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Surfaces of percolation systems in lattice problems

P. S. Grinchuk* and O. S. Rabinovich
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 Petrus Brovka Street, Minsk 220072

~Received 1 November 2002; published 8 April 2003!

The internal and external surface area of a percolation cluster along with a full surface area of whole
percolation system are investigated both analytically and numerically. Numerical simulation is performed by a
Monte Carlo method for site and bond problems on square and simple cubic lattices. It is shown that both the
external and full surface areas of a percolation cluster as well as the full surface area of the whole percolation
system have maxima for a certain share of occupied sites~for the site problem! or permeable bonds~for a bond
problem!. On the basis of a probabilistic approach, analytical expressions are obtained which relate the surface
area of percolation cluster to its density. The last value has been studied in more details at present that allows
to analyze the behavior of the above-mentioned surface for various lattices. Two particular technological
processes are discussed where the surface area of a percolation cluster plays an important part: generation of
electric current in a fuel cell and self-propagating high-temperature synthesis in heterogeneous condensed
systems.
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I. INTRODUCTION

For a large number of physical and chemical processe
surface area of participating components plays an impor
role. Its magnitude is essential in heat and mass excha
processes, many chemical reactions, etc. The componen
phases involved in such processes can have either dete
nate or random structure. This work is dedicated to the c
sideration of the latter case. The percolation theory@1,2# is
one of the models giving an adequate description of geom
ric properties of disordered systems. The main feature
such systems is related to a possibility of a geometric ph
transition, i.e., the formation of an infinite~percolation! clus-
ter ~further PC!. Below we consider two examples of system
in which the surface area of the PC plays an essential ro

The first example of such systems is a fuel cell who
important part is a porous electrode@3#. One of the main
problems in the theory of porous electrodes consists of
determination of conditions when all the participants of
electrochemical process@reactants, ions, electric curren
~electrons!, catalyst# will be brought together on an interna
surface of the electrode, and the useful and waste produc
the reactions be removed. At the same time, it is import
that the electrochemical process be extended on a ma
scopic distance as compared with a microscopic charact
tic size of the porous medium. However, a restriction ex
which is connected with slow fuel~gas! transport to the elec
trode surface through an electrolyte. This restriction is
lated to the diffusion mechanism of the transport of gas m
ecules in a liquid. At the same time, it is well known that
an individual pore the most of electric current is generated
the area of meniscus where the electrolyte film is alre
sufficiently thin for gas diffusion but its electric resistance
still small ~Fig. 1!. Therefore, in order to get large current
is desirable to have a large number of such meniscus@the
so-called ‘‘three-phase’’ borders: gas~hydrogen!-electrolyte-
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electrode# per unit volume. Here it is necessary to take in
account the following circumstance: the electric circuit mu
be closed on ionic component of the current. It means t
inside the electrode there should exist a connected syste
electrolyte-filled pores, i.e., the percolation cluster. It is th
cluster which plays a key role in the current generation. If
electrolyte droplets insulated on all sides~the finite clusters!
are present in the electrode, they will not contribute to
total current generation by the fuel cell because therein
current on ionic component will be open circuit. In this sit
ation all the ‘‘useful’’ electrochemical reactions will procee
most intensively near the above-mentioned three-phase
der. It means that the electrochemical reactivity~i.e., the gen-
erated current! will be proportional to the mentioned inter
face area. In its turn, the useful three-phase interface
will be proportional to theexternalsurface area of the PC

FIG. 1. To the problem of electricity generation in a fuel cell o
the ‘‘three-phase’’ boundary: hydrogen-electrolyte-electrode. 1
film of electrolyte; 2, electrode; 3, meniscus of the liquid; 4, ele
trolyte.
©2003 The American Physical Society03-1



