PHYSICAL REVIEW E 67, 041911 (2003
Dynamics of solitary blood waves in arteries with prostheses
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We analyze the behavior of blood waves interacting with a prosthesis following the Yomosa nonlinear wave
theory extended to include the spatial variation of the arterial radius and wall rigidity. When the prosthesis is
short or when its characteristics are close to those of the host artery, the amplitude of the blood solitary wave
increases just proximal to the prosthesis and then decreases to a magnitude smaller than the normal value in a
healthy vessel. In the presence of an extended prosthesis, we derive the reflection and transmission coefficients
at the interfaces, and we thereby obtain the optimal characteristics for an ideal prosthesis. Our results agree
qualitatively with known experimental and numerical studies.
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[. INTRODUCTION flow in arteries and point out some particular facts related to
the soliton theory. We assume the blood to be incompressible
Vascular diseases, in particular those of the arterial typeand inviscid. The arteries are conical tubes with a nonlinear
constitute one of the major causes of mortality in the world.stress-strain relation. The arterial radius and wall rigidity
Among these diseases, the most frequent are stenosis, art@ry slowly along the tube. The general dynamics describing
riosclerosis, and aneurysm. The major effects of these dighe blood flow in arteries obeys three laws—the equilibria of
eases on blood vessels are the hardening, the softening, th®ymenta and forces, the conservation of mass, and force
constriction, or the enlargement of the vessel walls. Thesgglance for radial motion of the elastic wall:
changes lead to serious circulatory problems with conse-
guences for vital organs, particularly the brain, the heart, and ) dv 1dp
the kidneyg1-3]. il 09z’ (1a)
When the diseases are still mild, antibiotic treatments
sometimes lead to recovery. In severe cases, cardiovascular

surgeons remove the damaged area of the vessel. Then they (?_S I(vS) =0 (1b)
suture the ends of the vessel when the damaged area is not at Jz '

too long or insert a prosthesis if suturing is not possible. In

both cases, the mechanical, geometrical, and physical prop- poh 9%(S—Sy) hoRo

erties of the resulting vessel present an abrupt or a progres- 27R, a2 p— RZ 7 (10

sive discontinuity. The following questions are therefore in-

teresting. How does the small perturbation of the pros‘thesiﬁlith

affect the wave pulse? What are the reflection and transmis-

sion coefficients for an extended prosthesis? Answers will o2 2 _

help to derive the characteristics of an ideal prosthesis allow- S=S= R = mRG=27Ro(R=Ro),  p=P—Pe,
ing pulsatile blood flow without reflection.

To shed some light on these questions, we use the nonlin- _ (R—Ry)
ear wave theory, which, since the pioneering works of Hash- Y= Ry '’
imuze[4] and Yomosd5], has been developed substantially
[6—-13]. The solitary-wave model gives a plausible explanawwheret is the time andz is the coordinate along the propa-
tion for the peaking and steepening of pulsatile waves iyation axis. The dynamical quantities describing the flow are
arteries. . . _the longitudinal flow velocityv(z,t), the fluid pressure

In Sec. I, we first analyze the flow dynamics interacting P(z,t), and the cross-sectional arsz,t) of the tube(or the
with a short prosthesis or a prosthesis with mechanical angl, ;s R(zt) or the arterial deformationy). Other param-
geometrical characteristics close to those of the host arteryy o are t’he stress extending in the tangential direetion

In Sec. Ill, we consider an extended prosthesis, derive th e pressurd®, outside the tube, the densipyof the fluid,

coefficients of reflection and transmission, and, from thes e wall's densi Youna's moduluse. the equilibrium

coefficients, obtain the optimal characteristics of a prosthesiS ~. Wp.o’ gsm » (€ €0 .
diusRy, the nonlinear coefficient of elasticigy the thick-

giving perfect transmission at the interfaces. We present ou? S . . .
conclusions in Sec. IV. nessh contributing to the elastic deformation, and the equi-

librium thicknessh,.
Il. EFFECTS OF PROSTHESES ACTING LIKE In experiments, the equilibrium radiu®, and Young’s
SMALL PERTURBATIONS modulusE vary along the arterj14]. The radius varies like
a decreasing exponential in spaé® € Rye” ™% wheremis
A. The model a positive factor andRy, the reference radiind E follows
Before analyzing the effects of a prosthesis acting like aan increasing exponential lay6—8,14. Assuming weak ex-
small perturbation, we recall some fundamentals of the blooghonential laws, the radius is approximately

o' =vE(l+ay),
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R(z,t)=Ro(1—m2)(1+7y). (2a) N

