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Corner-transfer-matrix renormalization-group method for two-dimensional self-avoiding walks
and other O(n) models
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We present an extension of the corner-transfer-matrix renormalization-g@U@RG) method toO(n)
invariant models, with particular interest in the self-avoiding walk class of m¢@a=0)]. The method is
illustrated using an interacting self-avoiding walk model. Based on the efficiency and versatility, when com-
pared to other available numerical methods, we present the CTMRG as the method of choice for two-
dimensional self-avoiding walk problems.
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The self-avoiding walk class of models on the two- ..
dimensional square lattice, with a variety of possible interac- Zom=> 11 (1+Ks;-s)), 2
tions, has mobilized the scientific community for about half a s} D)
century[1,2]. The number of exact results for such models isyhere the spins are now placed on the lattice bdad A
limited, and numerical studies are difficult. A clear illustra- gjagrammatic expansion of E(®) follows if we identify the
tion of the numerical difficulty is the disagreement that ex-1 as the weight of an empty bond between the sitasdj
isted over the numerical determination of critical temperatureand theK as the weight of an occupied bond. This expansion
and exponents for the standaggpoint model, see for ex- may be expressed in terms of grapfisof nonintersecting
ample, Ref[3]. loops(collisions at sites are however allowdd0]. The par-
To date, the numerical methods available for the study ofition function may then be written as
interacting self-avoiding walks in two dimensions are series
expansions of walks of lengths of a few tens of stgps Zom):z n'(QKP@ (3)
transfer matrices for lattice widths up to about [B, and G

increasingly complicated Monte Carlo simulation methodsWherel is the number of loops anlis the number of occu-
[6], limited in practice to only a portion of the phase dia- _. P
gram pied bonds.

Motivated by these numerical difficulties, we decided to The parameten is now a fugacity controlling the number

dth ¢ ) liati of loops, and need no longer be taken as an integer. This
extend the corner-transfer-matrix renormalization-grélP-  ,5acity corresponds to a long range interaction, since the

MRG) method[7]. The CTMRG method is based on White's 15045 may be of any size. This nonlocality is undesirable for

density matrix renormalization-group methé@MRG) [8]  our purposes. We would like to expresss a product over
and Baxter’'s corner-matrix formalisii®]. To date, the CT- |pcal weights. This may be achieved as follows. Each loop
MRG method has only been applied to discrete spin modelsnay be followed clockwise or counterclockwise. The loops
where it is shown to be computationally efficie. in Eq. (3) are not oriented, but may be oriented by associat-
Our extension to interacting self-avoiding walk modelsing 2'() oriented graphs with each nonoriented graph. By
exploits the connection between these models and®ift§  associating a loop fugacity, (n_) with the clockwise
invariant spin model$10], which contains as special cases (counterclockwisgoriented loops, the partition function may
the Ising model §=1), the XY model =2) and the be rewritten[12] as
Heisenberg modeln=3). The method therefore has appli-

c_a(';i;ms well beyond the self-avoiding walk type modets ( Zomﬁ% (n++n_)'Kb=§ n'jn':Kb, (4
The O(n) spin model is defined through the partition

whereG' is the set of oriented loop graphs ahd (I ) is

the number of clockwisécounterclockwisgoriented loops.

Settingn, =exp(6d) and n_=exp(—ifd) gives n=2 cos@).

1 The oriented loop factor is now broken up into local weights
_ - 2.2 by associating a corner weight;=exp(6/4) with every

Zo() g} ex ZBJUZD S SJ)' @ clockwise corner andv;=exp(—i#/4) with every counter-

' clockwise corner. On the square lattice, there must be four

more corners with one orientation, compared with the other

orientation, in order to close a loop. The product of the local

where(i, ) refers to a sum over the nearest-neighbor Splns\'/veights will then give the correct weight for the oriented

