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Critical statistics in quantum chaos and Calogero-Sutherland model at finite temperature
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We investigate the spectral properties of a generalized Gaussian orthogonal ensemble capable of describing
critical statistics. The joint distribution of eigenvalues of this model is expressed as the diagonal element of the
density matrix of a gas of particles governed by the Calogero-Suthei@®dHamiltonian. Taking advantage
of the correspondence between CS particles and eigenvalues, and utilizing a recently conjectured expression by
Kravtsov and Tsvelik for the finite temperature density-density correlations of the CS model, we show that the
number variance of our random matrix model is asymptotically linear with a slope depending on the param-
eters of the model. Such linear behavior is a signature of critical statistics. This random matrix model may be
relevant for the description of spectral correlations of complex quantum systems with a self-similar or fractal
Poincaresection of its classical counterpart. This is shown in detail for two examples: the anisotropic Kepler
problem and a kicked particle in a well potential. In both cases the number variance ahgl stegistic are
accurately described by our analytical results.

DOI: 10.1103/PhysReVvE.67.046104 PACS nuni$)er05.30.Pr, 05.45.Df, 05.45.Mt, 02.30.1k
[. INTRODUCTION are different. Only the former one reproduces critical statis-
tics.
Random matrix ensembléRME’s) are an invaluable tool Critical random matrix models for orthogonal and sym-

in describing the level statistics of complex quantum syslectic ensembles have recen{ly6] been reported in the
tems. Typically, their range of applicability for disordered literature. Tsvelik and Kravtsov have obtained asymptotic
systems is determined by the Thouless energy that, in thexpressions for the critical two level spectral function from a
metallic phase, is much larger than the average level spacingeneralized ensemble of random banded matrices. An exact
In the neighborhood of a localization-delocalization transi-expression for the two level critical spectral function was
tion the Thouless energy is of the order of the average levaetonjectured in Ref[16] for orthogonal and symplectic en-
spacing and the wave functions become multifractal. Thesembles. In the context of the Anderson model, a similar
usual random matrix ensembles are no longer applicable. Reesult was conjectured by NishigakiO].

cently, new random matrix ensembls-8] depending on In order to describe the spectral correlations of certain
additional parameters have been proposed to describe spgfseudointegrable billiards with dynamics intermediate be-
tral correlations in this critical case. These new models fokyeen chaotic and integrable, Bogomolny and co-workers
critical statistics ha\{e been supcessfully utilized to describ?ﬂ] have introduced a short range plasma model that inter-
the spectral correlations of a disordered system at the Andefj,|ates between Poisson statistics and Wigner-Dyson statis-
son transition in three dimension9,10], two dimensional tics. The joint distribution of eigenvalues in Refl7] is

Dirac fermions in a random potentigll], the quantum Hall . . . i .
transition[12], and of the QCD Dirac operator in a liquid of g|_ven.by the .classmall Dyson gas V.V'th the logarithmic pair
wise interaction restricted to a finite numblerof nearest

instantong 13,7]. . . . .
113,7] neighbors. Analytical solutions are available for gendeal

There are two different types of models for critical statis- q | | hat this sh |
tics. In the first one, deviations from Wigner-Dyson statistics2"d Symmetry class. It turns out that this short range plasma

are obtained by adding a symmetry breaking term to thé_nod_el repr_oduces the typicgl charagteristics of critical _statis-
Gaussian unitary ensemhi@UE) [2,7]. The model is solved tics like a linear r_1umber variance, W|_th a slope depending on
by mapping it to a noninteracting Fermi gas of eigenvaluesk and, asymptotically, an exponential decay of the nearest
The second 0n@4] makes use of soft Conﬁning potentia|s neighbor SpaCing distribution. HOWeVer, the two models are
and is solved exact|y by meansq}brthogonm p0|ynomia|sl not identical. In critical random matrix models based on a
Both models lead to the same spectral kernel for small desymmetry breaking term, the joint distribution of eigenvalues
viations from the GUE. Based on this observation it wascan be considered as an ensemble of free particles at finite
conjectured 1] that critical statistics is universal. However, temperature with a nontrivial statistical interaction. The sta-
the origin of the critical kernel is different in both cases. Intistical interaction resembles the Vandermonde determinant,
models based on a soft confining potential the critical kernelnd the effect of a finite temperature is to suppress the cor-
is obtained from a nontrivial unfolding. In models with an relations of distant eigenvalues. In REE7] this suppression
explicit symmetry breaking term, deviations from Wigner- is abrupt, in contrast to critical statistics, where the effect of
Dyson statistics arise because the long range correlations btte temperature is smooth. For further details we refer to Ref.
tween the eigenvalues are exponentially suppregk@8dWe  [14].

remark that the extent of universality in critical statistics is In this paper we introduce a generalized Gaussian or-
still under debate. For instance, for chiral ensembles, théhogonal ensembléGOE) based on the addition of a sym-
correlation functions of a model based on a symmetry breakmetry breaking term to an invariant Gaussian probability dis-
ing term[7] and a model with a soft confining potentfdl5]  tribution along the lines of Ref2] for the GUE. We show
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that the joint eigenvalue distribution of this model coincides 1

with the diagonal element of the density matrix of a gas of P(X1, - - - -XN):A({XK})J dM EXF{ —5(2b+ 1)Ek Xg
particles governed by the Calogero-Sutherlé@8&) Hamil-

tonian. Using this identification we calculate the asymptotic )

behavior of the number variance from the susceptibility of +b; Mk|XkX|)’ )
the CS partition function. Because the ltzykson-Zuber inte- '

gral for =1 is unknown, a direct calculation of the corre- where the Vandermonde determinant is defined by
lation functions is not possible. To obtain analytical results

we invoke the Kravtsov-Tsvelik conjecture, which states that

the finite temperature modifications of the correlation func- A({Xk}):g (Xk=X). ©)
tions arise only through the known finite temperature modi-

fications of the kernel fop=2. The validity of this conjec- | et us now consider the harmonic oscillator Hamiltonian
ture is tested in two different ways. First, we show that it is

in agreement with a conformal calculation of the asymptotic . P

behavior of the two-point correlation function. Second, the H=—Vst 70 Trs, (4)
asymptotic behavior of the number variance according to the