The linear approximation of Young’s modulus is

11
Incident wave \\\/D "

E(2)=Ey(1+\2), (2b) ' °
transmitted  reflected: transmitted
with E being a reference value anda positive coefficient.
For mathematical purposes, we assume that the valugs of Reflected wave  wave wave . wave
and\ are small enough and appear at the ok, wheree %

is a perturbation parameter. Typical data for the physical and/

geometrical parameters taken from R for the thoracic =~ T

aorta are —
0

prosthesis

Roo=0.5 cm, hy=0.12 Ryy, Eo=5.49x10° dyn/cnt,
FIG. 1. Geometry of the artery with prosthesis.
and for the femoral artery
acteristics and those of the host artery is not large. We thus
Roo=0.15 cm, hg=0.12 Ryy, Eg-141X10° dyn/cnt, assume that in the presence of the prosthesis, the radius and
with the following for both: the rigidity vary locally byfr g(z), so that

po=1.05 glcrd R(2)=Rod 1+ Fr(2)+efr(2)](1+y) (33
0_ .

and and

po=1.06 glcm. E(2)=Ed[1+e"Fe(2) +efe(2)], (3b)

" . whereFg(z) = —m’z andFg(z) =)'z (assuming tham and
The quantitiesn and\ reported in Refs[6] and[7] vary \ have fFé)(rrr)19ﬂ=s5’2m’ ansgxisf”z)\’(). Figuregl shows the

from 0.01 to 0.05 cm'® and 0.01 to 0.04 cit, respectively. : . .
Let us discuss the limitations and novelties oFf) our mgdelgeometry of the artery with prosthesis. We define the func-
tionsfg andfg as

The two main limitations are the one dimensionality and the
inviscid character of the blood. The one dimensionality of
the model means that the blood wave componémisssure,
velocity, and cross-sectional ajegepend only on time and \yhere o, and «, measure, respectively, the amplitude and
axial coordinatez and not on the transverse and radial coor-g,o gradient scales of the perturbation. &sincreases, the
dinates. Moreover, we neglect the transverse components gfngition region diminishes, leading to an abrupt perturba-
the velocity. Despite these limitations, this simplified modelyq, \with a rectangular shapezy, andz,, are the locations

reproduces many features of natural pulses such as growll} ine sutures at both ends of the prosthesis.
and decay of the pulse wave compone(sese Refs[4-7)).

We also assume that the viscosity effects are negligible. This
assumption is only valid for large arteries with a diameter of
about 1 cm. However, taking into account viscosity effects Following the mathematical procedure of Ri], we set
modifies the resulting Korteveg—de Vrig@édV) equation by

fre(2) = aq[tanha,(z—zqg) —tanha,(z—z19)],  (4)

B. Derivation of the perturbed KdV equation

an additive term associated with dissipatif®] and the v =evy(€1)+e?v,y(€,7), (5a)

gualitative effects of the prosthesis will be the same, at least

for our simplified model. p'=epi(&,7)+epa(€,7), (5b)
The novelties of the model include a nonlinear stress-

strain relation that seems to be more realistic than the usual s'=1+e5,(&,7)+e%s,(€,7), (50)

linear elastic relatior5,8]. Unlike other models, which as-

sume the pressumeto be a known function of timégener- Where_§_=81/2(2' —t') andr=¢%%’, with the dimensionless
ally sinusoidal, we consider it as a spatiotemporal dynami-quantities

cal quantity to be derived. In fact, when the heart sends an

initial blood pulse to the arterial tree, all pulse components, ¥=Co?', P=pop’, t=Tot', z=Loz', S=5%',
including pressure, vary in time and space as they propagate.

A third point is the spatial variation of the radius and So=7R5,  Co=Lo/To, Lo=(Rodhopo/2p)*?
Young’s modulus as given by E@2), which approximate
experimental fact§14]. To=(poR3ho/Eg) 2,

We first consider the effects of the prosthesis when they
weakly perturb the flow dynamics, e.g., when the length ofand
the prosthesis is comparable to that of the pulse wave length
or when for a large prosthesis the mismatch between its char- Po=hoEo/2Rqg.
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FIG. 2. Spatial variations of
the amplitude of the arterial veloc-
ity wave for different values o,
with z;5—z(,=5.
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Inserting the transformation®) into the resulting nondi-

wave v decreases continuously as one moves from the as-

mensional dynamical equations and after some algebraicending to the saphenous arterisse, for instance, Fig. 1 of

transformations, we find that the first componentof the

Ref. [5]). This behavior can explain the scattering of blood

velocity wave obeys the following perturbed KdV equationwaves at the arterial branchings, but the spatial variation of

