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Performance analysis of an irreversible quantum heat engine working with harmonic oscillators
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The cycle model of a regenerative quantum heat engine working with many noninteracting harmonic oscil-
lators is established. The cycle consists of two isothermal and two constant-frequency processes. The perfor-
mance of the cycle is investigated, based on the quantum master equation and semigroup approach. The
inherent regenerative losses in the two constant-frequency processes are calculated. The expressions of several
important performance parameters such as the efficiency, power output, and rate of the entropy production are
derived for several interesting cases. Especially, the optimal performance of the cycle in high-temperature limit
is discussed in detail. The maximum power output and the corresponding parameters are calculated. The
optimal region of the efficiency and the optimal ranges of the temperatures of the working substance in the two
isothermal processes are determined.
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[. INTRODUCTION processes of the cycle are derived. In Sec. IV, the regenera-
tive characteristics of the cycle are analyzed and the inherent
In recent years, the optimal analyses relative to the perregenerative losses are determined. In Sec. V, the time evo-
formance characteristics of thermodynamic cycles have bedttions of the harmonic populations in the various processes
extended from classical to quantum cydlés14]. The quan- are calculated, based on the quantum master equation and
tum thermodynamic cycles working with the spin systemsSemigroup approach. In Sec. VI, the general expressions of
[2,7,13, harmonic oscillator systemid1,13,14, and ideal several important parameters such as the efficiency, power
quantum gasef4,5,10 have become one of the interesting Output, and rate of entropy production are given. The perfor-
research subjects. The influence of several factors on th@ance characteristics of the cycle are investigated for several
performance of quantum heat engines has been investigatéieresting cases. Especially, the performance of the quantum
and many meaningful conclusions have been obtained. How€at engine in the high-temperature limit is optimized. The
ever, these investigations rarely dealt with the performanc&aximum power output and the corresponding parameters of
of a regenerative quantum heat engine working with harthe cycle are calculated. The optimally operating regions of
monic oscillators. the cycle are determined. Finally, some conclusions are given
For a class of either classical or quantum heat engine Sec. VII.
with regenerative process€$0,15—-17, their performances
are, in general, closely dependent on the properties of the II. A HARMONIC OSCILLATOR SYSTEM
working substance. For different working substances, there
exist different regenerative losses, so that the performances We first consider a quantum system consisting of many
of heat engines are different from each other. Thus, it is ohoninteracting harmonic oscillators. The Hamiltonian of the
great significance to study the performance of a regenerativ@ystem is given by14,18
guantum heat engine using harmonic oscillators as the work-
ing substance. H(t)= w(t)N=w(t)a'3, 1)
The paper is organized in the following manner. In Sec. II,
the properties of a harmonic oscillator system are discussegherea’, 4 are the Bosonic creation and annihilation opera-
simply and the expression of the first law of thermodynammstors, N=4'3 is the number operator, and>0 is the oscil-
of the system is obtained. In Sec. lll, a cycle model of Jator’s frequency. The internal energy of the harmonic oscil-

harmonic quantum heat engine consisting of two isotherma, system is of the expectation value of the Hamiltonian,
and two constant-frequency processes is established and t

expressions of the amounts of heat exchange in the various

E=(H)=w(t)(N)=w(t)n, 2
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connected by the two constant-frequency processesv;

and w=w, with w,>w;. In the two isothermal processes,

the oscillators are, respectively, coupled to the heat reservoirs

at constant temperatur@s= 8, and 3= 8., and the amounts

of heat exchange between the working substance and the

heat reservoirs are represented@yandQ,. Due to finite-

rate heat transfer between the working substance and the heat

reservoir, the “temperatures8; and g, of the working sub-

stance in the two isothermal processes are different from

those of the heat reservoirs and there is a relat@g: 8->

> 1> By . In order to improve the performance of the cycle,

a regenerator is often used in the two constant-frequency

processes. The amounts of heat exchange between the work-

ing substance and the regenerator during the two constant-
FIG. 1. Then-w diagram of an irreversible quantum heat engine frequgncy processes are representedy and Qqa, re-

