PHYSICAL REVIEW E 67, 041912 (2003
Dynamics of the evolution of learning algorithms by selection

Juan Pablo Neirotti and Nestor Caticha
Departamento de Bica Geral, Instituto de Bica, Universidade de ®aPaulo, Rua do Mata Travessa R 187,
CEP 05508-9003=aPaulo, Brazil
(Received 29 May 2002; revised manuscript received 11 December 2002; published 28 April 2003

We study the evolution of artificial learning systems by means of selection. Genetic programming is used to
generate populations of programs that implement algorithms used by neural network classifiers to learn a rule
in a supervised learning scenario. In contrast to concentrating on final results, which would be the natural aim
while designing good learning algorithms, we study the evolution process. Phenotypic and genotypic entropies,
which describe the distribution of fithess and of symbols, respectively, are used to monitor the dynamics. We
identify significant functional structures responsible for the improvements in the learning process. In particular,
some combinations of variables and operators are useful in assessing performance in rule extraction and can
thus implement annealing of the learning schedule. We also find combinations that can signal surprise, mea-
sured on a single example, by the difference between predicted and correct classification. When such favorable
structures appear, they are disseminated on very short time scales throughout the population. Due to such
abruptness they can be thought of as dynamical transitions. But foremost, we find a strict temporal order of
such discoveries. Structures that measure performance are never useful before those for measuring surprise.
Invasions of the population by such structures in the reverse order were never observed. Asymptotically, the
generalization ability approaches Bayesian results.
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[. INTRODUCTION in the road towards that goal and its characterization. By
analyzing the dynamics we expect to learn something about
In this paper, we consider the dynamics of automatic dehow different functional structures become useful and how
sign of learning algorithms for neural network classifiers. Wethey invade the population of programs. In our analysis we
use genetic programmingP) [1] as a tool to generate a have dealt with the following set of general questio(®:
sequence of populations of programs which implement aVhat are the characteristics of good algorithms? or more
learning algorithm. Programs at one generation give risepecifically, which variable combinations are present in suc-
through crossover and mutations to offspring programs in theessful learning algorithms(®) Is the emergence of such
next generation according to their fitness. The fitness, whiclstructures ordered in time, and if it is so, is that order robust?
defines the problem to be solved, is related in this study to We find that the road from primitive to fitter or more
the efficiency of the learning algorithm implemented by theevolved programs is signaled by the abrupt emergence of
program. We choose a measure of efficiency based on thauch structures. The main result of this paper is that from our
ability of generalization, related to the expected error of thesimulations we can identify such a type of time ordering.
output, on examples which are statistically independent fronThis has some rather interesting biological interpretations.
the training set. Although GP is similar to genetic algorithm  An important question deals with the choice of the learn-
(GA) [2], for both draw inspiration from Darwinian ideas, ing scenario. We study learning of a static linearly separable
they differ in very important ways, most importantly in the (LS) rule, a sufficiently simple learning problem that can be
representation of the evolving structures. In brief, GA aims astudied by analytical means, as far as final results are con-
optimizing a fitness function defined on a parameter space aferned, but which presents a wealth of interesting results.
given dimension. GA deals with a population of parameteiExtensions to non-LS and time dependent rules, the evolu-
vectors in that space, which evolve by operations that typition of kernels for support vector machines and several other
cally include mutation and crossover. The optimization ispossible extensions are left for future work. Related ques-
carried on by selecting the fittest individugthose vectors tions have been addressed befi@&l], see about best results
which give the best outcomefor the crossover. GP, on the and Bayesian bounds in RdE], for a variational point of
other hand, optimizes a fitness function acting over hierarview about the perceptron learning in Rg6], about feed-
chical structuresi.e., programsthat have na priori deter-  forward architectures with hidden units in Refg—9], for
mined form or size. These are in general represented bgrifting rules in Refs[10,11], in an unsupervised scenario
strings of symbols with no predefined ord@vhich is the [12], from a more general Bayesian perspective in Réf3-—
case for the parameter vector of GAonstrained only by 15]; in the case of offline learning in Refgb,16]. From the
syntactic rules. In GP there is a greater freedom in the strugerspective of time ordering it has been discussed in Ref.
tures that can be represented, whereas in GA the represenfa?].
tion is settled from the start. Analysis of the emergence of structures and ensuing inva-
Usually the automatic design of programs has as principagions is done by characterization of the populations at two
aim the solution of a given problem defined by the fitnesddifferent levels: phenotypic and genotypic. At the phenotypic
function. We are not just interested in final results, but ratheor expressed level, description deals with quantities that
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measure the expression of important traits. Program differticular form of Hebbian learning, where the increments] of

