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Network landscape from a Brownian particle’s perspective
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Given a complex biological or social network, how many clusters should it be decomposed into? We define
the distancel; ; from nodei to nodej as the average number of steps a Brownian particle takes to jré@ach
i. Nodej is a global attractor of if d; ;=<d; , for anyk of the graph; it is a local attractor off j € E; (the set
of nearest neighbors of andd; ;=<d; ; for anyl € E; . Based on the intuition that each node should have a high
probability to be in the same community as its gloBatal) attractor on the globdlocal) scale, we present a
simple method to uncover a network’s community structure. This method is applied to several real networks
and some discussion on its possible extensions is made.
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A complex networked system, such as an organism’selatively long tradition in identifying communities based on
metabolic network and genetic interaction network, is comthe criteria of reachability and shortest distarisee, e.g.,
posed of a large number of interacting agents. The complexRef.[12]).
ity of such systems originates partly from the heterogeneity In this paper, a method of network community identifica-
in their interaction patterns, aspects of which include thetion is described. It is based on the concept of network
small-world[1] and the scale-free propertif®,3] observed Brownian motion: If an intelligent Brownian particle lives in
in many social, biological, and technological networks@a given network for a long time, what might be its perspec-
[4_6] Given this h|gh degree of Comp|exity' itis necessarytive of the network’s landscape? We suggest that, without the
to divide a network into different subgroups to facilitate theneed to remove edges from the network, the node-node dis-
understanding of the relationships among different compotances “measured” by this Brownian particle can be used to
nents[7,8]. construct the community structure and to identify the central

A complex network could be represented by a graph. EacRode of each community. This idea is tested on several social
component of the network is mapped to a vertesde, and  and biological networks and satisfiable results are obtained.
the interaction between two components is signified by arPeveral ways are discussed to extend and improve our
edge between the two corresponding nodes, whose weight pgethod.
related to the interaction strength. The challenge is to dissect Consider a connected network Nfnodes andV edges.
this graph based on its connection pattern. We know that t#fs node set is denoted By={1, ... N} and its connection
partition a graph into two equally sized subgroups such thaattern is specified by the generalized adjacency matrik
the number of edges in between reaches the absolute mirfhere is no edge between nodand nodg, A;;=0; if there
mum is already a\P-complete problem, a solution is not iS an edge in betweer;=A;;>0 and its value signifies the
guaranteed to be found easily; however it is still a well-interaction strengtliself-connection is allowed The set of
defined question. On the other hand, the question “Hownearest neighbors of nodes denoted byE;. A Brownian
many subgroups should a graph be divided into and how?” iarticle keeps moving on the network, and at each time step
ill posed, as we do not have an objective function to opti-it jumps from its present positiotisay i) to a nearest-
mize; and we have to rely on heuristic reasoning to proceedeighboring positiorj. When no additional knowledge about

If we are interested in identifying just one community that the network is known, it is natural to assume the following
is associated with a specified node, the maximum flowjumping probability P;;=A;; /2|N=1Ai| (the corresponding
method[9] turns out to be efficient. Recently, it is applied to matrix P is called the transfer matnixOne verifies that at
identifying communities of Internet webpagd®]. An com-  time t>M the probabilityp(k) for the Brownian patrticle to
munity thus uncovered is usually very small; and for thisbe at any nodek is nonvanishing and equals to
method to work well one needs priori knowledge of the XA, /=, Ann, Proportional to the total interaction capac-
network to select the source and sink nodes properly. Anity XA, of nodek.
other elegant method is based on the concept of edge be- Define the node-noddistance ¢; fromi to j as the av-
tweennesq11]. The degree of betweenness of an edge ierage number of steps needed for the Brownian particle to
defined as the total number of shortest paths between pairs nfove fromi through the the network to From some simple
nodes which pass through it. By removing recursively thelinear-algebra calculatiofL3] it is easy to see that
current edge with the highest degree of betweenness, one
expects the connectivity of the network to decrease the most N 1
efficiently and minimal cutting operations is needed to sepa- di;= (
rate the network into subgroupsg]. This idea of Girvan and =1
Newman[7] could be readily extended to weighted graphs
by assigning each edge a length equalling its reciprocalvherel is theNXN identity matrix and matrixB(j) equals
weight. Furthermore, in the sociology literature, there is ao the transfer matrix? except thatB,;(j)=0 for any |
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eV. The distances from all the nodes\itto nodej can thus ~ corresponding centers. We find that for this network @&e