using harmonic oscillators as the working substance, where the unPeCtively,

of w is joule. Using Eqgs(3), (6), and(7), one can find that the amounts
of heat exchange in the four processes mentioned above are,
1 respectively, given by
n=— 7 ()
exp B w)—1 fb . o1 Wy 1 | (1_eﬁlw2
where 8’ =1/T andT is the absolute temperature in energy Qu= L0 ONT P T Pea— * By N 1=e P
units.
When the harmonic oscillators mentioned above are used ®)
as the working substance of a quantum heat engine, the in- d w5 w; 1 [1—e Bo1
temal.ener.gy of the working substance may change t_)szzf wdn= T e32“1—1+,8_|n<m)’
changing either the frequency or the population of the oscil- ¢ 2
lators. From Eq(2), one can obtain 9)
dE=ndw+wdn. (4) c 1 1
Qbc= f wdn=w;i(Nc—Np) =, eP01—1 ePoi—1)’
Comparing Eq(4) with the differential form of the first law b

of thermodynamics, (10

dE=dW+dQ, (5 and

one can find that the first term in the right-hand side of Eg. a
(4) is associated with work and the second term with heat: Qg,= fd ® dN=w,y(N:—Ny) = w,

1 1
efivz—1 ef2v2—1)

dW=n dw (6) (12)
and wheren,, ny, n;, andny are the mean values of the har-
monic oscillator population im, b, g andd states in Fig. 1,
dQ=wdn. 7) hop G 9

respectively. Using Eq$8)—(11), we can calculate the work
It is thus clear that for a harmonic oscillator system, Eq_output per cycle as
(4) gives the differential form of the first law of thermody-
namics. W=Q;+Q2+Qpc+ Qua
1 efroa— 1 1 ebowr 1
I1l. A QUANTUM HEAT ENGINE ZEln(m) — Eln<m> . (12

Using Eg.(3), one can plot the cycle diagram of a har-
monic quantum heat engine consisting of two isothermal and Using above equations, we can discuss the optimal per-
two constant-frequency processes and operating between tv@ormance of a quantum heat engine using harmonic oscilla-
heat reservoirs at constant temperatrgandT., as shown tors as the working substance.
in Fig. 1, where the temperatuie, of the heat sink is re-
stricted to_be higher than the_ temperature of Bose-Einstein IV REGENERATIVE CHARACTERISTICS
condensation of the harmonic oscillators. For the conve-
nience of writing, “temperature” will refer tg3 rather than From Eqs(10) and(11), one can calculate the net amount
T. In the cycle, the two isothermal processes with the “tem-of heat transfer between the working substance and the re-
peratures”’8’ = 8, andB' = 3, of the working substance are generator during the two regenerative processes as
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AQ=Qp.+Qqa frequency of the oscillators so that ! defines an intrinsic
time scale. This implicity assumes an instantaneous re-
—w ( 1 1 ) sponse of the heat reservoir to changes in the frequency
2\ ef1o2—1 P02 and the time duration of a process should be long enough so

that resonance conditions are established instantaneously.
(13) This means that the time duration at each process has to be
much larger than the intrinsic time scal&4]. Thus, the
change ofw with time is small. This point can also be di-
Itis seen from Eq(13) thatAQ is smaller than zero, because rectly expounded from Ed3).
the functionf(w) = w/(e#1°—1)— w/(e”2°—1) is a mono- The solution of Eq(15) gives the expression of time evo-
tonically decreasing function ab. This implies the fact that |ytion as
the amount of hea®,, flowing from the working substance
into the regenerator in one regenerative process is larger than 1 (o dn
that of heaiQq, flowing from the regenerator into the work- t=— —f = > ,
ing substance in the other regenerative process. The redun- 2a Jn, eVl (ef~1)n—1]
dant heat in the regenerator per cycle must be released to the
heat sink at “temperature)3, in a timely mannef20,21. wheren; andn; are the initial and final values af along a
This results in the increase of the amount of heat rejected tgiven pathn(B’,»). Equation(16) is a general expression of
the heat sink per cycle fro®, to Q.=Q,— AQ, while the time evolution for a harmonic oscillator system coupled with
amount of hea®, supplied by the heat reservoir per cycle is the heat reservoir.
unvarying. If not, the temperature of the regenerator would Based on Eqs(3) and (16), we can calculate the times
be changed such that the regenerator would not operate ng@pent on the four processes in the cycle. Substitutitg)
mally. It is thus obvious that a harmonic quantum heat en=1/(ef1*~1),  B=g,, n=n{(B1,w;), and ny
gine consisting of two isothermal and two constant-=n¢(8;,w;) into Eq. (16), one can obtain the time of the
frequency processes does not possess, in principle, tHdgh-temperature isothermal process as
condition of prefect regeneration.

