of E@®.39 is a ho-

1 o _ n mogeneous function of the Schwinger parameggref de-
- > A-)\’exr{—E (spw)\ﬁ—i 2> 7\%‘“)” gree —1, i.e., is behaves generically like . The second
{} P a=l term is homogeneous in thg, of degree 0, i.e., it goes
1 g generically likes®.
= E exp{ ZWA- N Now to the momentum-featuring part of our typical dia-
nwoz 15 gram depicted in Fig. 2. Assume that the diagram has

closed loops. Then the momentum integrations result in a
(3.36 factor that is a homogeneous function of the Schwinger pa-
rameters of degree-Ld/2. In other words, the momentum
integrations yield a generic facter -9/2,
Next we turn to the integration over the Schwinger pa-
In case of transition |6p are all zero. Figure 2 depicts these rameters. Assume that our diagram Iﬁapropagators_ Hav-
nonvanishing diagrams. ing each propagator represented in Schwinger parametriza-
Now we move to the evaluation of E(3.36). Its right-  tion, we haveP integrations over Schwinger parameters.
hand side factorizes into equivalent factors. EXplOItIng the These may be viewed as a generic fadar C0||ecting, we
fact that)fp are linear functions of the loop currents, we write find that the term proportional i@~ * in Eq. (3.39 goes like

n
- % ( spWXf,— i apazl )\Ef"))

z=0
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sP~Ld2 and that the term proportional to~ 2 goes like 1

sP~Ld2=1 By inspection, one finds that the following topo- Hyen— Hrent ZXgilv)’(z)f d%F j()Fj(x).  (3.47)
logic relations apply to our typical diagranh=P—-V—-1

and 3V+4=2P, whereV denotes the number of vertices. _ o )

For thew ! term, these relations lead ®—L(d/2)=—(d Here, H;en s_tapds for the renornjahzed Haml!tonlan obtained
—6)/2V+4—d, i.e., atd=6, this term goes generically like forn_1 thg original bare Hamlltomaﬁ( by applying the_renor—
s~2. Similarly, one finds &2 behavior for thew ™2 term. malization schemé3.7)..We point out that Eq(3.47) is not
Now we have sufficient information to single out thede- ~adequate to renormalize the free energy completely. As

pendence of the terms. By a change of variables of the typBOWer counting shows, one also needs additive counterterms
ss/7. we learn that thev—! term is associated with a Of third and fourth order irF; ; as well as counterterms con-

factor 72, whereas thev~2 term features a>3. taining derivatives off; ;. However, for our central task,

For transition II, we still have to deal with the integrations I-€-» for determining the scaling behavior of the susceptibili-
over the ¢'s. These, however, merely result in purely nu- fi€S, it is sufficient to consider E¢3.47). Hence, we neglect
meric factors. Harvesting the findings of the above reasonthe other just mentioned additive renormalizations. For our

ing, we deduce that the divergent part susceptibilities hav8®tup with the fixed external fielB, Eq. (3.47) implies for

the general structure the free energy that
w17 V w.2p2
Xaw =y X, (349 Fed B)— Fred B)+5 X0 P82 (349
) Tr Tr According to definition(2.73, this implies
)(div:FY(U)WL v X (3.42

1).(2) YD) W d) =y (D(2)
It is understood that Eq$3.41) and(3.42 refer to transition X (m.W,9)—x (7.w,0)=x (7.W,u, 1)
| and transition Il, respectively. The coefficienX§u) and + D@z wu, w) iy (3.49

Y(u) have a Laurent expansion of the form

® for the susceptibilities.
X(U) = 2 Xy (u) with X (u)= E X U™, Now we are_in _g_ood shape to analyze the scaling b_ehgvior
k=1 ¢ m>k-1 of the susceptibilities. In order to reduce the use of indices

(3.43 and to keep the arguments as plain as possible, we carry out
the following steps at the instance pf'). At the end, it will
S be straightforward to adapt our argumentsyt®.
Y(u)=k21 ” with Y, (u)= Yiemu™, Just like the bare order parameter correlation functions,
= &

=k—-1 o
" (3.44 x™*) has to be independent of the inverse length spalee.,
it satisfies the identity

with Xy n andY, , being numerical coefficients. As argued
in Sec. Il C 1, Egs.(3.4]) and (3.42 have to be supple- d o oo o
mented by terms varying as powers®f This gives finally M@X( )(7,w,9)=0. (3.50

T
Xé%\2=w[Ao(U)A4+A1(U)AZT+X(U)Tz], (3.49  This identity is now taken as the origin of an RGE fgh).
Expressing the bare quantities through their renormalized
- T counterparts, one arrives initially at
X0 = TAo(W) A+ Ay (W AP+ X(U) 7]+ — [Bo(u)A®
w J . J N J . d
PR TR =Ry

+B1(W)A*T+B,y(U) A%+ Y(u) ], (3.46 it

X{X(l)( W, U, 1)+ X(l)( 7,W, U, ) giv} = 0.
(3.5)

whereAy(u), A;(u) and so on arel dependent coefficients.