Kravtsov-Tsvelik conjecture agrees with the behavior of theyhere the Laplacian for symmetric matricBss given by
susceptibility in the grand canonical ensemble. One of the

main aims of this paper is to show that critical statistics Noog2 o N2
describes the spectral correlations of time-reversal invariant Vézz 2Ty Ta 6)
guantum systems with a corresponding classical phase space =1 JS; <] S

that has a global self-similar fractal structure. This is shown_ . o .
in two examples, a kicked particle in a potential well and the! S Hamiltonian is the sum d¥i(N+1)/2 independent har-

anisotropic Kepler problem, by comparing the two-pointmonic oscillators with imaginary time propagator given by
level correlations with the analytical formula of our critical [18]
random matrix model. R
The critical random matrix model and its relations with (gle~™|s')=
the CS model are discussed in Sec. Il. In Sec. Ill, we review
the Kravtsov-Tsvelik conjecture for the density-density cor-
relation function of the CS model in the low temperature
limit. The validity of this conjecture is discussed in Sec. IV. (6)
In Sec. V we show that the level correlations of a kicked
particle in a potential well and of the anisotropic Kepler Since the Laplaciai¥ is the sum of a radial piece, depend-
problem are described by the Kravtsov-Tsvelik conjectureing only on the eigenvalues @& and an angular piece, de-

N(N+1)/4
47 Sinth)

« @ (w/4sinhw7)[(Tr 24+ Tr S’ 9 coshwr—2 TrSS]

Concluding remarks are made in Sec. VI. pending only on the orthogonal matriM g that diagonalizes
S
II. DEFINITION OF THE MODEL 1 N 1% J
. 2_ 7 72
VS_A({XK}) 21 ‘9Xi A({Xk})ﬁxi +VMSa (7)

A random matrix model for Hermitian matrices with criti-
cal eigenvalue statistics was introduced in REI] by , e o o
Neuberger-Moshe-Shapiro. Although it is straightforward toth€ matrix elemenSle™™"|S’) factorizes into a radial piece
generalize this model to the class of the Gaussian orthogondf'd @n angular piece. After integration over the angular de-
ensemble, the absence of an explicit result for the integrafrées of freedom and putting the eigenvalueSoequal to
over orthogonal matrices makes its analysis far more comt€ €igenvalues & we obtain

licated. The model we study is defined by the joint prob- _ _
gblhty distribution y y J p <Xl, . ,XN|A1/2({X|(})G THradA 1/2({Xk})|xl, . 1XN>

— Cf dMe™ (w/2 sinhw7)[Tr S%coshwr—Tr SM SMT] ' (8)

_ —(1/2)TrsS 5= (b/2)Tr[M,S|[M,S] T
P(Sb) f dMe € - @ where the integral over the angular matrix element has been

absorbed in the normalization constadt If we make the

identification
Here, theNXN matricesS and M are real symmetric and
orthogonal, respectively, and the integration measiieis ] —2b  and wCOSth:2b+l )
the Haar measure. From the invariancal® it follows that sinhw 7 sinhw 7 !

P(S,b) is a function of the eigenvalues & only. If the
eigenvalues ofs are denoted by, the joint eigenvalue dis- the right-hand side of this equation is exactly the joint prob-
tribution is given by ability distribution (2). We thus have shown that the joint
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probability distribution of our model is given by the diagonal We point out that the above relation between the Euclidean
matrix element of the density matrix of the Hamiltonian ~ propagator in symmetric spaces and the CS model at finite
temperature can be extended to all nine other symmetry
classes in the Cartan classification of large families of sym-
metric space$23]. In essence, the radial part of the Laplac-
ian in the symmetric space corresponds to a CS type Hamil-
tonian. For a classification of CS Hamiltonians based on the
symmetry class we refer to R¢R4].
Finally, let us mention that the interpolating rdleetween

H=AY({x})Hrad ~A{x,). (10)

Using the identity,

A 1/2({)("})2 A({Xk})_A Had) RME and the Poisson ensemjté b can be inferred directly
N from Eq. (1). Using the invariance of the measure, the inte-
_2 (9_2 E 1 (11 gral overM can be replaced by an integral over the eigen-
= I2 A& (xe—x)? values ofM. Forb— e, this partition function is dominated

by matricesS that commute with arbitrary diagonal orthogo-
we find the Hamiltonian nal matrices. This set of matrices is the ensemble of diagonal

symmetric matrices also known as the Poisson ensemble

with uncorrelated eigenvalues. Critical statistics is obtained

-3 5__{ w_ D x (12) in the thermodynamic limit if the parametbris scaled as
Tooxt 407 (xi—xJ) 4 5
This Hamiltonian corresponds to the Calogero-Sutherland b=h?N2. (17)
model[19,20
) Wigner-Dyson statistics is found for a weakéidependence
Aes=—2>, (7_ — __1> w_ > X2 of b whereas a strongéd-dependence leads to Poisson sta-
i asz i#] (xi—xJ) 4 7 tistics. This transition can also be understood in terms of the

(13) CS model at finite temperature. At zero temperature, the
probability density of the ground state of the CS mod&)

with A=1 and fermionic boundary conditions. We have thuscoincides with the joint probability distribution of the Gauss-
shown that the joint eigenvalue distribution of the modgl 5 orthogonal ensemble. In the high temperature limit,
is given by the diagonal matrix elements of tNeparticle ¢ the positions of the particles become uncorrelated and
density matrix of the Calogero-Sutherland model at an iny,e gtatistics of the associated matrix model is Poisson.
verse temperature given by Eq.(9). We mention that for To recapitulate, we have traded the problem of performing
the special case of =2 (free fermion3 a similar mapping an integral over the orthogonal group by the physical task of
was found in the context af-orthogonal polynomial$21]. finding the diagonal element of the density matrix of an en-

