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Performance analysis of an irreversible quantum heat engine working with harmonic oscillators
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The cycle model of a regenerative quantum heat engine working with many noninteracting harmonic oscil-
lators is established. The cycle consists of two isothermal and two constant-frequency processes. The perfor-
mance of the cycle is investigated, based on the quantum master equation and semigroup approach. The
inherent regenerative losses in the two constant-frequency processes are calculated. The expressions of several
important performance parameters such as the efficiency, power output, and rate of the entropy production are
derived for several interesting cases. Especially, the optimal performance of the cycle in high-temperature limit
is discussed in detail. The maximum power output and the corresponding parameters are calculated. The
optimal region of the efficiency and the optimal ranges of the temperatures of the working substance in the two
isothermal processes are determined.
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I. INTRODUCTION

In recent years, the optimal analyses relative to the p
formance characteristics of thermodynamic cycles have b
extended from classical to quantum cycles@1–14#. The quan-
tum thermodynamic cycles working with the spin syste
@2,7,13#, harmonic oscillator systems@11,13,14#, and ideal
quantum gases@4,5,10# have become one of the interestin
research subjects. The influence of several factors on
performance of quantum heat engines has been investig
and many meaningful conclusions have been obtained. H
ever, these investigations rarely dealt with the performa
of a regenerative quantum heat engine working with h
monic oscillators.

For a class of either classical or quantum heat eng
with regenerative processes@10,15–17#, their performances
are, in general, closely dependent on the properties of
working substance. For different working substances, th
exist different regenerative losses, so that the performan
of heat engines are different from each other. Thus, it is
great significance to study the performance of a regenera
quantum heat engine using harmonic oscillators as the w
ing substance.

The paper is organized in the following manner. In Sec.
the properties of a harmonic oscillator system are discus
simply and the expression of the first law of thermodynam
of the system is obtained. In Sec. III, a cycle model o
harmonic quantum heat engine consisting of two isother
and two constant-frequency processes is established an
expressions of the amounts of heat exchange in the var
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processes of the cycle are derived. In Sec. IV, the regen
tive characteristics of the cycle are analyzed and the inhe
regenerative losses are determined. In Sec. V, the time
lutions of the harmonic populations in the various proces
are calculated, based on the quantum master equation
semigroup approach. In Sec. VI, the general expression
several important parameters such as the efficiency, po
output, and rate of entropy production are given. The per
mance characteristics of the cycle are investigated for sev
interesting cases. Especially, the performance of the quan
heat engine in the high-temperature limit is optimized. T
maximum power output and the corresponding parameter
the cycle are calculated. The optimally operating regions
the cycle are determined. Finally, some conclusions are g
in Sec. VII.

II. A HARMONIC OSCILLATOR SYSTEM

We first consider a quantum system consisting of ma
noninteracting harmonic oscillators. The Hamiltonian of t
system is given by@14,18#

Ĥ~ t !5v~ t !N̂5v~ t !â†â, ~1!

whereâ†, â are the Bosonic creation and annihilation ope
tors, N̂5â†â is the number operator, andv.0 is the oscil-
lator’s frequency. The internal energy of the harmonic os
lator system is of the expectation value of the Hamiltonia
i.e.,

E5^Ĥ&5v~ t !^N̂&5v~ t !n, ~2!

wheren5^N̂& is the population of the oscillators. Based o
the statistical mechanics, the population of the oscillators
be obtained from the Bose-Einstein distribution@19#

g
,
:
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n5
1

exp~b8v!21
, ~3!

whereb851/T andT is the absolute temperature in ener
units.

When the harmonic oscillators mentioned above are u
as the working substance of a quantum heat engine, the
ternal energy of the working substance may change
changing either the frequency or the population of the os
lators. From Eq.~2!, one can obtain

dE5n dv1v dn. ~4!

Comparing Eq.~4! with the differential form of the first law
of thermodynamics,

dE5dW1dQ, ~5!

one can find that the first term in the right-hand side of E
~4! is associated with work and the second term with hea

dW5n dv ~6!

and

dQ5v dn. ~7!

It is thus clear that for a harmonic oscillator system, E
~4! gives the differential form of the first law of thermody
namics.

