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Corner-transfer-matrix renormalization-group method for two-dimensional self-avoiding walks
and other O„n… models
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We present an extension of the corner-transfer-matrix renormalization-group~CTMRG! method toO(n)
invariant models, with particular interest in the self-avoiding walk class of models@O(n50)#. The method is
illustrated using an interacting self-avoiding walk model. Based on the efficiency and versatility, when com-
pared to other available numerical methods, we present the CTMRG as the method of choice for two-
dimensional self-avoiding walk problems.
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The self-avoiding walk class of models on the tw
dimensional square lattice, with a variety of possible inter
tions, has mobilized the scientific community for about ha
century@1,2#. The number of exact results for such models
limited, and numerical studies are difficult. A clear illustr
tion of the numerical difficulty is the disagreement that e
isted over the numerical determination of critical temperat
and exponents for the standardu-point model, see for ex-
ample, Ref.@3#.

To date, the numerical methods available for the study
interacting self-avoiding walks in two dimensions are ser
expansions of walks of lengths of a few tens of steps@4#,
transfer matrices for lattice widths up to about 12@5#, and
increasingly complicated Monte Carlo simulation metho
@6#, limited in practice to only a portion of the phase di
gram.

Motivated by these numerical difficulties, we decided
extend the corner-transfer-matrix renormalization-group~CT-
MRG! method@7#. The CTMRG method is based on White
density matrix renormalization-group method~DMRG! @8#
and Baxter’s corner-matrix formalism@9#. To date, the CT-
MRG method has only been applied to discrete spin mod
where it is shown to be computationally efficient@7#.

Our extension to interacting self-avoiding walk mode
exploits the connection between these models and theO(n)
invariant spin models@10#, which contains as special cas
the Ising model (n51), the XY model (n52) and the
Heisenberg model (n53). The method therefore has app
cations well beyond the self-avoiding walk type modelsn
50).

The O(n) spin model is defined through the partitio
function @11#

ZO(n)5(
$sW i %

expS 1

2
bJ(

^ i , j &
sW i•sW j D , ~1!

where^ i , j & refers to a sum over the nearest-neighbor sp
The spinsW i hasn components, and is normalized such th
si

251. Another formulation ofO(n) invariant models with
the same critical behavior is
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ZO(n)5(
$sW i %

)̂
i , j &

~11KsW i•sW j !, ~2!

where the spins are now placed on the lattice bonds@10#. A
diagrammatic expansion of Eq.~2! follows if we identify the
1 as the weight of an empty bond between the sitesi and j
and theK as the weight of an occupied bond. This expans
may be expressed in terms of graphsG of nonintersecting
loops~collisions at sites are however allowed! @10#. The par-
tition function may then be written as

ZO(n)5(G nl (G)Kb(G), ~3!

wherel is the number of loops andb is the number of occu-
pied bonds.

The parametern is now a fugacity controlling the numbe
of loops, and need no longer be taken as an integer. T
fugacity corresponds to a long range interaction, since
loops may be of any size. This nonlocality is undesirable
our purposes. We would like to expressn as a product over
local weights. This may be achieved as follows. Each lo
may be followed clockwise or counterclockwise. The loo
in Eq. ~3! are not oriented, but may be oriented by assoc
ing 2l (G) oriented graphs with each nonoriented graph.
associating a loop fugacityn1 (n2) with the clockwise
~counterclockwise! oriented loops, the partition function ma
be rewritten@12# as

ZO(n)5(G ~n11n2! lKb5(
G 8

n
1

l 1n
2

l 2Kb, ~4!

whereG 8 is the set of oriented loop graphs andl 1 ( l 2) is
the number of clockwise~counterclockwise! oriented loops.
Setting n15exp(iu) and n25exp(2iu) gives n52 cos(u).
The oriented loop factor is now broken up into local weigh
by associating a corner weightwi5exp(iu/4) with every
clockwise corner andwi5exp(2iu/4) with every counter-
clockwise corner. On the square lattice, there must be f
more corners with one orientation, compared with the ot
orientation, in order to close a loop. The product of the lo
weights will then give the correct weight for the oriente
loops.

