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Surfaces of percolation systems in lattice problems
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The internal and external surface area of a percolation cluster along with a full surface area of whole
percolation system are investigated both analytically and numerically. Numerical simulation is performed by a
Monte Carlo method for site and bond problems on square and simple cubic lattices. It is shown that both the
external and full surface areas of a percolation cluster as well as the full surface area of the whole percolation
system have maxima for a certain share of occupied iteshe site problemor permeable bondgor a bond
problem. On the basis of a probabilistic approach, analytical expressions are obtained which relate the surface
area of percolation cluster to its density. The last value has been studied in more details at present that allows
to analyze the behavior of the above-mentioned surface for various lattices. Two particular technological
processes are discussed where the surface area of a percolation cluster plays an important part: generation of
electric current in a fuel cell and self-propagating high-temperature synthesis in heterogeneous condensed
systems.
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[. INTRODUCTION electrodé per unit volume. Here it is necessary to take into
account the following circumstance: the electric circuit must
For a large number of physical and chemical processes, lpe closed on ionic component of the current. It means that
surface area of participating components plays an importarifside the electrode there should exist a connected system of
role. Its magnitude is essential in heat and mass exchangdectrolyte-filled pores, i.e., the percolation cluster. It is this
processes, many chemical reactions, etc. The components @pster which plays a key role in the current generation. If the
phases involved in such processes can have either deternglectrolyte droplets insulated on all sidéke finite clusters
nate or random structure. This work is dedicated to the conare present in the electrode, they will not contribute to the
sideration of the latter case. The percolation thedry] is  total current generation by the fuel cell because therein the
one of the models g|v|ng an adequate description of geomepurrent on ionic component will be open circuit. In this situ-
ric properties of disordered systems. The main feature oftion all the “useful” electrochemical reactions will proceed
such systems is related to a possibility of a geometric phas@ost intensively near the above-mentioned three-phase bor-
transition, i.e., the formation of an infinitpercolation clus- ~ der. It means that the electrochemical reactiVity., the gen-
ter (further PQ. Below we consider two examp|es of Systemserated currentwill be proportional to the mentioned inter-
in which the surface area of the PC p|ays an essential ro|eface area. In its turn, the useful three-phase interface area
The first example of such systems is a fuel cell whosewill be proportional to theexternalsurface area of the PC
important part is a porous electrodig]. One of the main
problems in the theory of porous electrodes consists of the
determination of conditions when all the participants of an
electrochemical procesfreactants, ions, electric current
(electrong, catalyst will be brought together on an internal
surface of the electrode, and the useful and waste products of
the reactions be removed. At the same time, it is important
that the electrochemical process be extended on a macro-
scopic distance as compared with a microscopic characteris-
tic size of the porous medium. However, a restriction exists
which is connected with slow fuéfag transport to the elec-
trode surface through an electrolyte. This restriction is re-
lated to the diffusion mechanism of the transport of gas mol-
ecules in a liquid. At the same time, it is well known that in
an individual pore the most of electric current is generated in
the area of meniscus where the electrolyte film is already
sufficiently thin for gas diffusion but its electric resistance is
still small (Fig. 1). Therefore, in order to get large current it
is desirable to have a large number of such menigthes
so-called “three-phase” borders: gagdrogen-electrolyte- FIG. 1. To the problem of electricity generation in a fuel cell on
the “three-phase” boundary: hydrogen-electrolyte-electrode. 1, a
film of electrolyte; 2, electrode; 3, meniscus of the liquid; 4, elec-
*Email address: gps@hmti.ac.by trolyte.
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which constitutes the contact surface of two percolation cluseonnected to a volumetric fraction of these particles with the
ters composed of liquid-filled and gas-filled pores. The firsthelp of Scher-Zallen constructidd 2].
cluster provides circuit closing on the ionic component of Then the problem of optimization of SHS in heteroge-
current and the second cluster allows a continuous supply afeous condensed systems is formulated as follows: it is nec-
the gaseous component to the reaction domain. Thus, onlgssary to find a concentration of initial components in a mix-
the external surface of PC will participate in a continuousture for which the corresponding interfacial area and,
process of current generation. So, if there is a gas “bubble’accordingly, the degree of conversion will be maximal. It is
inside a PC then the surface of such a bubble, which is aimportant to note that when we consider an external surface
internal surface of the PC in this case, ceases to take part of a PC, its extremum for one of the PC’s can be reached
the current generation after a certain time because the gaenly in the range of the particle concentrations, where a PC
eous component needed for electrochemical reactions is nof particles of the other sort can exist. The stipulated condi-
delivered to that domain. Thus, in the given case the follow+ion is satisfied ifp,<p,<1—p., wherep,, is the point in
ing optimization problem appeatrs: it is necessary to find suclvhich the surface area of PC is maximpy,is a percolation
degree of saturation of a porous electrode by the electrolytthreshold. From this inequality, a condition for the percola-
when the external surface area of the percolation cluster i8on threshold on a modeling lattice is deriver}<0.5. In a
maximal. It is pertinent to note that the problem of the liquid two-dimensional case this condition is met only for a trian-
distribution inside a porous body can be reduced to the bondular lattice(in the site problemand for a square latticén
problem of the percolation theofy,5]. the bond problemand only in one point, viz., in the perco-
As the second example, let us consider self-propagatination threshold p.=0.5[13]). In a three-dimensional case