III. A QUANTUM HEAT ENGINE

Using Eq.~3!, one can plot the cycle diagram of a ha
monic quantum heat engine consisting of two isothermal
two constant-frequency processes and operating between
heat reservoirs at constant temperaturesTh andTc , as shown
in Fig. 1, where the temperatureTc of the heat sink is re-
stricted to be higher than the temperature of Bose-Eins
condensation of the harmonic oscillators. For the con
nience of writing, ‘‘temperature’’ will refer tob rather than
T. In the cycle, the two isothermal processes with the ‘‘te
peratures’’b85b1 andb85b2 of the working substance ar

FIG. 1. Then-v diagram of an irreversible quantum heat engi
using harmonic oscillators as the working substance, where the
of v is joule.
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connected by the two constant-frequency processesv5v1
and v5v2 with v2.v1 . In the two isothermal processe
the oscillators are, respectively, coupled to the heat reserv
at constant temperaturesb5bh andb5bc , and the amounts
of heat exchange between the working substance and
heat reservoirs are represented byQ1 andQ2 . Due to finite-
rate heat transfer between the working substance and the
reservoir, the ‘‘temperatures’’b1 andb2 of the working sub-
stance in the two isothermal processes are different fr
those of the heat reservoirs and there is a relation:bc.b2
.b1.bh . In order to improve the performance of the cyc
a regenerator is often used in the two constant-freque
processes. The amounts of heat exchange between the w
ing substance and the regenerator during the two cons
frequency processes are represented byQbc and Qda , re-
spectively,

Using Eqs.~3!, ~6!, and~7!, one can find that the amount
of heat exchange in the four processes mentioned above
respectively, given by

Q15E
a

b

v dn5
v1

eb1v121
2

v2

eb1v221
1

1

b1
lnS 12e2b1v2

12e2b1v1D ,

~8!

Q25E
c

d

v dn5
v2

eb2v221
2

v1

eb2v121
1

1

b2
lnS 12e2b2v1

12e2b2v2D ,

~9!

Qbc5E
b

c

v dn5v1~nc2nb!5v1S 1

eb2v121
2

1

eb1v121D ,

~10!

and

Qda5E
d

a

v dn5v2~nc2nd!5v2S 1

eb1v221
2

1

eb2v221D ,

~11!

wherena , nb , nc , andnd are the mean values of the ha
monic oscillator population ina, b, c, andd states in Fig. 1,
respectively. Using Eqs.~8!–~11!, we can calculate the work
output per cycle as

W5Q11Q21Qbc1Qda

5
1

b1
lnS eb1v221

eb1v121D2
1

b2
lnS eb2v221

eb2v121D . ~12!

Using above equations, we can discuss the optimal
formance of a quantum heat engine using harmonic osc
tors as the working substance.

IV. REGENERATIVE CHARACTERISTICS

From Eqs.~10! and~11!, one can calculate the net amou
of heat transfer between the working substance and the
generator during the two regenerative processes as

nit
5-2
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DQ5Qbc1Qda

5v2S 1

eb1v221
2

1

eb2v221D
2v1S 1

eb1v121
2

1

eb2v121D . ~13!

It is seen from Eq.~13! thatDQ is smaller than zero, becaus
the function f (v)5v/(eb1v21)2v/(eb2v21) is a mono-
tonically decreasing function ofv. This implies the fact that
the amount of heatQbc flowing from the working substanc
into the regenerator in one regenerative process is larger
that of heatQda flowing from the regenerator into the work
ing substance in the other regenerative process. The re
dant heat in the regenerator per cycle must be released t
heat sink at ‘‘temperature’’bc in a timely manner@20,21#.
This results in the increase of the amount of heat rejecte
the heat sink per cycle fromQ2 to Qc5Q22DQ, while the
amount of heatQ1 supplied by the heat reservoir per cycle
unvarying. If not, the temperature of the regenerator wo
be changed such that the regenerator would not operate
mally. It is thus obvious that a harmonic quantum heat
gine consisting of two isothermal and two consta
frequency processes does not possess, in principle,
condition of prefect regeneration.

