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Nonlinear volatility of river flux fluctuations
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We study the spectral properties of the magnitudes of daily river flux increments, the volatility. The volatility
series exhibits~i! strong seasonal periodicity and~ii ! power-law correlations for time scales less than 1 yr. We
test the nonlinear properties of the river flux increment series by randomizing its Fourier phases and find that
the surrogate volatility series~i! has almost no seasonal periodicity and~ii ! is weakly correlated for time scales
less than 1 yr. We quantify the degree of nonlinearity by measuring~i! the amplitude of the power spectrum at
the seasonal peak and~ii ! the correlation power-law exponent of the volatility series.
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Climate is strongly forced by the periodic variations
the Earth with respect to state of the solar system. The
sonal variations in the solar radiation cause periodic chan
in temperature and precipitation, which eventually lead
seasonal periodicity of river flow. In spite of this wel
defined seasonal change, river flow exhibits highly unp
dictable complex behavior; floods and droughts are usu
unexpected and cause severe damage in life, housing,
agriculture products. Hence, river flow is likely to have
indirect nonlinear response to the various focings, am
them the seasonal changes in solar radiation.

Many components of the water budget of a catchment
coupled in a nonlinear fashion. The key for all interactio
between atmospheric processes like precipitation, temp
ture, humidity, and surface runoff is the soil. The dynam
state of this key variable is highly nonlinear. An essen
feature in this respect is, e.g, the dependence of this dyn
ics from the past.

By means of the methods proposed here, it will be p
sible to characterize quantitatively the degree of nonlinea
of the involved processes in a compact way by investiga
the outputs of the catchment~the resulting runoff time series!
only. This check would be very helpful, for example, in vie
of the design of time series models or statistical predict
algorithms.

There are several statistical approaches to the stud
river flow fluctuations. For instance, river flow fluctuation
have broad probability distribution, i.e, the tails of the dist
bution decay approximately as a power law@1,2#. Moreover,
river flow fluctuations have unique temporal organizatio
they are long-range power-law correlated and possess s
invariant structure@3#. These power-law correlations are us
ally characterized by scaling exponents@4,5# as was origi-
nally defined by Hurst for the Nile River floodings@6#. Simi-
lar power-law correlations occur also for temperatu
fluctuations in the atmosphere@7# and in the oceans. How
ever, such scaling laws only quantify the linear propert
~two-point correlations! of a time series. Here we study oth
nonlinear aspects of river flow fluctuations.
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A nonlinearity of a stationary time series may be defin
with respect to its Fourier phases@8,9#. The series where its
statistical properties are independent of the Fourier phas
linear, otherwise the series isnonlinear. For instance, autore
gression processes and fractional Brownian motion are
ear, while multifractal processes are nonlinear. Recently
has been shown that volatility correlations of long-ran
power-law correlated time series reflect the degree of non
earity of a time series@9#. Given a time seriesxi , the vola-
tility series is defined as the magnitudes of the series in
ments, uDxi u[uxi 112xi u. It was found that long-range
correlated linear series have uncorrelated volatility ser
while long-range correlated nonlinear series have correla
volatility series; see Ref.@9# for details. Power-law correla
tions in the volatility series indicate that the magnitud
uDxi u are clustered into patches of small and b
magnitudes—a big magnitude increment is likely to prece
a big magnitude increment, and vice versa. When the v
tility series uDxi u is uncorrelated, the increment series is h
mogeneous. Volatility correlations were found, e.g.,
econometric time series@10#, heartbeat interval series@9,11#,
and human interstride interval series@12#.

Here we study the volatility properties of daily river flow
fluctuations. We first extend the notion of volatility to per
odic time series. We find that after randomizing the Four
phases of the river flow increment series, the periodicity
the volatility series is almost diminished, indicating that ‘‘p
riodic volatility’’ is a result of nonlinearity. We also find
long-range volatility correlations for time scales below 1
Our results suggest that clusters of magnitudes of river fl
increments appear in two ways: periodically and in lon
range correlated manner.

We analyze the daily river flux time series of 30 rive
scattered around the globe. The mean flux of these riv
ranges from;0.6 m3/s to ;23105 m3/s, covering more
than five orders of magnitudes. The series length ranges f
26 yr to 171 yr, with an average length of 81 yr. Figure
shows a typical example of 4 yr~1986–1990! of River flow
©2003 The American Physical Society01-1
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data ~Maas river, Europe!. It is evident that fluctuations
around large river flows are large, while fluctuations arou
small river flows are small.