B1 [z _ _
V. CYCLE TIME =5 | [e¥n(efro—eh?)(1-e )] Mdo.
w7y

In order to discuss further the performance of a harmonic 17)
guantum heat engine, we have to solve the equation of mo-
tion that determines the time evolution of the harmonicSimilarly, substituting n(w)=1/(e”2°~1), B=B;, n;
populations. For a harmonic quantum heat engine, the work=Ni(82,®1), andn;=n¢(B,,w,) into Eq.(16), one can ob-
ing substance is coupled thermally to a heat reservoir at tentain the time of the low-temperature isothermal process as
peratureT. Using the Heisenberg picture for the rate of

1 1
T @1 gBer_ 1 ghawi_q

(16)

change of an operator, one obtaiig,22—23 (throughout Bo (2 - -
this paper we adopti=1 for simplicity) t3=£J’ [eWPe(efc”—ef2?) (1—e F2*)] M dw.
w7
df(—' H>A<+(9)A(+|_ X 14 "o
gt = [HX]+ = +Lp(X), (14)

In the two constant-frequency processes, the “temperature”
oy ~ S SE Sy y o of the working substance changes frgimto 8, or from 8,
where Lp(X)=Zya(V[X,Val+[V, ,X]V,) is @ dissipa- 5 g 5o they need a non-negligible time compared with the
tion term and originates from a thermal coupling of thetime of the isothermal processes. Substitutimg’)
working substance to a heat reservaty, and\7£ are opera-  _ 1/(eﬁ’w1_ 1), B=By, n=n(By ), and n

tors in the Hilbert space of the system and are Hermitian:nf(ﬂz,wl) into Eq. (16), one can obtain the time of the
conjugates, andy, are phenomenological positive coeffi- constant-frequency process with=w; as

cients. For a harmonic oscillator systef), are chosen to be

the Bosonic creation and annihilation operatdisand &', w1

~ ~ ~ N 52 w © " “B'w _ ,
and H=0a'a. Substitutinga’, a4, H, and X=N into Eq. =5, [e9Pir @1(@Prr1— B @1)(1—e A ®1)]"1dp’,
(14), one can prov¢l4] that B1 9

dn
a=—2aeqﬁ‘”[(eﬁ‘”—1)n—1], (15  where By, is the “temperature” of the regenerator in the
regenerative processes with=w, and B,,> B’ because
wherea>0, —1<q<0, and 8, », andn are, in general, heatis transferred from the working substance to the regen-
dependent on tim¢l4]. The explicit quantum mechanical erator. Similarly, substituting n(,B’)=1/(eB""2—1), B
nature of a heat engine working with harmonic oscillators is= 85, , nj=n;(B,,w,), and n;=n;(B1,w,) into Eq. (16),
manifested by the dual characterswfi.e., Aiw(fi=1) de- one can obtain the time of the constant-frequency process
fines the energy level structure of the heat engineaigla  with w=w, as
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w-> (B2 ing Egs.(8), (12), and(21), we find that the efficiency and
2 AB2rwa( @B wa_ afor —B'on1-14 p’ .
=5 ; [ePar@2(ef “2—ef2r¥2)(1—e 7 “2)]7"dB’, power output may be, respectively, expressed as
1
(20 1 (eﬁl‘"z— 1) 1 (eﬁzwz— 1
: . —In| | — = In| 55—
where B35, is the “temperature” of the regenerator in the W B efren—1] B, |efor—1
regenerative process with=w, and B,, <3’ because heat n= Qo w, 1 [1—e P2
is transferred from the regenerator to the working substance. Ao ~ Fe + oIl ——=7%;
. . - ef1¥i—1 ePf12—1 B; \l—e F1¢1
So far we have obtained the times spent on two isothermal 22)
and two regenerative processes. Consequently, the cycle time
is determined by and
T:t1+t2+t3+t4. (21) 1 eﬁla)z_l 1 eﬂzwz_l
w Eln( eBlwl—l)_Eln(eBZwl—_‘L)
VI. ANALYSIS ON SEVERAL IMPORTANT PARAMETERS P=—= . (23
T tl+t2+t3+t4