V. CYCLE TIME

In order to discuss further the performance of a harmo
quantum heat engine, we have to solve the equation of
tion that determines the time evolution of the harmo
populations. For a harmonic quantum heat engine, the w
ing substance is coupled thermally to a heat reservoir at t
peratureT. Using the Heisenberg picture for the rate
change of an operator, one obtains@14,22–25# ~throughout
this paper we adopt\5I for simplicity!

dX̂

dt
5 i @Ĥ,X̂#1

]X̂

]t
1LD~X̂!, ~14!

where LD(X̂)5(ga(V̂a
†@X̂,V̂a#1@V̂a

† ,X̂#V̂a) is a dissipa-
tion term and originates from a thermal coupling of t
working substance to a heat reservoir,V̂a andV̂a

† are opera-
tors in the Hilbert space of the system and are Hermit
conjugates, andga are phenomenological positive coeffi
cients. For a harmonic oscillator system,V̂a are chosen to be
the Bosonic creation and annihilation operators:â and â†,
and Ĥ5vâ†â. Substitutingâ†, â, Ĥ, and X̂5N̂ into Eq.
~14!, one can prove@14# that

dn

dt
522aeqbv@~ebv21!n21#, ~15!

where a.0, 21,q,0, and b, v, and n are, in general,
dependent on time@14#. The explicit quantum mechanica
nature of a heat engine working with harmonic oscillators
manifested by the dual characters ofv, i.e., \v(\51) de-
fines the energy level structure of the heat engine andv is a
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frequency of the oscillators so thatv21 defines an intrinsic
time scale. This implicitly assumes an instantaneous
sponse of the heat reservoir to changes in the frequencv
and the time duration of a process should be long enoug
that resonance conditions are established instantaneo
This means that the time duration at each process has t
much larger than the intrinsic time scale@14#. Thus, the
change ofv with time is small. This point can also be d
rectly expounded from Eq.~3!.

The solution of Eq.~15! gives the expression of time evo
lution as

t52
1

2a Eni

nf dn

eqbv@~ebv21!n21#
, ~16!

whereni andnf are the initial and final values ofn along a
given pathn(b8,v). Equation~16! is a general expression o
time evolution for a harmonic oscillator system coupled w
the heat reservoir.

Based on Eqs.~3! and ~16!, we can calculate the time
spent on the four processes in the cycle. Substitutingn(v)
51/(eb1v21), b5bh , ni5ni(b1 ,v2), and nf
5nf(b1 ,v1) into Eq. ~16!, one can obtain the time of th
high-temperature isothermal process as

t15
b1

2a Ev1

v2
@eqbhv~eb1v2ebhv!~12e2b1v!#21dv.

~17!

Similarly, substituting n(v)51/(eb2v21), b5bc , ni
5ni(b2 ,v1), andnf5nf(b2 ,v2) into Eq.~16!, one can ob-
tain the time of the low-temperature isothermal process a

t35
b2

2a Ev1

v2
@eqbcv~ebcv2eb2v!~12e2b2v!#21dv.

~18!

In the two constant-frequency processes, the ‘‘temperatu
of the working substance changes fromb1 to b2 or from b2
to b1 , so they need a non-negligible time compared with
time of the isothermal processes. Substitutingn(b8)
51/(eb8v121), b5b1r , ni5ni(b1 ,v1), and nf
5nf(b2 ,v1) into Eq. ~16!, one can obtain the time of th
constant-frequency process withv5v1 as

t25
v1

2a Eb1

b2
@eqb1r v1~eb1r v12eb8v1!~12e2b8v1!#21db8,

~19!

where b1r is the ‘‘temperature’’ of the regenerator in th
regenerative processes withv5v1 and b1r.b8 because
heat is transferred from the working substance to the reg
erator. Similarly, substituting n(b8)51/(eb8v221), b
5b2r , ni5ni(b2 ,v2), and nf5nf(b1 ,v2) into Eq. ~16!,
one can obtain the time of the constant-frequency proc
with v5v2 as
5-3
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t45
v2

2a Eb1

b2
@eqb2rv2~eb8v22eb2rv2!~12e2b8v2!#21db8,

~20!

where b2r is the ‘‘temperature’’ of the regenerator in th
regenerative process withv5v2 andb2r,b8 because hea
is transferred from the regenerator to the working substa

So far we have obtained the times spent on two isother
and two regenerative processes. Consequently, the cycle
is determined by

t5t11t21t31t4 . ~21!

VI. ANALYSIS ON SEVERAL IMPORTANT PARAMETERS

The efficiency and power output are two of the importa
performance parameters, which are often considered in
optimal design and theoretical analysis of heat engines.
04610
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ing Eqs.~8!, ~12!, and ~21!, we find that the efficiency and
power output may be, respectively, expressed as

h5
W

Qh
5

1

b1
lnS eb1v221

eb1v121D2
1

b2
lnS eb2v221

eb2v121D
v1

eb1v121
2

v2

eb1v221
1

1

b1
lnS 12e2b1v2

12e2b1v1D
~22!

and

P5
W

t
5

1

b1
lnS eb1v221

eb1v121D2
1

b2
lnS eb2v221

eb2v121D
t11t21t31t4

. ~23!

