
s

PHYSICAL REVIEW E 67, 042201 ~2003!
Crossover between short- and long-time behavior of stress fluctuations and viscoelasticity of liquid
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An effective viscosity coefficient is introduced based on definite time averages of equilibrium stress fluc-
tuations rather than stress correlations. Analysis of this quantity via molecular dynamics of a simple model
liquid reveals a crossover between the expected short-time elastic and the long-time viscous behavior with
increasing averaging time. The procedure allows us to extract the zero-rate shear viscosity when the averaging
time becomes one order of magnitude larger than the relevant relaxation time. A relationship between this
effective viscosity and the dynamic viscosities is established.
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I. INTRODUCTION

It has been demonstrated that the shear viscosity of a
can be inferred from ensemble averages of the mean sq
of time averages of the stress fluctuations@1,2#. In particular,
the long-time behavior of the stress fluctuations was a
lyzed, where the time averages are taken over times l
compared with a stress~Maxwell! relaxation time. Then a
simple relation exists with the Green and Kubo@3# expres-
sion for linear transport coefficients. In this note we study
crossover between the behavior of stress fluctuations a
aged over short times to that where the averaging times
long compared with relevant relaxation time. We present
sults from molecular dynamics~MD! computer simulations
and compare them with analytical considerations for a mo
liquid where both limiting cases, viz., short and long avera
ing times, are accessible in the numerical calculations.
effective viscosity coefficient is introduced which depen
on the averaging time. Analysis of this quantity reveals
transition from the short-time elastic to the long-time visco
behavior. The relation of the effective viscosity to the fr
quency dependent viscosity coefficient is discussed. Un
standing the crossover behavior of the stress fluctuation
also important for the calculation of the viscous behavior
fluids with long relaxation times, where it may be difficult
reach the long-time limit. Expressions used here are sim
to those applied in an analysis of the statistical depende
of data extracted from a dynamical interpretation of Mon
Carlo simulations@4#. The present approach is also som
what akin to the calculation of elastic constants from str
fluctuations@5#, where their dependence on a spatial len
rather than on the duration of a time–interval plays a cru
role. In Refs.@6–8# a ‘‘hard’’ interaction 1/r n—rather than
the short range attractive ‘‘SHRAT’’ potential to be consi
ered in the present work—with a largen had been used. Th
crossover from hard to soft spheres had been discussed,
in Refs.@6,9#, where it is argued that there are two releva
time scales: the Enskog mean free time, and the mean
versal time for a particle to cross the steep part of the po
tial.

II. STRESS FLUCTUATION FORMULA

Consider a system composed ofN spherical particles with
massm and position vectorsr i , i 51, . . . ,N in a volumeV.
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The number density isn5N/V. In the MD simulations, pe-
riodic boundary conditions and the ‘‘minimum image co
vention’’ are used in order to avoid boundary layer effe
@10,11#. In a streaming fluid, the stationary rheological pro
erties such as the~non-Newtonian! viscosity and the norma
pressure differences are obtained from long-time average
the Cartesian components of the stress tensorsmn , which is
the negative of the pressure tensorpmn , which in turn is the
sum of kinetic and potential contributions:pmn5pmn

kin

1pmn
pot , pmn

kin5V21( imcm
i cn

i , pmn
pot5V21 1

2 ( i j r m
i j Fn

i j . Here ci

is the peculiar velocity of particlei, i.e., its velocity relative
to the flow velocityv(r i), r i j 5r i2r j is the relative position
vector of particlesi , j , and Fi j is the force acting between
them. The Greek subscriptsm,n, which assume the value
1,2,3, stand for Cartesian components associated with
x,y,z directions.

In an equilibrium situation where one hasv50, the shear
stress, i.e., the off-diagonal components of the stress ten
e.g., s52p12 and the normal stress differences, e.g.,p22
2p11 fluctuate about zero and their long-time averages v
ish. The mean square average of these fluctuating quan
depends on the averaging timetav @12#. More specifically, the
definition of a time-interval averages̄(tav)5tav

21*0
tavs(t)dt

is introduced. The time dependence ofs(t)52p12(t) stems
from the time dependence of the positions and momenta
the particles. It is understood that the integration limits 0 a
tav can be replaced byt0 and t01tav provided that these
times are also within the time span for which the phase sp
trajectory is available. The mean square average is given

^s̄~ tav!
2&5tav

22E
0

tav
dt1E

0

tav
dt2^s~ t1!s~ t2!&. ~1!