(see the Appendix

(91/1 (77/1 1 (937/1 1 (91/1 1 (91/1

Fy Vla—ngEa—éf,—§f1(§,7)a—§+§fz(§,f) 7%
=0, (6)

with coefficients k=3(a+1), fi(&7)="Ffr(&,7)—mir
andfz(g,T):fE(g,T)‘i‘)\iT.
Using the transformations7=2T and v;=-—[6/(a

+1)]V,, we finally obtain the equation

Vv, sy (9V1+83V1 - av1+f T avl_o
o1 Ve T o 1(¢, )&—g 2(¢, )a—g— :

()

the vessel characteristics also plays an important role, as in
Fig. 2 (with a1=0).

We integrate the perturbed KdV equatitf) numerically
using the finite difference method of Zabusky and Kruskal
[15] under periodic conditions with ste@sT=5x 102 and
A¢=0.1 over a length. .= 200.

We launch an initial solitary wave of the unperturbed
KdV equation of the form of Eq(8) at a distancez’ =40
from the leading edge of the prosthesis, with=0.5, a5
=a,Ly=0.045, A+ m;=0.138, ande=0.2. The param-
eters of the thoracic aorta givee=1.95. The constraint that
our dimensional physical quantities should be as close as
possible to those present in living bodies dictates our choice
of the values given abovén particularA;+mj, ag ande).

We can derive similar equations for the first componentdndeed witha,=0.5, a reverse transformation leads to an

of the dimensionless pressupg and the sectiors; of the

amplitudev =114 cm/s for the velocity wave that lies in

arterial wall. Thus the results we obtain below are qualitathe range of 80—140 cm/s observed in thoracic and femoral

tively valid for the pressure and wall deformation.

C. Numerical results and comparison

In the absence of the ternig(&,7) andf,(&,7), the so-
lution of the KdV equation(7) is

V,=—agsech[ay(&é—4agT)], (8)

wherea, is the amplitude of the wave. Equatié8) implies

arteries. The corresponding wave width lig,=0.39 cm.
Also, from the value ofr;+m}, we havex+m=2m"1,
which is of the same order as the values given before.
Figures 2 and 3 report our numerical results. The horizon-
tal axis is the distance from the cen®(t’) of the wave to
the leading edge/, of the prosthesis, while the vertical axis
corresponds to the maximal amplitude of the wave. Figure 2
presents the effects of the amplitude of the perturbation
frE ONay as the wave propagates along the artery interact-

that the blood wave amplitude remains constant during iténg with the prosthesis z{,—z5,=5 corresponds taz;

propagation. In fact, it does not. Experimental measiités

—Zgp=0.615 cm). For the case;=0, corresponding to the

of the pulse wave changes at five sites of the artery tree of artery without prosthesié.g., a healthy arteyythe ampli-
dog—ascending, thoracic, abdominal, femoral, and saphertde of the velocity wave decreases along the artery as men-
ous arteries—revealed that the amplitude of the velocittioned. As«; increases, the wave amplitude suffers impor-
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tant modifications. As the wave approaches the leading edgéoung’s modulusE,, stress-strain nonlinear coefficiea
of the prosthesis, its amplitude increases progressively to @assumed equal t&), wall thicknessh,, and nondimensional
maximum at the center of the prosthesis. Then it decreasegave components,, p;, ands,. Due to the prosthesis,
abruptly before trying to recover the value that it would havemultiple reflections and transmissions occur so that the wave
had in the absence of the prosthesis. Instead, the prosthegiseach part of the structure consists of various reflected and
induces a loss of energy to small-amplitude reflected wavegansmitted waves. We consider only the first interaction of
generated at the leading edge of the prosthesis. This effegie incident wave at each interfa¢the incident wave of
increases as either; or a, increases. An increase of the region Il being the wave transmitted at the first interface
length (21— 240 of the prosthesis amplifies the variation of assuming that the effects of secondary interactions are neg-
the wave amplitude at the prosthesis site, implying that if digible. Thus in regions | and Il, we assume that we have
prosthesis replaces an extended segment of the artery, rupnaly one incident wave and one reflected wave while in re-
ture is more probable. If the differences between the propemion 1ll, we have only one transmitted wave.
ties of the artery and a long prosthesis are large, we must We use the mathematical procedure of Dearl.[10] for
consider the interaction of the wave with the interfaces as ithe analysis of reflection and transmission at arterial branch-
Sec. lll. ings. In each regiom, we express the wave components in
First, we compare our results to existing data. Figures 2he form
and 3 are similar to those obtained in the literature. The

