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Nonlinear volatility of river flux fluctuations
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We study the spectral properties of the magnitudes of daily river flux increments, the volatility. The volatility
series exhibitgi) strong seasonal periodicity aifii) power-law correlations for time scales less than 1 yr. We
test the nonlinear properties of the river flux increment series by randomizing its Fourier phases and find that
the surrogate volatility serig$) has almost no seasonal periodicity diiglis weakly correlated for time scales
less than 1 yr. We quantify the degree of nonlinearity by meastuijrtge amplitude of the power spectrum at
the seasonal peak aiii) the correlation power-law exponent of the volatility series.
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Climate is strongly forced by the periodic variations of A nonlinearity of a stationary time series may be defined
the Earth with respect to state of the solar system. The seavith respect to its Fourier phasgs,9]. The series where its
sonal variations in the solar radiation cause periodic changestatistical properties are independent of the Fourier phases is
in temperature and precipitation, which eventually lead tdinear, otherwise the series i®nlinear For instance, autore-
seasonal periodicity of river flow. In spite of this well- gression processes and fractional Brownian motion are lin-
defined seasonal change, river flow exhibits highly unpreear, while multifractal processes are nonlinear. Recently, it
dictable complex behavior; floods and droughts are usualljras been shown that volatility correlations of long-range
unexpected and cause severe damage in life, housing, apdwer-law correlated time series reflect the degree of nonlin-
agriculture products. Hence, river flow is likely to have anearity of a time serief9]. Given a time serieg; , the vola-
indirect nonlinear response to the various focings, amongjlity series is defined as the magnitudes of the series incre-
them the seasonal changes in solar radiation. ments, |Axj|=|x;,1—X;|. It was found that long-range

Many components of the water budget of a catchment argy rejated linear series have uncorrelated volatility series,
coupled in a nonlinear fashion. The key for all interactions, hjje |ong-range correlated nonlinear series have correlated
between atmospheric processes like precipitation, tempergyaiijity series; see Ref9] for details. Power-law correla-
ture, humidity, and surface runoff is the soil. The dynam'ctions in the volatility series indicate that the magnitudes

state of this key variable is highly nonlinear. An essential Ax,| are clustered into patches of small and big

feature in this respect is, e.g, the dependence of this dynam- . : . : .
ics from the past. magnitudes—a big magnitude increment is likely to precede

By means of the methods proposed here, it will be posf’.‘.big mggnitude' increment, and vicg versa. When thg vola-
sible to characterize quantitatively the degree of nonlinearit)}'“ty series|Ax| is Wco”e'atedz the increment series is h?'
of the involved processes in a compact way by investigating"9eneous. Volatility correlations were found, e.g., in
the outputs of the catchmefihe resulting runoff time serigs ~€conometric time serigd.0], heartbeat interval seri¢$,11],
only. This check would be very helpful, for example, in view @nd human interstride interval serigi2].
of the design of time series models or statistical prediction Here we study the volatility properties of daily river flow
algorithms. fluctuations. We first extend the notion of volatility to peri-

There are several statistical approaches to the study ¢fdic time series. We find that after randomizing the Fourier
river flow fluctuations. For instance, river flow fluctuations phases of the river flow increment series, the periodicity of
have broad probability distribution, i.e, the tails of the distri- the volatility series is almost diminished, indicating that “pe-
bution decay approximately as a power Ify2]. Moreover, riodic volatility” is a result of nonlinearity. We also find
river flow fluctuations have unique temporal organization;long-range volatility correlations for time scales below 1 yr.
they are long-range power-law correlated and possess scalur results suggest that clusters of magnitudes of river flow
invariant structur¢3]. These power-law correlations are usu- increments appear in two ways: periodically and in long-
ally characterized by scaling exponefts5] as was origi- range correlated manner.
nally defined by Hurst for the Nile River flooding§]. Simi- We analyze the daily river flux time series of 30 rivers
lar power-law correlations occur also for temperaturescattered around the globe. The mean flux of these rivers
fluctuations in the atmosphef&] and in the oceans. How- ranges from~0.6 ni/s to ~2x10° m%/s, covering more
ever, such scaling laws only quantify the linear propertieghan five orders of magnitudes. The series length ranges from
(two-point correlationsof a time series. Here we study other 26 yr to 171 yr, with an average length of 81 yr. Figure 1
nonlinear aspects of river flow fluctuations. shows a typical example of 4 y1986—-1990 of River flow
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FIG. 1. Typical river flow time series of the Maas Rivtu- 0 . ‘ y ‘ . Jqg®
rope. The record shows a periodic pattern with irregular fluctua- 1986 1987 1988 1989 1990 O 1 2 3
tions. Fluctuations are large around large river flow and small t[year] f[1/year]

round small river flow. . . - .
around small river flo FIG. 3. Same as Fig. 2, but for the river flow volatility series

. . . . |AFi|=|F;.,—Fi|. Here, the original volatility series shows a pro-
data (Maas river, Europe It is eVIde_nt that qu_CtuatlonS nounced seasonal peak, while the surrogate volatility series does not
around large river flows are large, while fluctuations aroundsno,y such a peak, indicating that the periodicity in the volatility
small river flows are small. series is a result of nonlinearity.