ences are irrelevant as long as they give rise to the impleare weighted by anodulationfunction f, thus
mentations of the same function. Even different functions are

the same if they lead to similar fithess values. The genotypic AJ,=d,—3, 1= fO'BMSﬂ/\/N. (1)
level deals with properties that depend on the detailed struc-

ture of the individuals. Two programs are genotypically dif-

ferent if their sequences of variables and operators are diffhis is not very restrictive, as a large fraction of the previ-
ferent, even if they give rise to the same outcomes. Tw®usly studied algorithms, both on-line and off-line, may be
entropies are used in order to deal with the different descripput in a similar way(see, e.g., Ref4]) and in the(thermo-
tion levels. The phenotypic entroffdescribes the distribu- dynamio limit of large networks it can represent asymptoti-
tion of fitness in the population, and the genotypic entrblpy cally efficient learning, which even saturate Bayesian
describes the distribution of probabilities of symbfilsS]. bounds.

The creation of a new program by mixing or crossover of There are two time scales in this problem. The slow scale
preexisting programs, although not impossible, can be diffiis measured in generations, where the learning programs
cult to implement in programming languages such as C anévolve. The fast scale can be thought of as #ge of a
Fortran. The main problem is that the program that manipuneural network. It is a measure of the number of examples to
lates the population programs—theetaprogram-has to cut ~ which a network has been exposed in the learning phase,
and paste the parsing trees of the population programs, avdhere fitness is being measured.
then compile them in order to perform the fithess measure,
all during run time[1,19]. The major part of the work in GP
has been developed in LISP which is also the case in thisB. Method: Algorithm construction by genetic programming

study. LISP’s most prominent characteristic with regard to | thijs section, we describe briefly our implementation of
GP is that programs and data have a common form and aip for the problem at hand. Conventional GA works by ma-
treated in the same manner. This common form is equivaler{jpylating fixed-length character strings that represent candi-
to the parse tree for the computer program. Thus, it can bgate solutions of a given problem. For many problems, hier-
found that genetic manipulations of parse trees are naturglichical computer programs are the most natural
LISP operations. We have developed also a protocol fofepresentation for the solution. Since the size and the shape
simulation of LISP on a Linux Cluster, which is described in of the program that represents the So|ution are unknown in

Ref. [20]. . _ advance, the program should have the potential of changing
The paper is organized as follows. In Sec. Il A, we de-jts sjze and shape.