high-temperature synthesiSHS in a heterogeneous con- this condition is satisfied for all regular lattices.
densed systenfa mixture of powders which is one of the We should outline some circumstances which indirectly
most efficient cost-effective methods for producing inorganicconfirm an important role of the interfacial area in SHS. As
compounds, in particular, intermetallid§]. Recently, in is noted in a number of experimental works4—16, in
studying the combustion in heterogeneous systems a numberany heterogeneous condensed systems full conversion of
of phenomena has been observed which can be explainemponents in SHS processes does not occur. One of a rea-
only taking into account the random structure of such syssons for this is the statistical inhomogeneity of such mix-
tems [7—-10. Therefore, we shall discuss the influence oftures. So, even for very good intermixing of initial compo-
geometric randomness on the combustion processes in hetents taken in a stoichiometric ratio, not each of the particles
erogeneous systems. will have in its neighborhood a particle of another kind. It is
In combustion reactiongexcept exothermal decomposi- impossible to obtain a system in which particles of different
tion of certain compoundstypically a fuel and an oxidizer kinds will be located, for example, in the chess order. Pow-
participate which must be premixed on the molecular level tader particles of one kind in mixtures with other particles
provide the conditions for the reaction to proceed. If the fuelalways exhibit a tendency to clusterization. Therefore, after
and oxidizer are in a gaseous state, then in many cases itiistermixing some of them will not have the particles of other
possible to premix them before the reaction begins. If th&kind among the nearest neighbors, i.e., the interfacial area
components are in condensed state, then such premixing (e contact surface areaf the reactants will be consider-
practically impossible. In this case, during interaction theably less than the theoretically possible one for the case of
contact interface of the reactants become important. In mixregular(ches$ packing. The deficient content of one compo-
tures composed of nonmelting particlédsr example, Ta-C nent in the reaction zone results in the retardation of the
and some intermetallic systerfiEl]) the interaction between reaction with the increase of the conversion degree and fi-
the reactants proceeds via solid-phase diffusion. Therefor@ally only in a partial conversion of initial components into
in such systems for proceeding of the reaction in an arbitrarghe product in SHS processgk7]. We will give special at-
particle of one component a mechanical contact of the lattetention to one more experimental fact. As is known, SHS can
with at least one particle of the second component is needetde performed only in a certain concentration rafigg18|. If
For propagation of the reaction on the macroscopic distancihe concentration of one component is lower than a certain
(as compared to the size of an individual parfickhe exis- threshold then it is not possible at all to initiate SHS. On one
tence of two PC’s formed by the particles of both the firsthand, this is stipulated by diminution of the reaction exother-
and the second kind is necessary. In this case, the conversiamicity with decreasing the content of one of the reactant. But
of components is maximal when the contact surface area asn the other hand, this effect can also be attributed to the
two clusters is maximal. We will point out that this surface diminution of the contact surface area between the reactants,
by definition coincides with the external surface of a perco-which becomes critical for small concentrations of one of
lation cluster. them[14]. Moreover, a possible reason for this effect can be
For a monodisperse mixture of powders, geometric ranthe absence of the PC formed by the particles of the deficient
domness can be modeled by a classical site problem of theomponent, which may be necessary for the reaction propa-
percolation theory. At that, a mixture of powdeéksandB is  gation over the whole system.
associated with a spatial lattice, each site of which is occu- It should be noted that a somewhat similar problem refer-
pied either by particle of sorA with probability p or by  ring to powder sintering was considered in Rgf9] using
particle of sortB with probability (1—p). Herep is a nu-  the percolation theory methods. However, there is a principal
merical fraction of particle®\ in the mixture which can be difference between the sintering of powders and the process
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of self-propagating high-temperature synthesis. The sinteringhare of sites belonging to it is equalRa(p). This value is
process is isothermal, i.e., the powder mixture is heated bglso the probability that an arbitrary site belongs to the PC.
an external source and is for during several hours at a con- Let us consider a complex of conditions at the fulfillment
stant high temperature. Unlike this process, during SHS aof which an arbitrary site of the lattice can belong to thk
exothermic chemical reactiaffior example, Ni- Al — NiAl) perimeterof the PC. Firstly, the considered site should be
is initiated at one of the borders of a system. The heat reanoccupied probability (1—p)] and, secondly, among its
leased due to the reaction in ignited particles initiates theneighbors at least one site should belong to PC. Let us speak
reaction in their neighborhood, thus making possible selfthat on arbitrary site an evefit; occurs ifany jfrom z sites
propagation of the reaction wave over the system. in the neighborhood of the considered site belong to PC
Thus, the purpose of this work is the investigation of in- (probability [ P..(p)]'z!/[j!(z—j)!], wherez!/[j!(z—)!]
terfacial areas in two-component heterogeneous systems @ a number of combinations ¢fsites chosen fronz), and
the basis of percolation models. The surface of a percolatio(z—j) of remaining sites are either unoccupied or belong to
cluster and finite clusters was studied in a number of worksiny finite cluster(probability[1—P,(p)]*"’). We can also
[20—24 both numerically and analytically. A comprehensive multiply the probability of elementary events related to an
review of this problem is given in Sec. 6.4 of REf]. How- individual site due to the above mentioned suggestion about
ever, a distinctive feature of most works is a study of suchabsolute randomness of their distribution over the lattice.
surfaces in the neighborhood of percolation threshold. In ouThen probability of the occurrence of evedt is determined
work, the surface of a percolation cluster will be consideredy the following expression:
over a wide range qgb, from p. up to 1, and our results in the