The efficiency and power output are two of the important
performance parameters, which are often considered in thie addition, using Eq98), (9), (13), and(21), one can obtain
optimal design and theoretical analysis of heat engines. Ughe expression of the rate of the entropy production as

oo e |y (1-ehen g (1-e s
AS B0t Q. |Prt P\ Grm 1 1) T g, N T ) g, N T e 24
T T t ottt (24

Using Eqs.(22)—(24), one can, in principle, optimize these important performance parameters of the quantum heat engine.
(a) Only if the temperature of the heat sink is low enough, Bew;>1 (i=1,2), Eqs(22)—(24) can be, respectively, given

by

w1 /(eP1°1— 1) — w, /(eP12— 1) + (e F2v1—e P22)/ g,

" B B 1 1_eiﬂlw2 , (25)
w/(eF1°1—1)— w,/(eF1¥2—1)+ Eln 1 ¢ Fiox
1 [1-e P2\ 1
—In T Bl 5 e_IBZwl—e_EZ“Q)
pP= Bi \1—e Fin 2( 28
titt+ts+ty !
and
oy w1 Bh, [1—e P2\ B
— _ g —Bow _ o= Borw
_ (Bh+'6°)(eﬁl“’2—l eﬂl‘"l—l) B1In<1—eﬂl‘”l)+ﬂz(e e 2
. ittty (27)

(b) When the temperature of two heat reservoirs are low enoughpiees 1, Eqgs.(25)—(27) can be further simplified as

B Iglwlefﬁlwl_ B1w2e7ﬁ1w2+ (e*ﬁzwl_ e*ﬁzwz)lgl 18,

n=1 (1+ frope PP (1t froge Pz 28
oo (efﬁiwl_ e*ﬂlwz)/ﬁl_ (efﬁzwl_ e*Bzwz)/ﬁz 29
tyFtFtatt, ’
and
_(Brt Bu)(wae P1o2—w e Fron) — (e Froi—e  F192) By | B+ (e P21—e F2v2) B 1 B, 30
7= ottty ’ (20
respectively.
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(c) When the temperature of the heat reservoir is high
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IN(wy/w1)! B1—(wy— wy) — (e~ F21—e F22)/ g,

enough and the temperature of the heat sink is low enough,

, X ty+to+tyt+t, '
ie., Biwi<l, Brwi>1 (i=1,2), Eqs.(22)—(24) can be, re- (32
spectively, expressed as
e Bow1_ g Bowz)/
. ( )1 B2 , (31)
IN(wy/w1)/ B1—(wo— wy) and
|
_ Br(w,—wy)—In(wy/w1) Byl By + (7 P21 —e” Ezwz)ﬁc/ﬁz (33
7= i+t +tzti,
|
(d) Only if the temperature of the heat reservoir is high wy— W,
enough, i.e.8,w;<1 (i=1,2), Eqs.(22—(24) can be, re- = —, (43
spectively, expressed as 280102(B1~ )
e f2v2 S (44)
n=1- ﬂlln(l e ,32w1> / ,32|n( ), (34) 2a0102(Bc—B2)’
N AN efzri—1 Sy ax (45)
. E n o E n m (35) 2awl ,8 (B —B )
i+t titztiy ’ 1 (8 dg’
46
and 23w, )p, BB~ )’ 40
ﬂc (1_eﬂzw2) and
o= ;| (B Bn) (w2~ 1)
/32 1-e P2 n=1-pB1/B>. (47)
_ @| ( 2) / (ti+to+tg+t,). (36) It should be noted that the “temperature8;, andB,, of the
B1 o regenerator in two constant-frequency processes are not con-

(e) When the temperatures of two heat reservoirs are hig
enough, i.e.Bw<1, the results obtained above can be sim-

plified. For example, Eq¥8)—(13), (17)—(20), and(22) can
be, respectively, simplified as

g sl
Ql_Eln p (37)
—iln(“’l) (39)
Qz—ﬂz °
N ”
=5, 5y
11 40
“@Tg By 40
S
a B1 B2 " wq)’
AQ=Qpc+Qga=0, (42

tant and vary with time. If there is not any additional as-
umption, Egs(45) and (46) cannot be calculated further.
One of the simplest assumptions is tjgat andB’ are linear
dependent and so aig,, and B’, i.e., B,<B’' and B,
«B'. Then, the times spent on the two regenerative pro-
cesses can be simply given by

to+t,= (1B~ 1B,),

where y is a proportional constant independent of tempera-
ture. It will be seen from other assumptions given below that
this simple assumption is reasonable.