scribe the learning scenario of rule extraction by a percpetron The simulation starts with a population of randomly cre-
learning from examples. Section Il B gives a brief descrip-ated programs. All these programs have been constructed
tion of GP from the very special point of view which inter- ysing predetermined sets of variables and operators. The
ests us here. Section Il C follows with a description of theconstruction process respects some rules in order to avoid the
tools to characterize the dynamics. Section Il presents thgreation of programs that cannot be evaluated. The GP op-
results and concluding remarks can be found in Sec. IV.  grations are used to create the population of the next genera-
tion. The programs are ranked by their fitness and then the
Il. THE PROBLEM AND THE METHOD GP operations are applied again. These two steps are then
iterated.
The most common computer language used in GP is LISP,
The learning problem to be analyzed by the GP mustherefore we will refer to the population individuals as pro-
strike a balance between being complex enough so that irgrams or LISPS expressions indistinctly. We callfaithful S
teresting dynamics arises and being simple to the point sexpressioiFSE a list of symbols that do not return an error
that details can be understood and simulations performednessage when evaluated. Components, also called atoms, of
The perceptron meets these demands and has a long atitk S expressions can be either functional operators or vari-
distinguished history. For an extensive view from a statisticabbles. LetF be the set of all the operators abidhe set of all
mechanics perspective, see Refl. We consider the realiz- the variables used to write down the FSEs. The choice of
able teacher-student learning scenario. The perceptron claghese sets depends upon the nature of the problem being
sifies vectorsSe RN (here obtained i.i.d from a uniform dis- faced. For instance, if the solution of a problem can be rep-
tribution) in two categories with labels;=*=1 according to resented by quotients of polynomials, a suitable choice for
the ruleo;=sgn@-S). The aim of any learning dynamics is the sets isF={+ —*/} andV={x1}. For example, a FSE is
to determine the weight or synaptic vectbe RN from pairs  (+ (+xx) (*x(—x(—xx)))), which is a(nonunique LISP
of examples §, ,05,) Which carry information about a rule. representation of the functiorxz- x2. The simplest FSE is a
We restrict ourselves to the case of noiseless realizable rulegariable. The next simplest FSE is an operator followed by
with the labels uncorrupted and generated by another perceflie appropriate number of variablésvo in the example
tron with an unknown weight vectdB e RN. We consider above. All FSEs are either a variable or a list with an
on-line learning, sd will be built sequentially by modifica- operator followed by an appropriate number of FSEs.
tions induced by the arrival of new pairs of examples. ThisUnfaithful S expressions are for instancexj, (+x*),
can be simplified even further by concentrating on the parand x—Xx).

A. Problem: Learning by a perceptron
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FIG. 1. LISP programs as parsing trees before and after a GP © ©
mutation. A randomly selected atom in the parse tree is changed to
another randomly selected atom of the same type. In this example, () () (*) ©
a multiplication operation is replaced by an addition. & & & ) A 3
The GP operations considered in the present work are ®» ® ®
® &
2

asexual reproduction, mutation, and crossover. During
asexual reproduction a certain fraction of the top ranked in-
dividuals, the top set, is copied without any modification into
the new generation, ensuring the preservation of structures
that made them successful. Mutation is implemented on an
individual by changing an atom at a random position. The _FIG. 2. GP crossover. Two paren_ts are selected from the popu-
new and old atoms are different but of the same kind tdatlon. A random .p0|nt in each tree |s.selected. The branches that
ensure faithfulness. Finally, the modified tree is copied into® °% from the point are interchanged in order to generate two off-
the new generation. In order to accelerate the dynamics, diffP""g-
ferent mutation rates can be used for different atom types.

There are no sexes associated to the programs and cros5=1{Psdr Pexp Plogabs + —* % p. pN. ev* w+ w—},
over is a hermaphrodite sexual GP operation. Crossover par- 4
ents are chosen by tournament, which is done as follows.
First, consider a set of the population, then select anaage where Psqr, Pexp, Plog, and % are the protected square
such that ka<P (P is the maximum agewith a probabil-  root, exponential, logarithm, and divisioabs, +, —, and *
ity proportional toa. From the chosen set, a certain numberare the usual absolute value, addition, subtraction, and mul-
(e.g., ten individuals are selected at random. The programiplication; andp., pN., ev*, v+, andvwv— are the inner
with smaller generalization error at ageis selected for product (e.g.x-y for x, y €RN), normalized inner product
crossover. In our experiments, the first parent is chosen fronk.y/N), the product of a scalar times a vectax], the
the top set by tournamefit]. The second parent is chosen by addition of two vectors and the subtraction of two vectors
tournament among the entire population. From each parengy+y) respectively. Protected functions are functions whose
an atom of the same type is selected at random. The FSEgfinition domains have been extended in order to accept a

with roots in the selected atoms are interchanged to generafgrger set of arguments. The definitions of these functions
two offsprings. In order to avoid uncontrolled growth if the appear in Table II.

depth of any of the offsprings is above a given threshold, the
program is deleted. The mutation and crossover operations TABLE |. Control parameters for the GP simulation in our ex-