The angular bracketŝ•••& indicate an ensemble averag

^s̄(tav)&50 has been assumed. In a stationary situat
^s(t1)s(t2)& depends on the time differencet5t12t2 only.
Upon the assumption that the equilibrium fluctuations can
distinguish between ‘‘past’’ and ‘‘future,’’ i.e.,̂s(t)s(0)&
5^s(2t)s(0)&, the integral overt, ranging from2tav to tav
is replaced by two times the integral from 0 totav. Further-
more, one has to take into account that the time variabletm
5(t11t2)/2, for fixed t.0, lies betweent/2 and tav2t/2.
©2003 The American Physical Society01-1
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Performing the integration over the time variabletm yields a
factor tav2t. Thus Eq.~1! reduces to@10–12#

^s̄~ tav!
2&52tav

21E
0

tav
dt~12t/tav!^s~ t !s~0!&. ~2!

A characteristic stress relaxation timet is defined by
*0

`dt^s(t)s(0)&5t^s(0)s(0)&. Provided that the averag
ing time tav is large compared with the relaxation tim
the term t/tav can be neglected in the expression (12t/
tav)^s(t)s(0)& occurring in Eq.~2!. Then the mean squar
stress fluctuation is inversely proportional to the averag
time. Compared with the mean square fluctuation of the
stantaneous quantitŷs(0)2&, the mean square fluctuation o
the corresponding time averaged quantity is reduced by
factor 2ttav

21 . In the same limit,tav@t, the Green-Kubo for-
mula for the shear viscosityh5(N/nkBT)*0

`dt^s(t)s(0)&
can be used to rewrite Eq.~2! as an expression applicable fo
the computation of the viscosity from the mean square of
fluctuations of the time averaged shear stress. The co
sponding formula has also been derived from a more gen
fluctuation theorem Ref.@13#. It was used in@2# to compute
viscosity coefficients of a fluid. Here we analyze the dep
dence of the mean square of the stress fluctuations on
averaging timetav, in particular the crossover fromtav,t to
tav@t. We define an effective viscosity

h@ tav#5tav~2nkBT!21N^s̄~ tav!
2&, ~3!

with Eq. ~2!. Note thath@ tav# reduces toh in the limit tav
@t. For simplicity, we present only results for the tot
stress rather than for its kinetic and potential contributio
separately. A remark on the short-time limit corresponding
tav!t is in order. In this case,s(t) can be replaced bys(0)
in Eq. ~2!. Without the factor 12t/tav, the right hand side of
this equation would yield a result too large by a factor 2. T
crucial factor 1/2 follows from the time integral of (1
2t/tav)/tav.

III. SHEAR MODULUS, TIME CORRELATION
FUNCTION

In the fluid phase, the mean square average of the ins
taneous shear stress is related to the high frequency s
modulusG by ^s(0)2&5N21nkBT(nkBT1G). The quantity
G, sometimes referred to as ‘‘Maxwell shear modulus,’’ c
also be computed by the Born-Green expression, whic
the average of a two-particle quantity, viz.,G
5(15V)21^( i , j@r 22(r 4f8)8# i j &. The prime denotes the de
rivative with respect tor. Born-Green and the fluctuatio
expressions are equal for a system in the fluid~but not in the
solid! state@14#. The shear stress time correlation functi
C(t), with C(0)51, is defined by ^s(t)s(0)&
5^s(0)2&C(t). Then Eq.~2! is equivalent to

^s̄~ tav!
2&/^s~0!2&52tav

21E
0

tav
~12t/tav!C~ t !dt. ~4!
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For an exponentially decaying correlation functionC(t)
5e2t/t with the relaxation time t, one finds
R5 ^s̄(tav)

2& / ^s(0)2& 5 2t / tav@12(t / tav)(12 e2tav /t)#.
Limiting cases fortav@t andtav!t are 2t/tav and 1, respec-
tively.

IV. MD SIMULATION RESULTS

For the test calculations, and reasons discussed in
@15#, the SHRAT potential fSHRAT(r )5(512/27)F0(1
2r /r 0)(322r /r 0)3, r<1.5r 0, and fSHRAT(r )50 for r
.1.5r 0, is used. The quantitiesF0 andr 0 set the character
istic energy and length scales. In numerical calculations
in the graphs displayed here, all physical quantities are
pressed in the standard LJ units of, e.g., lengths and ene
are given in units ofr 0 andF0. The dimensionless variable
are denoted by the same symbols as the corresponding p
cal quantities when no danger of confusion exists. In dim
sionless notation, the SHRAT potentials readsfSHRAT(r )
5(512/27)(12r )(322r )3, r<3/2, whereasfSHRAT(r )50
for r .3/2. Similarly, the number densityn5N/V, whereN
and V are the number of particles and the volume of t
system, and the temperatureT are expressed in units ofnref

5r 0
23 andTref5F0 /kB , respectively. The unit for the pres

sure ispref5F0r 0
23. The units for the pressure, time, velo

ity, and viscosity arepref5•••, t ref5•••, v ref5•••, andh ref
5•••, respectively. Thermophysical properties of this mod
system in its gaseous, liquid, and solid state have rece
been calculated@15#. Here results are presented for a sta
point with the number densityn50.75nref , and the tempera-
tureT5Tref which corresponds to a compressed fluid, som
what above the critical temperature~which is at 0.8Tref),
with a density of more than twice the critical density~about
0.32nref) but well below that one where a fcc crystallin
solid exists, under a considerably higher pressure, at
same temperature.