The normalized eigenfunctions of the Calogero- : o
Sutherland Hamiltoniaig12) can be labeled in terms of the semble of particles governed by the CS Hamiltonian.

partitions of integers denoted by (see the following sec-

tion). If A, and¥ (X4, ... Xy,w) are the eigenvalues and . .
eigenfunctions of the CS Hamiltonian, respectively, the joint Excited states and zonal polynomials
eigenvalue probability distribution is given by In this section we discuss explicit solutions of the excited

eigenfunctions of the CS Hamiltonidh2) and argue to what
extent they are useful for the evaluation of correlation func-
p(X1, ... Xn)=C'> e MW (x,0)¥ (X,w), (14) tions from the joint eigenvalue distributia@).
K The probability density of the ground state of the CS
model (12) coincides with the joint probability distribution

whertt)aC’ is a cogs_tant ancszxrl], e ,xN.I_Thg\IfK(x,_w) | of the Gaussian orthogonal ensemfl8]. This observation
Eﬁ%ia‘?sgg]resse In terms of the generalized Hermite po %gether with the conjecture of the solvability of the CS

model was already made in the pioneering papers of Calog-
1 ero[20] and Sutherlan{19]. Later, Sutherlan{25] obtained
- 2| A 12 a nonorthogonal set of solutions. The problem of finding a
wE X")A ({X'})HK(X\/_/Z'Z) set of orthogonal solutions for these excited states was re-
(15) cently solved by Forrester, Ha, and Serpaé—28 who ex-
pressed the wave functions of the excited states in terms of
whereN, is a normalization constant and the eigenvalue ighe symmetric Jack polynomial&9]. For the special values
given by of the coupling constant related to the GOE and the GSE the
Jack polynomials have a geometrical interpretation and are
= w|k]|. (16)  usually called zonal polynomial80]. Unfortunately, there is

1
Y (X, w)= \/Tex
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no closed formula either for the Jack or for the zonal poly-Hidden-Jack polynomials [31] that can be expressed in
nomials[30]. Since explicit calculations rely on recurrence terms of Jack polynomialg31,22.

relations, numerical work is needed to evaluate polynomials The generalized Hermite polynomials in E(L4) can

of high degree. In our case, due to the harmonic potentiabe expressed in terms of zonal polynomials by means of a
the excited states are given by the generalized Herfoite Mehler type formuld22].

|
1
pub.anaw%—gngJ {mbE H (V02 2H, (xol2.2)
1 COx\2wl1-e 27 CP(x\Jwl2e™ ™1~ ef?m)
[t

C(Z)(]_N)

mA({xk})ex% — %w coth( Tw)z )2

(18

where theC(Kz)(x) are the symmetric Jack polynomials as exactly. As expected, it coincides with the one encountered
defined in Ref[22], x=X,, ... Xy and « labels the parti- for particles obeying fractional statistics in one dimension

tions of the integeréthere is a polynomial for each partitipn  [33]. Because of technical problems, the same strategy fails
and the sum runs over all the partitions. Furthermarand  for the spectral density and higher order spectral correlation

w are related td through Eq.(9). functions.
The kernel For the special case df=2, an explicit calculation of the
joint distribution of eigenvalue&) coincides with the result
1 c@2x)c@y) obtained by using zonal polynomials techniq(ia4],
Fo(x,y =2 W oy (19)

1 2.2 (b
p(Xq,Xz)= Ze (1/2)()(1”2)'0(5()(1_)(2)2

has been studied extensivgB0,22. Using the result for the
7—0 limit of the kernel[22],

" X @~ (R0 x|y — x|, (22)

1
[I e”” (20 . o
VA{XHA{yi=1 wherel is the Bessel function of imaginary argument.
In conclusion, we have expressed the joint distribution for

one easily shows that the eigenvalues of our model are urthe eigenvalues of our model in terms of zonal polynomials

correlated in the high temperature limit. but we have not succeeded to derive explicit expressions for
In the zero temperature lim{GOE), the joint distribution  the correlation functions.

can be represented as a quaternionic determinant and the

integrations can be performed by means of a “kernel rela-

tion.” At nonzero temperatures, the kerriey(x,y) satisfies lll. CRITICAL SPECTRAL KERNEL
the “kernel relation”[22] AND DENSITY-DENSITY CORRELATIONS

OF THE CS MODEL AT FINITE TEMPERATURE

Fo(x/\[7,yl\7)=

f du(y)Fo(2y,2)Fo(2y,x) We recall that the two level spectral function of our model
is identical to the finite temperature density-density correla-
tion function of the CS modgl13) for A\=1. In Ref.[16] it
was conjectured that the low temperature linligg 1, of the
connected density-density correlation function of the CS
where du(y)=1IN ;e @Ay 1)dy,, ... dyy, but it ~model at\=1 is given by

is not knowrt whether the joint eigenvalue distribution can

be expressed in terms of quaternionic determinants. Further (p(x)p(0))r—{p(x)){p(0))t

progress could rely on exploiting the orthogonality relations g

[30] verified by the zonal polynomials. If proceeding so, the _ _ —

partition function associated with E¢l) can be evaluated =Roc(x0)=~ T(X 0~ ( ax<Tx 0)) L K+(t.0),

(23

ochZz,x)exp{—%wE (Z+x3) |, (21

1Some interesting results for small valueshfvere obtained in
Ref.[32]. where
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25 ; ,

sinh(7rxT)

il
E o)
nuwno

coot

is the kernel of the CS modéL3) for A =2. The temperature I e o
T=mh/2 andh is related tor and & through Eqs(17) and # -
(9). This result is valid in a normalization such that the av- = (L) i 2T e —
erage density of the particles is equal to unity. I PR - 1