In addition, using Eqs.~8!, ~9!, ~13!, and~21!, one can obtain
the expression of the rate of the entropy production as
ngine.
s5
DS

t
5

bhQh1bcQc

t
5

F ~bh1bc!S v2

eb1v221
2

v1

eb1v121D2
bh

b1
lnS 12e2b1v2

12e2b1v1D1
bc

b2
lnS 12e2b2v2

12e2b2v1D G
t11t21t31t4

. ~24!

Using Eqs.~22!–~24!, one can, in principle, optimize these important performance parameters of the quantum heat e
~a! Only if the temperature of the heat sink is low enough, i.e.,b2v i@1 (i 51,2), Eqs.~22!–~24! can be, respectively, given

by

h512
v1 /~eb1v121!2v2 /~eb1v221!1~e2b2v12e2b2v2!/b2

v1 /~eb1v121!2v2 /~eb1v221!1
1

b1
lnS 12e2b1v2

12e2b1v1D
, ~25!

P5

1

b1
lnS 12e2b1v2

12e2b1v1D2
1

b2
~e2b2v12e2b2v2!

t11t21t31t4
, ~26!

and

s5

~bh1bc!S v2

eb1v221
2

v1

eb1v121D2
bh

b1
lnS 12e2b1v2

12e2b1v1D1
bc

b2
~e2b2v12e2b2v2!

t11t21t31t4
. ~27!

~b! When the temperature of two heat reservoirs are low enough, i.e.,bv@1, Eqs.~25!–~27! can be further simplified as

h512
b1v1e2b1v12b1v2e2b1v21~e2b2v12e2b2v2!b1 /b2

~11b1v1!e2b1v12~11b1v2!e2b1v2
, ~28!

P5
~e2b1v12e2b1v2!/b12~e2b2v12e2b2v2!/b2

t11t21t31t4
, ~29!

and

s5
~bh1b1!~v2e2b1v22v1e2b1v1!2~e2b1v12e2b1v2!bh /b11~e2b2v12e2b2v2!bc /b2

t11t21t31t4
, ~30!

respectively.
5-4
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~c! When the temperature of the heat reservoir is h
enough and the temperature of the heat sink is low enou
i.e., b1v i!1, b2v i@1 (i 51,2), Eqs.~22!–~24! can be, re-
spectively, expressed as

h512
~e2b2v12e2b2v2!/b2

ln~v2 /v1!/b12~v22v1!
, ~31!
gh

ig
m

04610
h
h, P5

ln~v2 /v1!/b12~v22v1!2~e2b2v12e2b2v2!/b2

t11t21t31t4
,

~32!

and
s5
bh~v22v1!2 ln~v2 /v1!bh /b11~e2b2v12e2b2v2!bc /b2

t11t21t31t4
. ~33!
con-
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r.

ro-

ra-
hat

the
the
the
t on

ectly

as
~d! Only if the temperature of the heat reservoir is hi
enough, i.e.,b1v i!1 (i 51,2), Eqs.~22!–~24! can be, re-
spectively, expressed as

h512b1 lnS 12e2b2v2

12e2b2v1D Y b2 lnS v2

v1
D , ~34!

P5

1

b1
lnS v2

v1
D2

1

b2
lnS eb2v121

eb2v221D
t11t21t31t4

, ~35!

and

s5Fbc

b2
lnS 12e2b2v2

12e2b2v1D2~bc2bh!~v22v1!

2
bh

b1
lnS v2

v1
D G Y ~ t11t21t31t4!. ~36!

~e! When the temperatures of two heat reservoirs are h
enough, i.e.,bv!1, the results obtained above can be si
plified. For example, Eqs.~8!–~13!, ~17!–~20!, and~22! can
be, respectively, simplified as

Q15
1

b1
lnS v2

v1
D , ~37!

Q25
1

b2
lnS v1

v2
D , ~38!

Qbc5
1

b2
2

1

b1
, ~39!

Qda5
1

b1
2

1

b2
, ~40!

W5S 1

b1
2

1

b2
D lnS v2

v1
D , ~41!

DQ5Qbc1Qda50, ~42!
h
-

t15
v22v1

2av1v2~b12bh!
, ~43!

t35
v22v1

2av1v2~bc2b2!
, ~44!

t25
1

2av1
E

b1

b2 db8

b8~b1r2b8!
, ~45!

t45
1

2av2
E

b1

b2 db8

b8~b82b2r !
, ~46!

and

h512b1 /b2 . ~47!