lus
rs
o
y
on
u
le
a

rt
ga
n

w
uc
ly
r
id
on

tin
-

ni

b
in
ys
o
h

i-

l t
ue
i

th
g
he
i

o
a
tt
de
n

rs
rs
a
ce
co

an
t

cu

the

e-
ec-
ix-
d,
is
ace
ed
PC
di-

la-

n-

-
e

tly
As

n of
rea-

ix-
o-
les
is
nt
w-

es
fter
er
rea
-

of
o-
the

fi-
to

an

tain
ne
er-
ut

the
nts,
of
be
ient
pa-

er-

ipal
ess

P. S. GRINCHUK AND O. S. RABINOVICH PHYSICAL REVIEW E67, 046103 ~2003!
which constitutes the contact surface of two percolation c
ters composed of liquid-filled and gas-filled pores. The fi
cluster provides circuit closing on the ionic component
current and the second cluster allows a continuous suppl
the gaseous component to the reaction domain. Thus,
the external surface of PC will participate in a continuo
process of current generation. So, if there is a gas ‘‘bubb
inside a PC then the surface of such a bubble, which is
internal surface of the PC in this case, ceases to take pa
the current generation after a certain time because the
eous component needed for electrochemical reactions is
delivered to that domain. Thus, in the given case the follo
ing optimization problem appears: it is necessary to find s
degree of saturation of a porous electrode by the electro
when the external surface area of the percolation cluste
maximal. It is pertinent to note that the problem of the liqu
distribution inside a porous body can be reduced to the b
problem of the percolation theory@4,5#.

As the second example, let us consider self-propaga
high-temperature synthesis~SHS! in a heterogeneous con
densed system~a mixture of powders!, which is one of the
most efficient cost-effective methods for producing inorga
compounds, in particular, intermetallics@6#. Recently, in
studying the combustion in heterogeneous systems a num
of phenomena has been observed which can be expla
only taking into account the random structure of such s
tems @7–10#. Therefore, we shall discuss the influence
geometric randomness on the combustion processes in
erogeneous systems.

In combustion reactions~except exothermal decompos
tion of certain compounds!, typically a fuel and an oxidizer
participate which must be premixed on the molecular leve
provide the conditions for the reaction to proceed. If the f
and oxidizer are in a gaseous state, then in many cases
possible to premix them before the reaction begins. If
components are in condensed state, then such premixin
practically impossible. In this case, during interaction t
contact interface of the reactants become important. In m
tures composed of nonmelting particles~for example, Ta-C
and some intermetallic systems@11#! the interaction between
the reactants proceeds via solid-phase diffusion. Theref
in such systems for proceeding of the reaction in an arbitr
particle of one component a mechanical contact of the la
with at least one particle of the second component is nee
For propagation of the reaction on the macroscopic dista
~as compared to the size of an individual particle!, the exis-
tence of two PC’s formed by the particles of both the fi
and the second kind is necessary. In this case, the conve
of components is maximal when the contact surface are
two clusters is maximal. We will point out that this surfa
by definition coincides with the external surface of a per
lation cluster.

For a monodisperse mixture of powders, geometric r
domness can be modeled by a classical site problem of
percolation theory. At that, a mixture of powdersA andB is
associated with a spatial lattice, each site of which is oc
pied either by particle of sortA with probability p or by
particle of sortB with probability (12p). Here p is a nu-
merical fraction of particlesA in the mixture which can be
04610
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connected to a volumetric fraction of these particles with
help of Scher-Zallen construction@12#.

Then the problem of optimization of SHS in heterog
neous condensed systems is formulated as follows: it is n
essary to find a concentration of initial components in a m
ture for which the corresponding interfacial area an
accordingly, the degree of conversion will be maximal. It
important to note that when we consider an external surf
of a PC, its extremum for one of the PC’s can be reach
only in the range of the particle concentrations, where a
of particles of the other sort can exist. The stipulated con
tion is satisfied ifpc<pm<12pc , wherepm is the point in
which the surface area of PC is maximal,pc is a percolation
threshold. From this inequality, a condition for the perco
tion threshold on a modeling lattice is derived:pc<0.5. In a
two-dimensional case this condition is met only for a tria
gular lattice~in the site problem! and for a square lattice~in
the bond problem! and only in one point, viz., in the perco
lation threshold (pc50.5 @13#!. In a three-dimensional cas
this condition is satisfied for all regular lattices.