The idea is that, based on the Luttinger liquid nature of 1 T - -
the CS mode[35], the known relation between the density- I s -
density correlation of the CS for=1 at zero temperature z=
and the spectral correlations of the GOE can be extended t *°[ 7]
finite low temperature. One simply replaces the kernel at
zero temperature, which physically corresponds to free fer- o : |
mions for all invariant RME’S, by its finite temperature ana- L
log [2] given by

FIG. 1. The number variancg?(L) (31) versusL for h=0.1,
h=0.15, anch=0.2. The linear behavior of the number variance is

() WH(Y)
E RELNRS N

KT(X,y): ’ (25) a signature of critical statistics. The slope fog1 is y=h.
no 1+2z,'e™n
— KT[x/p(0),0 cos{wx\/—) 1
where s, are the single particle wave functions for free fer- K'(x,00= (0) - \/—f 1+7- 14
mions andE,=wn. The fugacityz, for the free fermion 2 (30)

distribution in Eq.(25) is determined by the total number of
particles through, In the low temperature limih<1, the above spectral kernel
coincides with Eq(24) for T=7h/2.

The number variance of the eigenvalues near the center of
the band is obtained by integrating the two-point connected

correlation functior'R;C(s,O) including the self-correlations

(23),

N=f dxp(x)= , (26)

wherep(x) =KT(x,x) is the average spectral density. In the

low temperature limitwr<<1, we find L/p(0) _
P EZ(L)=L+2f ds(L—s)R); ™%(s,00. (31)
o ,

z,?t ; (27)

R The number varianc&?(L) measures the stiffness of the

spectrum. The fluctuations are small for the GOE WL )

. proportional to In() for L>1. For the Poisson ensembile,
In Eq. (9) the quantitiesr and w have been related to the \yhich is an ensemble of diagonal random matrices, the ei-

parameterh of the matrix model(1). In the largeN limit 4oy a1ues are uncorrelated aB&(L)=L. For critical statis-
these relations simplify to : ; ; ; ;
plity tics the number variance is asymptotically proportional to
xL. For y<<1 the slope has been connected with the multi-

wr*vi fractal dimensionD, observed in the wave functions of a
hN’ disordered system undergoing a localization-delocalization
transition[36,37],
~2hN, 28
w ( ) _ d— D2 (32)
X™72d

and forh<1 the fugacity is given by,~ e™. To obtain the

average particle density for—0 we can approximate the ;pereq is the spatial dimension of the system to be studied.

single particle wave function by plane waves with energyas ohserved in Fig. 1, the number variance of our model is
given byk®, linear for L>1, with a slopey=h for h<1. This linear

behavior together with the absence of subleading logarithmic

\/_ N\/H terms in the asymptotic behavior of the number variance

(29 suggests that our matrix model describes critical statistics.

The unfolded spectral kernel is thus given by SWe require the absence of a logarithmic term in the asymptotic

behavior of the number variance in order to distinguish critical sta-
tistics from the statistics obtained from the superposition of a Pois-
2For N # 2 the particles obey exclusion statistics. son ensemble and Wigner-Dyson ensembles.
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IV. TESTING THE KRAVTSOV-TSVELIK CONJECTURE where we assume thitandP, depend on quantum numbers
n andm. Therefore, if we manage to find a conformal field
Below we discuss two independent methods to test théheory withc=1 and eigenvalues of the momentum operator

Kravtsov-Tsvelik conjecture. and energy operator given by E@3), the correlation func-
tions of the CS model in the asymptotic limit can be easily
A. Conformal Calculation evaluated by means of conformal techniques. It turns out that

) . . the simplest conformal model with such properties is a free
We review first[35,16 how conformal techniques can be boson compactified on a circle with radiBs= 1/yX.

utiized to calculate the low temperature large distance |, general, observables do not have definite conformal
asymptotic behavior of the two-point correlation function of i ensions and must be expressed as a linear combination of

the CS model. conformal excitations. Since such conformal fields only de-

Conformal field technique$35,38—4Q can be used 10 g jpe the excitations close to the ground state one first has to
compute the asymptotic behavior of the correlation f“nCt'O”%ecompose the expansion of observables into “fast” and

pf 1+ 1_ d@mensional systems with a _Iinear gapless Spectrumgo " modes [41]. The “slow” modes are described by the
in the limit of largeN number of particles, constant density . ntormal fields and the “fast” ones correspond to momenta
n=N/L, and low temperature. that remain finite in the thermodynamic limit, i.e., to excita-

In order to identify the conformal theory associated withjons with AD 0. The density operator can be expanded as
the low energy excitations of the+11l dimensional system

one needs the value of the conformal anon@bf the asso- o
ciated conformal field theory. Usuallg,is obtained from the X)o= C. gi2mxn X 35
leading low temperature behavior of the free energy of the pP(X)r m 2 Cmn Ynom(X)T, @9

system. Then, the conformal weights of the primary fields of

the conformal theory must match the leading low energ\yhere y, ,(x,0)y stands for the primary stateAD
excitations of the 1 dimensional quantum system. The —p AN=0) associated with the above conformal theory, the
latter is usually evaluated either numerically or by finite sizephase in the expansion represents the momentum of the
scaling and Bethe ansatz techniques. This program was Cajround state fot. —c (fast modg and the indexm accounts
ried out for the CS model by Kawakami and YA®5]. They  for the contribution of secondary fields. Since the density
found that the low energy collective excitations of the CSgperator does not change the number of particles only exci-
model are described by two quantum numbérsirelated to  tations withAN=0 contribute to the expansion. The coeffi-
excitations that change the number of particles Al as-  cjentsc,, , are found from the zero temperature lif@OE).
sociated with excitations that move one particle from one The density-density correlations at finite temperature can
Fermi point to the other. The energyand momentun® of  pe easily obtained using the known result for the correlation
the leading finite size excitations of the CS model are givefjynctions of the conformal fieldss, om(X,0)7. The first

by terms of the conformal prediction for the density-density cor-
2w\ 2w\ 22(N*+N") relations of the CS model at=1 in the low temperature
= _ADZ4+—— _ANZyp—— limit are thus given b
E L 4AD + L 4AN + L , 9 y
T? T4 cog2mx)
P=27AD+P_, (33 R (x,00=(p(X)p(0))7~ ——
2( (p(X¥)p(0))r sintf(7xT) 2 sint'(7xT)
2 3 4
P.=—[ANAD+N*"+N"], 3 T
L (36)