To study the nonlinear properties of the river flow record,

we apply a surrogate data test to the river flow incremen}"nent series and of the surrogate series are identical, one can
series. Shortly, the surrogate series is created as follGyvs: ! urrog ! ! \cal,

shuffle the original seriesii) Fourier transform the shuffled be sure .that Fhe probability dlstrlbutlon is not the source of

series and adjust its power spectrum to the power spectrume nonImean_ty of th?‘ data. Figure 2 shows the river flow

of the original series, andii) inverse transform the series increment series and its power spectrum be_fore and after_the
from (i) and adjust its histogram to the histogram of thesurr_ogat_e data test. Although the river flow increment series
original series. Repeat stefig and(iii ) till convergence; for exhibits irregular behavior, Its power spectrum shows a very
more details, see Relffi8]. The surrogate data test preservespronouncecj seas.onal peak W't.h f_ew harmonlcs. As expgc_ted,
both the power spectrum and the probability distribution Ofthe surrogate series shows a similar pattern with very similar

the river flow increment series but randomizes the Fouriepovmertspectrum. th ¢ f th latilit
phases. Thus, the surrogate data test linearizes the series un- ext we compare the power spectrum ot the volatiiity

r consideration. Since the hi rams of the original incr §§ries obtained from t_he _original increment river flow series
der consideration. Since the histograms of the original inc eW|th the surrogate serig§ig. 3). The power spectrum of the

original volatility series shows a pronounced seasonal peak,

500 : - - -
Data while the power spectrum of the surrogate volatility series
110° has no seasonal periodicity. The seasonal periodicity of the
AF o original volatility series may be associated with the increased
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t [year] f[1/year] FIG. 4. Log-log plot of the power spectra shown in Fig. 3. The

solid lines are the best fits oS(f)~1/f# for frequencies
FIG. 2. River flux increment series of the Maas Rivieft pan- 1.05 yr 1<f<52 yr 1. The original volatility serieqleft pane)

el9 and their corresponding power spectright panely before  decays as a power law ¢£7°9, indicating long-range correla-
(upper panelsand after(lower panels the surrogate test for non- tions. The power spectrum of the linearized surrogate volatility
linearity. The series length is 80 yr where just the last 4 yr data aréright pane] series has a flatter spectrum, indicating much less cor-
shown(in the left panels The original river flow increment series related behavior. Thus, correlations in the volatility series are an
and the surrogate increment series have identical probability distriadditional measure for nonlinearity of the river flow increment time
butions and very similar power spectra. series.
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fluctuation for large river fluxXFig. 1). The absence of sea- surrogate volatility series is almost flat, the power spectrum
sonal periodicity for the surrogate volatility series is some-of the original volatility series decays as a power law with an
how counterintuitive since the surrogate series itself is agxponent of8~0.66. Thug(i) the original volatility series is
periodic as the original river flow increment series, while apower-law correlated an@i) its correlations are a nonlinear
simple inversion operation of the negative valuesAof to measure since they significantly reduced after the surrogate
obtain|Ax;| diminishes this periodicity. This absence of the data test. The interpretation of these correlations is that there
seasonal periodicity from the surrogate volatility series indi-are clusters of big magnitud¢AF;| that are statistically fol-
cates that periodicity in the magnitude series is a result ofowed by patches of big magnitudes. These clusters are in
nonlinearity associated with correlations in the Fourieraddition to the periodic clusteringhown in Fig. 3. We also
phases. We suggest that the amplitude of the seasonal peakrepeated the scaling analysis with a more advanced method,
the original volatility series compared to the seasonal peak ahe detrended fluctuation analygis3], and find less noisy
the surrogate volatility series can quantify the degree of nonbut similar resultg14].
linearity. We summarize the periodic volatility and the long-range
We use the power spectra of the original and surrogateolatility correlation results for 30 rivers in Fig. 5. To sys-
volatility series to analyze the correlation properties of theseéematically compare the seasonal periodicity of different riv-
series. A serieg; is long-range correlated if its autocorrela- ers, we first normalize the volatility series by subtracting its
tion function decays as a power lawC(l)=[1/(N mean and dividing it by its standard deviation; thus, the area
—1)1=N"% 1 x;~177, whereN is the series total lengthjs ~ under the power spectrum of the different volatility series
the lag, andy is the correlation exponent by<1). Then should be the same. The seasonal peak of the volatility series
also the power spectrum follows the scaling l&8¢f) exists for all 30 rivers, and is significantly higher than the
~1/f#, wherey=1- 8. In Fig. 4 we show the power spec- Seasonal peak of the surrogate volatility setfeg. 5, upper
tra of the original and surrogate volatility series for frequen-panej. The scaling exponeng of the original volatility se-

cies larger than 1 yr'. While the power spectrum of the ries (Fig. 5, lower panelindicates correlations; in most of
the case$27/30=90%) the exponent of the original volatil-