The spins; hasn components, and is normalized such that|gops,

s7=1. Another formulation ofO(n) invariant models with The partition function may now be rewritten in terms of a
the same critical behavior is vertex mode[10],

function[11]
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FIG. 1. The 19 allowed vertices in the most gene@x(n) ° l .
model. K is the step fugacity and=exp(—Be), where € is the ! —
attractive monomer-monomer interaction energy. 05 0.51 i
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wherev; is the weight of the vertex at siie The derivation ) 0 02 0. K 06 08 1
given here is only for the simplest case, but we may freely
change the weights of the vertex configurations in order to 1 . T . S
generate different interactions in the original modsée I / J
Fig. 1). | . L=62 1
imi idi 08 o =12
The limit n—0 corresponds to the self-avoiding walk =
model[13]. In the generalized form presented here, this cor- I
responds to an interacting self-avoiding walk model due to 0.6 08 T
Blote and Nienhui$10,14. A step fugacityK and an attrac- Pt 0.6
tive short range interaction<<O are introduced. In the stan- 0.4 04 b
dard 6-point model, the interactions are between noncon- - 0.2
secutively visited nearest-neighbor sites and a given site may 02} 4 YT
only be visited oncd1,2]. In our current model, this last I ]
constraint is relaxed; the walk may collide at a site, but not o o, ’ . , . \
cross, and remains self-avoiding for the bonds. The interac- © 0 0.2 0 K 0.6 0.8 1

tion is now assigned to doubly visited sites. An additional
weightp is added for sites that are visited by a straight sec- FiG. 2. The density as a function o with p=0 and(a) =
tion of walk (i.e., do not sit on a corngrThe partition func- =1, (b) r=2, and(c) 7=3 for L=62, 122, and 182. Estimates of
tion may then be written as K. from finite-size scaling are given in Table I. The valuekofor
the first-order transition wher=3 estimated directly from the
jump in the density was found to b€* =0.422+0.001(compared
z=2 (Kp)-rMNip~Ne, (6) Jto OF.)421t 0.001 fotﬁnd previously14]). (comP

walks

where 7=exp(—Be), N, is the number of site collisions, product of four matrices representing the four quarters of the
and N; are the number of corners in the walk. This modellattice. The inputs and outputs of the matrices are the con-
gives rise to the vertex weights shown in Fig. 1. The standardigurations at the seams of the four quarters. These matrices
self-avoiding walk model is found setting=0 andp=1, are known as corner-transfer matrices. In general, the four
and whenp=0 the model has the same critical behavior asmatrices are different, but may often be related by lattice
the standardd-point model[14]. During the remainder of symmetries. For our model, the four matrices are the same
this paper, we shall illustrate the CTMRG method @¢n) up to a complex conjugation operatifi6].
models using this Ble-Nienhuis walk model. It is usually not possible to calculate explicitly these ma-
Following Baxter[9], the partition function of a two- trices for systems with a large number of sites. This is where
dimensional lattice model may be written in terms of thethe CTMRG method comes in; the matrices for larger lattices
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FIG. 3. ¢, -, as a function ofK for the self-avoiding walk 076 - , , , T
model (p=1, 7=0) for L=10, 20, 30, 40, and 50. The horizontal r
and vertical lines give the corresponding finite-size estimatég,of 0758 . * * ]
andv. - Lo ]
[ o’
0736 o’ .
are calculated from smaller lattices iterativédl§]. This is 5 .
done as follows. An initial system, consisting of a small V, orsaf o* 3

number of sites, is mapped exactly onto a prototype systerr
made up of foum-state spins. At each iteration the system is

enlarged by adding sites, this enlarged system is then pro
jected back onto the prototype system in some optimal way,

0752 .

So aS to mlnlmlze the |OSS Of Informatlon The Valuemf V= 0.75; ................................................................................ .._.
determines the amount of information that may be carried C . | . | ‘ | ‘ \
forward at each iteration, the larger the valuenofhe better 780 002 004 0.6 008
the approximation. For details, see Rdf&.16). L

As with the DMRG method, the innermost sites of the £ 4. (a) Critical point and(b) critical exponent estimates for
lattice are treated exactly. This means that the CTMRGpe self-avoiding walk §=1, 7=0) as a function of 1/. The ex-
method is most appropriate for the calculations of one-pointrapolated values df . and» are shown. In(a) the three horizontal
functions such as the site free energy, site density of monaines show the previous transfer-matrix estimate Kgralong with
mers, specific heats, etc. In Fig. 2, we show the densig the corresponding error bafg]. In (b) the horizontal dotted line
a function of the step fugaciti( for fixed values ofr. We  indicates the exact value of=3/4.
chose to fixp=0 since for this value, the Nienhuis-Béo
model has the same critical behavior as the standgrdint  one-point functions. In particular, it is expected that the sin-
model[14]. When7<2, the model is expected to be in the gular part of the density scales as
self-avoiding walk universality class, and presents a critical
transition where the density changes continuously frem e )