To study the nonlinear properties of the river flow reco
we apply a surrogate data test to the river flow increm
series. Shortly, the surrogate series is created as follows~i!
shuffle the original series,~ii ! Fourier transform the shuffled
series and adjust its power spectrum to the power spec
of the original series, and~iii ! inverse transform the serie
from ~ii ! and adjust its histogram to the histogram of t
original series. Repeat steps~ii ! and~iii ! till convergence; for
more details, see Ref.@8#. The surrogate data test preserv
both the power spectrum and the probability distribution
the river flow increment series but randomizes the Fou
phases. Thus, the surrogate data test linearizes the serie
der consideration. Since the histograms of the original inc

FIG. 1. Typical river flow time series of the Maas River~Eu-
rope!. The record shows a periodic pattern with irregular fluctu
tions. Fluctuations are large around large river flow and sm
around small river flow.

FIG. 2. River flux increment series of the Maas River~left pan-
els! and their corresponding power spectra~right panels! before
~upper panels! and after~lower panels! the surrogate test for non
linearity. The series length is 80 yr where just the last 4 yr data
shown~in the left panels!. The original river flow increment serie
and the surrogate increment series have identical probability di
butions and very similar power spectra.
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ment series and of the surrogate series are identical, one
be sure that the probability distribution is not the source
the nonlinearity of the data. Figure 2 shows the river flo
increment series and its power spectrum before and after
surrogate data test. Although the river flow increment se
exhibits irregular behavior, its power spectrum shows a v
pronounced seasonal peak with few harmonics. As expec
the surrogate series shows a similar pattern with very sim
power spectrum.

Next we compare the power spectrum of the volatil
series obtained from the original increment river flow ser
with the surrogate series~Fig. 3!. The power spectrum of the
original volatility series shows a pronounced seasonal pe
while the power spectrum of the surrogate volatility ser
has no seasonal periodicity. The seasonal periodicity of
original volatility series may be associated with the increa
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FIG. 3. Same as Fig. 2, but for the river flow volatility serie
uDFi u[uFi 112Fi u. Here, the original volatility series shows a pro
nounced seasonal peak, while the surrogate volatility series doe
show such a peak, indicating that the periodicity in the volatil
series is a result of nonlinearity.

FIG. 4. Log-log plot of the power spectra shown in Fig. 3. T
solid lines are the best fits ofS( f );1/f b for frequencies
1.05 yr21, f ,52 yr21. The original volatility series~left panel!
decays as a power law (1/f b50.66), indicating long-range correla
tions. The power spectrum of the linearized surrogate volati
~right panel! series has a flatter spectrum, indicating much less c
related behavior. Thus, correlations in the volatility series are
additional measure for nonlinearity of the river flow increment tim
series.
1-2



-
e
a
a

e
di
t o
ie
a
k
on

a
es
a-

-
n

e

um
an

r
gate
ere

e in

hod,

ge
-
iv-
its
rea
es
ries

he

f
-
t of

is
ge
rro-

e
o-

n

a-

te
om
via
he
er

rs
rie
v

ies

e
-
ctra

BRIEF REPORTS PHYSICAL REVIEW E67, 042101 ~2003!
fluctuation for large river flux~Fig. 1!. The absence of sea
sonal periodicity for the surrogate volatility series is som
how counterintuitive since the surrogate series itself is
periodic as the original river flow increment series, while
simple inversion operation of the negative values ofDxi to
obtain uDxi u diminishes this periodicity. This absence of th
seasonal periodicity from the surrogate volatility series in
cates that periodicity in the magnitude series is a resul
nonlinearity associated with correlations in the Four
phases. We suggest that the amplitude of the seasonal pe
the original volatility series compared to the seasonal pea
the surrogate volatility series can quantify the degree of n
linearity.

We use the power spectra of the original and surrog
volatility series to analyze the correlation properties of th
series. A seriesxi is long-range correlated if its autocorrel
tion function decays as a power law,C( l )5@1/(N
2 l )#( i 51

N2 lxi 1 lxi; l 2g, whereN is the series total length,l is
the lag, andg is the correlation exponent (0,g,1). Then
also the power spectrum follows the scaling lawS( f )
;1/f b, whereg512b. In Fig. 4 we show the power spec
tra of the original and surrogate volatility series for freque
cies larger than 1 yr21. While the power spectrum of th

FIG. 5. A summary of the results obtained for 30 rivers arou
the world. For each river flow increment series (d), we generated
ten surrogate series (s), and calculated the amplitude of the se
sonal peak of the volatility series~upper panel! and the scaling
exponentb for frequencies 1.05 yr21, f ,52 yr21 ~lower panel!;
the average and 1 standard deviation are shown. In order to sys
atically compare the results of the different rivers, we subtract fr
the volatility series its mean and normalize it by its standard de
tion. The seasonal peak of the volatility series is significantly hig
compared to the seasonal frequency of the surrogate volatility s
~upper panel!. The scaling exponentb shown in the lower panel is
systematically higher for the original volatility series. For 27 rive
the original volatility exponent lies well above the surrogate se
exponent. The error bars on the right hand side are the group a
age61 standard deviation.
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surrogate volatility series is almost flat, the power spectr
of the original volatility series decays as a power law with
exponent ofb'0.66. Thus~i! the original volatility series is
power-law correlated and~ii ! its correlations are a nonlinea
measure since they significantly reduced after the surro
data test. The interpretation of these correlations is that th
are clusters of big magnitudesuDFi u that are statistically fol-
lowed by patches of big magnitudes. These clusters ar
addition to the periodic clustering~shown in Fig. 3!. We also
repeated the scaling analysis with a more advanced met
the detrended fluctuation analysis@13#, and find less noisy
but similar results@14#.