combined experimental and numerical study of Kahal. Pl =epigte’piat, v =evit+elypy,
[16,17], dealing with blood flow in the vicinity of an end-to- )
end anastomosis, found that because of the compliance mis- S| =SioteSi1 €S2 9)

match between the prosthesis and the host artery, the wall ) ) ) )
shear stress increases just proximal to the anastomosis af#ce in regions I and II, the wave consists of transmitted
then decreases to a magnitude smaller than the normal walicidend and reflected waves, we write

shear stress. Bauernschnettal. [18] simulated arterial he- t R

modynamics after prosthetic replacement in various parts of Pij = Pij (&, 7) +pij (7, 7), (10

the artery tree. They concluded that the replacement INYhere the new coordinate is defined asp=¢c%(z’ +t').

creases the pul;e pressure and pulse \{elocny, W.h'Ch COMSimilar expressions are valid faf; andvj; . Inserting Egs.
sponds to our findings, since the velocity wave is propor-

tional to pressure wavésee the Appendix Stergiopulos (9) and (10) into the flow equations in each region, we find
P ) ppencix Sterglopuic that the incident, reflected, and transmitted waves at different
et al. [19] analyzed theoretically and fronm vitro experi-

ments the interaction of blood waves with an extended arte'-n terfaces separating regions |, Il, and Ill are described by

rial stenosis whose shape is similar to the prosthesis préhe;gg%vx“:_g equations.
sented in this paper. They found that hemodynamically '
nonsevere and nondetectable stenoses induce wave reflec- P at1 ov . 13
. . .. . . 11 i 11 11
tions and that the reflection coefficient increases with the Vyg +-—3 =0, (119
severity of the stenosis. Our Figs. 2 and 3 showing energy a7 2 JE 2 9%
loss to reflected waves are compatible with these results even R R 3 R
though we treat a prosthesis instead of a stenosis. We also dvy (a+l R ‘9”11+ 14 Yu_ g (11b
mention the similarity between our results and those of ar 2 Moy 2 gy T
Anderssoret al.[20] and Tanget al.[21] on perturbations of i i : & R "
arterial stenoses on blood flow velocity, pressure, and shed¥ith s;;=p1;=v1; andsy;=pr=—vy;.
stress. Region Il
r?vtzl a+1l N (9VI21 1 (931/t21
Ill. REFLECTION AND TRANSMISSION AT THE ar 7| Ver e ts5 0 =0, (119
INTERFACES OF AN EXTENDED PROSTHESIS
When the extent of the prosthesis is large compared to the vy (atl| . F7V§1+ 1 (937/51_0 1

pulse wavelength, we cannot consider its effects as localized T 2 )V an 2 an* (11d
perturbations unless the parameters of the prosthesis are
close to those of the arterfthe case analyzed in Sec).ll  with sh=p5= v}, andsy=py=—15.
Instead, we treat the situation in which an incoming wave Region Il
impinges on the first interface of the prosthesis. The trans- . . 5t
mitted part of the wave continues its motion in a new me- dvyy (a+l) dvy 19wy
dium determined by the mechanical and geometrical charac- T 2 |V ¢ i) 9 =0, (119

teristics of the prosthesis. Afterwards, the wave interacts with

the second interface of the prosthesis before entering theith sy, = p5,= v5;. The superscripts R andt stand, respec-
natural artery as in Fig. 1 with the prosthesis in region Il. Thetively, for the incident, reflected, and transmitted waves. We
indexi labels the characteristics and wave components in aote that Eqs(11) hold only at the interfaces. Far from the
regioni of the structure. For instance, the prosthesis hainterfaces, the waves obey an equation similar to (Bg.
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FIG. 3. Effects of the extent of the prosthesis on the spatial variations of the amplitude of the arterial waveg-vith.

To obtain the reflection and transmission coefficients, we . 4 i
use at each mterface the continuity of pressure and mass to pg—m P1 (13b
derive the following.