2x + 2x? X—X

are represented in Figs. 1 and 2. periments.
The GP parameters used in the simulation are shown in
Table I. A short discussion about the parameter values will be Parameters values
presented in the conclusions. At generation zero, a popula
tion of 500 FSEs is created at random. The programs haveopulation size 500
(in agreement with Table)la maximum depth of seven Reproduction rate 10%
nested parentheses. The variable set used to build the prbfutation rate 0.01%
grams is JJ mutation rate 0.2%
Max. depth generation-0 7
V:{UJuUBuhSMJM}! ) Max. depth generatios 17
Probability of internal point selectiofcrossover 90%
t_he presumed and correct classifications, the postsynaptigurnament participants 10
field Vector sizes 11
Maximum number of training examples 100
h= S,L' J,L/”J,LHa ) Maximum number of sets of examples 50
Slave processors 10

the input and the synaptic vectors. The operator set is
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TABLE II. Definition of the protected function as FSEs. The and u indicates its age, e.g., how many examples have been
protected square root is just the square root of the absolute value gresented to the network. Since the aim is to obtain algo-
its argument. In this manner we extended its domain into the negaithms with the smallest possible generalization error at all
tives. The exponential is well defined in the reals, although, in Ordehges, and given that the expected generalization daor
to avoid overflows, we have to impose a cutoff. The protected logajegst for good learning algorithmss a decreasing function

rithm has a cutoff at a small positive number to extend its domain 1Y the age, a suitable choice for the fitness function okiie
the nonpositive numbers. And the protected quotient allows the dibrogram ié

vision by zero(if the absolute value of the denominator is smaller

than a tiny number, the protected quotient returns a big number, if P
it j i (k) = (k)
not it just returns the usual quotignt = _Mz:l ey (), 7)
Function Definition . )
where P is the total number of examplgsnaximum agg
(Psqr x) (sqrt (abs x)) presented to the network. To calculate the generalization er-
(Pexp x) (exp(min13.0 x)) ror, an average is taken over at least 50 sets of examples.
(Plog x) (log(max1.d—17 x) The distribution of fitness across the population can be
(%X y) (if(>1.d17(abs y))1.d17(/x y)) described by the normalized fitness, a measure of the fraction
of the total(exponentigl fithess that an individual has,
If either one of the offsprings has a depth bigger than 17, ) exp(—F 1)
it is deleted. With a mutation rate of 0.01¢6ne every 20 n)=g—m—, 8
generationsa mutation is performed in the offsprings. Be- 2 exp(— F®)
cause the paird,J, become rare after few generatio(a k=1

the beginning of the simulation, the learning algorithms that ) ] o

useJ, are not efficiem we keep injecting this pair with a WhereF.(k) is the fitness measure of &ih |nd|V|dUa|. of the

rate of 0.2%(at least one individual per generation receivesPopulation Eq(7). Note that smaller values of the fitness are.
this paij. Different mutation rates just serve the purpose ofassociated to better performances. The use of the exponential
accelerating the dynamics and decrease the time scale, whit4st amplifies the importance of the individuals with better

it takes for interesting things to happen. The process is rePerformance. We introduce the entropy of the normalized

peated until the new population reaches the full size fixedithess

here at 500. M
After a new population is created, the fitness of each in- s=— n®in(n®) )
dividual is measured and so a new ranking is built. There is K=1 '

a great freedom in choosing the fitness function. It is always

a macroscopic or phenotypic quantity, i.e., a function of thea function of the expressed characters of the populdfion
expressed characters, and although it reflects the microstruoess, thus dubbed the phenotypic entropy or Ph-entropy.
ture, it is not a function of the genetic details of the indi- Note that this entropy is largest when all the members of a
vidual. Errors in the measurement of the fitness have a beapopulation have the same fitness and that the appearance of a
ing on the dynamics, not entirely different from the distinguished individual, for better or worse, is signaled by a

temperature in simulated annealing. decrease in the Ph-entropy.
Each FSE in the population has a well defined lendth,
C. Method: Characterization of the dynamics that is, the number of atom®perators and variableshat

. . . . . _make it up. We define the mean lendthas
We are interested in studying the evolution of learning

algorithms and merit can be attributed in different ways. We 1 M
choose to study the case where merit is based on the ability L=— > A\ ®, (10)
to generalize. The generalization error is M =1
eg(1)=(0(—0p,0,,)), (5) To characterize the internal structure of the programs, we

estimate for each positianthe probability that symbd, (a
averaged over the distribution of examples. In the thermodyvariable or an operatprappears at position w(sq|i), by
namic limit, we have the following for uniform distribution measuring the frequency over all the population:
of examples:

M
> 0®—i)ssM|s,)
k=1

B 1 5 O(N
€g( )= —arcco, (6) w(sqli)= M , (11)
where gl ONM—i)
p— lim ( Ju B ) where 5(s® | $)=1 if s, theith symbol in thekth indi-
N\ [9LI1BIl vidual, is equal tcs, and zero otherwise. The genotypic en-
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FIG. 3. (Left) Fitness of the best-of-generation individual of the population vs the number of generations. A sudden change takes place
around 380 generationdight) The exponent of algebraic decayegf. Upper curves, BOG, lower curves, population average. All quantities
here and in the following figures are dimensionless.

tropy (or G-entropy, which is a function of the microstruc- where Np is the total number of pairs of symbols of the
ture of the individuals in the population, is then defined aspopulation.

[18] The second functional structure we will concentrate on is
something that can estimate the performance or acquired ex-
perience of the network in the implementation of the rule. If
properly used, this is akin to annealing of the learning rate or
to the functional annealing in learning algorithms. This can
be implemented by using the length of the Weight vedtor

Therefore, we will associate to performari®ehe following
expression:

2 2w

SqE

w(Sqli)In) gy (syi), (12

whereQ=F U V is the set of symbols.
A measure of the capacity of a population of using a func-
tional structure may be given by the frequency where the

combination of variables is found. This is admittedly crude, M AW-1
since its position in the program determines whether it is P= z E 5(S(k)|J )5(3(5_)1|J ), (14)
useful or not. On the other hand, the absence of such com- Np k=1 i=1 ! "

bination does not rule out the possibility that some other
combination is doing the job in a more cumbersome mannethat is, the density of pair3,J,,.
There are two quantities or functional structures that are
of interest both in a quantitative and a qualitative analysis of
the learning algorithms. The first can be associated to the
producthog, . This quantity can be functionally described  Qur numerical experiments have been performed in a
as quantifying a measure of surprise. This is because ifinux cluster, using the strategy described in R&D]. Fif-
hog,>0 (0g,=03,), the network will classify correctly teen experiments, starting from different random seeds, have
the example with classification labels,, while if hog,  been performed using the GP paradigm described above.
<0 (og,#0y,), the classification is wrong. Thus it gives a Each run could take up to a week. Some runs failed to evolve
signal of how wrong or correct was the classification andto anything interesting. On three runs, the programs col-
also how stable that classification is under changes of thipsed to just one symbol. For six of them, the complexity of
weight vector. This is obviously an important factor to takethe populations was high but no good solutions were found
into account while incorporating the information in to a and no abrupt changes in behavior occurred. Interesting re-
given example. Thus, we define the Surpﬁ_Bas the follow-  sults were obtained in the remaining six. Within this last

Ill. RESULTS

ing mean value:

M A1

=N—2 2, [a(sh) a(s{y]os,)

+ (s og,,) (s )]

13

group, results were different in several respects, but most
interestingly, had striking similarities which we now de-
scribe. In what follows we consider an illustrative run which
presents clearly some features that are typical of the other
runs of the last group. We found a dramatic change of be-
havior around generation 380 that can be seen by using sev-
eral different signatures. Figure 3, left side, shows the fitness
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FIG. 4. Gray-scale coded bar graph of the best-in-generaB@G) individual. The timeG in the horizontal axis is measured in
generations and the length of the program is in the vertical axis. Gray level of pixel at coordiBaitesddes for the frequency(syi),
at which the symbos, (which is theith atom of the best-of-generation FS&ppears at position at generatiors according to the scale on
the left.