In general, the larger the temperature difference of the
working substance in the two isothermal processes is, the
larger is the amount of regeneration and the longer is the
time of the regenerative processes. When the times spent on
the two regenerative processes are assumed to be directly
proportional to the amount of regeneratif?i], the times
spent on two regenerative processes can be expressed as

(48)

t,+t + 2 (1 1) (i_i)
2t ta=al|Qud + Qaa) =20| z= 5 |=7| 5~ 5
(49)
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where« is also a proportional constant independent of tem- 2
perature. Equation&18) and (49) just indicate that the two
assumptions mentioned above are equivalent to each other.

It is of significance to note another assumption adopted in B,/B,
many papers: the temperature of the working substance in
the regenerative processes varies with time linearly o
[15,20,26,27, i.e., -
dT PP,

EZiK, (50

wherex is a constant independent of temperature but depen- 00 x|

dent on the properties of the working substance, and the n ¢
positive and negative signs correspond to the regenerative

heating and cooling processes, respectively. As long as 2/ FIG. 2. The (8,/8)-7 and (8;/8.)-n characteristic curves
=y is chosen, one easily derives H¢8) from Eq.(50). It  for B¢/Bn=2.

tells us once again that the assumption given in this paper is

reasonable. Bcb(ne— 1)?
Using Eqgs.(43), (44), and(48), one can obtain the cycle o= B(1+60)(1— p)[1+60(1— )]+ Don(n—17)’
time as (58)
N R )H(i_ i), (51 Wwhere B=d/b, D=y/b, and n.=1—B,/p, is the effi-
B1=Bn  Bc—B2 B1 B ciency of a reversible Carnot heat engine.

It is clearly seen from Eq(57) that the power output is

where d=(w,~w;)/2aw,w,. Substituting Egs(41) and o, whenn=0 or 5= 7. This implies the fact that when

(51) into Egs.(23), one obtains the power output as

b(y—1) maximum. Using Eqs(55-(58), we can plot theg;/g;
P= , —n (i=1, 2 andj=h,c), P*-» and o*-7 characteristic
dBuy[(B1=Bn) + U(Be=By) ]+ v(y=1) 52 curves, as shown in Figs. 2, 3, and 4, whée=BP and

the efficiency is equal to some value, the power output has a

o* =T.Bo are, respectively, the dimensionless power output

where b=In(w,/w,) andy=,/B;. Similarly, substituting @nd rate of the minimum-average-entropy production. It is

Egs.(37), (38), and(51) into Eq. (24) gives
b(Bc—Bry)

also clearly seen from Fig. 3 that there exists a maximum
power output. Using Eq(57), one can prove that when the
efficiency

g

T dBY[U(B1— Br) T U(Be— BY) I+ ¥(y—1)°

(53 Mm=1—VBn!Bc=1nca (59

Using Eq.(52) and the extremal conditiodP/d3,=0,  the power output attains its maximum value, i.e.,

one can obtain an optimal relation

0.04
g, Bt 0By (54
1 y+ 0 L
D/B=0
where 6=+/B./Bn. Solving Eqs.(47), (52), (53), and(54), _-TT~
one can prove that the fundamental optimal relations be- . s D/B=10
tween some important parameters and the efficiency are, re- P max 4 \
spectively, given by . 1 , 4 \\
g1 g (LD 00— 7o) o5 o B/ oiB=50 N\
PN Lol 61— )] J
1+6(1— %)
=B—" 56
P=Peioa—y) (58 0.00 :
O T‘Im TIC
b Om(ne— 1) n
B(1+0)(1—n)[1+6(1—n)]+DOn(n.—n)’ _ _
(57 FIG. 3. The dimensionless power outpat =BP versus the
efficiency ». Dashed D/B=0) and solid P/B=10 and D/B
and =50) curves are presented fB¢/B,=2.
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0.1 power output decreases as the efficiency decreases. Obvi-
ously, the region ofyp<7,, is not optimal for a harmonic
qguantum heat engine. Consequently, the optimal region of
the efficiency should be

Mm<17<7c. (65)