In the simulations, the equations of motion ofN54383

particles were integrated with the velocity Verlet algorith
with the time-stepdt/t ref50.004. Initially, the particles were
placed on fcc lattice sites and they had random veloci
with a mean square corresponding to the desired tempera
T/Tref51.0. For this temperature, kept constant by rescal
the magnitude of the particle velocities which corresponds
the Gaussian constraint of constant kinetic energy, and
constant number densityn/nref50.75, the crystal melts and
fluid state is approached quickly. The system was well equ
brated by running it for 100 LJ time unitst ref. Then the
thermostat was turned off and the adiabatic~isoenergetic!
simulation was run for another 40 LJ time unitst ref . After-
wards, the integration time step was reduced todt/t ref
50.002 and the quantities of interest were computed
recorded in 4800 10 time-step intervals with durati
0.02t ref . Averaged over the full runtime, the values for th
potential energy per particle, the pressure and the~Born-
Green! shear modulus areepot/F0522.7760.01, p/pref
51.6360.04, andG/pref515.360.1. The average tempera
ture, both computed by the ‘‘kinetic’’ and the ‘‘configura
tional’’ expressions@16#, is T/Tref50.9960.01. In order to
1-2
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analyze the dependence of the mean square fluctuation
the various contributions to the shear stress, the avail
data are further averaged in blocks~divisors of 4800).
This means, time intervals of length tav/t ref
50.02,0,04,0.06, . . . ,1.28,1.92 are considered. The e
semble average needed to evaluate the mean square flu
tion of the shear stress is provided by an average over
various blocks. Notice that we have 4800 of them of len
tav/t ref50.02 but only 50 of lengthtav/t ref51.92.

V. FLUCTUATING SHEAR STRESS

In Fig. 1~a!, the ~logarithm of the! ensemble averages o
the mean square of the time average of the shear stress
tuations, multiplied by the number of particlesN52048, is
displayed as function of the~logarithm of the! inverse aver-

FIG. 1. ~a! The ensemble average of the square of the fluctua
shear stress~in units ofpref), multiplied by the number of particles
and ~b! the ~effective! viscosity ~in units of preft ref), both as func-
tion of the inverse averaging time~in units of t ref). The black dots
mark the new data for shorter values of the averaging times.
gray dots mark the results previously presented in Ref.@2#. The
straight lines indicate the limiting values for averaging times v
short-elastic behavior, horizontal line in a!, slope21 in ~b!—and
very long—viscous behavior, slope 1 in~a!, horizontal line in~b!—
compared with the stress relaxation time, respectively. The cu
describing the intermediate viscoelasticity follows from an exp
nentially decaying time correlation function.
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aging timetav. The approach of the points to the straight lin
with slope 1~left side of the diagram! shows that the mean
square fluctuations, fortav/t ref>1.0, indeed decrease in
versely proportional to the averaging timetav. This proves
that the relevant relaxation time is definitely shorter thant ref ,
see also Ref.@6# for a discussion of this point for the case
fluids with an 1/r n interaction~largen). A quantitative analy-
sis yieldst/t ref50.1 @2#. From the position of this asymptoti
line one determines a value for the shear viscosity, found
be 1.58, in reduced units. The horizontal line indicates
short-time behavior~see Sec. III!, involving the shear modu-
lus G which was computed independently with the help
the Born-Green expression. The thick curve is calcula
from Eq. ~4! with the exponentially decaying stress corre
tion function C(t)5e2t/t. This curve gives a reasonabl
good approximation for the description of the crossover
havior. The relaxation time is the ratio between the viscos
and the shear modulusnkBT1G, quantities which determine
the asymptotic behavior fortav@t and tav!t. Thus the
curve shown which describes the intermediate behavior d
not involve any additional fit parameter.