of the most adapted program or best of generatR@G) as  sition are much larger than before. A decreasing trend in the
a function of time. On the right side the figure shows thePh-entropy can also be identified. Low values of this entropy
exponent of the generalization errey decay of the BOG identify the existence of phenotypically distinguished pro-
and of its average over the population. Any reasonably figrams. The decreasing trend after the transition together with
algorithm should present a generalization error that decaythe decrease of the average decay exponent shows that al-
with age, for otherwise the network would not be learningthough the BOG has been largely improved, the population
and thus unfit. For randomly chosen examples we can expeat general has not. Th&-entropy Eq.(12) and the mean

on general theoretical grounds a power law dejgdly The  length Eq.(10) change abruptly at the transition. This reduc-
exponent shows a sharp change, specially if the populatiotion is not present in all transitions. It just indicates that in
average is compared to that of the BOG. Finite size errors arthis particular run the invading mutation occurred in a small
responsible for the fact that exponents larger than 1 can bgrogram. TheG-entropy and the mean length are linearly
found. To understand how representative of the whole popu-
lation is the BOG we composed a gray-level coded bar grapt
(see Fig. 4where each vertical bar represents the BOG pro- %2 [ ]
gram written as a string of symbols; time is measured in
generations in the horizontal axis. At the position of each ¢, § ]
symbol in the program, a gray square represents the empiri \
probability of the symbol in the population E¢L1). Note

that quite rapidly(in no more than 20 generationsn initial 6
symbol is predominant in the population. This is invariantly
found in all runs and it is always a symbol that ensures that

the modulation function is positive, for otherwise the learn-

ing would be anti-Hebbian and inefficient. The initial part of

the code is very robust and thus is shared by almost all the sg ; L 2 1 1

population. 200 4°°G 600 800
Both entropies (phenotypic and genotypic present
changes about the same tiiffiégs. 5 and & The scale of the FIG. 5. Phenotypic entropy as a function of the number of gen-

fluctuations of the Ph-entrod¥q. (9), Fig. 5] after the tran-  erationsG.
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FIG. 6. (Left) Genotypic entropy and mean length as functions of the number of gener&tidree transition can be seen by the sharp
change aroun@ = 380. (Right) H vs L. Two linear fits are shown for data before the transificnossesand data after the transitidnircles.
To see that two linear fits are necessary we did a single linear fit of the whole data set and(jpiséiethe histograms of the residuals to
the single linear model. The two histograms are for data before and after the transition, respectively, and the separation of the two peaks lends
support to the modeling by two linear regimes.

correlated. This is natural sin€&entropy, as defined should

To understand the nature of the regimes mentioned above,

be extensive. What is unexpected is the fact that there an@e present Figs. 7—11. To show the correlation between the
two distinct linear regimes before and after the transition. Tesize of the synaptic vector and the generalization error for
see this we did a linear fit to the whole data set and plotted &ater stages of the simulation, we show a grapljXbf| as a
histogram of the residuals, that is, the difference between thfeinction of the generalization error for a program with a
actual value of a data point and the corresponding value ofood fitnesgFig. 7). The two variables are clearly anticor-
the linear model. The two histograms in the inset of Fig. 6related. This justifies our interpretation of the probability de-
show clearly a systematic error for the single linear modelfined in Eq.(14) as a means of measuring performance. In

These results prove the existence of two different regimes. Ifjg. 8 we plot the surpris§ Eq. (13) and the performance
the whole simulation is Considered, fluctuation distributionSEq_ (14), as functions of the number of generations_ It is clear

of both entropies apparently have long tails, but looking athat the emergence of a measure of performance is at about
each regime separately, a simple Gaussian distribution of difsgp generations.

ferent width also fits the data.

5

A1

In Fig. 9 we present the most adapted individual at gen-
erations 300, 350, 400, and 450. Just before the transition

FIG. 7. Typical behavior for late stage generation: the length of

the weight vectod|J|| increases monotonically when the error of
generalization decreases, thus it can be used as a measure of the

there is no paid,J, present in the progrartat generations
0.1 r r T T
g
§ 0075
[ S
5
[ 9
2 0.05
R < N
'] £
2
E- 3 Surprise f
a 0.025 |-t + Performance 3 ]
L L i
0 0.1 0.2 0.3 0.4 . ;
eg o L4 ' Jﬁ 1 1
-20 180 380 580 780

FIG. 8. Typical behavior of the density of pa@(surprise} and

experience of the individual or of its performance in solving the P (performancgas functions of timeG measured in generations.
classification problem. It leads to efficient annealing of the learningNotice the sharp rise at the beginning®find the later rise oP.
The time ordering is robust and was never seen in the reverse order.