3. Renormalization and scaling

In Sec. Il B, we argued that the order parameter correlaHere it is important to realize that all the individual terms
tion functions can be renormalized by the renormalizatiorappearing in the RGE have to be freesopoles. All terms
scheme(3.7). This scheme, however, is not sufficient to associated withe poles must cancel order by order in the
renormalize the susceptibilities. To remove theoles en- loop expansion. Taking into account the form of the Laurent
countered in Secs. Il C 1 and Il C 2, one has to resort to arexpansion3.43), the form of the Wilson functior as given
additive renormalization in Eq. (3.9b and thaty{})~ 1 ~¢, we obtain the RGE
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TK —

Fwe |
w w
oo TWe X (T w,u, )

J
— B+
Fon B
7_2

= Xa(uu, (3.52

whereX; (u)u ™= (1+ud,)X,(u).
Since the RGH3.52 is inhomogeneous, its solution is of
the form

XO(r,wu, ) = 82 w,u, ) + xS(r,wu, ),
(3.53

where (" is the general solution of the corresponding ho-

mogeneous equation arxfi,l) is a particular solution of the
inhomogeneous equation. At the fixed pairit, the method
of characteristics gives for the homogeneous solution
xB(rwu, )= X0 7,05 wu €p),  (3.54

where «* = k(u*) and * =Z(u*). This solution has to be
complemented by a dimensional analysis,
(w27 2w, ).

(3.595

X (r,w,u,u) =

From Egs.(3.54 and(3.55, we deduce that

Xﬁl)(T,W,U,,U/):ed_A)(Ll)(e_l/VT,f_qS/VW,U* ).
(3.56

PHYSICAL REVIEW &7, 046115 (2003

recall that our coarse grained parameteis proportional to
the temperature. Ignoring the proportionality constant, we
thus get
xB=A4+A?| 7]+ |72+ | 72 (3.6

The first terms correspond to the beginning of the small
expansion of the regular part gf*). The last term charac-
terizes the leading behavior of the singular parg6?. Note
that, over all, the leading sma#l behavior ofy(*) is deter-
mined by its regular part. In passing, we mention that the
coefficients of the|7|? term and the singular term form a
universal amplitude ratio that may be calculated with help of
Eqg. (3.59

An analysis similar to the one presented in the previous
paragraphs can be applied ¥). Since only slight modifi-
cations are required, we simply state the result

1
X(2)2A4+A2|’T|+|’T|2+ T[AG+A4|T| +A2|7'|2+|T|3]
|7_|2t—dv

+
T

[1+T|7 7], (3.62

where we have once more replaced unimportant constants by
unity. As above, the regular part gives the leading sl
behavior.

IV. SUMMARY AND CONCLUDING REMARKS

Exploiting our freedom to choose the flow parameter, we set N summary, we have studied the scaling behavior of the

€=|7]*. This choice yields

X (rw,u ) =@ w7 (3.57
with f() being a scaling function. Due to E¢3.41), we
know that f(V)(x)~x"1. Thus, the homogeneous solution
may be written as

T| T|t*2V

(1)
IWYUY -~ 1
Xp (7 ) W

(3.58

wheret=(d—2)v+ ¢ is the conductivity exponent of the
RRN.

A particular solution is readily found by making an ansatz

diamagnetic susceptibility(*) and the mean square fluctua-
tions of the total magnetic momegt® of large clusters as
the Meissnel(transition ) and the SG phasdsransition 1)
are approached ag—p. at low T. Our main results are
summarized by the formulas

A=A, @
x?=0 4.2
for transition | and
x®=0, 4.3
7_|2tfdv -
X = xG+ ——[1+ 7|7 7] (4.9

that is as similar to the inhomogeneity as possible. We obtain

T2 Y’l’,u_s

W 2—&—2/v+ olv’ (359

X5 (rw,u, )=

whereX? =X, (u*).
Combiningx{, x{", and the terms varying as a power

of A gives us the scaling behavior gfV), viz.,

T| T|t*2V

T
(W rAdy A2] 1 2
X W[A + A4 7|+ 7]+ W (3.60

for transition Il. We remind the reader thatmeasures the
distance from the respective transitior;-p.—p. v is the
percolation correlation length exponent andnd ¢ are the
conductivity and the resistance exponent, respectively, of the
RRN. x{g) and x{&) summarize the regular parts of the sus-
ceptibilities. These regular parts are very important and must
not be neglected. In fact, they determine the leading small
behavior of () and x(®). As far as the leading small
behavior is concerned, our results capture anticipated fea-
tures of the susceptibilities. Typical for a diamagnetic sus-
ceptibility, y(*) approaches at transition | far—0 a finite

where we have replaced nonuniversal coefficients, whiclzonstant.y(®) on the other hand diverges at transition Il as
might obscure the essential structure, by unity. Finally, weT . This is becausg(® represents a paramagnetic rather
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than a diamagnetic susceptibility due to randomly frozenyherew(X) is the cyclotron frequency given in E.79.