—0 for K<K, to p>0 for K>K.. Whenr=2, the trang- ps(K,L) =L Zp(|[K =K [LY). 7
tion is expected to be tricritical, in the same universality

class as theg point, with K.=1/2 exactly. Forr>2, the  This scaling behavior implies that the function

transition is expected to be of the first order. These three
types of behaviors may be clearly seen in Fig. 2. ,

Whilst the raw finite-size data presented in Fig. 2 already oL L (K)= In[ps(K,L)/ps(K,L")]
give a fairly precise idea of the behavior of the sysiemder ’ In(L/L")
of the transition and first estimate &f.), practical calcula-

tions of critical temperature and critical exponent estimateggyes the value, = 1/v—2 whenK =K., independent of
rely on finite-size analysis. In transfer-matrix calculations, gnq( ' Natura{IIy there are additionaclly finite-size correc-
one usually uses a phenomenological renormalization grou,ng that should be taken into account, but the conclusion is

based on the correlation lengths due to Nightinda}. In 4 it the functione, - (K) is plotted for various values of
the CTMRG method, an effective transfer matrix may be andL’, then it will converge to a fixed point given by

d_etermined pli_rectl_y. However, as already mentioned, _theqo(KC)=1/V—2. In what follows, we have sét’' =L — 2 and
h|ghe_st precision is obtained fo_r the one-point correlatio earched for solutions of the equation

functions. Since the number of sizes available is an order o
magnitude larger than that available for transfer matrices, it L .
is advantageous to exploit the finite-size scaling laws for the eLL-2Kg) =21 - a(Kg), 9)

®
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TABLE I. Estimates ofK. from transfer-matrixTM) calcula-
tions taken from Ref[14] for p=0 and from Ref[2] for the self-
avoiding walk =1 and7=0) are compared to ouprovisiona)
estimates using the CTMRG. First estimates afsing the CTMRG
are also given.

T ™ K. CTMRG K, v

0 0.6386@:0.00005 0.638650.00005 0.7550.007
1 0.576%-0.0001 0.576 8£:0.000 02 0.74£0.02
2 0.5001-0.0001 0.500 006 0.000001 0.57%£0.001
0

0.3790520.000007 0.3790520.000001 0.75%0.001

= O OO |©T

whereK¢ is the estimated critical temperature for sidgs
L—2, andL—4. If such a solution does exist, thef,
=lim___Kgandv=lm __ 1le¢ | —»(Kg)—2].

Figure 3 showsp plotted for several values df for the
pure self-avoiding walk modelp(=1, 7=0). The different
curves cross at a point definitkg, andv. The corresponding
estimates oK. andv are shown in Fig. 4 plotted as a func-
tion of 1. The extrapolations oK: and v to L—x are
given in Table | along with prelimenary estimates for0
and different values of. The accuracy with which the criti-
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In (numerically exact methods, such as the transfer-
matrix method or the exact enumeration method, the main
source of uncertainty in the results is due to the extrapolation
of a small number of points. In the CTMRG method, the
extrapolation problems are largely removed since lattice
sizes of an order of magnitude larger have been reached. The
uncertainty now lies in the precision related to the calcula-
tion of each density point.

In this paper, results for the Bi®-Nienhuis interacting
self-avoiding walk are presented since good quality results
already exist, providing a good test of the efficiency of the
CTMRG method. In particular, we have focused on the self-
avoiding walk model =1, 7=0) for which the asymptotic
limit is well described by transfer-matrix calculations and yet
we still find a substantial increase in precisi@ee Table )l
It is clear that in circumstances where larger system sizes are
required to extract the scaling behavior, the CTMRG method
should far exceed the numerically exact methods in perfor-
mance.

The quality of results presented in this paper is virtually
unattainable with such ease by any other numerical method
we know of (there is a very small number of exceptional
cases where better accuracy was obtaified]), and so we
present the CTMRG as the method of choice for two-
dimensional self-avoiding walk models. The CTMRG may

cal points are determined is in general an order of magnitudeasily be extended to more complex interacting self-avoiding
better than that found with transfer matrices. Full details andvalk models such as the hydrogen-bonding self-avoiding

definitive estimates will be given elsewhdrb].
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