At the first interface(region | to region I},

and
Eih; Esh,
SR, (P1HPY) =55 (12a
1 2 R 1=k 2 13
and P2= Tk, 14k, PV (139
(hEDYRYA OV + ) =(hE) VPRI, (12 L
At the second interfacéegion Il to region ll),
R3 5/2 E2h2 1/2
(e
7R, (P +p5)= R, Pa (129 R/ 1Eshs
and From Eg.(13), we derive two important results for the

effects of prostheses on pressure waves. The first result con-
(h,Ex) 2RIA(vh+ vy =(hEx) PR32, (12d)  cerns the behavior of the reflection coefficient. The reflection
coefficients, which are the ratiqe}/p}, and p5/p}, depend
From Eqgs.(12a and (12b), the transmitted and reflected on the arterial and prosthesis characteristiaslius, Young’s
pressures related the dimensional incident pressure by thmodulus, and thicknessThus we can describe their behav-
following relations: ior in terms of the mismatch between the artery and prosthe-
sis. For instance, consider the situation at the entrance of the

t_ i r 1-kg | 13 prosthesis and assume thgt=h, andR,=R;. The effects
P2=1% Ky Pr. P1=7% Ky P1, (133 i the prosthesis are thus due only to the relative valug,of
compared tcE;. As E, increases, the reflection coefficient
with increases from 0 to 1. This behavior is also compatible with
o 1o the effeCIIS of the severity of an extended stenosis as obtained
K :(&) (El_hl) by Stergiopulot al.[19].
ARy Eoh,) Our second and most interesting result is that, from the

expressions fopiz and p?, we derive the constraints on the
From Egs(129 and(12d), we can expresgy andp§ firstin  prosthesis and artery that eliminate reflections at the inter-
terms ofp}, then in terms of) to obtain faces. Setting?=p5=0, we obtain the relations
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R;\%? Eh,\ 2 thesis failure or rupture. An extended prosthesis scatters KdV
(R_z) (m) =1, (143 solitons into reflected and transmitted solitons at each inter-
face. The coefficients of reflection and transmission depend
and on the mechanical and geometrical characteristics of the
prosthesis and artery. We have derived the relation between
R,\%?/ Eshg\ 12 the prosthesis and artery characteristics, which eliminates the
(R_3) (Ezhz =1. (14b reflections at both interfaces, thus defining an ideal prosthe-
sis.

Equation(14) gives what we call the optimal shape for an An interesting question,. which .remains unsolved, is the
extended prosthesis that suppresses reflection of waves at fg@se of an abrupt change in arterial wall parameters. In this
interfaces. Since the mechanical propertiésr instance, —case, we could solve the generating Euler equatithana-
Young's modulusE,) of the prosthesis are difficult to adjust, Iypcally as in the study of the interactions o_f water waves
we takeE, as given and vary the geometrical characteristicsVith variable channel botton{22,23 or numerically by the

R, andh, at the first interface to satisfy E¢L4a and at the generalized finite difference method introduced in R21].
second interface according to Ed4b). If we assume that

the characteristics of the arteries in regions | and Il are the ACKNOWLEDGMENTS

same(such as when the artery radius and modulus do not . .
! The authors thank Professors K. B. ChandBiomedical
vary along the artery axisthen Eqgs.(149 and (14b) are Engineering, The University of lowa, U)Sand H.l. Ander-

equivalent and the optimal thickness of the prosthesis is sson(Dept. of Applied Mechanics, NTNU, Norwagor pro-
R,\5E;h; viding assistance.
2= (R_l) E, ’ (15)

APPENDIX

which is inversely proportional to Young’s modulus of the | ot us rewrite the set of equatiolis),
prosthesis material. Assuming thB,=R;, and using the

data given in Sec. Il, we obtain that in the thoracic aorta, the v v 19p
optimal prosthesis thickness i,=3.294x 10°/E, cm, Ve P
while in the femoral arteryh,=2.538< 10°/E, cm with the
prosthesjs of Young's m_odquEz (which depends on the 9S  a(vS)
polymeric material usedgiven in dyn/cm. —+ =0, (A1)
However, if the characteristics of the artery vary along its at 9z

axis, then the prosthesis should have a conical shape whose h s2(S— heR
span agrees with both E¢L4). If the radiusR, is chosen to poh I 250) =p-— 020 yE(1+ ay),
be equal toR; at the entrance and t&; at the exit of the 2Ry ot R
prosthesis, the rati®k, between the thicknesses at the en-
trance and at the exit of the prosthesis should be . R-Ry S—%

with y= =—=.

