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Crossover between short- and long-time behavior of stress fluctuations and viscoelasticity of liquids
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An effective viscosity coefficient is introduced based on definite time averages of equilibrium stress fluc-
tuations rather than stress correlations. Analysis of this quantity via molecular dynamics of a simple model
liquid reveals a crossover between the expected short-time elastic and the long-time viscous behavior with
increasing averaging time. The procedure allows us to extract the zero-rate shear viscosity when the averaging
time becomes one order of magnitude larger than the relevant relaxation time. A relationship between this
effective viscosity and the dynamic viscosities is established.
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I. INTRODUCTION The number density is=N/V. In the MD simulations, pe-
riodic boundary conditions and the “minimum image con-
It has been demonstrated that the shear viscosity of a fluidention” are used in order to avoid boundary layer effects
can be inferred from ensemble averages of the mean squéae0,11]. In a streaming fluid, the stationary rheological prop-
of time averages of the stress fluctuatiphg|. In particular,  erties such as th@on-Newtoniah viscosity and the normal
the long-time behavior of the stress fluctuations was anapressure differences are obtained from long-time averages of
lyzed, where the time averages are taken over times larg@e Cartesian components of the stress tensgr, which is

compared with a stres$vlaxwell) relaxation time. Then a  the negative of the pressure tengoy, , which in turn is the
simple relation exists with the Green and Kul8] expres- kin

sion for linear transport coefficients. In this note we study thesun;Ot of ki';me“fl and. pioteng(lj?l c_olnltrlbutiljor:;spw p"?
crossover between the behavior of stress fluctuations aveft Phr» Puy=V "Zimc,C,, pu,=V "33, F,. Herec

aged over short times to that where the averaging times aré the peculiar velocity of particlg i.e., its velocity relative
long compared with relevant relaxation time. We present reto the flow velocityv(r'), r'! =r'—r/ is the relative position
sults from molecular dynamicdD) computer simulations vector of particles,j, andF'" is the force acting between
and compare them with analytical considerations for a modethem. The Greek subscripgs, v, which assume the values
liquid where both limiting cases, viz., short and long averag-1,2,3, stand for Cartesian components associated with the
ing times, are accessible in the numerical calculations. Arx,y,z directions.

effective viscosity coefficient is introduced which depends |n an equilibrium situation where one has 0, the shear

on the averaging time. Analysis of this quantity reveals thesress, i.e., the off-diagonal components of the stress tensor,
transition from the short-time elastic to the long-time viscousg g, = —p,, and the normal stress differences, ejgp;
behavior. The relation of the effective viscosity to the fre- _ ) = fycruate about zero and their long-time averages van-
quency dependent viscosity coefficient is discussed. Undefgp, “The mean square average of these fluctuating quantities

standing the crossover behavior of the stress fluctuations | o o
also important for the calculation of the viscous behavior Of(?epends on the averaging tnng,[lZ]._More specifically, the

fluids with long relaxation times, where it may be difficult to definition of a time-interval average(t,,) =t,,f {o(t)dt
reach the long-time limit. Expressions used here are similais introduced. The time dependenceotdft) = — p;,(t) stems
to those applied in an analysis of the statistical dependendegom the time dependence of the positions and momenta of
of data extracted from a dynamical interpretation of Montethe particles. It is understood that the integration limits O and
Carlo simulationg4]. The present approach is also some-t,, can be replaced by, and ty+t,, provided that these
what akin to the calculation of elastic constants from straintimes are also within the time span for which the phase space
fluctuations[5], where their dependence on a spatial lengthtrajectory is available. The mean square average is given by
rather than on the duration of a time—interval plays a crucial
role. In Refs.[6—8] a “hard” interaction 1f"—rather than — o [tav tay
the short range attractive “SHRAT” potential to be consid- (o(ta)?) =ty fo dtlfo dty(o(t)o(tz)). (1)
ered in the present work—with a largehad been used. The
crossover from hard to soft spheres had been discussed, e.ghe angular bracketé:--) indicate an ensemble average,
ip Refs.[6,9], where it is argued that t.here are two relevant ;(tav)>:0 has been assumed. In a stationary situation
time sc_ales: the Ens.kog mean free time, and the mean tr%b(tl)a(tz» depends on the time difference-t,—t, only.
versal time for a particle to cross the steep part of the potenyqn the assumption that the equilibrium fluctuations cannot
tial. distinguish between “past” and “future,” i.e.{o(t)o(0))
=(o(—1)a(0)), the integral ovet, ranging from—t,,tot,,
Il STRESS FLUCTUATION FORMULA is replaced by two times the integral from Otig. Further-
Consider a system composedMépherical particles with  more, one has to take into account that the time varigple

massm and position vectors', i=1, ... N in a volumeV. =(t,+t,)/2, for fixedt>0, lies betweert/2 andt,,—t/2.
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Performing the integration over the time variableyields a  For an exponentially decaying correlation functi@t)
factort,,—t. Thus Eq.(1) reduces td10-12 =e Y7 with the relaxation time r, one finds
R= <O-(tav)2> / <U(0)2> =27/t [1=(7/ty) (1 — eitaV/T)]-