be obtained by solving the linear algebraic equationcOmmunities coincide with the communities.
[1=B())]{dy;, ... Ay }T={1,...,37. We are mainly in- As another example, the scientific collaboration network
terested in éjparse né]tworks wit=O(N); for such net- of Santa Fe Institut¢7] is considered. The giant connected
works there exist very efficient algorithni$4,15 to calcu- component contains 118 nodes and 200 weighted edges, the

late the root of this equation. If nodehas the property that Weights are assi?]nzd d{:\c_gordiﬂg to the rl?e_zasutr:: in [Rej.
d; ;=d; « for anykeV, thenj is tagged as global attractor The present method divides the network into sixommu-

of nodei (i is closest tg in the sense of average distapce nities, see Fig. (0). All the nodes in community., (size 19,
o - . L, (42), L, (8), Ls (26), andLg (17) are locally stable, and
Similarly, if j e E; andd; ;<d;, for anyl € E;, thenj is an 2 4 5 6 . ; .
’ P . . one node inL5 has stronger direct interaction with commu-
local attractor of i (i is closest toj among all its nearest

. . . . . nity Lg. Same as the above example, Gxeommunity struc-
neighbors. We naotice that, in general, the distance froto Ybe P y

. . S0 . ture is also identical to th&-community structure. Girvan
J (di ;) differs from that fromj toi (d;;). Consequently, if 54 Newman divided this network into four major groups by
is an attractor of, nodei is not necessarily also an attractor recursively removing edges of highest degree of betweenness

of j. o _ [7]: the largest of which was further divided into three sub-

If a graph is divided into different subgroups, on the local groups and the second largest was divided into two sub-
scale we intuitively expect that each nadeill have a high  groups. There are still some minor differences between the
probability to be in the same subgroup as its local attrgctor six subgroups obtained by the present method and those ob-
since among all the nearest neighboring node;innodej  tained in Ref[7], which may be attributed to the fact that, in

has the shortest “distance” from nodleFor simplicity let us  the treatment of Ref[7] the network was regarded as un-
justassumethis probability to be unitya possible improve-  weighted.

ment is discussed later Thus, we can define 4ocal- The method is further tested on a relatively more compli-
attractor-based communityor simply a “L community”) as  cated case, the football match network compiled by Girvan
asetof nodet={iy, ... i suchtha(l)if nodeielL and  and Newmarf7]. It contains 115 nodes and 613 unweighted