The partition function may now be rewritten in terms of
vertex model@10#,
©2003 The American Physical Society05-1
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ZO(n)5(
G 8

)
i

v i , ~5!

wherev i is the weight of the vertex at sitei. The derivation
given here is only for the simplest case, but we may fre
change the weights of the vertex configurations in orde
generate different interactions in the original model~see
Fig. 1!.

The limit n→0 corresponds to the self-avoiding wa
model@13#. In the generalized form presented here, this c
responds to an interacting self-avoiding walk model due
Blöte and Nienhuis@10,14#. A step fugacityK and an attrac-
tive short range interaction«,0 are introduced. In the stan
dard u-point model, the interactions are between nonc
secutively visited nearest-neighbor sites and a given site
only be visited once@1,2#. In our current model, this las
constraint is relaxed; the walk may collide at a site, but
cross, and remains self-avoiding for the bonds. The inte
tion is now assigned to doubly visited sites. An addition
weight p is added for sites that are visited by a straight s
tion of walk ~i.e., do not sit on a corner!. The partition func-
tion may then be written as

Z5 (
walks

~Kp!Lt NIp2Nc, ~6!

where t5exp(2b«), NI is the number of site collisions
and Nc are the number of corners in the walk. This mod
gives rise to the vertex weights shown in Fig. 1. The stand
self-avoiding walk model is found settingt50 and p51,
and whenp50 the model has the same critical behavior
the standardu-point model @14#. During the remainder of
this paper, we shall illustrate the CTMRG method forO(n)
models using this Blo¨te-Nienhuis walk model.

Following Baxter @9#, the partition function of a two-
dimensional lattice model may be written in terms of t

FIG. 1. The 19 allowed vertices in the most generalO(n)
model. K is the step fugacity andt5exp(2be), where e is the
attractive monomer-monomer interaction energy.
04510
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product of four matrices representing the four quarters of
lattice. The inputs and outputs of the matrices are the c
figurations at the seams of the four quarters. These matr
are known as corner-transfer matrices. In general, the
matrices are different, but may often be related by latt
symmetries. For our model, the four matrices are the sa
up to a complex conjugation operation@16#.

It is usually not possible to calculate explicitly these m
trices for systems with a large number of sites. This is wh
the CTMRG method comes in; the matrices for larger lattic

FIG. 2. The densityr as a function ofK with p50 and~a! t
51, ~b! t52, and~c! t53 for L562, 122, and 182. Estimates o
Kc from finite-size scaling are given in Table I. The value ofK for
the first-order transition whent53 estimated directly from the
jump in the density was found to beK* 50.42260.001~compared
to 0.42160.001 found previously@14#!.
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are calculated from smaller lattices iteratively@7#. This is
done as follows. An initial system, consisting of a sm
number of sites, is mapped exactly onto a prototype sys
made up of fourm-state spins. At each iteration the system
enlarged by adding sites, this enlarged system is then
jected back onto the prototype system in some optimal w
so as to minimize the loss of information. The value ofm
determines the amount of information that may be carr
forward at each iteration, the larger the value ofm the better
the approximation. For details, see Refs.@7,16#.

As with the DMRG method, the innermost sites of t
lattice are treated exactly. This means that the CTM
method is most appropriate for the calculations of one-po
functions such as the site free energy, site density of mo
mers, specific heats, etc. In Fig. 2, we show the densityr as
a function of the step fugacityK for fixed values oft. We
chose to fixp50 since for this value, the Nienhuis-Blo¨te
model has the same critical behavior as the standardu-point
model @14#. Whent,2, the model is expected to be in th
self-avoiding walk universality class, and presents a criti
transition where the density changes continuously fromr
50 for K,Kc to r.0 for K.Kc . Whent52, the transi-
tion is expected to be tricritical, in the same universal
class as theu point, with Kc51/2 exactly. Fort.2, the
transition is expected to be of the first order. These th
types of behaviors may be clearly seen in Fig. 2.