2 sintf(7Tx)

whereP, stands for the momentum of the finite size excita-
tions andN* and N~ label the conformal towers of states With a temperature as given by the Kravtsov-Tsvelik conjec-
(secondary fieldsassociated with each primary field. Finally, ture, i.e.,T=h/2, the conformal result coincides with the
they argued, based on thermodynamics arguments, that tk&ymptotic expansion of the conjectured regam). Since
conformal anomaly associated with the CS moded=sl. both results have been obtained by using completely differ-

In a system with conformal symmetry, the eigenvalues ofent methods, this calculation supports the validity of the ker-
both the Hamiltonian and the momentum are related to thael (24) in the low temperature, long distance limit.
right (left) conformal weightsx, , (X, m) Of the primary
fields through the following relation: B. Susceptibility

L The slope of the large distance asymptotic behavior of the
xn,mzz—[EJr P.1, number variance is determined by the isothermal susceptibil-
™ ity of the CS model which can be obtained from the CS
(34) partition function. On the other hand, this slope is deter-
. =L[E— P mined by an integral of the unfolded two-point cluster func-
M2 L tion Y,(r) according to
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z;=e'. (44)

22<<N>>~<N>(1—f Yz(r)dr)- 37
* Since the density of particles isdependent in a harmonic

nt&ox we calculate the susceptibility for particles in a rectan-
gular box with fugacity given by Eg44). In this way the
susceptibility can be compared with the slope of the number
Yariance which is calculated in the center of the spectrum.

The average number of particles in a box of lengtis
given by

Therefore, agreement between the conformal calculation a
the Kratsov-Tsvelik conjecture for the large distance
asymptotic behavior of the two-point correlation function
does not necessarily imply that the asymptotic behavior o
the number variance is given by the susceptibility.

The susceptibilityy in the grand canonical ensemble
which measures the fluctuations of the number of particles in L
a box of lengthL, (Ny=—

aw

x=(N?)=(N)?, (39)

can be expressed as

% dk
_/')12- (45)

o . 27k2
1+ €
Z;

27k2

If the fugacity is parametrized ﬁze we have in the

d low-temperature limit,
x=zld—Z<N), (39

1 L

_ ) (N)=2k—. (46)
wherez, stands for the fugacity andN) is the average num- ™
ber of particles. Remarkably, the CS gas for arbitrary statis:l_hen
tical coupling\ can still be considered a free gas but with
exclusion statistic§33]. Indeed, Sutherlanfl9] has shown, d L (o 8720272
by using the Bethe ansatz and a method previously devel-y —(N2) - (N)2=z,—(N)= _f dk ! —.
oped by Yang and Yanf42] for the Bose gas with a delta dz mJo  (1+4z, %732
interaction, that the occupation numbgk) of a gas of CS o
particles satisfies the following transcendental equation:  After the change of variablék=k—k and expanding around

the Fermi surface we find,

[1-=An(K)/2M 1+ (1—A/2)n(k) ]} M?=n(k)e™®/z, .

(40) L (= gedrkak (N)  (N)
X= g 4rkokn\32 o 1.2 21
For the special case=1, corresponding to the GOE, we T (1+4e™%) 27Kk nz,
obtain 47

5 The above result should be compared with the calculation of
(1) the asymptotic behavior of the number variance from the

4 ' two-point spectral correlation function,
__a27e(k)
1+e X~32(N)) for (N)—c, (48)

1
where32((N)) is defined by

—h(N).
n(k)=

where z; is the fugacity for this distribution function and
e(k)=k? is the energy of a single particle. To find the rela- (N)
tion between the fugacity and the paramétén the Moshe- 22(<N>)=<N2)—<N>2=(N>—2f dr({(N)—r)Yy(r).
Neuberger-Shapiro model far=1 we have to use the single 0 49)
particle energies corresponding to the CS mad®). We

thus have Here, Y,(r) is the unfolded two-point cluster function. Ac-

L cording to the Kravtsov-Tsvelik conjecture it is given by

1 = 0
N=— dxf dk . (42 ) dK(r) (=
R \/ 4 Y1) =K1+ —5 fK(r’)dr', (50)

1+ — @27(K*+ 14w d

g whereK(r) is the kerne[see also Eq(30)]

The asymptotic behavior for largg can be obtained easily

by changing to polar coordinates. This results in K(r)= 1_ - dkcos(kr/p) (51)
|n22 27Tp o 1+_eTk2
1 Z
N= . (43
wT R
and p is the average spectral density. For this cluster func-
Using Eq.(9) we then find in the limit of smalh, tion, and, in fact any cluster function that decreases stronger
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than 1f, we recover the relatiof87) for (N)—o. With the

. . 12
fugacity parametrized by,=e™* =e' (see Sec. I) we
have in the low-temperature limit

(52

After partial integration of the second term of E§0) and
using thatK (0)=1 we obtain,

22(<N>)=<N>—2<N>f:[2|<2(r)—K(r)]dr+O(N°).
(53

Integrating by parts and making an expansion about the

Fermi surfacek results in

sinkr/p fw cossr/27kp
= dS—
4mr )= cosHs/2
1 sin(kr/p)

= —— —. (54
2kp T sinh(7rr/2kp T)

The integral over in Eq. (54) can now be performed ana-
lytically resulting in the susceptibility

_(N)_(N)

k2 In 22_ <N> (55)

PHYSICAL REVIEW BE57, 046104 (2003

Let us first derive the large asymptotic behavior of the
kernel(56). In the low temperature limit the average number

of particles is again given byN)=2Lk/7p, with normal-
ization condition X/mp=1. After partial integration the in-
tegral can be rewritten as

=8 rkz; 262™sin(2kx/p)

_ 2
(1+421 2e27'k )3/2

_7TXO

K(x) (57)

In the low temperature limit the integrand is strongly peaked

at k~k, and the integral can be calculated by a steepest
descent approximation

) 2 (o gedx(ktulmk)/pgdu
K(X)~Im—
TX) — o (1+4e4U)3/2
—3/2 . 1/2 o o -
¢ iml 72 mX 2ikx/p— mxKi27— mix(In 4)/27k
37 K '

(58)

This asymptotic result is in disagreement with the prediction
from the conformal calculation.