We should outline some circumstances which indirec
confirm an important role of the interfacial area in SHS.
is noted in a number of experimental works@14–16#, in
many heterogeneous condensed systems full conversio
components in SHS processes does not occur. One of a
sons for this is the statistical inhomogeneity of such m
tures. So, even for very good intermixing of initial comp
nents taken in a stoichiometric ratio, not each of the partic
will have in its neighborhood a particle of another kind. It
impossible to obtain a system in which particles of differe
kinds will be located, for example, in the chess order. Po
der particles of one kind in mixtures with other particl
always exhibit a tendency to clusterization. Therefore, a
intermixing some of them will not have the particles of oth
kind among the nearest neighbors, i.e., the interfacial a
~the contact surface area! of the reactants will be consider
ably less than the theoretically possible one for the case
regular~chess! packing. The deficient content of one comp
nent in the reaction zone results in the retardation of
reaction with the increase of the conversion degree and
nally only in a partial conversion of initial components in
the product in SHS processes@17#. We will give special at-
tention to one more experimental fact. As is known, SHS c
be performed only in a certain concentration range@14,18#. If
the concentration of one component is lower than a cer
threshold then it is not possible at all to initiate SHS. On o
hand, this is stipulated by diminution of the reaction exoth
micity with decreasing the content of one of the reactant. B
on the other hand, this effect can also be attributed to
diminution of the contact surface area between the reacta
which becomes critical for small concentrations of one
them@14#. Moreover, a possible reason for this effect can
the absence of the PC formed by the particles of the defic
component, which may be necessary for the reaction pro
gation over the whole system.

It should be noted that a somewhat similar problem ref
ring to powder sintering was considered in Ref.@19# using
the percolation theory methods. However, there is a princ
difference between the sintering of powders and the proc
3-2



rin
b
o
a

r
th
el

in
s
tio
rk
ve

c
ou
re
e
ith

rta
es
el
ob
th
al
th
In
u
es
e

en
ts
-
ne

pe
rim
of
ic
it
r

m
la

d

C.
nt

be

eak

PC

to

an
out
ce.

n

la-

at

sti-
ich
ally

-

a

la-
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of self-propagating high-temperature synthesis. The sinte
process is isothermal, i.e., the powder mixture is heated
an external source and is for during several hours at a c
stant high temperature. Unlike this process, during SHS
exothermic chemical reaction~for example, Ni1Al→NiAl)
is initiated at one of the borders of a system. The heat
leased due to the reaction in ignited particles initiates
reaction in their neighborhood, thus making possible s
propagation of the reaction wave over the system.

Thus, the purpose of this work is the investigation of
terfacial areas in two-component heterogeneous system
the basis of percolation models. The surface of a percola
cluster and finite clusters was studied in a number of wo
@20–26# both numerically and analytically. A comprehensi
review of this problem is given in Sec. 6.4 of Ref.@1#. How-
ever, a distinctive feature of most works is a study of su
surfaces in the neighborhood of percolation threshold. In
work, the surface of a percolation cluster will be conside
over a wide range ofp, from pc up to 1, and our results in th
neighborhood of percolation threshold will be compared w
the results of other authors.

II. ANALYTICAL INVESTIGATION OF THE SURFACE
OF A PERCOLATION CLUSTER

A. Site problem

Let us consider a spatial lattice and assume that a ce
liquid can flow from one site to the other along the pip
which are hereinafter named bonds. Defining stochastic
ments of this system in different ways we obtain a site pr
lem or a bond problem of the percolation theory. So, in
site problem for spreading of a liquid over the lattice
bonds are permeable for the liquid, and the sites are ei
closed or open for the liquid with a definite probability.
the bond problem, all the sites are permeable for the liq
but a certain part of bonds is considered broken. In th
problems it is supposed that elements with different prop
ties ~occupied or unoccupied sites, permeable or imperm
able bonds! are distributedabsolutely chaoticallyover the
lattice and, therefore, a probability that an arbitrary elem
has a definite property, is equal to a share of such elemen
the lattice anddoes not dependon the properties of neigh
boring elements. From the supposition about the random
of distribution it follows that each site~bond! in the lattice is
occupied with an equal probabilityp and is unoccupied with
probability (12p). Herep is a share of occupied sites~per-
meable bonds! in the lattice.

As a measure of the surface area of any cluster of a
colation system, two parameters are traditionally used pe
eter or energy@27#. So, for the site problem the perimeter
a cluster is a number of unoccupied sites of the lattice wh
do not belong to the cluster but are separated from its s
by only one bond. The energy is determined as a numbe
adjacent sites~number of pairs!, one of which is occupied
~belongs to a cluster! and the other is unoccupied.