neighborhood of percolation threshold will be compared with B z! irq -
the results of other authors. Q)= i"(z—)! P=(P)I[1=P(p)]" . @
Il. ANALYTICAL INVESTIGATION OF THE SURFACE The site belongs to the perimeter of a R@entA) if (i) it is
OF A PERCOLATION CLUSTER not occupied andii) any of events; for j from 1 up toz
A. Site problem occurs on it. As event$); are pairwise incompatible then

conditional probabilityP(A/€);)=1. Using the formula of

_ Letus consider a spatial lattice and assume that a certaja| probability and taking into account the obtained rela-
liquid can flow from one site to the other along the pipesiions we can write the following expression:
which are hereinafter named bonds. Defining stochastic ele-

ments of this system in different ways we obtain a site prob- ,

lem or a bond problem of the percolation theory. So, in the

site problem for spreading of a liquid over the lattice all Sm(p)=(1—p)l§=:1 P(Q))P(A/Q))
bonds are permeable for the liquid, and the sites are either

closed or open for the liquid with a definite probability. In z z! , N
the bond problem, all the sites are permeable for the liquid =(1—p)_21 WPM(D)JU— P.(p)]*™!
but a certain part of bonds is considered broken. In these = '

problems it is supposed that elements with different proper- =(1-p{(1-[1-P.(p)]*} 2

ties (occupied or unoccupied sites, permeable or imperme-

able bonds are distributedabsolutely chaoticallyover the ) . . L

lattice and, therefore, a probability that an arbitrary elemenfor the perimeter of EC per Iat_tlce site. .It Is significant that
has a definite property, is equal to a share of such elements € oPtained expression is valid for arbitrary natuzalhe
the lattice anddoes not dependn the properties of neigh- application of the probabilistic approach in this case is justi-