Ro 28,
1+ANzg,
Ra= 1+\zg,’ (18 The condition for the conservation of mass of the wall and

tissue(see Ref[5]) leads to

where z., and z,,, are, respectively, the coordinates of the
entrance and exit of the prosthesis. Roho=Rh.

Then, using relation and (3b), we can write
IV. CONCLUSION 9 £33 and(3b)

This paper treats the interactions of blood waves with R=Roo(1+Ppr)(1+7y)
prostheses. For short prostheses or prostheses with charactgr-
istics nearly equal to those of the host artery, the blood wave
obeys a perturbed KdV equation. The numerical simulation E=Eo(1+pg),
of this equation shows amplitude variation consisting of an
increase just proximal to the prosthesis, followed by anwyhere
abrupt decrease, and then an increase leading to an amplitude
smaller than the normal value of a healthy vessel. Our results PrE= SS/ZFRYE(Z) +efre(2).
are qualitatively similar to those obtained from experimental
studies and other numerical simulations of blood flow in ar-Using the dimensionless quantities defined in E§$. the
teries with prostheses and stenoses. The main consequerf¢tem(Al) becomes
of the increase and decrease of the amplitude of each pulse , , ,
wave at the prosthesis is to induce abnormal stress on the ‘9L+V,‘9_V+ aizo
arterial and prosthesis walls, one of the main causes of pros- at’ az’  9z' 7
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as’ IPr !
+2s' v — +(l+ pR)V,ﬁ

(1% Pr) 57 72

!

F(14prs =0

9%s’
(1+pR2(1+s’) Sz =2(1 PRIP’(1+s)?

—(1+pg)(s'—1)(2+as' —a).
(A2)

Inserting the scale transformatiofi=¢%(z'—t’) and
=&%2%" into (A2), we obtain

av' av' av' o”p' B

_(9_5 €= Va—é__ ag 0,
[1+sz—m1(§sZ+rg)](—a—é+s—, +2s'v
SRV KAL 3’2)+[1+8fR T
€ 23
+[1+efg—my(£e2+ 7e)]s’ (:; 0, (A3)

[1+efg—mi(€e2+ 78)]%(1+S")

9 52 2
X —26%——+3 s
€962 % ggar ° o2

=3[1+efg—mj(ée+em)](1+S")%p’
—[1+efe+Nj(ée2+en)](s'—1)(2—as' —a),

wherem;=m’'Lg and\;=\"L,.
We then introduce the perturbation expansions qf p’

ands’ [see Eqs(5)] in (A3) and keeping only terms that are,

respectively, proportional te ande?, we obtain fore?!,

dvy  dpg

—(9—54—(9—520, (A4a)
1My Adb
(9_§+(9_§_ ) (Adb)
2p;—25,=0, (Adc)
and fore?,
(91/2 5’V1 01/1 ﬁpz
- z?_g + Vla_f + 3_§ =0, (A5a)
(?32 (951 (?Sl (931 (91/2
ot Far IR ml”( 05) T
+(f asl) ASh
tsi—+ ag +(fr—my7)| — rak (A5b)

PHYSICAL REVIEW E67, 041911 (2003
2

Jd S !
2 - 3[4p,+4sip;+4(fr—mi7)py]

—asi— (fg—\j7)s2—2s,. (A5c)
Combining Eqs(A4) we obtain
P1=S$1=v1.

From Eg.(A5c), we have

9°s,

po= Fra —s1p1— pa(fr—min)+3asi+s(fe—N7)+s,.

Substituting this relation into EqsA5a) and (A5b) leads to

‘91}2 (952_
ﬁ_g &—5—91,
&Vz &52
- — , A6
ag § =02 (A6)
with
vy, dvy s, 0st . 0s] adst
=ty —t —m— ——(fr— - —
G=57 T T 08 g (fr=my7) g€ 2 9
+(fe—N\; %51
(fe 17')0—5,
RoN f s+ &sl+ av1+aﬁs§
92_ or ( R™ mlT) é— L4 (95 Sl (95 2 (95
+(f e
(fr=my7) 9E
This result implies
9:+9,=0

and finally, the equation,

(97/1 n 1 +1 071/1 n 1 0731/1
o Tplat Ut os

1
+= [fE fR+(m1+)\1)T] =0.

5

Settingk=3(a+1), f;=fg—mj7, f,=fg+\], 7, we ob-

tain

1 (931/1 1 0”V1

(71/1 (91}1+____f g )_
2 988 2187

Tr TKTE €
Fo im0
> 2(5,7')8—5— ,

which is Eq.(6) in the text.
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