Let us show that the surface area of the PC has extre
behavior in the site problem. We consider a regu
d-dimensional lattice with coordination numberz and the
share of occupied sitesp. Let a PC appears on the lattice an
04610
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share of sites belonging to it is equal toP`(p). This value is
also the probability that an arbitrary site belongs to the P

Let us consider a complex of conditions at the fulfillme
of which an arbitrary site of the lattice can belong to thefull
perimeterof the PC. Firstly, the considered site should
unoccupied@probability (12p)] and, secondly, among itsz
neighbors at least one site should belong to PC. Let us sp
that on arbitrary site an eventV j occurs ifany j from z sites
in the neighborhood of the considered site belong to
„probability @P`(p)# j z!/ @ j !(z2 j )! #, where z!/ @ j !(z2 j )! #
is a number of combinations ofj sites chosen fromz…, and
(z2 j ) of remaining sites are either unoccupied or belong
any finite cluster„probability @12P`(p)#z2 j

…. We can also
multiply the probability of elementary events related to
individual site due to the above mentioned suggestion ab
absolute randomness of their distribution over the latti
Then probability of the occurrence of eventV j is determined
by the following expression:

P~V j !5
z!

j ! ~z2 j !!
P`~p! j@12P`~p!#z2 j . ~1!

The site belongs to the perimeter of a PC~eventA) if ~i! it is
not occupied and~ii ! any of eventsV j for j from 1 up toz
occurs on it. As eventsV j are pairwise incompatible the
conditional probabilityP(A/V j )51. Using the formula of
total probability and taking into account the obtained re
tions, we can write the following expression:

S`~p!5~12p!(
j 51

z

P~V j !P~A/V j !

5~12p!(
j 51

z
z!

j ! ~z2 j !!
P`~p! j@12P`~p!#z2 j

5~12p!$~12@12P`~p!#z% ~2!

for the perimeter of PC per lattice site. It is significant th
the obtained expression is valid for arbitrary naturalz. The
application of the probabilistic approach in this case is ju
fied by the fact that the number of lattice sites over wh
averaging of the parameters is performed is macroscopic
large.

It should be noted that in Ref.@1# it is shown that the
perimeterts of a largefinite cluster is defined by the expres
sion

ts5
12p

p
s1Asz, ~3!

wheres is a number of sites in a cluster andA is a parameter
which is independent ofs. Herez.0, andA vanishes atp
5pc . In Refs.@20,21# this perimeter was investigated near
percolation threshold ford52 using the Monte-Carlo
method. In agreement with theoretical predictions the re
tion ts's(12pc)/pc was obtained.
3-3
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From Eq.~2! obtained in the present work it follows tha
close to a percolation threshold (p→pc), where the magni-
tude ofP`(p) is small, the PC perimeter is determined by
expression

S`~p!'z~12p!P`~p!. ~4!

As can be seen, the expressions for the perimeter of a l
finite cluster ~3! and for the PC perimeter~4! close to a
percolation threshold have a similar form, but at the sa
time some difference between them exists. It consists in n
coincidence of one of the factors in these expressions (p
for finite clusters andz for percolation cluster!. An approxi-
mate expression for the percolation thresholdpc versus the
space dimensiond and the coordination number of latticez
was obtained in Ref.@28#. For the site problem it is the
following: pc5p0@(d21)(z21)#2a, and for d52 a
50.3601 andp050.8889, but for 3<d<6 a50.6160 and
p051.2868. As can be seen, the magnitudes 1/p and z are
not equal to one another in the neighborhood of a percola
threshold, and accordingly, the surfaces of large finite c
ters and PC behave differently. The reason for the differe
between expressions for the perimeter of a large finite clu
@Eq. ~3!# and the PC perimeter@Eq. ~4!# lies in following: our
result@Eqs.~2! and~4!# was obtained for a percolation clus
ter in the limit of an infinitely large system, while expressio
~3! was obtained for afinite cluster of a large size, which i
generally not equivalent to the percolation cluster. In parti
lar, Eq. ~3! was obtained with the use of expressionsnst
5gstp

s(12p) t andns}exp(2Csz)(ns5(tnst) for an average
number ofs clusters havingt perimeter sites each. It is que
tionable whether expressions for the percolation cluster
be used.

For the energy of PC,E`(p), a relationship similar to Eq
~2! can be obtained. A difference from the case when
perimeter was considered is the following: when eventV j
occurs, then the energy in the given site is equal toj, while
the contribution of any eventV j to the perimeter is equal to
1.