Whilst the raw finite-size data presented in Fig. 2 alrea
give a fairly precise idea of the behavior of the system~order
of the transition and first estimate ofKc), practical calcula-
tions of critical temperature and critical exponent estima
rely on finite-size analysis. In transfer-matrix calculation
one usually uses a phenomenological renormalization gr
based on the correlation lengths due to Nightingale@15#. In
the CTMRG method, an effective transfer matrix may
determined directly. However, as already mentioned,
highest precision is obtained for the one-point correlat
functions. Since the number of sizes available is an orde
magnitude larger than that available for transfer matrices
is advantageous to exploit the finite-size scaling laws for

FIG. 3. wL,L22 as a function ofK for the self-avoiding walk
model (p51, t50) for L510, 20, 30, 40, and 50. The horizont
and vertical lines give the corresponding finite-size estimates oKc

andn.
04510
l
m

o-
y,

d

t
o-

l

e

y

s
,
p

e
n
of
it
e

one-point functions. In particular, it is expected that the s
gular part of the density scales as

rs~K,L !5L1/n22r̃~ uK2KcuL1/n!. ~7!

This scaling behavior implies that the function

wL,L8~K !5
ln@rs~K,L !/rs~K,L8!#

ln~L/L8!
~8!

takes the valuewL,L851/n22 whenK5Kc , independent of
L and L8. Naturally, there are additional finite-size corre
tions that should be taken into account, but the conclusio
that if the functionwL,L8(K) is plotted for various values o
L and L8, then it will converge to a fixed point given b
w(Kc)51/n22. In what follows, we have setL85L22 and
searched for solutions of the equation

wL,L22~Kc
L!5wL22,L24~Kc

L!, ~9!

FIG. 4. ~a! Critical point and~b! critical exponent estimates fo
the self-avoiding walk (p51, t50) as a function of 1/L. The ex-
trapolated values ofKc andn are shown. In~a! the three horizontal
lines show the previous transfer-matrix estimate forKc along with
the corresponding error bars@2#. In ~b! the horizontal dotted line
indicates the exact value ofn53/4.
5-3
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whereKC
L is the estimated critical temperature for sizesL,

L22, and L24. If such a solution does exist, thenKc

5 lim
L→`

Kc
L andn5 lim

L→`
1/@wL,L22(Kc

L)22#.

Figure 3 showsw plotted for several values ofL for the
pure self-avoiding walk model (p51, t50). The different
curves cross at a point definingKc andn. The corresponding
estimates ofKc andn are shown in Fig. 4 plotted as a func
tion of 1/L. The extrapolations ofKc

L and nL to L→` are
given in Table I along with prelimenary estimates forp50
and different values oft. The accuracy with which the criti
cal points are determined is in general an order of magnit
better than that found with transfer matrices. Full details a
definitive estimates will be given elsewhere@16#.

TABLE I. Estimates ofKc from transfer-matrix~TM! calcula-
tions taken from Ref.@14# for p50 and from Ref.@2# for the self-
avoiding walk (p51 andt50) are compared to our~provisional!
estimates using the CTMRG. First estimates ofn using the CTMRG
are also given.

p t TM Kc CTMRG Kc n

0 0 0.638 6060.000 05 0.638 6560.000 05 0.75560.007
0 1 0.576960.0001 0.576 8660.000 02 0.7460.02
0 2 0.500160.0001 0.500 00060.0000 01 0.57160.001
1 0 0.379 05260.000 007 0.379 05260.0000 01 0.75160.001
,

l

-

S
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In ~numerically! exact methods, such as the transf
matrix method or the exact enumeration method, the m
source of uncertainty in the results is due to the extrapola
of a small number of points. In the CTMRG method, t
extrapolation problems are largely removed since latt
sizes of an order of magnitude larger have been reached.
uncertainty now lies in the precision related to the calcu
tion of each density point.

In this paper, results for the Blo¨te-Nienhuis interacting
self-avoiding walk are presented since good quality res
already exist, providing a good test of the efficiency of t
CTMRG method. In particular, we have focused on the s
avoiding walk model (p51, t50) for which the asymptotic
limit is well described by transfer-matrix calculations and y
we still find a substantial increase in precision~see Table I!.
It is clear that in circumstances where larger system sizes
required to extract the scaling behavior, the CTMRG meth
should far exceed the numerically exact methods in per
mance.

The quality of results presented in this paper is virtua
unattainable with such ease by any other numerical met
we know of ~there is a very small number of exception
cases where better accuracy was obtained@17#!, and so we
present the CTMRG as the method of choice for tw
dimensional self-avoiding walk models. The CTMRG m
easily be extended to more complex interacting self-avoid
walk models such as the hydrogen-bonding self-avoid
walk @18#.
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