magnetic momenta in the spin-glass phase. Inserting the propagatdi3) into Eq. (A2), we get

We point out that our results hold to an arbitrary order in (52
e expansion. Using the powerful methods of renormalized - 2. , , w
field theory, we were able to explore general structural prop- )= VI ToIIXx=X)dy = (y =y ) ]+ 4
erties of the Feynman diagrams contributing to the suscepti-
bilities. This allowed us to determine the scaling behavior of
x*) and ) to arbitrary order in perturbation theory.

Our work reveals that the results by JLW are not entirely
correct. On one hand, JLW overlooked the additive character
of the renormalization of the susceptibilities that leads to — -
regular contributions. On the other hand, JLW did not realize 0M Eq.(A4), we deduce thaG(x,x’,\) must be a func-
that the coupling constant, associated witiT2 can enter ~ton of the difference of the coordinates and X', i.e.,
the susceptibilities only in form of an irrelevant combination G(x,x",\)=G(x—x',\). Hence, it is convenient to switch
with w. This is true though and consequently exponents asto momentum space via the Fourier transformation
sociated withT ~2 do not enter into the leading singular be- . .
havior of the susceptibilities. G(X,\)= f G(k,N)expik-x), (A5)

Closing, we would like to mention interesting issues for K

future work. For example, one could extend our work by . . . . . .
P yW|th k=(p,q,k,). Since the system is rotationally invariant

investigating the diamagnetism beyond transitions | and I, h | Il as in the h I dicul
i.e., for the other transitions featured in the phase diagram dff tNeX-Y plane as well as in the hyperplane perpendicular to

the RIN. One might investigate the normal to superconduct!’® Xy plane, we arlticipz)atezthez following form in momen-
ing transition ap— p, away from the immediate vicinity of tum spaceG(k,\)=G(p“+q“,k{ ,\). Thus, Fourier trans-
T=0 [cf. the critical surfac€l) in Fig. 1]. Using our Gauss- formation of Eq.(A4) leads to

X[(Xx=X")2+(y—y")2]{ G(X, X', N)=8(X—X").

(A4)

ian propagator, this should be a feasible task. Another inter- w(X)Z
esting subject is the role of vortex excitations, which should 7(N)+k2— _[aSJr (95] G(k,N)=1.  (A6)
be important in two dimensions. To address this question, 4

one has to develop an approach that avoids a linearization of

the network equations. A potential stratddy] is to devise a For vanishing cyclotron frequency, this reduces to the well
Villain-type model[44] for the RIN. known equation for the propagator of the RRN. In
Schwinger representation, the RRN propagator reads
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é(k,i>:f dsf(s)exi —s(r(%) +Kk2)— () (p+ ¢,
APPENDIX: THE PROPAGATOR 0

A8
In this Appendix, we derive the Gaussian propagator as (AB)
given in Eq.(3.1). For notational simplicity, we sef=1. with f(s) and g(s) being unknown functions of the
The task is to solve the differential equation Schwinger parametex We demand that
N)—(V=ix-A)ZG(x,x",N)=8(x—x"). (Al , N)? - -
[7(A)—( )°1G( )=o( ). (A1) T(M+k2_w(4) [+ 321 Bk, X)
Here we use the shorthand notatitir(wi):rer)C2 intro- s g
duced in Sec. Il A. Choosing for convenience the Landau :_f ds—{f(s)exd —s(7(N)+k?)
gaugeA(x)=B(0x,0,), Eq. (A1) takes on the form o S
- > > - _ 2 2
[7(X) = V24 2i 0(X)xdy + (X)2X2]G(x, X' X) = S(x—x"). 9()(P™+a) I} (A9)
(A2) For Eq.(A9) to be satisfied, the unknown functioh&s) and
Inspired by Lawrie, we rewrite the propagator as g(s) have to satisfy the differential equations
wo(R) g'(s)=1-[w(N)g(s)]%, (A10)
G(x,x’,):)zex;{i 5 (x+x’)(y—y’)}G(x,x’,K), £(s) .,
(A3) - f(—S)ZwO\) a(s), (A11)
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along with the boundary conditiof§0)=1, g(0)=0, and

g(s)=0. Of course, the two functions must yiefds) — 1 f(s)=— — (A13)
andg(s)—0 for o(X)—0. We find cosi(w(X)s)
g(s):M (A12) Inserting these results into our ansat&8), we obtain
o(X) G(k,\) as given in Eq(3.1b.
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