rates.
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sige| + | - SI3E SIGE[ + [ + [ + | + SIGB + 51GB|SIGE
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I51GE

0.9

RES| % | % [ABS| - | % ABS| - | % | % | % [PN.| 1 | J FGE| + FGESGE[SGE] - [ A | % | © | % |FN.
J JO|SIGE| + + |SIGB[SIGB|SIGE|SIGE| + % . - H [SGB|SIG]| + + % % (SIGB| % % % | PH.
J J |SIGE| + [SIGB|SIGB(SIGB|SIGB|SIGE| % | % + % + + |[SIGB[SIGE|SKSE SIEB(SIGE
SGE[SIGE [BBE[SIEE % |AES
5IGB SIGE SIGE %
=] GE[SBE|SIGE[sIGE
sise EEL s e : B E :

B % 2 E SIGE 1| =ASIGE SIGE| SIGE

FIG. 9. The strings of symbols are the programs best of generation at generations 300, 350, 400, (fodn4teP). The gray levels
represent the frequencias(sq|i), according to the gray-level scale.

300 and 35Q After the transition, the size of the best indi- quite since it can evolve into different directions. After the
vidual decreases and several palfs, appear. transition, in panelgc) and (d), this pair remains the most

A more general analysis of the density of pairs can befrequent, but important changes have happened. There are
done with the help of Fig. 10. In these pictures we presengmall white squares for the paly,J, representing the emer-

Fhe relative frgquencies at WhiCh gach possible pair.appeabsence of a measure of performarieeby the learning algo-
in the population. The vertical axis represents the first ele-

. : X rithms.

ment of the pair, the horizontal axis the second element. The The modulation function of the best individual at the be-
size of the white squares represents the frequency of the pair, . . . "
relative to the most frequent pdirepresented by the largest 9'””'?‘9 of Fhe S|mulat|or!, before the transmor_l, and e_u‘ter the
square in each pictureln panel(a) we present the density of trar?smoni IS presgnted in Fig. 11.' The .Hebblan regime, the
pairs at generation 30@b) corresponds to generation 350, "€9iMe with surprise, and th'e regime with both surprise and
(c) to generation 400, antl) to generation 450. Iifa) and  Performance clearly appear in pans (b), and(c), respec-

(b) there is no measure of performance. The most frequerively: The modulation function iric) closely resembles, in

pair is the combinationrg, o, , which is just a 1, but not Shape and fitness, the optimal Bayes result.
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FIG. 10. Density of pairs for generations 308, 350 (b), 400 (c), and 450(d). In all the cases the most frequent pairdig,og,
(SigB SigB). Only in the last two panels does the pair appear.

IV. CONCLUSIONS A few runs failed to present the transition, possibly be-
cause of time limitations, but it was seen in many different

Evolutionary programming techniques provide the means S foat ducible but oth
to automatically design programs which solve certain clasd!ns- S0me features were never reproducible but others were

of problems. In this paper, however, we were not only interPrESENt in every experiment. As examples of those features
ested in the final result. The problem that GP was set out t§'at depend upon contingencies we include the number of
solve has been previously analyzed from many angles and 3€nerations before the change takes place, the width of the
detailed understanding of on-line learning in perceptrons haghange(some were just about ten generations wide, others
been achieved. Rather we concentrated on the dynamics 810k several tens of generationsnd the result of the GP
evolution and have detected dynamical changes in the behaiiself, i.e., the program that implements the best learning
ior of the GP solutions that are related to the emergence dilgorithm. The variability of these features, important as they
functional structures. This is not a conventional phase tranmay be from a constructive point of view when the solution
sition associated to singularities arising in the thermody+o the problem is the main concern, indicates that taking
namic limit. Nevertheless, the abruptness of the invasionsaverages over different runs would lead to wrong interpreta-
measured in generations, justifies calling it a transition. tions. Standard statistical assesment of the probability of oc-
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FIG. 11. Modulation functions(Left) Early stage where surprise is not measured and annealing by experience is ineft€eivejy
Intermediate stage, now surprise is used but annealing by experience has be@idogtLate stage, after the transition, where surprise
through the measurement btrg,, and annealing,J,, are correctly implemented.