Then for PC energy in the site problem, we have

E`~p!5~12p!(
j 51

z

j
z!

j ! ~z2 j !!
P`~p! j@12P`~p!#z2 j

5z~12p!P`~p!. ~5!

We should note that the full energy of a percolation clus
was investigated numerically both ford52 @29,30# and for
d53 @31# with the result^E&}s. As can be seen, the ob
tained relationship~5! agrees perfectly with this result.

In the limit of an infinitely large system the density of P
tends to zero atp→pc10. Therefore, in the percolatio
threshold the surface area~perimeter, energy! of PC will be
equal to zero. Forp51 all sites of the lattice belong to th
PC, therefore the PC surface area in this point is also equ
zero. Since the density of PC is a continuous function in
interval @pc,1# and differentiable in the interval (pc,1#, then
from Eqs.~2! and~5! it follows that the surface area~perim-
eter, energy! of PC is also a continuous and differentiab
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function in these intervals. Thus, for a perimeter~energy! of
PC, the conditions of the Rolls theorem are fulfilled: it
continuous in@pc,1#, differentiable in (pc,1), andS`(pc)
5S`(1). Therefore, there is a certain point in the given i
terval in which the derivative of functionS`(p) will vanish.
This point is a point of a maximum owing to the fact that t
given function is non-negative.

The formulas for a perimeter and energy of the who
system can be obtained in an analogous manner. For
purpose, in the derivation of Eqs.~2! and ~5! it is necessary
to replaceP`(p) with p, i.e., to require that at occurrence o
eventV j the appropriate sites can belong to both PC and
finite cluster. Then, we have

Stot~p!5~12p!@12~12p!z#, ~6!

Etot~p!5z~12p!p. ~7!

From Eqs.~6! and ~7! it follows that the full perimeter and
energy also have an extremum. In this case, a maximum
the full energy foranyonethe lattice is reached in pointpm
50.5. At the same time, the maximum of a full perimeter
reached in the pointpm512@1/(z11)#1/z, i.e., it depends
on the lattice type~for z532pm50.37,420.33,620.28).
The results of our numerical simulation have confirmed t
conclusion.

Within the framework of the proposed approach it is a
possible to obtain formulas for the external perimeter a
energy of PC. An arbitrary site belongs to the external
rimeter of PC if~i! it belongs to the PC of unoccupied site
@with probability P8̀ (p), where P8̀ (p)[P`(12p) is the
density of PC at the share of occupied sites equal to
2p)] and ~ii ! any of the above definited eventsV j has oc-
curred on it. Then, using an analogy with Eq.~2! for an
external perimeterS`

(ext)(p) and external energyE`
(ext)(p) of

PC, we obtain the following expressions:

S`
(ext)~p!5P8̀ ~p!(

j 51

z
z!

j ! ~z2 j !!
P`~p! j@12P`~p!#z2 j

5P8̀ ~p!$~12@12P`~p!#z%, ~8!

E`
(ext)~p!5zP8̀ ~p!P`~p!. ~9!

In the limit p→1, we haveP8̀ (p)50. Therefore, from Eqs.
~8! and~9! it follows that in this limit the PC has only inter
nal surface. Equations~2! and~5! in the considered limit pass
into Eqs. ~6! and ~7!, correspondingly, owing to relation
P`(p)'p. It means that for a large share of occupied si
the surface of the whole percolation systems and the
surface almost coincide. These conclusions also perfe
agree with the results of our numerical experiment.

B. Bond problem

For this problem, we investigate only the PC perimet
Let us note that in this case, an impermeable bond wh
connects two sites belonging to the same cluster is cou
twice in the perimeter of this cluster@4#.
3-4
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Let us consider a regular lattice of bonds with coordin
tion numberz, the share of permeable bonds beingp. In
order to avoid counting the same impermeable bond m
times in calculating the PC perimeter, it is necessary to c
sider an arbitrary site of the lattice and find probabilities
elementary events for this site similarly to the case of the
problem. A bond adjacent to an arbitrary site of a latt
belongs to the full perimeter of PC if~i! it is impermeable,
and ~ii ! at least one of the bonds adherent to the same
belongs to the PC. Let us note that in the bond problem
the bonds adherent to the given site and not belonging to
PC are impermeable by definition. Let us speak that evenV̄ j
occurs on an arbitrary site if~i! any j of z the bonds adheren
to the given site are impermeable„probability @(1
2p)# j z!/ @ j !(z2 j )! #, wherez!/ @ j !(z2 j )! # is the number of
combinations ofj bonds chosen fromz…, and ~ii ! (z2 j ) of
remaining bonds belong to PC„probability @P`

(b)(p)#z2 j
….