— tay Limiti f > < 2 1 -
<O'(tav)2>:2t;v1f dt(1—t/t, ) (o(1)o(0). @ ti\l/rre1||;[/|ng cases fott,,> 7 andt, < are 27/t,,and 1, respec
o :

A characteristic stress relaxation timeis defined by
Jodt{a(t)a(0))=7(c(0)a(0)). Provided that the averag-
ing time t,, is large compared with the relaxation time, For the test calculations, and reasons discussed in Ref.
the termt/t,, can be neglected in the expression—tl  [15], the SHRAT potential ¢S"RAT(r)=(512/27)by(1
to)(o(t)o(0)) occurring in Eq.(2). Then the mean square —r/rg)(3—2r/rg)3, r<21.5 and ¢>"RA(r)=0 for r
stress fluctuation is inversely proportional to the averaging>1.5, is used. The quantitie®, andr set the character-
time. Compared with the mean square fluctuation of the inistic energy and length scales. In numerical calculations and
stantaneous quantityr(0)?), the mean square fluctuation of in the graphs displayed here, all physical quantities are ex-
the corresponding time averaged quantity is reduced by thpressed in the standard LJ units of, e.g., lengths and energies
factor 27-t;v1. In the same limitf,,> 7, the Green-Kubo for- are given in units of  and®,. The dimensionless variables
mula for the shear viscosity=(N/nkgT) [5dt(a(t)o(0)) are denoted by the same symbols as the corresponding physi-
can be used to rewrite qu) as an expression app|icab|e for cal quantities when no danger of confusion exists. In dimen-
the computation of the viscosity from the mean square of théionless notation, the SHRAT potentials reag$"*"(r)
fluctuations of the time averaged shear stress. The corre= (512/27)(1-r)(3—2r)3, r=<3/2, whereasp>"**(r)=0
sponding formula has also been derived from a more gener#®r r>3/2. Similarly, the number density=N/V, whereN
fluctuation theorem Ref13]. It was used iff2] to compute ~and V are the number of particles and the volume of the
viscosity coefficients of a fluid. Here we analyze the depensystem, and the temperatufeare expressed in units of
dence of the mean square of the stress fluctuations on thery > and T,e=®o/kg, respectively. The unit for the pres-
averaging time,,, in particular the crossover from,<7to  sure isp,e=Por, >. The units for the pressure, time, veloc-

IV. MD SIMULATION RESULTS

to> 7. We define an effective viscosity ity, and viscosity ar@e=""*, tref=""", Uref= """, and 7
=---, respectively. Thermophysical properties of this model
ﬁ[tav]=ta\/(2nkBT)71N<;(tav)2> (3) system in its gaseous, liquid, and solid state have recently

been calculated15]. Here results are presented for a state

wih 5. (2. Noe thatt,] reduces toyin the i, BONLVD he umber densy 075,y e empers

> 7. implici e " e ' )
7. For simplicity, we present only results for the tOtalswhat above the critical temperatufahich is at 0.8 ),

stress rather than for its kinetic and potential contributions . . i "
separately. A remark on the short-time limit corresponding toW'th a density of more than twice the critical densigbout

t, < is in order. In this caser(t) can be replaced by(0) 0.3, but well below that one where a fcc crystalline

in Eq. (2). Without the factor +-t/t,,, the right hand side of solid exists, under a considerably higher pressure, at the
-(2). av same temperature.

this equation would yield a result too large by a factor 2. The : . . . 3
crucial factor 1/2 follows from the time integral of (1 In the S|mula_1t|ons, the equations of motion Nf=4><8_
particles were integrated with the velocity Verlet algorithm

~ta) /tay. with the time-stepst/t,;=0.004. Initially, the particles were
placed on fcc lattice sites and they had random velocities
lll. SHEAR MODULUS, TIME CORRELATION with a mean square corresponding to the desired temperature