nodej is an local attractor of, thenjeL, (2) if ieL and  edges. These 115 teams were distributed into 12 conferences
nodek hasi as its local attractorthekel, and (3) any by the game organizers. Based on the connection pattern, the
subset ofL is not aL community. Clearly, twd. communi-  present method divides them into 15 communities, of
ties L, and Ly, are either identical I(,=L) or disjoint  which 11 are locally stabld:, (size 9, L3 (13), L, (14), Ls
(LaNLp=y). Based on each node’s local attractor the(10), Lg (8), L, (6), Lg (7), Lg (6), L1g (4), Lq; (6), andL 3
graph could be decomposed into a set. dfommunities. (size 9. One element of ; (size 9 has stronger interaction
According to the same intuitive argument, on the globalwith L,,, and one element of, (size 10 has stronger
scale we expect that each node will have a high probabilitynteraction withL 3, and all the elements df,, (size 2 and
to be in the same community as its global attractor, and if_; (size 2 are locally unstable. Th& communities of this
assume this probability to be unity we can similarly constructhetwork are also identical to tHecommunities. In Fig. ()
the global-attractor-based communiti€sG communities’)  the community structure of this network is shown, where
based on the global-attractor of each node. For small nehodes belonging to each identified community are located
works, we expect thé- and G-community structures to be together, and the different colors encode the actual 12 con-
identical; while for large networks, each community may  ferenceg7]. Figure 1c) indicates that the predicted commu-
contain several-communities as its subgroups. A commu- nities coincide very well with the actual communities. The
nity could be characterized by its sidg and an instability community structure obtained by the present method is also
index| . Anodei in communityC is referred to as unstable in very good correspondence with that obtained by Girvan
if its total direct interaction with nodes in any another com-and Newmar]7] based on edge betweenness.
munity C’, 2y c/Aix, is stronger than its total direct inter-  The above-studied networks all have relatively small net-
action with other nodes in its own communi®, . c.;Aik- | work sizes and the identifie@ communities coincide with
is the total number of such nodes in each community. We cathe L communities. Now we apply our method to the protein
also identify thecenterof a community(if it exists) as the interaction networkyeast corg¢18,19) of baker’s yeast. The
node that is the global attractor of itself. giant connected component of this network contains 1471
Now we test the above-mentioned simple method orproteins and 2770 edgéassumed to be unweighted, since
some well-documented networks whose community structhe interaction strengths between the proteins are generally
tures are known. The first example is the social networkundeterminegl The present method dissect this giant compo-
recorded by Zachary16]. This network contains 34 nodes nent into 14G communities(Table |) and into 69L commu-
and 77 weighted edges, and it was observed to spontaneousiities (11 of them contain one locally unstable node, 15 of
fission into two groups of size 16 and 18, respectidl§] them have 2-7 locally unstable nodes, all the others are
[these two groups are marked by two colors in Fige)[l  stablg. The relationship between ti@andL communities is
The results of our method is shown in Figall Community  demonstrated in Fig.(dl), where proteins are grouped irto
L, contains 11 element®ode 13 is unstable and has stron- communities and those of the sar@ecommunity have the
ger direct interaction witle,), L, has six elementénode 9  same color. We see from Fig(d) that if two nodes are in the
has stronger direct interaction withy), andL; has 17 ele- samelL community, they are very probable to be in the same
ments. Nodes {the manager 3, and 34(the officey are the G community. The largest community G;) contains more
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FIG. 1. (Color) Community structure of some model networkise nodes of the sanecommunity are spatially grouped togethdg)
The karate club network compiled by Zachaiy] (here nodes are colored according to their actual groupiiiigsthe scientific collabo-
ration network compiled by Girvan and Newmjaf]; (c) the football match network compiled by Girvan and Newrhaihn(nodes are colored
according to their actual groupingsind(d) the yeast protein interaction netwdrk8,19, here nodes of the san@&community are encoded
with the same colotopen circles denote nodes @y).

than half of the proteins and is centered around nucleoporin What will happen if the protein YMR047C is removed
YMRO47C, which, according to SWISS-PROT descriptionfrom the network? The resulting perturbed system has 1463
[20], is “an essential component of nuclear pore complex”’nodes and 2729 edges, and we find thatLisommunity
and “may be involved in both binding and translocation of structure does not change much. Altogetherl.7@mmuni-

the proteins during nucleocytoplasmic transport.” YMR047Cties are identified, and most of them contain more or less the
interact directly only with 39 other proteirti is even notthe same set of elements as in the unperturbed network. How-
most connected node in the syspeimut associated with it is ever, there is a dramatic change in 8ecommunity struc-

a group of 935 proteins as suggested by the present methatulre. There are now 26 communities(the largest of which
The protein interaction network may be evolved to facilitatehas 574 proteinswhile G; of the original system breaks up
efficient protein transportation by protein-mediated indirectinto eight smallertG communities. It was revealed that the
interactions. most highly connected proteins in the cell are the most im-