boring elements. From the supposition about the randomnedi€d by the fact that the number of lattice sites over which
of distribution it follows that each sitébond in the lattice is ~ 2veraging of the parameters is performed is macroscopically

occupied with an equal probabilityand is unoccupied with  1279€- _ o

probability (1—p). Herep is a share of occupied sitéger- It should be noted' that in Retl] it is shown that the

meable bondsin the lattice. p_erlmetertS of a largefinite cluster is defined by the expres-
As a measure of the surface area of any cluster of a peﬁ'On

colation system, two parameters are traditionally used perim-

eter or energy27]. So, for the site problem the perimeter of —

a cluster is a number of unoccupied sites of the lattice which tS:Ter AS, ()]

do not belong to the cluster but are separated from its sites

by only one bond. The energy is determined as a number of

adjacent sitegnumber of pairs one of which is occupied wheresis a number of sites in a cluster aAds a parameter

(belongs to a clusterand the other is unoccupied. which is independent of. Here >0, andA vanishes ap
Let us show that the surface area of the PC has extremat p... In Refs.[20,21] this perimeter was investigated near a

behavior in the site problem. We consider a regularpercolation threshold ford=2 using the Monte-Carlo

d-dimensional lattice with coordination numberand the method. In agreement with theoretical predictions the rela-

share of occupied sitgs Let a PC appears on the lattice and tion ts~s(1—p.)/p. was obtained.
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From Eg.(2) obtained in the present work it follows that function in these intervals. Thus, for a perimegenergy of
close to a percolation thresholg-Gp.), where the magni- PC, the conditions of the Rolls theorem are fulfilled: it is
tude ofP..(p) is small, the PC perimeter is determined by ancontinuous in[p.,1], differentiable in f.,1), andS..(p.)
expression =S,.(1). Therefore, there is a certain point in the given in-

terval in which the derivative of functio8..(p) will vanish.
S.(p)=z(1—p)P..(p). (4)  This point is a point of a maximum owing to the fact that the
given function is non-negative.
As can be seen, the expressions for the perimeter of a large The formulas for a perimeter and energy of the whole
finite cluster(3) and for the PC perimetef4) close to a system can be obtained in an analogous manner. For this
percolation threshold have a similar form, but at the samgurpose, in the derivation of Eq&) and (5) it is necessary
time some difference between them exists. It consists in nono replaceP..(p) with p, i.e., to require that at occurrence of
coincidence of one of the factors in these expressions (1/eventQ the appropriate sites can belong to both PC and any
for finite clusters and for percolation cluster An approxi- finite cluster Then, we have
mate expression for the percolation threshpldversus the

space dimensiod and the coordination number of lattize Sioi(P)=(1—p)[1-(1—p)Z], (6)
was obtained in Ref[28]. For the site problem it is the
following: p.=po[(d—1)(z—1)]"% and for d=2 a Eioi(p)=2(1—p)p. (7)

=0.3601 andp,=0.8889, but for 3=d=<6 a=0.6160 and
pPo=1.2868. As can be seen, the magnitudgs dndz are  From Eqgs.(6) and (7) it follows that the full perimeter and
not equal to one another in the neighborhood of a percolatioenergy also have an extremum. In this case, a maximum of
threshold, and accordingly, the surfaces of large finite clusthe full energy foranyonethe lattice is reached in poin,
ters and PC behave differently. The reason for the difference= 0.5. At the same time, the maximum of a full perimeter is
between expressions for the perimeter of a large finite clustereached in the poinp,=1—[1/(z+1)]*%, i.e., it depends
[Eq. (3)] and the PC perimetéEq. (4)] lies in following: our  on the lattice type(for z=3—p,,=0.37,4-0.33,6—0.28).
result[Egs.(2) and(4)] was obtained for a percolation clus- The results of our numerical simulation have confirmed this
ter in the limit of an infinitely large system, while expression conclusion.
(3) was obtained for dinite cluster of a large size, which is Within the framework of the proposed approach it is also
generally not equivalent to the percolation cluster. In particupossible to obtain formulas for the external perimeter and
lar, Eq. (3) was obtained with the use of expressiamg energy of PC. An arbitrary site belongs to the external pe-
=gP5(1—p)! andngxexp(—Cs)(ns=3ns) for an average rimeter of PC if(i) it belongs to the PC of unoccupied sites
number ofs clusters having perimeter sites each. It is ques- [with probability P_(p), where P.(p)=P.(1—p) is the
tionable whether expressions for the percolation cluster cadensity of PC at the share of occupied sites equal to (1
be used. —p)] and (ii) any of the above definited everfs; has oc-
For the energy of PGE..(p), a relationship similar to Eq. curred on it. Then, using an analogy with E(c?.) for an
(2) can be obtained. A difference from the case when thexternal penmetes(e’“)(p) and external energi ex‘(p) of
perimeter was considered is the following: when ev@nt PC, we obtain the following expressions:
occurs, then the energy in the given site is equgl While
the contribution of any everf?; to the perimeter is equal to