VI. EFFECTIVE VISCOSITY

The effective viscosityh@ tav# is defined by relation~3! for
arbitrary values oftav. It is displayed in Fig. 1~b! as function
of the inverse averaging timetav ~double logarithmic plot!.
The black dots mark the data computed here for small va
of tav, the larger gray dots stand for the results presen
previously for larger values of the averaging time. The ho
zontal line indicates the shear viscosity, viz.,h/h ref51.58,
with h ref5preft ref . It agrees very well with the valueh/h ref
51.6160.08 obtained for the shear viscosity by nonequil
rium MD simulations in the limit of small shear rates@15#.
The line on the right hand side of Fig. 1~b!, with slope
21, stems from the expression (nkBT1G)tav which is valid
in the limit tav!t. As in Fig. 1~a! the thick curve linking
both asymptotic regimes is based on Eq.~4! with an expo-
nentially decaying time correlation function. As stressed
fore, the relaxation time needed to describe the crosso
from the elastic to the viscous behavior is already determi
by the viscosity and the shear modulus occurring in
asymptotic regimes.

VII. COMPARISON WITH THE COMPLEX VISCOSITY

Qualitatively, the curve for the effective viscosity as fun
tion of the inverse averaging timetav

21 looks somewhat simi-
lar to that for the complex viscosity as function of the fr
quency, used for periodically varying shear rates. T
interrelation between these two types of viscosities can
inferred from Eq.~4! involving the stress time correlatio
function C(t). To be more specific, we note that one h
h(v)5(nkBT1G)*0

`e2 ivtC(t)dt5h82 ih9, whereh8 and
h9 stand for the real and imaginary parts of the comp
viscosity. The back transformation reads (nkBT1G) C(t)
5(2p)21*0

`eivth(v)dv. Insertion of this relation into Eq
~4!, the use of Eq.~3! for the definition of the effective vis-
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cosity h@ tav# and subsequent integration over the time lea
to

h@ tav#5E
0

`

h~x!h8S x

tav
Ddx1E

0

`

g~x!xh9S x

tav
Ddx, ~5!

where the functionsh and g are defined by h(x)
52x22p21@12cos(x)#, and g(x)52x22p21@12sin(x)/x#.
Integration of these functions over the dimensionless v
able x from zero to infinity yields 1 and 1/2, respectivel
Due to the interrelationG(v)5 ivh(v) between the com-
plex shear modulusG(v)5G81 iG9 and the complex vis-
cosity, the termxh9(x/tav) in Eq. ~5! is equivalent to
tavG8(x/tav). Results for very large values of the averagi
time are found again when one takes into account thath9
vanishes for small frequencies. Similarly, for short averag
times, the results given above are recovered when one
serves thath8 vanishes and thatG8 approaches the valu
(nkBT1G) for large frequencies. It is desirable to approx
mate relation~5! involving integrals by an expression involv
ing the complex viscosity or the complex shear modulus
representative frequencies proportional to 1/tav. For the case
of an exponentially decaying time correlation functio
h@ tav#'h8(2p/tav)1(1/2)tavG8(p/tav) is an excellent ap-
proximation. This relation should also provide a reasona
approximation for more general cases.

VIII. CONCLUDING REMARKS

In this article, the dependence of the stress fluctuations
the averaging time was analyzed. In the limiting cases wh
this time is short and long in comparison with the releva
relaxation time, the mean square fluctuations are relate
the ~high frequency! shear modulus and to the~Newtonian!
viscosity, respectively. In these limits, excellent quantitat
v.

o

-
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agreement is found with theoretical expressions involv
the shear modulus and the viscosity determined indep
dently. Numerical results for the crossover between the e
tic and viscous behavior were presented. An effective visc
ity coefficient depending on the averaging time w
introduced and displayed graphically. In fact, it is close
related to the real parts of the complex viscosity and of
complex shear modulus. The crossover behavior is descr
satisfactorily well by a theoretical expression based on
exponentially decaying time correlation function. Here a
in the previous study@2# data were analyzed from a simula
tion run over about 104 relaxation timest. A run time of
about 103t is needed for the determination of a transp
coefficient. When the functional form of the time correlatio
function is known and the crossover behavior is analyz
only up to tav'10t, run times of about 103t may be suffi-
cient. The computation is more demanding for complex fl
ids with relaxation times which are several orders of mag
tude larger than that one of the simple liquid considered h
On the other hand, the required ensemble average can al
obtained from shorter~say 10t) parallel runs starting from
statistically independent initial states. Generalizations of
present method to a study not only the viscosity but ot
transport coefficients, such as the bulk viscosity and the h
conductivity @7#, as well as an extension to complex fluid
e.g., liquid crystals, ferro-fluids@17,18# and polymeric liq-
uids @19#, and to fluids in restricted geometries@20,21#, is
desirable and feasible.
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