10° ity series lies above 1 standard deviation of the exponent of
100 | .. ] the surrogate volatility series. The averagé standard de-
. *t .. . 5T otet 4 e viation of the scaling exponent of original volatility series is
,-’: 10% °° e 3 et W, I° . 31 B=0.49+0.11, and is significantly higher than the average
=100 L9 T 3 T 3 ] +1 standard deviation of the scaling exponent of the surro-
D71 “ s 33 ® 17 Egg'g I T gate volatility serieg3=0.18=0.13. Thep value of the stu-
0 ¢ Ty ooy T T dent'st test is less than I6. For time scales above 1 yr, the
10° Lo volatility series is only weakly correlated with average expo-
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FIG. 5. A summary of the results obtained for 30 rivers around
the world. For each river flow increment serie®), we generated 107
ten surrogate series)), and calculated the amplitude of the sea-
sonal peak of the volatility serie@ipper pangl and the scaling 5 . . . . . | ‘ ‘ ‘
exponentg for frequencies 1.05 yrt<f<52 yr ! (lower pane); 10 1 2 3 1 2 3 1 2 3
the average and 1 standard deviation are shown. In order to systetr f [1/year] f [iyear] f [iyear]

atically compare the results of the different rivers, we subtract from

the volatility series its mean and normalize it by its standard devia- FIG. 6. The power spectrum of the normalized volatility series
tion. The seasonal peak of the volatility series is significantly highefAx;| of an artificial series; = (1+ A;)s; for different noise levels
compared to the seasonal frequency of the surrogate volatility serie&; see text. The power spectra of the origifapper panelsand
(upper pangl The scaling exponern shown in the lower panel is surrogatglower panel volatility series are shown. When the noise
systematically higher for the original volatility series. For 27 rivers, level increasesfrom left to righ, the seasonal peak of the surro-
the original volatility exponent lies well above the surrogate seriegate volatility series reduces. The harmonics of the power spectra
exponent. The error bars on the right hand side are the group aveare partly caused by the asymmetxicand partly because of the
age* 1 standard deviation. absolute value operation for the volatility series.
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Thus, we find two measures of nonlinearity related to thevolatility series and the peak of the surrogate volatility se-
river flow data, periodic volatility and long-range correlatedries, the larger is the nonlinearity &fx; . This scheme indi-
volatility. These two measures are related to the clustering ofates that the surrogate data test does not always deminish
the magnitudes of river flow fluctuations, periodic and long-the seasonal periodicity of the volatility series, but rather
range correlated clustering. eliminates the nonlinear part of the process which is propor-

To study in more detail the possible source for such &ional to the noise level. We also analyzed time series gener-
seasonal periodicity of the volatility series, we propose aated by a realistic hydrological modéASGi model for Ba-
simple scheme to generate series with some similar charagaria, Germany15]) for the Naab, Regniz, and Vils Rivers.
teristics as for the river flow data. To mimic the enhancedBoth the seasonal periodicity of the volatility series and its
fluctuations for large river flow, we assume thgt=(1 correlations are reproduced by the model and disappear after
+Am;)s;, where 7; is a Gaussian white noisgero mean phase randomization, as for the real data.

and unit standard deviatipnA is the noise level, ang is an In summary, we have analyzed the periodic and long-
asymmetric periodic function, range correlated volatility of river flow data for 30 rivers

) around the globe. We find that the volatility series are corre-

. : lated with a power-law behavior for time scales less than 1

1*cog2mtj) for 0<] <§T’ yr. The periodic volatility and the long-range correlated vola-

Si=Sj+nT™ 2 (1) tility disappear after randomizing the Fourier phases; indicat-
1—cog4=fj) for §ng<'r, ing that these volatility features result from a nonlinear dy-

namical process. These volatility features may quantify the
degree of nonlinearity. We suggest that such nonlinear fea-
tures may result from an interaction between noise and the
seasonal trends.

Preliminary analysis of other climate records, such as
daily temperature and pressure records, shows the existence
of periodic and long-range volatility with similar properties
&s for the river flow data. Thus, the results presented here
may be generic for other climate records.

where T=2365 is the time period in arbitrary unitg,is an
integer O<j<T, f=0.75/T, andn is an integerx; decreases
for 2/3 of the time period and increases for 1/3 of this time
period. When the noise levél increases, the nonlinear term
An;s; also increases. We generate series with different
noise levels, and then calculate the power spectrum of th
normalized volatility serie$Ax;| of the original and surro-
gateAx; series(Fig. 6). We find that when the noise level is
relatively small the seasonal peak is present in both the origi- We gratefully acknowledge financial support from the Is-
nal and surrogate volatility series. The periodicity of the surrael Science Foundations and the Deutsche Forschungsge-
rogate volatility series diminishes for increasing noise levelmeinschaft. Y.A. thanks the BIKURA Foundation for finan-
Thus, the larger is the difference between the peak of originatial support.
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