1, SV (p)=P, <p>2 P.(p)[1—P.(p)]*

Then for PC energy in the site problem, we have J|(Z Dt
y =PL(P{(1-[1-P.(p)]*, ®
E.(p)=(1- p)E I5iz=gy1 P=(PY 1= Pa(p)]* E©9(p)=2PL(p)P.(p). )
=2(1=p)P..(p). ) In the limit p—1, we haveP.(p)=0. Therefore, from Egs.

. (8) and(9) it follows that in this limit the PC has only inter-
We ;hould_note that the_ full energy of a percolation cluster hal surface. Equation@) and(5) in the considered limit pass
was investigated numerically both fdr=2 [29,3( and for into Eqs. (6) and (7), correspondingly, owing to relation
d=3 [31] with the result(E)xs. As can be seen, the ob- p () |t means that for a large share of occupied sites
tained relationshifi5) agrees perfectly with this result. the surface of the whole percolation systems and the PC

In the limit of an infinitely large system the density of PC g, ta0e aimost coincide. These conclusions also perfectly
tends to zero ap—pc+0. Therefore, in the percolation 4ree with the results of our numerical experiment.
threshold the surface aréperimeter, energyof PC will be

equal to zero. Fop=1 all sites of the lattice belong to the
PC, therefore the PC surface area in this point is also equal to
zero. Since the density of PC is a continuous function in the For this problem, we investigate only the PC perimeter.
interval [ p¢,1] and differentiable in the intervalpg,1], then  Let us note that in this case, an impermeable bond which
from Egs.(2) and(5) it follows that the surface arggerim-  connects two sites belonging to the same cluster is counted
eter, energy of PC is also a continuous and differentiable twice in the perimeter of this clustéd].

B. Bond problem
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Let us consider a regular lattice of bonds with coordina- ' ' ' ' ' '

belongs to the PC. Let us note that in the bond problem alks 5L
the bonds adherent to the given site and not belonging to thiv
PC are impermeable by definition. Let us speak that e&nt
occurs on an arbitrary site {f) any j of zthe bonds adherent -
to the given site are impermeabléprobability [(1
-p)1'2Y/[j'(z—j)'], wherez!/[j!(z—])!] is the number of
combinations of bonds chosen from), and(ii) (z—j) of
remaining bonds belong to P@robability [ P (p)]%7). 03f o
The bond belongs to the PC perimeteventB) if (i) it is

impermeable andii) any of eventd); for j from 1 toz—1
has occurred on a site to which the given bond adjoins. The

contribution of event}; to the perimeter of the percolation L

cluster on the considered site is equaljtd@aking into ac-

count that in the lattice cqmposed Nfbonds there |s_I2I/z rgy” (pe) and perimeteXps) Vs the sizel of averaging area for

sites, for average full perimeter of PC per one lattice bond . gite problem on a square lattice 50801 (p,~0.593, log-log

we have scald. & and &, are the correlation lengths for corresponding
shares of occupied sites.

tion numberz, the share of permeable bonds beingln ook zp"zi'_(g(;lpaf_o(')o&_"0'04;
qrder to avoid c_ounting the same impe_rmeable bond many i <g:>;o_0:01: ®.0.04 .
times in calculating the PC perimeter, it is necessary to con- i L erer A
sider an arbitrary site of the lattice and find probabilities of I . :
elementary events for this site similarly to the case of the site 07r S N
problem. A bond adjacent to an arbitrary site of a lattice I T |
belongs to the full perimeter of PC {f) it is impermeable, i J,
and (ii) at least one of the bonds adherent to the same sittd ¢ i |

I

I

I

FIG. 2. Average density of a percolation clus{er), its “en-

12
(b) — (b)
STP=g 2 Jl(z i TP (P (1—p) whereP.®(p)=P®(1—p). In the limit p— 1, the surfaces
) behave in the same manner as in the site problemi{Ezy.
=2(1-p{[1-p+PP(p I 1= (1-p)* 1} vanishes and Eq10) passes into Eqd1).