The bond belongs to the PC perimeter~eventB) if ~i! it is

impermeable and~ii ! any of eventsV̄ j for j from 1 to z21
has occurred on a site to which the given bond adjoins.

contribution of eventV̄ j to the perimeter of the percolatio
cluster on the considered site is equal toj. Taking into ac-
count that in the lattice composed ofN bonds there is 2N/z
sites, for average full perimeter of PC per one lattice bo
we have

S`
(b)~p!5

1

N

2N

z (
j 51

z21

j
z!

j ! ~z2 j !!
@P`

(b)~p!#z2 j~12p! j

52~12p!$@12p1P`
(b)~p!#z212~12p!z21%.

~10!

HereP`
(b)(p) is a connectivity function, or a share of bond

belonging to PC@4#
The existence of a maximum of the PC perimeter in

interval (pc,1) is proved in a way similar to the site problem
The total perimeter of the percolation system calcula

per one bond, which includes both the perimeter of PC
that of all finite clusters, can be found for the bond proble
as well as for the site problem, by replacingP`

(b)(p) for p:

Stot
(b)~p!52~12p!~12@12p#z21!. ~11!

Let us note that in Ref.@4# an expression for the total perim
eter of a percolation system for the bond problem was
tained which coincides with relationship~11!.

An expression for the external perimeter of PC can
obtained in the same manner as Eq.~8! was derived for the
site problem. It should be remembered that if an imperm
able bond belonging to a PC of impermeable bonds adjoi
certain site then by definition all other impermeable bon
contiguous to this site belong to the given PC. Then for
external perimeter of the PC, we have

S`
(b,ext)~p!52P8̀(b)~p!$@P8̀(b)~p!1P`

(b)~p!#z21

2@P8̀(b)~p!#z21%, ~12!
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whereP8̀(b)(p)[P`
(b)(12p). In the limit p→1, the surfaces

behave in the same manner as in the site problem: Eq.~12!
vanishes and Eq.~10! passes into Eq.~11!.

III. NUMERICAL EXPERIMENT

As is known, the percolation cluster is a fractal object
lengths smaller than the correlation lengthj @1,32#. At nu-
merical simulation this fact can play an essential role.
classical work@33# for the site problem on a square lattic
the density of PC was investigatedr(L), i.e., ratio of the
number of sites of the PC located in a rectangular area
size L to the total number of sites in the given area. It w
shown thatr(L) strongly depends on a relation betweenL
andj. If L,j, then the number of sites belonging to the P
grows asLD (D is the fractal dimension of PC!, and the
surface area~volume! grows, naturally, asLd (d is the topo-
logical dimensionality of space!. Inasmuch asD,d, in the
given area the density of PC decreases with increasingL. On
lengths larger than the correlation length PC behaves itse
a homogeneous object, and its density in this area is c
stant. It is important that this value of density corresponds
an infinitely large system. And, finally, if a distance from th
boundaries of the considered area to the edge of the lattic
below the correlation length thenr(L) begins decreasing
with increasingL. In more detail it is described in Ref.@33#.

In the numerical experiment, we used a similar meth
for investigating the PC surface. It turns out that in the m
interesting regionL.j, the perimeter and energy of PC d
not depend onL as well~Fig. 2!. The position of this plateau
was assumed to be a value of a corresponding measure o

FIG. 2. Average density of a percolation cluster^rP&, its ‘‘en-
ergy’’ ^rE& and perimeter̂ rS& vs the sizeL of averaging area for
the site problem on a square lattice 5013501 (pc'0.593, log-log
scale!. j1 and j2 are the correlation lengths for correspondin
shares of occupied sites.
3-5
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surface area in the experiment. A distinction was obser
only for the regionL,j, wherein the density of the perim
eter and energy were increasing with raisingL. We suppose
that in this case a superposition of several effects takes p
At first, the fractality of the PC exerts influence on the de
sities of the surface measures. Secondly, an unoccupied
which inside the ‘‘old’’ region did not belong to the PC su
face, in a ‘‘new’’ enlarged area can have a neighbor belo
ing to the PC. For smallL this effect can give a noticeabl
contribution to the growth of the density of the perimeter a
energy of PC. We should note that the mentioned augme
tion of the density should not be identified with any clus
and its fractal dimension since all unoccupied sites insid
hypercube with sideL do not necessarily belong to the sam
cluster composed of unoccupied sites.