Next we compare the asymptotic behavior of the number
variance with the susceptibility. The comparison of the sus-
ceptibility can again be made by computing the asymptotical
behavior of the number variance. For an exponentially de-
creasing kernel we have previously shown that the

This slope is in agreement with the result obtained from thesymptotic behavior of the number variance is given by

partition function of the CS model. In agreement with our

naive expectation, the value of the slope is a factor 2 larger
than the one found for the original Moshe-Neuberger-

Shapiro model foik =2 [2].
In the kernel(51) the momentum integral is weighted by

S2((N) =Ny~ 20N) | T2K700~ KO0 Jxe O(N)°)
59

the occupation number which in this case is the Fermi-DiragvhereK(x) is the kernel56) with average eigenvalue spac-
distribution. Since the occupation number of the CS modeing normalized to unity. Using that

for A=1 is given by Eq(41), it seems more natural to make
this choice instead. This results in the kernel

cos{2kx/p)
K(x)= — J Sl

1 + 2 %2
2

(56)

Wherezl—ek r=e!M is the fugacity. We choose the normal-
ization of the kernel such th&(0)=1. Then the zero tem-
perature limit (— o) of this kernel is the usual sine-kernel,
sinmx/7x. Below we show that the conjectu(®6) disagrees
with both the conformal calculation and the susceptibility

(47).

- oo

f K2(x)dx= fdx

(7x)?

*=sinrax

)
[

oo

dxe 1
X x= 2’
(60)

4s 1

gv

e j—
(1+ 4645)3/2

one easily shows that in the low temperature limit,

me(x)dx=%. (61)
0

The other integral in Eq(59) can be written as

(k+y_
k

kJrlk 2x/p sin 2x/p

G(y)G(y'), (62
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where

eV

G(y)= (63

(1+4e™)¥2

The integral ovex can be evaluated using the formula

fwdxsm(ax)sm(bx) _ am or

a<b.
0 x2 2

(64)

This results in

o 1 o y y’
f K2(r)dr=—+128f dyf dy'——G(y)G(y").
0 2 —a -» ~ a7Kp
(65

PHYSICAL REVIEW E67, 046104 (2003

wave function is said to be multifractal. More formally, mul-
tifractality is defined through the inverse participation ratio,

L= (| Wn(r)[2PyocL~PolP~ 1), (68)

whereV , is the wave function with enerdy,, , the sum runs
over the volume, an®,<d is a set of exponents character-
izing the anomalougmultifractal) scaling of the moments of
the wave function. We remark that, although confined to
fractal subsets of the sample, wave functions of such systems
overlap strongly when their energies are close enddéh
Such strong overlap is responsible for the short-range level
repulsion observed at the Anderson transition. It is worth-
while to note that this anomalous scaling has, in principle, a
pure quantum mechanical origin. As the density of impurities

The asymptotic behavior of the number variance is thugncreases, the de Broglie wavelength of the particles be-

given by

N )
22(<N>)=—512<—>—f d.\/fy dy'y'G(y)G(y")
mrKkpJ —o —o

Ny (= eV
e [Ty Y
mrkpJ —= (1+4e%)?
2(N
= <_>In2
w7Kp
_(N)
—Elnz (66)

comes comparable with the mean free path and localization
effects start to be relevant. We stress that the classical dy-
namics of the Anderson transition does not provide us with
valuable information to describe quantum spectral correla-
tions. One may wonder to what extent such multifractal be-
havior may be observed in deterministic quantum chaotic
systems.

What has become known as the Bohigas-Giannoni-Schmit
conjecturg45] is that generically quantum spectra of classi-
cally chaotic systems are correlated according to the Wigner-
Dyson random matrix ensembles, whereas spectral correla-
tions of classically integrable systems are close to Poisson
statistics. In most cases, by modifying the parameters of the
system, a transition from integrable to chaotic dynamics can
be observed. If the Kolmogorov-Arnold-Masg¢AM ) theo-

To obtain the expression after the second equality sign Wesry js applicable, this transition is smooth and both inte-

have performed a partial integration using the identity

1d 1
SV g dy [T aen ©7

This result for the susceptibility differs from the result ob-

grable and chaotic regions coexist until the last KAM torus is
completely destroyed. Although spectral statistics of such
mixed systems have been described in terms of banded ran-
dom matrix model$46], they are believed to be nongeneric
and different from critical statistici47].

The situation is different in cases where the KAM theo-

tained from the thermodynamic properties of the CS gas. Weem does not apply. In those systems, the invariant KAM
conclude that the kernéb6) does not describe the correla- curves may not exist at all and small changes in the coupling

tions of the critical random matrix modél).