(10
IIl. NUMERICAL EXPERIMENT

Here P{")(p) is a connectivity function, or a share of bonds As is K H ation dl s a fractal obi
belonging to PC4] s is known, the percolation cluster is a fractal object on

elengths smaller than the correlation lengt1,32]. At nu-
merical simulation this fact can play an essential role. In
CFlassmal work{33] for the site problem on a square lattice
6he density of PC was investigatedL), i.e., ratio of the
number of sites of the PC located in a rectangular area of a
'size L to the total number of sites in the given area. It was
shown thatp(L) strongly depends on a relation between
andé. If L<¢, then the number of sites belonging to the PC
Stol(p)=2(1=p)(1=[1-p]*™") (1D grows asL® (D is the fractal dimension of PCand the
surface aregvolume grows, naturally, at? (d is the topo-
Let us note that in Ref4] an expression for the total perim- logical dimensionality of spagelnasmuch a®<d, in the
eter of a percolation system for the bond problem was obgiven area the density of PC decreases with incredsi@n
tained which coincides with relationshig1). lengths larger than the correlation length PC behaves itself as
An expression for the external perimeter of PC can bes homogeneous object, and its density in this area is con-
obtained in the same manner as [&). was derived for the  stant. It is important that this value of density corresponds to
site problem. It should be remembered that if an impermean infinitely large system. And, finally, if a distance from the
able bond belonging to a PC of impermeable bonds adjoins Boundaries of the considered area to the edge of the lattice is
certain site then by definition all other impermeable bond%emw the correlation |ength thep(L) begins decreasing
contiguous to this site belong to the given PC. Then for theith increasingL. In more detail it is described in R3]

The existence of a maximum of the PC perimeter in th
interval (p¢,1) is proved in a way similar to the site problem.
The total perimeter of the percolation system calculate
per one bond, which includes both the perimeter of PC an
that of all finite clusters, can be found for the bond problem,
as well as for the site problem, by replaciR{’ (p) for p:

external perimeter of the PC, we have In the numerical experiment, we used a similar method
for investigating the PC surface. It turns out that in the most
SPex)(py=2P® () {[P.P(p)+ PP (p)]> 1 interesting regior> &, the perimeter and energy of PC do
. (b) I not depend o as well(Fig. 2). The position of this plateau
—[P7(P) ", (12) was assumed to be a value of a corresponding measure of the
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surface area in the experiment. A distinction was observed 1
only for the regionL<¢, wherein the density of the perim-
eter and energy were increasing with raislngiWe suppose
that in this case a superposition of several effects takes place
At first, the fractality of the PC exerts influence on the den-
sities of the surface measures. Secondly, an unoccupied site L
which inside the “old” region did not belong to the PC sur-
face, in a “new” enlarged area can have a neighbor belong-
ing to the PC. For small this effect can give a noticeable
contribution to the growth of the density of the perimeter and 2
energy of PC. We should note that the mentioned augmentag\ﬂ—
tion of the density should not be identified with any cluster
and its fractal dimension since all unoccupied sites inside a L
hypercube with sidé do not necessarily belong to the same
cluster composed of unoccupied sites. 02F
For calculating the surface measuig@erimeter and en-
ergy) for a PC we have chosen the following way. The lattice T N
of a reasonably large size (58501 for two-dimensional
problems and 15% 151X 151 for a three-dimensional case 0 02 0.4 0.6 08 1
was filled at a given sharp of occupied sitegpermeable
bonds with the help of a standard procedy@4]. For each p
site (bon_o) gf the !att!ce a pseudorandom numb@rum-. FIG. 3. The perimeteB(p) and energyE(p) of a percolation
formly distributed in mterval[O,l] was genera’ged. If this cluster vs a share of occupied sitpsfor the site problem on a
number{=p, the corresponding site was considered as 0Cgqyare lattice 502501: ¢ —full perimeter of the percolation clus-

cupied and in the opposite case it was treated as unoccupieg; @ —perimeter of the whole systers—full energy of the per-
Then a percolation cluster connecting the left and right borgojation cluster+—energy of the whole system.