For calculating the surface measures~perimeter and en-
ergy! for a PC we have chosen the following way. The latti
of a reasonably large size (5013501 for two-dimensional
problems and 15131513151 for a three-dimensional cas!
was filled at a given sharep of occupied sites~permeable
bonds! with the help of a standard procedure@34#. For each
site ~bond! of the lattice a pseudorandom numberz uni-
formly distributed in interval@0,1# was generated. If this
numberz<p, the corresponding site was considered as
cupied and in the opposite case it was treated as unoccu
Then a percolation cluster connecting the left and right b
ders of the lattice was sought and labeled if found. For
termining an external surface of the PC composed of oc
pied sites, a PC of unoccupied sites was also sought
labeled if the latter existed. Further on, in corresponding
eas of the lattice a number of unoccupied sites neighbo
to the sites belonging to the PC was counted. For improv
the accuracy of numerical simulation we to took into acco
only those lattices, for which a share of occupied sites
fered from the given value ofp by less than 0.0001. For eac
p value, in each of the four problems investigated here
accumulated (5 –10)3103 histories that allowed us to obtai
the accuracy of up to 0.001. The total central processing
time on a dual-processor Pentium III computer with 8
MHz processors was about 2000 h.

IV. RESULTS AND DISCUSSION

The site problem was investigated numerically on squ
(z54) and simple cubic (z56) lattices. The results of simu
lation are presented in Figs. 3 and 4, and Table I. In com
ance with predictions made in Sec. II, both the surface a
of PC and the total surface area of the system have an e
mum for a certain share of occupied sites. At that, the p
tion of a maximum and it an absolute magnitude essenti
depend on the choice of a measure of the surface area~pe-
rimeter or energy! ~Table I!. Since for the site problem on
square lattice the percolation threshold ispc50.592 746 21
.0.5 @35#, then the full surface of PC in this case is intern
~Fig. 3!. For a simple cubic lattice, the percolation thresho
is pc50.311 608 0,0.5 @36,37#, therefore in this case the P
has both internal and external surfaces~Fig. 4!. In the region
where the maximum of the external surface area of PC
reached, the internal surface area is negligible. It is inter
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ing to note that in a three-dimensional case the internal
face area of PC also has a maximum which is reached
point 12pc .

To check the accuracy of numerical simulation, we ha
calculated the fractal dimension of a PC for the tw

FIG. 3. The perimeterS(p) and energyE(p) of a percolation
cluster vs a share of occupied sitesp for the site problem on a
square lattice 5013501: L—full perimeter of the percolation clus
ter, d—perimeter of the whole system;n—full energy of the per-
colation cluster,¿—energy of the whole system.

FIG. 4. The perimeterS(p) of the percolation cluster vs a shar
of occupied sitesp for the site problem on a simple cubic lattic
15131513151: D—external perimeter of PC,L—internal perim-
eter of PC,d—perimeter of the whole system.
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TABLE I. The full S` and externalS`
(ext) perimeter and energy (E` ,E`

(ext)) of PC for thesite problem:
points of maximumpm and the magnitudes in these points.

Square lattice (d52) Simple cubic lattice (d53)
pm Magnitude pm Magnitude

S` 0.62560.001 0.339760.0001 0.40660.001 0.53860.001
S`

(ext) 0.40260.001 0.53560.001
E` 0.66060.001 0.81960.003 0.53860.001 1.4260.01
E`

(ext) 0.50160.001 1.3560.01
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ity
dimensional problem. We have used the angle of inclinat
of the density curve for the PC in the caseL,j. The value
D51.88960.004 was obtained, which is in agreement w
the exact resultD5 91

48 51.8958 . . . @32#.
The bond problem was investigated both on square

simple cubic lattices. The results of simulation are presen
in Figs. 5 and 6, and Table II. The qualitative behavior
surfaces in this case is the same as in the site problem
difference appears only in particular numerical values.