041908-3



HAIJUN ZHOU PHYSICAL REVIEW E67, 041908 (2003

TABLE I. G communities of yeast's protein interaction network the node-node distance measured by a Brownian particle.
[18,19. N is the community sizel,; is the number of locally un-  The basic idea was applied to several real networked systems

stable nodes. and very encouraging results were obtained. The concept of
random walking was also used in some recent efforts to fa-
Index N, I Center Index N, I Center cilitate searching on networkSee, e.g., Ref422,23), the
present work is an attempt in applying it on identifying net-
Gy 935 7 YMRO47C G 52 1 YBRIOC work community structure. Some possible extensions of our
G, 9 3 YNLIBOW =~ Gg 37 1 YGR2I8W  \oing are immediately conceivable: First, in the present
Gs 17 4 YERI48W G,, 19 2 YMLIOOW work we have assumed that a node will be in the same com-
G4 °7. 5 YFLO3C G, 26 0 YDRIGTW munity as its attractor with probability 1. Naturally, we can
Gs 97 3 YDR38W Gy, 24 0 VYDLI4OC  jntroduce an “inverse temperaturgd and suppose that node
Ge 59 0 YJRO22W Gy 13 0 YOLOSIW  j pe in the same community as nopleith probability pro-
Gz 22 0 YDR448W Gy, 23 0 YJRO9IC  portional to exptBd;j). The present work discusses just the

zero temperature limit. We believe that the communities

é’dentified at zero temperature will persist until the tempera-

ture is high enough. Second, we can construct a gross-
ained network by regarding eathcommunity as a single

portant for its survival, and mutations in these proteins ar
usually letha[21]. Our work suggests that, these highly con-

nected proteins are especially important because they he . ; .
P P y Imp y ode, and defining the distance from obhecommunity to

integrating many small functional modulels Communitie$ . .

into a larger unit G community, enabling the cell to per- another as the average node-node distance between nodes in

form concerted reactions in response to environment stimullt.h.ese two communities. The present method can thgq be ap-
lied, and the relationship between differéntommunities

In the above examples, the network studied are all fronf i -
real world. We have palso tested the performance of oufan be better understood. Third, for very large networks, it is

method to some artificial networks generated by compute|‘.r7“3r"’1(:ti(:aI to consider the whol_e _network when calcglating
To compare with the result of Ref7], we generated an node-node distance. Actually this is not necessary, since the

ensemble of random graphs with 128 vertices. These verticégngth of the shortest path between a given node and its

are divided into four groups of 32 vertices each. Each verte>f’51ttr‘r’wtOr should be small. We can therefore focus on a local-

has on average 16 edges, of which are linked to vertices ized region of the network to identify the attractor of a given

o , o node.
f other gr nd the remaining ar vertices within i .
cg;roonfe a?l ?ﬁgg,e aeéigtese a(rae 3raw?1 zaraengoome;yt (;?]Sd irfdepetn- Furthermore, based on the distance measure of the present

dently in all the other means. Using the method of GirvanPaper, we can define a quantity called tiissimilarity index

and Newman, it was reportdd] that whenz,<6 all the for any two nearest-neighboring nodes. Nearest-neighboring

; e S o vertices of the same community tend to have small dissimi-
vertices could be classified with high probability. Our presentlarity index. while those belong?/ng to different communities

method in its simplest form could work perfectly only when tend to have high dissimilarity index. Extensions of the

Zoui<2.5. In the artificial network, the vertices are identical resent work will be reported in a forthcoming pagi24]
to each other in the statistical sense and there is no correl&: : . P g pe ’
An interesting task is to use extended versions of the

tion between the degrees of two neighboring edges. Ourresent method to explore the landscape of the Internet’s

method seems not to be the best for such kind of randorR .
networks. However, an improved method based on thgutonomous systefi8] and that of the metabolic network of

present worl 24| outperforms Ref{7]. coli [8,25)
In summary, we have suggested a simple way of grouping | am grateful to M. Girvan and M. E. J. Newman for
a graph of nodes and edges intodifferent subgraphs based sharing data and to Professor R. Lipowsky for support.
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