ders of the lattice was sought and labeled if found. For de-
termining an external surface of the PC composed of occu- . . . .
pied sites, a PC of unoccupied sites was also sought a [j9 to note that in a three—dlmens[onal case thg internal sur-
labeled if the latter existed. Further on, in corresponding ariace area of PC also has a maximum which is reached in
eas of the lattice a number of unoccupied sites neighborin§°Nt 1—Pc. L .

to the sites belonging to the PC was counted. For improvin To check the accuracy of nu_merlcal simulation, we have
the accuracy of numerical simulation we to took into accoun%""lcmated the fractal dimension of a PC for the two-
only those lattices, for which a share of occupied sites dif-
fered from the given value qf by less than 0.0001. For each

p value, in each of the four problems investigated here we
accumulated (5—10) 10° histories that allowed us to obtain
the accuracy of up to 0.001. The total central processing unit
time on a dual-processor Pentium Il computer with 800
MHz processors was about 2000 h.

0.6

P), S(p)

04

IV. RESULTS AND DISCUSSION 04

The site problem was investigated numerically on square’s,
(z=4) and simple cubicA=6) lattices. The results of simu- “
lation are presented in Figs. 3 and 4, and Table I. In compli-
ance with predictions made in Sec. Il, both the surface aree @@
of PC and the total surface area of the system have an extre
mum for a certain share of occupied sites. At that, the posi-
tion of a maximum and it an absolute magnitude essentially
depend on the choice of a measure of the surface (@ea
rimeter or energy(Table ). Since for the site problem on a 0
square lattice the percolation thresholdpis=0.592 746 21
>0.5[35], then the full surface of PC in this case is internal
(Fig. 3). For a simple cubic lattice, the percolation threshold
is p.=0.311 608 6<0.5[36,37, therefore in this case the PC  F|G. 4. The perimete8(p) of the percolation cluster vs a share
has both internal and external surfa¢egy. 4). In the region  of occupied sitep for the site problem on a simple cubic lattice
where the maximum of the external surface area of PC i351x 151x 151: A—external perimeter of PG —internal perim-
reached, the internal surface area is negligible. It is intereskter of PC,@ —perimeter of the whole system.
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TABLE I. The full S, and externaB{®*? perimeter and energye(, ,E{**%) of PC for thesite problem
points of maximump,, and the magnitudes in these points.

Square latticed=2) Simple cubic lattice = 3)
Pm Magnitude Pm Magnitude
S, 0.625+0.001 0.339%0.0001 0.406:0.001 0.538:0.001
Slexy 0.402+0.001 0.535-0.001
E.. 0.660+0.001 0.8190.003 0.538:0.001 1.42-0.01
glexd 0.501+0.001 1.35:0.01

dimensional problem. We have used the angle of inclinatiorfor two- and three-dimensional systems having the size of
of the density curve for the PC in the casel¢. The value 101X 101 and 5X 51X 51, correspondingly, was performed.
D=1.889+0.004 was obtained, which is in agreement with For each point, (10-2®) 10° histories were treated. A gen-
the exact resulD=2=1.898 ... [32]. eral tendency in behaviors of surface areas was observed: far
The bond problem was investigated both on square anttom the percolation threshold all measures of a percolation
simple cubic lattices. The results of simulation are presentedluster surface did not chan@eithin the limits of an experi-
in Figs. 5 and 6, and Table Il. The qualitative behavior ofmental error as compared with systems of a larger size. At
surfaces in this case is the same as in the site problem. the same time, in the neighborhood of a percolation thresh-
difference appears only in particular numerical values. old the considered measures of the surface decreased by 0.5
Verification of the equations obtained in this work wasto 4% for two-dimensional systems and by 0.5 to 2% for
performed for all of the four problems. For this purpose, thethree-dimensional systems. It means that the above-
density of PC was calculated numerically for sgts} and  mentioned divergence between the direct numerical simula-
{1-p;} and after that the numerical data were substitutedion and the calculations based on equations obtained in this
into corresponding equations. A discrepancy between thugork may be only partially related to the scaling effects. The
calculated perimeterg¢energies and the same values ob- second reason of the considered divergence is that in the
tained immediately in numerical experiments was less thameighborhood of the percolation threshold, a plateau whose
10%. Figure 6 presents the comparison of the perimetergosition is used for determining the surface meas(Fis 2)
obtained by these two methods on a simple cubic lattice fobecomes more diffuse and indistinct thus adding inaccuracy
the bond problem. As can be seen from this figure, a maxito the experimental results. We can expect that this diver-
mal discrepancy occurs close to the percolation threshold