We summarize the periodic volatility and the long-ran
volatility correlation results for 30 rivers in Fig. 5. To sys
tematically compare the seasonal periodicity of different r
ers, we first normalize the volatility series by subtracting
mean and dividing it by its standard deviation; thus, the a
under the power spectrum of the different volatility seri
should be the same. The seasonal peak of the volatility se
exists for all 30 rivers, and is significantly higher than t
seasonal peak of the surrogate volatility series~Fig. 5, upper
panel!. The scaling exponentb of the original volatility se-
ries ~Fig. 5, lower panel! indicates correlations; in most o
the cases~27/30590%! the exponent of the original volatil
ity series lies above 1 standard deviation of the exponen
the surrogate volatility series. The average61 standard de-
viation of the scaling exponent of original volatility series
b50.4960.11, and is significantly higher than the avera
61 standard deviation of the scaling exponent of the su
gate volatility seriesb50.1860.13. Thep value of the stu-
dent’st test is less than 1026. For time scales above 1 yr, th
volatility series is only weakly correlated with average exp
nentb50.2760.26.
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FIG. 6. The power spectrum of the normalized volatility ser
uDxi u of an artificial seriesxi5(11Ah i)si for different noise levels
A; see text. The power spectra of the original~upper panels! and
surrogate~lower panel! volatility series are shown. When the nois
level increases~from left to right!, the seasonal peak of the surro
gate volatility series reduces. The harmonics of the power spe
are partly caused by the asymmetricxi and partly because of the
absolute value operation for the volatility series.
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Thus, we find two measures of nonlinearity related to
river flow data, periodic volatility and long-range correlat
volatility. These two measures are related to the clusterin
the magnitudes of river flow fluctuations, periodic and lon
range correlated clustering.

To study in more detail the possible source for such
seasonal periodicity of the volatility series, we propose
simple scheme to generate series with some similar cha
teristics as for the river flow data. To mimic the enhanc
fluctuations for large river flow, we assume thatxi5(1
1Ah i)si , whereh i is a Gaussian white noise~zero mean
and unit standard deviation!, A is the noise level, andsi is an
asymmetric periodic function,

si5sj 1nT5H 11cos~2p f j ! for 0< j ,
2

3
T,

12cos~4p f j ! for
2

3
T< j ,T,

~1!

whereT5365 is the time period in arbitrary units,j is an
integer 0< j ,T, f 50.75/T, andn is an integer.xi decreases
for 2/3 of the time periodT and increases for 1/3 of this tim
period. When the noise levelA increases, the nonlinear term
Ah isi also increases. We generatexi series with different
noise levels, and then calculate the power spectrum of
normalized volatility seriesuDxi u of the original and surro-
gateDxi series~Fig. 6!. We find that when the noise level i
relatively small the seasonal peak is present in both the o
nal and surrogate volatility series. The periodicity of the s
rogate volatility series diminishes for increasing noise lev
Thus, the larger is the difference between the peak of orig
an
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volatility series and the peak of the surrogate volatility s
ries, the larger is the nonlinearity ofDxi . This scheme indi-
cates that the surrogate data test does not always dem
the seasonal periodicity of the volatility series, but rath
eliminates the nonlinear part of the process which is prop
tional to the noise level. We also analyzed time series ge
ated by a realistic hydrological model~ASGi model for Ba-
varia, Germany@15#! for the Naab, Regniz, and Vils Rivers
Both the seasonal periodicity of the volatility series and
correlations are reproduced by the model and disappear
phase randomization, as for the real data.

In summary, we have analyzed the periodic and lon
range correlated volatility of river flow data for 30 river
around the globe. We find that the volatility series are cor
lated with a power-law behavior for time scales less tha
yr. The periodic volatility and the long-range correlated vo
tility disappear after randomizing the Fourier phases; indic
ing that these volatility features result from a nonlinear d
namical process. These volatility features may quantify
degree of nonlinearity. We suggest that such nonlinear
tures may result from an interaction between noise and
seasonal trends.

Preliminary analysis of other climate records, such
daily temperature and pressure records, shows the exist
of periodic and long-range volatility with similar propertie
as for the river flow data. Thus, the results presented h
may be generic for other climate records.
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