It should be noted that the ‘‘temperatures’’b1r andb2r of the
regenerator in two constant-frequency processes are not
stant and vary with time. If there is not any additional a
sumption, Eqs.~45! and ~46! cannot be calculated furthe
One of the simplest assumptions is thatb1r andb8 are linear
dependent and so areb2r and b8, i.e., b1r}b8 and b2r
}b8. Then, the times spent on the two regenerative p
cesses can be simply given by

t21t45g~1/b121/b2!, ~48!

whereg is a proportional constant independent of tempe
ture. It will be seen from other assumptions given below t
this simple assumption is reasonable.

In general, the larger the temperature difference of
working substance in the two isothermal processes is,
larger is the amount of regeneration and the longer is
time of the regenerative processes. When the times spen
the two regenerative processes are assumed to be dir
proportional to the amount of regeneration@21#, the times
spent on two regenerative processes can be expressed

t21t45a~ uQbcu1Qda!52aS 1

b1
2

1

b2
D5gS 1

b1
2

1

b2
D ,
~49!

5-5
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wherea is also a proportional constant independent of te
perature. Equations~48! and ~49! just indicate that the two
assumptions mentioned above are equivalent to each ot

It is of significance to note another assumption adopte
many papers: the temperature of the working substanc
the regenerative processes varies with time linea
@15,20,26,27#, i.e.,

dT

dt
56k, ~50!

wherek is a constant independent of temperature but dep
dent on the properties of the working substance, and
positive and negative signs correspond to the regenera
heating and cooling processes, respectively. As long ask
5g is chosen, one easily derives Eq.~48! from Eq. ~50!. It
tells us once again that the assumption given in this pape
reasonable.

Using Eqs.~43!, ~44!, and~48!, one can obtain the cycle
time as

t5dS 1

b12bh
1

1

bc2b2
D1gS 1

b1
2

1

b2
D , ~51!

where d5(v22v1)/2av1v2 . Substituting Eqs.~41! and
~51! into Eqs.~23!, one obtains the power output as

P5
b~y21!

db1y@1/~b12bh!11/~bc2b1y!#1g~y21!
,

~52!

where b5 ln(v2 /v1) and y5b2 /b1 . Similarly, substituting
Eqs.~37!, ~38!, and~51! into Eq. ~24! gives

s5
b~bc2bhy!

db1y@1/~b12bh!11/~bc2b1y!#1g~y21!
.

~53!

Using Eq. ~52! and the extremal condition]P/]b150,
one can obtain an optimal relation

b15
bc1ubh

y1u
, ~54!

whereu5Abc /bh. Solving Eqs.~47!, ~52!, ~53!, and ~54!,
one can prove that the fundamental optimal relations
tween some important parameters and the efficiency are
spectively, given by

b15bh

~12h!@11u~12hc!#

~12hc!@11u~12h!#
, ~55!

b25bc

11u~12hc!

11u~12h!
, ~56!

P5
uh~hc2h!

B~11u!~12h!@11u~12hc!#1Duh~hc2h!
,

~57!

and
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s5
bcu~hc2h!2

B~11u!~12h!@11u~12hc!#1Duh~hc2h!
,

~58!

where B5d/b, D5g/b, and hc512bh /bc is the effi-
ciency of a reversible Carnot heat engine.

It is clearly seen from Eq.~57! that the power output is
zero whenh50 or h5hc . This implies the fact that when
the efficiency is equal to some value, the power output ha
maximum. Using Eqs.~55!–~58!, we can plot theb i /b j
2h ( i 51, 2 and j 5h,c), P* -h and s* -h characteristic
curves, as shown in Figs. 2, 3, and 4, whereP* 5BP and
s* 5TcBs are, respectively, the dimensionless power out
and rate of the minimum-average-entropy production. It
also clearly seen from Fig. 3 that there exists a maxim
power output. Using Eq.~57!, one can prove that when th
efficiency

hm512Abh /bc[hCA ~59!

the power output attains its maximum value, i.e.,

FIG. 2. The (b1 /bh)-h and (b2 /bc)-h characteristic curves
for bc /bh52.