where the scaling effects reveal themselves most signifi- 12 |
cantly. s !
To elucidate the role of scaling effects, similar simulation :
1 - I
\ I
5 ' i
: |
0.80 ' i
t . .
- ; c !
: %]
0.60
—_~ L 8
]
v
040
020} 0 020 040 060 080 1
)\ p
s ,
0 , , , . : . . . , FIG. 6. The perimeteB(p) of PC vs a share of permeable bonds
0 0.20 0.40 0.60 0.80 1 p for the bond problem on a simple cubic lattice ¥6151x 151

according to the numerical experimemt:—external perimeter of

PC, & —internal perimeter of PO®—perimeter of the whole sys-
FIG. 5. The perimete®(p) of PC vs a share of permeable bonds tem. Dashed lines are the same parameters calculated bylEgs.

p for the bond problem on a square lattice 5(B01: A—full pe- (12) using the results of numerical simulation for the PC density

rimeter of PC,@—perimeter of the whole system. P®(p).
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TABLE II. The full S and externaf™**? perimeter of PC for the infinite cluster. Only now the correlations are more hid-
bond problempoints of maximunp,, and the magnitude of perim- den than in the above simpler example.
eter in these points.

V. CONCLUSION

Square lattice=2) Simple cubic lattice d=3)

0. Magnitude o Magnitude Thus, theoretical and numerical investigation of the sur-

face areas of percolation systems has been performed, which
s 0.558+0.001 0.7370.001 0.382:0.001 1.056:0.002 has revealed an interesting phenomenon: an extremal behav-
gfb.exy 0.382+0.001 1.05@-0.002 ior of the external and full surface areas of the percolation
cluster. Similar behavior was observed also for the full sur-
face area of the percolation system. The results of research
allow us to make a conclusion that the developed analytical

We will note that one more possible cause of theory andapproach is valid for the description of various surfaces in
numerical simulations divergence arises owing to ignoring of€rcolation systems. The obtained analytical relationships

small correlations in the occupation status of neighboring?@" lso be used for describing corresponding surface areas
parts of the infinite cluster. If we look at all clusters then of percolation systems on lattices different from those inves-

results like Eq.(6) or Eq. (11) are exact since each site is tigated in the give.n work. For this.purpose, is only necessary
independent of the other sites. If however, we require that thi® know the dens[ty of a percolation cluster as a funqﬂon of
sites are part of the infinite cluster then this requiremen share of occupied S”@.efmea!b'e bo_ndson the lattice.
causes some correlations, which make results like (g, | n€ latter value has been investigated in much dg5a8 —
valid only approximately. These correlations can be more42]' . . :
easily understood if we look at the probability that a site of Two examples of particular systems were con5|d_ered, viz.,
the infinite cluster is surrounded ljyother sites of the infi- a fuel cell and a hgterogeneous condens_ed s_y(aaermxture
nite cluster. An approach similar to expressit) is not of powders, whergm th? effect.revealed in this wor!< can be
¢ used for the optimization of important technological pro-

exact in this case singe=0 is impossible. The requiremen - i ¢ electri t and self i
that the central site belongs to the infinite cluster puts to zer esses. generation of electric current and sefi-propagating

the probability that it has no neighbors from that infinite |gh-temperature synthe3|s of refractory compounds or com-
cluster. The other probabilities, fgr=1 to z, are then also posites, correspondingly.

modified since their sum must be equal unity. If we consider
now the probability that an empty site is surroundedjby
sites from the infinite cluster then again the occupation prob- This work was supported in part by the Belarusian Repub-
abilities of thez neighbors are no longer statistically inde- lican Fund for Fundamental ResearcBrant Nos. T00-171
pendent of each other since it is required that they belong tand T02P-03)L

gence will decrease with increasing the system size.
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