Verification of the equations obtained in this work w
performed for all of the four problems. For this purpose,
density of PC was calculated numerically for sets$pi% and
$12pi% and after that the numerical data were substitu
into corresponding equations. A discrepancy between t
calculated perimeters~energies! and the same values ob
tained immediately in numerical experiments was less t
10%. Figure 6 presents the comparison of the perime
obtained by these two methods on a simple cubic lattice
the bond problem. As can be seen from this figure, a m
mal discrepancy occurs close to the percolation thresh
where the scaling effects reveal themselves most sig
cantly.

To elucidate the role of scaling effects, similar simulati

FIG. 5. The perimeterS(p) of PC vs a share of permeable bon
p for the bond problem on a square lattice 5013501: D—full pe-
rimeter of PC,d—perimeter of the whole system.
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for two- and three-dimensional systems having the size
1013101 and 51351351, correspondingly, was performed
For each point, (10–20)3103 histories were treated. A gen
eral tendency in behaviors of surface areas was observed
from the percolation threshold all measures of a percola
cluster surface did not change~within the limits of an experi-
mental error! as compared with systems of a larger size.
the same time, in the neighborhood of a percolation thre
old the considered measures of the surface decreased b
to 4 % for two-dimensional systems and by 0.5 to 2 %
three-dimensional systems. It means that the abo
mentioned divergence between the direct numerical sim
tion and the calculations based on equations obtained in
work may be only partially related to the scaling effects. T
second reason of the considered divergence is that in
neighborhood of the percolation threshold, a plateau wh
position is used for determining the surface measures~Fig. 2!
becomes more diffuse and indistinct thus adding inaccur
to the experimental results. We can expect that this div

FIG. 6. The perimeterS(p) of PC vs a share of permeable bon
p for the bond problem on a simple cubic lattice 15131513151
according to the numerical experiment:D—external perimeter of
PC,L—internal perimeter of PC,d—perimeter of the whole sys
tem. Dashed lines are the same parameters calculated by Eqs.~10!–
~12! using the results of numerical simulation for the PC dens
P`

(b)(p).
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gence will decrease with increasing the system size.
We will note that one more possible cause of theory a

numerical simulations divergence arises owing to ignoring
small correlations in the occupation status of neighbor
parts of the infinite cluster. If we look at all clusters the
results like Eq.~6! or Eq. ~11! are exact since each site
independent of the other sites. If however, we require that
sites are part of the infinite cluster then this requirem
causes some correlations, which make results like Eq.~1!
valid only approximately. These correlations can be m
easily understood if we look at the probability that a site
the infinite cluster is surrounded byj other sites of the infi-
nite cluster. An approach similar to expression~1! is not
exact in this case sincej 50 is impossible. The requiremen
that the central site belongs to the infinite cluster puts to z
the probability that it has no neighbors from that infin
cluster. The other probabilities, forj 51 to z, are then also
modified since their sum must be equal unity. If we consi
now the probability that an empty site is surrounded bj
sites from the infinite cluster then again the occupation pr
abilities of thez neighbors are no longer statistically ind
pendent of each other since it is required that they belon

TABLE II. The full S`
(b) and externalS`

(b,ext) perimeter of PC for
bond problem: points of maximumpm and the magnitude of perim
eter in these points.

Square lattice (d52) Simple cubic lattice (d53)
pm Magnitude pm Magnitude

S`
(b) 0.55860.001 0.73760.001 0.38260.001 1.05060.002

S`
(b,ext) 0.38260.001 1.05060.002
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the infinite cluster. Only now the correlations are more h
den than in the above simpler example.

V. CONCLUSION

Thus, theoretical and numerical investigation of the s
face areas of percolation systems has been performed, w
has revealed an interesting phenomenon: an extremal be
ior of the external and full surface areas of the percolat
cluster. Similar behavior was observed also for the full s
face area of the percolation system. The results of rese
allow us to make a conclusion that the developed analyt
approach is valid for the description of various surfaces
percolation systems. The obtained analytical relationsh
can also be used for describing corresponding surface a
of percolation systems on lattices different from those inv
tigated in the given work. For this purpose, is only necess
to know the density of a percolation cluster as a function
a share of occupied sites~permeable bonds! on the lattice.
The latter value has been investigated in much detail@5,38–
42#.

Two examples of particular systems were considered, v
a fuel cell and a heterogeneous condensed system~a mixture
of powders!, wherein the effect revealed in this work can b
used for the optimization of important technological pr
cesses: generation of electric current and self-propaga
high-temperature synthesis of refractory compounds or c
posites, correspondingly.
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