V. CRITICAL STATISTICS AND QUANTUM CHAQOS

constant can produce qualitative modifications in the classi-
cal phase space. The dynamics is, in general, intermediate
between chaotic and integrable. The lack of KAM tori per-
mits a particle to explore the full available classical phase

wave functions in the context of the Anderson transition andyhase space are also known as stochastic {8isIn cer-

show how it may be relevant in the study of deterministictain cases, the classical phase space becomes increasingly

guantum chaotic systems.

intricate, showing both self-similar and fractal properties

By now it has been well established that the appearance ¢#ig]. \we notice that such a structure is reminiscent of the
critical statistics at the Anderson transition is intimately ré-way that the KAM tori break up into “fractal” orbits of zero
lated with the multifractal properties of the wave functions gimension[49] (cantor) as the system becomes chaotic.
[9.36,37,43 We wish first to introduce intuitively the con- cjassically, cantori represent strong obstacles to phase space

cept of multifractal wave functiong4].

transport. Our aim is to study the effect, if any, of such self-

Let us consider the volume of the subset of a box forgimilar structure in the spectral correlations of the quantum

which the absolute value of the wave functighis larger
than a fixed numbeM. If this volume scales akd” (with
d* <d), thend* is called the fractal dimensiadt <d of W.
In case the fractal dimension depends on the valud,ahe

counterpart. Roughly speaking, the influence of cantori on
the quantum dynamics will depend on the relation between
the size of the cantori and Planck’s constant. For cantori
smaller than the Planck cell, quantum dynamics cannot re-
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0.4 - - a basis in which the Hamiltonian has a band structure, they
Poisson succeeded to obtain up to 5500 energy levels. In Fig. 2 we
show their result for the spectral rigidity of the spectrum
from level 2501 to 5500. As observed, the deviations from
the GOE are very well described by the critical random ma-
GOE trix model (1). Based on the analogy with disordered sys-
A(L) tems, we conjecture that the wavefunctions of this system are

02t 1 multifractal. We are not aware of numerical results that can
confirm or disprove this conjecture.

03

0.1 1 B. Kicked particle in a infinite potential well

--— h=016 Recently, in Ref.[55], another non-KAM system with

similar properties, a kicked particle in a infinite potential
well, was studied both quantum mechanically and classically.
The Hamiltonian is given by

(] 5 10 15 20
L

+ o0
FIG. 2. The spectral rigidityA ; [58] of the anisotropic Kepler p

problem obtained in Ref53] versus the prediction of our model for H= 2 +V(x) +keodx+ 1)n:2_x s(t=nT), (70
h=0.16 obtained from E(:30). Both curves are barely distinguish-
able. The numerical data are reprinted from Fig. 2 in [R&3].

solve the classical fine structure. In this case, cantori act a\ghereV(x) is an infinite well potential of lengthr, T is the

perfect barriers to the quantum motion resembling the effec'P_e”Od Of. the kick, and the strgngth. Con.cermng the clas-
of a classically integrable system and the spectral correlasc@l motion, the KAM theorem is not applicable because the
tions of the quantum counterpart are close to Poisson stati@otential is not smooth. Indeed, it was fouffsb] that the
tics. In the intermediate case the situation is less clear. R&/assical phase space resembles a stochastic web with a self-
cently, it has been reportd&0] that cantori drive spectral similar structure. This is in contrast to the standard kicked
correlations smoothly from Poisson to RME as the systeniotor where the classical phase space is a mixture of chaotic
approaches the ergodic regime. and integrable parts separated by KAM tori.

Below, we present numerical evidence that deviations The quantum mechanical properties of the model are
from GOE statistics caused by the self-similar structure ofjescribed by the evolution operator U
the classical phase space may be described by critical statis- -ip?T/4gk cosg+1)g-ip?T4 guar a periodT of the kick. The

tics at least while the deviations from GOE are small. quasienergies associated with this operator were obtained in

Ref. [55] by diagonalizingU in a basis of 1024 eigenstates

A. The anisotropic Kepler problem of the free Hamiltoniar{q|n)= y2/7sin(ng).

The anisotropic Kepler Hamiltonian Unlike the kicked rotor where the matrix evolution has an
exponential decay in a basis of plane waves, it can be shown
1 1 1 . ~ .
H= Ep§+ > ypI— = (69)  thatthe matrix elements &f are well described by a random
r

banded matrix with powerlike decalm|U|m+ n)|«<b?/n?

is an interesting example of a non-KAM system undergoing©’ P<<n and constant fob>n whereb~K=kT is the size

an abrupt chaotic integrable transition. It has been utilized a8 the band. _
a model of donor impurities in a semiconduci&1,52. In agreement with the results of Refi3], the nearest
Even for small departures from the integrable cage.l, neighbor dlstrlbut[on reported in RE{SS_] smoothly interpo-
the classical phase space is densely filled with remnants ¢fi€S between Poisson and GOEKass increased. Recently,
cantori[53]. Gutzwiller has shown that fop<8/9 the orbits an experimental realization of this model was studied in Ref.
in phase space can be uniquely represented in terms of syr{'r%]'
bolic dynamics. Such representation is a signature of hard
chaos. Indeed, foy<<1/2 there are no islands of stability in
phase space. Furthermore, the measure of the surface of sec-
tion based on the symbolic dynamics is multifractal with  In Figs. 3 and 4, we show the number variance andithe
respect to the usual Liouville measure. Since the periodistatistic(see Ref[57] for a discussion of this statisjiof the
orbits can be effectively enumerated, the energy levels of theequence of 1024 eigenvalues obtained in &3] for kT
guantum counterpart can be approximately evaluated by-50. The upper curve is the analytical result derived from
means of analytical techniqugs4]. the two-point correlation functiof23) with kernel (30). In

A numerical study of the spectral correlations of highly both cases the numerical result is plotted with its efsae
excited states of this system was carried out in [R&3]. In below).

C. Analysis of results
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10 T T T ‘ T T [ T T T 1.0
8 — 0.8
L) - Ba(L)
B8 — 0.6
4 — 0.4
21— 0.2
O | | | ‘ | | | | | | 00
0 20 L 40 60