When a quantum heat engine is operated in this region, the
power output will increase as the efficiency decreases, and
vice versa. It is thus clear th&,,,, and »,, are two impor-
tant parameters, becauBg,,, determines the upper bound of
the power output, whiley,, gives the allowable value of the

0.00-0 ' n, lower bound of the optimal efficiency.

n Analyzing Eq.(65) and Figs. 2—4, we find that the opti-
mal ranges of the “temperature” of the working substance in

FIG. 4. The dimensionless rate of the entropy producédn  the two isothermal processes and the cycle time are
=T.Bo versus the efficiency;. The values of the parametdbs B

and 8. /8, are the same as those used in Fig. 3. B1im=B1> Bn, (66)

p . (0— 1)2 (60) B2mgﬂ2<ﬁca (67)
mXTB(1+6)°+D(6-1)*" and

wherenc, is the efficiency of an endoreversible Carnot heat =, (68)

engine at the maximum power outd@8-30. Substituting
Eq. (59 into Egs.(55), (56), and(58), one obtains the values where
of B4, B,, ando at the maximum power output as

2770(1_77CA)< d Y )
++ ™M= o |2 T io_. 2|
ﬁlm:wi (61) Bn nea (2= mca)
When the regenerative time is negligible=0. In this
Be+ BB case, Egs(59), (61), and(62) are still true, while Eqs(57),
,82m=T, (62  (59), (60), and(63) can be, respectively, simplified as
and b On(nc—7) 69
, , B(1+6)(1—n)[1+6(1— )]
BcO°(6—1)
ImTB(6+1)2+D(6-1)% 63 o BcO(nc— 1)? 70
B(1+6)(1-m[1+6(1—75c)]
It is thus clear that in the high-temperature limit, the effi-
ciency of the harmonic heat engine at the maximum power (0—1)?
output is the same as that of a Curzon-Ahlborn en{2@ at Pmaxzm’ (71
the maximum power output. It is because, in the high-
temperature limit, the cycle may possess the condition oand
perfect regeneration through the use of a reversible regenera-
tor and the heat transfer between the harmonic oscillator sys- o _Bc92( 0—1) (72)
m

tem and the heat reservoirs can be simply written as B(6+1)?
Qi=F(lp;j—1p) (i=12; j=h,c), (64  The results obtained above indicate clearly that the maxi-
o mum power output is dependent on the time of the constant-
whereF =2awp; is independent of the temperature of the frequency processes, while the efficiency at the maximum
working substance and the temperature difference betweefhwer output is not affected by the time of the constant-
the working substance and the heat reservoir. It is obviougequency processes. In this case, the relation curves of the
that Eq.(64) can be regarded as the Newtonian law. power output, and rate of the minimum-average-entropy pro-
It is seen from Figs. 3 and 4 that whegh =8, and B2 duction varying with the efficiency are shown by the dashed

:BCJ /Al PZO, ando=0. This Imp|IeS the fact that the curves in F|gs 3 and 4' respective|y.
efficiency of the quantum heat engine mentioned above can-

not attain that of a reversible Carnot heat engine. Figure 3
also shows that wheR<P,,,,, there are two different effi-

ciencies for a given power outpi, where one is smaller We have established the cyclic model of a typical quan-
than 7., and the other is larger tham,,. When»<#,,, the  tum power cycle working with many noninteracting har-

VII. CONCLUSIONS
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monic oscillators and consisting of two isothermal and twoample, the maximum power output and the corresponding
constant-frequency processes. On the basis of the statistigghrameters are calculated and the optimally operating re-
mechanics, motion equation of an operator, and semi-grougions of the quantum heat engine are determined. The results
formalism, we have analyzed the optimal performance charobtained here will be helpful to understanding further the
acteristics of the harmonic quantum power cycles and deperformance of quantum heat engines using harmonic oscil-
rived the general expressions of several important parametefgtors as the working substance.

of the quantum heat engine. By using the expressions, the
influence of nonperfect regeneration is analyzed. In general,
the cycle does not possess the condition of perfect regenera-
tion. However, in the high-temperature limit, it may possess
the condition of perfect regeneration. Furthermore, the opti- This work was supported by the National Natural Science
mum performance characteristics of the quantum heat engirfeoundation (Grant No. 10275091 People’s Republic of

in high-temperature limit are discussed in detail. For ex-China.
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