FIG. 3. The dimensionless power outputP* 5BP versus the
efficiency h. Dashed (D/B50) and solid (D/B510 and D/B
550) curves are presented forbc /bh52.
5-6
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Pmax5
~u21!2

B~11u!21D~u21!2 , ~60!

wherehCA is the efficiency of an endoreversible Carnot he
engine at the maximum power output@28–30#. Substituting
Eq. ~59! into Eqs.~55!, ~56!, and~58!, one obtains the value
of b1 , b2 , ands at the maximum power output as

b1m5
bh1Abcbh

2
, ~61!

b2m5
bc1Abcbh

2
, ~62!

and

sm5
bcu

2~u21!2

B~u11!21D~u21!2 . ~63!

It is thus clear that in the high-temperature limit, the ef
ciency of the harmonic heat engine at the maximum po
output is the same as that of a Curzon-Ahlborn engine@28# at
the maximum power output. It is because, in the hig
temperature limit, the cycle may possess the condition
perfect regeneration through the use of a reversible regen
tor and the heat transfer between the harmonic oscillator
tem and the heat reservoirs can be simply written as

Qi5F~1/b j21/b i ! ~ i 51,2; j 5h,c!, ~64!

whereF52avb j is independent of the temperature of t
working substance and the temperature difference betw
the working substance and the heat reservoir. It is obvi
that Eq.~64! can be regarded as the Newtonian law.

It is seen from Figs. 3 and 4 that whenb15bh and b2
5bc , h5hc , P50, ands50. This implies the fact that the
efficiency of the quantum heat engine mentioned above c
not attain that of a reversible Carnot heat engine. Figur
also shows that whenP,Pmax, there are two different effi-
ciencies for a given power outputP, where one is smalle
thanhm and the other is larger thanhm . Whenh,hm , the

FIG. 4. The dimensionless rate of the entropy productions*
5TcBs versus the efficiencyh. The values of the parametersD/B
andbc /bh are the same as those used in Fig. 3.
04610
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power output decreases as the efficiency decreases. O
ously, the region ofh,hm is not optimal for a harmonic
quantum heat engine. Consequently, the optimal region
the efficiency should be

hm<h,hc . ~65!

When a quantum heat engine is operated in this region,
power output will increase as the efficiency decreases,
vice versa. It is thus clear thatPmax andhm are two impor-
tant parameters, becausePmax determines the upper bound o
the power output, whilehm gives the allowable value of the
lower bound of the optimal efficiency.

Analyzing Eq.~65! and Figs. 2–4, we find that the opt
mal ranges of the ‘‘temperature’’ of the working substance
the two isothermal processes and the cycle time are

b1m>b1.bh , ~66!

b2m<b2,bc , ~67!

and

t>tm , ~68!

where

tm5
2hc~12hCA!

bh
S d

hCA
2 1

g

~22hCA!2D .

When the regenerative time is negligible,D50. In this
case, Eqs.~59!, ~61!, and~62! are still true, while Eqs.~57!,
~58!, ~60!, and~63! can be, respectively, simplified as

P5
uh~hc2h!

B~11u!~12h!@11u~12hc!#
, ~69!

s5
bcu~hc2h!2

B~11u!~12h!@11u~12hc!#
, ~70!

Pmax5
~u21!2

B~11u!2 , ~71!

and

sm5
bcu

2~u21!2

B~u11!2 . ~72!

The results obtained above indicate clearly that the ma
mum power output is dependent on the time of the const
frequency processes, while the efficiency at the maxim
power output is not affected by the time of the consta
frequency processes. In this case, the relation curves of
power output, and rate of the minimum-average-entropy p
duction varying with the efficiency are shown by the dash
curves in Figs. 3 and 4, respectively.

VII. CONCLUSIONS

We have established the cyclic model of a typical qua
tum power cycle working with many noninteracting ha
5-7
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monic oscillators and consisting of two isothermal and t
constant-frequency processes. On the basis of the statis
mechanics, motion equation of an operator, and semi-gr
formalism, we have analyzed the optimal performance ch
acteristics of the harmonic quantum power cycles and
rived the general expressions of several important parame
of the quantum heat engine. By using the expressions,
influence of nonperfect regeneration is analyzed. In gene
the cycle does not possess the condition of perfect regen
tion. However, in the high-temperature limit, it may posse
the condition of perfect regeneration. Furthermore, the o
mum performance characteristics of the quantum heat en
in high-temperature limit are discussed in detail. For e
rs
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ample, the maximum power output and the correspond
parameters are calculated and the optimally operating
gions of the quantum heat engine are determined. The re
obtained here will be helpful to understanding further t
performance of quantum heat engines using harmonic o
lators as the working substance.
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