currence of the phasg transition is left for future work. Wetional structures decreases until it vanishes. TAis almost
tried, instead, to ideniify robust fea_tures which can be Comcl'lmmediately extinguished from the population. It will only
dent!y expected o occur every time good solutlons_ wer pear in very modest ways through mutation and, repeat-
obtamgd. In seving such purpose we have characterlzgd ﬂ?e ly individuals which use it become extinct. Later on, sur-
dynamics by looking at the phenotypic Hg) and genotyplcf prise is finally well accounted for and correctly classified

entrop|es_Eq_(12), which give a picture of the Q|str|but|on 0 examples cause typically smaller Hebbian corrections than
phenotypic fithess and functional or symbolic structure, re-

spectively. The conformation diaaram. Fia. 4 aives a bird,Sthose incorrectly classified. At that point the correct use of
epe viewy.of the relation of the BgOG angthegfre Lenc c)fsurprise potentializes the beneficial use of functional struc-
Y q Y %%ures that measure performance. Then a correctly annealed

symbols in the population as well as its length. A more com- : . -
olete analysis of the BOG can be done through Fig. 9. Th algorithm emerges that resembles quite closely the modula

. . ion functions found through Bayesian or variational ap-
gray scale attrll_autes light gray to symbols extremely frequen roaches. This successful strategy invades the population.
In the p_opulatlc_Jn at that position, and monotonically at- The values of the parameters used to perform the experi-
tributes increasingly darker gray levels as the symbols geﬁ1

more unlikely to be found. We can see that after the changef ents describedTable ) are the best values found, accord-
the third program (BOG at G=400) presents symbols ng to Ref.[1] and previous experiments. Populations larger

mostlv in the dark end of the scale. excent for the Consol._than 500 increase the required CPU time for the experiment,
y ! » EXCep "without improving the description of the phenomena. The

dated initial part. Fifty generations later, there are islands o : - , iy
lighter gray in the BOG. That means that the genetic charac eproduction rate, maximum tree's depths, and probability of

o . : internal point selection are the same as in R&f, which
trﬁ;igf rg]beu Sbtefga'{l'ﬁg'g;ﬁl bhea? dle?r:/ti‘?ee dd ngep%%ug:::ée-ru resents a re_asonable justification for these value_s. The value
been understood from a functional point of view, in terms of the mutat|.on rate has been set low enough in o_rder o

= ’ avoid deleterious effects. The rate of the spedifienutation

two concepts: the surpris&) that newly arrived information s appropriate in order to have a mutant per generation. This
elicits and how such information should be taken into ac-accelerates the emergence of the performance and does not
count based on how much experieng® the network has in  affect the time ordering. The number of tournament partici-
solving the task at hand. A temporal order in the emergencpants has been increased from a low value of 2 to 10 in order
of structures can be identified. Performance can be usefyb study the invasion of the best individual genes into the
only after surprise is measured correctly. population(observe that the bigger the number of participant

It can be shown, at least in the thermodynamic limit, thatthe larger the over selection of the best individualBhe
for algorithms which do not measure surprise their generalieffects observed are not strongly coupled with the number of
zation error decays g8~ Y2 and for them annealing is use- tournament participants, thus we left this number set to ten.
less. Learning algorithms that use surprise have a faster d@he size of the perceptron, the number of training sets, and
cay (egoc,u‘l) and algorithms that use both surprise andthe number of examples per set were adjusted in order to get
annealing by experience have the fastest decay since theynooth generalization error curves.
can have smaller coefficients pf 1. From Figs. 8 and 11 There are several possible extensions of this problem.
we can conclude that the chronological order is respected. Atrom a biological point of view, there is a suggestive simi-
earlier stages, the BOG is unable to use surprise. Althouglarity with the time order in which certain structures respon-
surprise functional structures are found throughout the popusible for measuring surprise and performance have appeared.
lation, their incorrect use makes the BOG an annealed Hebiill this order be found in more complex artificial settings?
bian algorithm. It is known that annealing will not improve Is this biologically significant? Can it be extended to other
the Hebbian learning and the frequency of performance funcfunctional structures? It should also be quite interesting to
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further analyze other transitions in the automatic design oCarneiro and co-workers. The cluster’s construction was par-

programs.
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