FUNCTION T/T,=1.0. For this temperature, kept constant by rescaling

the magnitude of the particle velocities which corresponds to

In the fluid phase, the mean square average of the mstar,gﬁe Gaussian constraint of constant kinetic energy, and the
taneous shear stress is related to the high frequency shear

modulusG by ((0)2) =N~ ks T(nks T+ G). The quantity constant number densityn=0.75, the crystal melts and a

: . w fluid state is approached quickly. The system was well equili-
G, sometimes referred to as “Maxwell shear modulus, Car?brated by running it for 100 LJ time unitse. Then the

also be computed by the Born-Green expression, which I ermostat was turned off and the adiabaioenergetit

1]?15\7)\/ € {?ge _[;)fz(r% ¢,t)v)/?i]sa.rlf';eleprirﬂléagg%tesviﬁf de- simulation was run for another 40 LJ time units. After-
1<) ' wards, the integration time step was reduced ot

rivative with respect tor. Born-Green and the fluctuation ~0.002 and the quantities of interest were computed and
expressions are equal for a system in the flidt not in the recorded in 4800 10 time-step intervals with duration

solid) state[14]. The shear stress time correlation function 0.02,.;. Averaged over the full runtime, the values for the

C(t), with C(0)=1, is defined b t)o (0 . .
=(<<)r(0)2>C(t) 'Ighgn Eq.(2) is equivalent tg (o (0)) potential energy per particle, the pressure and (Bern-
' ' Green shear modulus areP?Yd,=—2.77+0.01, p/p,e
=1.63+0.04, andG/p,e=15.3+0.1. The average tempera-

_— tav “lor ki “ 1
t V2 /{(o(0)2 :2t—1f 1—t/t.)C(t)dt. 4 ture, both computed by the “kinetic” and the “configura-
(o(ta))/(o(0)7) =2t 0 ( ) C(1) @ tional” expressiong16], is T/T,e=0.99+0.01. In order to
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aging timet,,. The approach of the points to the straight line

20.0 density = 0.75, adiabati . . .
e adiabane with slope 1(left side of the diagramshows that the mean

average temperature = 1.0

10.0 square fluctuations, fot,,/t,=1.0, indeed decrease in-
5 B versely proportional to the averaging tinhg. This proves
$ that the relevant relaxation time is definitely shorter than
5 20 see also Ref.6] for a discussion of this point for the case of
S fluids with an 1" interaction(largen). A quantitative analy-
s A1 sis yieldsr/t,e=0.1[2]. From the position of this asymptotic
05 line one determines a value for the shear viscosity, found to
be 1.58, in reduced units. The horizontal line indicates the
02 short-time behavio(see Sec. ll), involving the shear modu-
lus G which was computed independently with the help of
005 0. 02 05 10 20 50 10.0 200 500 the Born-Green expression. The thick curve is calculated
inverse averaging time from Eq. (4) with the exponentially decaying stress correla-

tion function C(t)=e V7. This curve gives a reasonably

good approximation for the description of the crossover be-
havior. The relaxation time is the ratio between the viscosity
and the shear modulukg T+ G, quantities which determine
the asymptotic behavior fot,>r and t,<7. Thus the

density = 0.75, adiabatic
2.0 average temperature = 1.0

10 curve shown which describes the intermediate behavior does
g not involve any additional fit parameter.
$ os
-
VI. EFFECTIVE VISCOSITY
02 The effective viscosity[ t,,] is defined by relation3) for

arbitrary values of,. It is displayed in Fig. (b) as function
of the inverse averaging timig, (double logarithmic plot
005 0.1 02 05 [0 20 50 0.0 200 500 The black dots mark the data computed here for small values
inverse averaging time of t,,, the larger gray dots stand for the results presented
. previously for larger values of the averaging time. The hori-
o F'G'tl' (Zf) The_tensfeml)nle avlfi_ra}gedo; ”:E squarg of t?e fILi_Ctluat'”gzontal line indicates the shear viscosity, viz/, 7= 1.58,
shear stres@n units of p.e;), multiplied by the number of particles, . _ :
and ) h i Vecosy 1 s o . bo o . g1 it e very el i e vallver
tion of the inverse averaging tim@ units oft,s). The black dots iun.1 MD .simulations in the limit of small shear ratgss|
mark the new data for shorter values of the averaging times. Th he line on the right hand side of Fig(h, with Slopel

gray dots mark the results previously presented in R&f. The . L -
straight lines indicate the limiting values for averaging times very 1, stems from the expressionKgT + G)t,, which is valid

short-elastic behavior, horizontal line in, alope—1 in (h)—and N the limit t;<7. As in Fig. (@) the thick curve linking
very long—viscous behavior, slope 1 (&), horizontal line in(b)— both asymptotic regimes is based on E4). with an expo-