FIG. 3. The number varian&?(L) of the quasienergy levels of FIG. 4. The spectral rigidityA;(L) obtained in Ref[55] for the
a kicked particle in an infinite potential well &=kT=50[55] is energy levels of a kicked particle in an infinite potential welKat
compared with the prediction of the critical GOB1) for h =kT=50 is accurately described by the critical kerii@0) at h
=0.2122(upper curve Fair agreement is observed up to ten eigen-=0.2122(upper curve The error in the numerical results is indi-
values. The downward tendency of the numerical result may be dueated by the thickness of the curve.
to finite size effects. The error in the numerical results is indicated

by the thickness of the curve. 1024 energy levels to compute theI ical ph th f the ob d deviati
number variance were taken from RES5]. classical phase space as the reason of the observed deviation

from the GOE. In order to prove the absence of such term we

For the A, statistic, they? is minimized on the interval it the numerical curveAg(L)num to As(L)g=a+bL
[0,30] for h=0.2122 with a valubof y2=0.32. The errors +c|p L. For instance, on an intervall5,29 a best fit is
in the definition ofx? have been calculated by splitting the Obtained for a=0.110+0.004, b=0.0156+0.0001, c
1024 eigenvalues into eight ensembles of 128 eigenvalues 0-002+0.002 with a value ofy*=0.015. We find that the
and evaluating the number variance for each ensemble sep#alue of the coefficient is compatible with zero. This sug-
rately (denoted byEiz(L),i =1,...,8). Theerror in the gests thatthe classical phase space is not a mixture of chaotic
number variance is thus given by and integrable regions.
In the case of the number variance, because of the size of
18 ) ) ) the error, no conclusive evidence on the absence of the loga-
o(L)= ﬁ 8 izl [27(L) = Zmead L)I7] rithmic term can be obtained from such fit. At large distances
the number variance seems to deviate from a linear behavior

12

1 8 by a quadratic term. Although such terms are typically
where S eafL)=7 >, SA(L). (71)  caused by finite size effects, we do not have a clear under-
=t standing of its origin. Since thA; statistic projects out a
quadratic dependence of the number variance, the linear be-

The error in theA; statistic is obtained from this error by havior persists to much larger distances in this dase Fig

means of a Monte Carlo simulation using the relation be
tween A5(L) and 22(L) [58]. As observed in Fig. 4, the . _ ,
error in Az(L) is much smaller than the error B?(L). Finally, let us confront the conjecturé23) with our
Next we ask the question whether the asymptotic behaviopresent numerical results. As we mentioned previously, it
of the spectral rigidity is linear without a logarithmic correc- May look reasonable to replace the ker(®€) by Eq.(56). It
tion, just as in the analytical case. If a logarithmic correctionc@n be shown that the spectral rigidity obtained from the

is absent, one can almost discard the possibility of a mixedernel(56) is almost indistinguishable from the one obtained
from Eq. (30) and therefore the agreement with the numeri-

cal result is expected to be equally good with one fitting
“Here and below we find values gf that are significantly less Parameter at our disposal. However, a more careful analysis
than 1. This is possible because the values\gfL) for different ~ ShOWs that the kerneb6) leads to a value of~ much higher
values ofL are correlated. Therefore, our values)&f have to be  than the one obtained from E(B0). For the interva[ 0,30],
used with care and cannot be interpreted in terms gf distribu-  using the kernel¢30) and (56), a best fit is obtained fo
tion. =0.2122 with a value ofyZem=0.32 and forh’=0.325
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with a value ofxéqn:2.27' respectively. limit. We have tested the validity of this conjecture by two
The above findings suggest that a self-similar classicalndependent methods: one based on the effective conformal

phase space dominated by cantori has a strong impact on tg¥mmetry of the CS model in the low temperature limit and
quantum spectral correlations. Critical statistics appears d8€ other based on the thermodynamical properties of a gas
the leading candidate to describe such correlations and, coRf particles governed by the CS Hamiltonian. We have found
sequently, enlarge the range of applicability of random mathat both the long distance low temperature behavior of the
trix ensembles. two-point correlation function obtained from the conformal
Fina”y, we list other quantum Systems between integrab|é:alculation and the Susceptlblhty of the CS model agree with
and chaotic whose quantum spectral correlations show &€ conjecture made by Kravtsov and Tsvelik.
similarity with critical statistics: quantum billiards with a ~ Based on the Kravtsov-Tsvelik conjecture we find that,
point scatteref59,60, the Kepler billiard[17,61,63, and although level repulsion is still present, the number variance
semiconductor billiard§63,64], the stadium billiard inside S @asymptotically linear with a slope less than 1 and no sub-
certain range of parametd@]_ For app"cations Concerning Iead|ng |OgarlthmIC term present. Th|S |nd|CateS tha.t our ran-

pseudointegrable billiards we refer to REE7]. dom matrix model describes critical statistics.
Finally, we have argued that critical statistics is relevant
VI. CONCLUSIONS to describe spectral correlations of chaotic quantum systems

for which the Poincarsection of the classical counterpart is
In this paper we have introduced a one parameter erglobally self-similar or fractal. Two examples with such clas-
semble of symmetric random matrices. This ensemble intersical phase space, a kicked particle in a potential well and the
polates between the Gaussian orthogonal ensemble and theisotropic Kepler problem, have been discussed in detail. In
Poisson ensemble and is capable of describing critical statioth cases, long range spectral correlators such as the num-
tics. ber variance and tha&; statistic are accurately described by
We have shown that, in an eigenvalue basis, the joinbur analytical results based on the Kravtsov-Tsvelik conjec-
eigenvalue distribution of our model coincides with the di-ture. Indeed, for the kicked particle, we have shown that the
agonal density matrix of the CS model at finite temperaturespectral rigidity is asymptotically linear with no subleading
where the additional parameter of the matrix model plays théogarithmic term present. This may be an indication that the
role of temperature. Remarkably, this equivalence can be exvave functions of this model show multifractal properties.
tended to all random matrix ensembles associated with the
Iarge_f_amiilies of symmetrit_: spaces according to the Cartan ACKNOWLEDGMENTS
classification, thus providing an important link between
strongly interacting quantum systems and random matrix We thank Denis Dalmazi, Shinsuke Nishigaki, and
theory. Vladimir Kravtsov for important suggestions and useful dis-
We have calculated the spectral correlation functiongussions. We are indebted to Baowen Li for providing nu-
based on a recent conjecture by Kravtsov and Tsvelik for thenerical data. This work was supported by the U.S. DOE
correlation functions of the CS model in the low temperatureGrant No. DE-FG-88ER40388.
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