compared with the stress relaxation time, respectively. The curv@entially decaying time correlation function. As stressed be-
describing the intermediate viscoelasticity follows from an expo-fore, the relaxation time needed to describe the crossover

nentially decaying time correlation function. from the elastic to the viscous behavior is already determined
by the viscosity and the shear modulus occurring in the

analyze the dependence of the mean square fluctuations 8gymptotic regimes.
the various contributions to the shear stress, the available
data are further averaged in blockdivisors of 4800). \; coMPARISON WITH THE COMPLEX VISCOSITY
This means, time intervals of lengtht,,/t,
=0.02,0,04,0.06...,1.28,1.92 are considered. The en- Qualitatively, the curve for the effective viscosity as func-
semble average needed to evaluate the mean square flucttian of the inverse averaging tinig," looks somewhat simi-
tion of the shear stress is provided by an average over thiar to that for the complex viscosity as function of the fre-
various blocks. Notice that we have 4800 of them of lengthquency, used for periodically varying shear rates. The
ta/trer=0.02 but only 50 of length,,/t,.=1.92. interrelation between these two types of viscosities can be
inferred from Eq.(4) involving the stress time correlation
function C(t). To be more specific, we note that one has
n(w)=(nkgT+G) e '“'C(t)dt=75'—i7", whereyn’ and

In Fig. 1(a), the (logarithm of th¢ ensemble averages of 7" stand for the real and imaginary parts of the complex
the mean square of the time average of the shear stress flugscosity. The back transformation readskgT+G) C(t)
tuations, multiplied by the number of particlés=2048, is  =(27) 1f;€'“'n(w)dw. Insertion of this relation into Eq.
displayed as function of thdogarithm of the inverse aver- (4), the use of Eq(3) for the definition of the effective vis-

V. FLUCTUATING SHEAR STRESS
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cosity 7[t,,] and subsequent integration over the time leadfigreement is found with theoretical expressions involving
to the shear modulus and the viscosity determined indepen-

dently. Numerical results for the crossover between the elas-

tic and viscous behavior were presented. An effective viscos-
)dx, (5) ity coefficient depending on the averaging time was

introduced and displayed graphically. In fact, it is closely
where the functionsh and g are defined by h(x) related to the real parts of the complex viscosity and of the
=2x"27 Y 1-cosK)], and g(x)=2x"?m [1-sin)/x].  complex shear modulus. The crossover behavior is described
Integration of these functions over the dimensionless varisatisfactorily well by a theoretical expression based on an
able x from zero to infinity yields 1 and 1/2, respectively. exponentially decaying time correlation function. Here and
Due to the interrelatiors(w)=iwn(w) between the com- in the previous study2] data were analyzed from a simula-
plex shear modulu§(w)=G’+iG" and the complex vis- tion run over about 10relaxation timesr. A run time of
cosity, the termxy”(x/t,) in Eq. (5) is equivalent to about 187 is needed for the determination of a transport
.G’ (x/ty). Results for very large values of the averagingcoefficient. When the functional form of the time correlation
time are found again when one takes into account #fat function is known and the crossover behavior is analyzed
vanishes for small frequencies. Similarly, for short averaging®nly up tot,~107, run times of about - may be suffi-
times, the results given above are recovered when one olgient. The computation is more demanding for complex flu-
serves thatp’ vanishes and thaB’ approaches the value ids with relaxation times which are several orders of magni-
(nksgT+G) for large frequencies. It is desirable to approxi- tude larger than that one of the simple liquid considered here.
mate relatior(5) involving integrals by an expression involy- On the other hand, the required ensemble average can also be
ing the complex viscosity or the complex shear modulus apbtained from shorte(say 10-) parallel runs starting from
representative frequencies proportional tg,1/For the case Statistically independent initial states. Generalizations of the
of an exponentially decaying time correlation function Present method to a study not only the viscosity but other
tad~ 7' (2mlty) + (U2)t,G' (7/t,) is an excellent ap- transport coefficients, such as the bulk viscosity and the heat

proximation. This relation should also provide a reasonabl&onductivity[7], as well as an extension to complex fluids,

X
t

o0 X o0
n[tav]=f0 h(X)n’(t—av dx+ fo g(X)Xn"(

av

approximation for more general cases. e_.g., |ICIU|d Crystals,_ferr_o-fluid§_17,18:| and po_IymeriC |Iq-
uids [19], and to fluids in restricted geometrig®0,21], is
VIIl. CONCLUDING REMARKS desirable and feasible.
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