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Network landscape from a Brownian particle’s perspective
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~Received 22 August 2002; revised manuscript received 13 January 2003; published 21 April 2003!

Given a complex biological or social network, how many clusters should it be decomposed into? We define
the distancedi , j from nodei to nodej as the average number of steps a Brownian particle takes to reachj from
i. Nodej is a global attractor ofi if di , j<di ,k for anyk of the graph; it is a local attractor ofi if j PEi ~the set
of nearest neighbors ofi ) anddi , j<di ,l for any l PEi . Based on the intuition that each node should have a high
probability to be in the same community as its global~local! attractor on the global~local! scale, we present a
simple method to uncover a network’s community structure. This method is applied to several real networks
and some discussion on its possible extensions is made.
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A complex networked system, such as an organis
metabolic network and genetic interaction network, is co
posed of a large number of interacting agents. The comp
ity of such systems originates partly from the heterogen
in their interaction patterns, aspects of which include
small-world @1# and the scale-free properties@2,3# observed
in many social, biological, and technological networ
@4–6#. Given this high degree of complexity, it is necessa
to divide a network into different subgroups to facilitate t
understanding of the relationships among different com
nents@7,8#.

A complex network could be represented by a graph. E
component of the network is mapped to a vertex~node!, and
the interaction between two components is signified by
edge between the two corresponding nodes, whose weig
related to the interaction strength. The challenge is to dis
this graph based on its connection pattern. We know tha
partition a graph into two equally sized subgroups such
the number of edges in between reaches the absolute m
mum is already aNP-complete problem, a solution is no
guaranteed to be found easily; however it is still a we
defined question. On the other hand, the question ‘‘H
many subgroups should a graph be divided into and how?
ill posed, as we do not have an objective function to op
mize; and we have to rely on heuristic reasoning to proce

If we are interested in identifying just one community th
is associated with a specified node, the maximum fl
method@9# turns out to be efficient. Recently, it is applied
identifying communities of Internet webpages@10#. An com-
munity thus uncovered is usually very small; and for th
method to work well one needsa priori knowledge of the
network to select the source and sink nodes properly.
other elegant method is based on the concept of edge
tweenness@11#. The degree of betweenness of an edge
defined as the total number of shortest paths between pai
nodes which pass through it. By removing recursively
current edge with the highest degree of betweenness,
expects the connectivity of the network to decrease the m
efficiently and minimal cutting operations is needed to se
rate the network into subgroups@7#. This idea of Girvan and
Newman@7# could be readily extended to weighted grap
by assigning each edge a length equalling its recipro
weight. Furthermore, in the sociology literature, there is
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relatively long tradition in identifying communities based o
the criteria of reachability and shortest distance~see, e.g.,
Ref. @12#!.

In this paper, a method of network community identific
tion is described. It is based on the concept of netw
Brownian motion: If an intelligent Brownian particle lives i
a given network for a long time, what might be its perspe
tive of the network’s landscape? We suggest that, without
need to remove edges from the network, the node-node
tances ‘‘measured’’ by this Brownian particle can be used
construct the community structure and to identify the cen
node of each community. This idea is tested on several so
and biological networks and satisfiable results are obtain
Several ways are discussed to extend and improve
method.

Consider a connected network ofN nodes andM edges.
Its node set is denoted byV5$1, . . . ,N% and its connection
pattern is specified by the generalized adjacency matrixA. If
there is no edge between nodei and nodej, Ai j 50; if there
is an edge in between,Ai j [Aji .0 and its value signifies the
interaction strength~self-connection is allowed!. The set of
nearest neighbors of nodei is denoted byEi . A Brownian
particle keeps moving on the network, and at each time s
it jumps from its present position~say i ) to a nearest-
neighboring positionj. When no additional knowledge abou
the network is known, it is natural to assume the followi
jumping probability Pi j 5Ai j /( l 51

N Ail ~the corresponding
matrix P is called the transfer matrix!. One verifies that at
time t@M the probabilityr(k) for the Brownian particle to
be at any node k is nonvanishing and equals to
( lAkl /(m,nAmn , proportional to the total interaction capa
ity ( lAkl of nodek.

Define the node-nodedistance di , j from i to j as the av-
erage number of steps needed for the Brownian particle
move fromi through the the network toj. From some simple
linear-algebra calculation@13# it is easy to see that

di , j5(
l 51

N S 1

I 2B~ j ! D
i l

, ~1!

whereI is theN3N identity matrix and matrixB( j ) equals
to the transfer matrixP except thatBl j ( j )[0 for any l
©2003 The American Physical Society08-1
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PV. The distances from all the nodes inV to nodej can thus
be obtained by solving the linear algebraic equat
@ I 2B( j )#$d1,j , . . . ,dN, j%

T5$1, . . . ,1%T. We are mainly in-
terested in sparse networks withM5O(N); for such net-
works there exist very efficient algorithms@14,15# to calcu-
late the root of this equation. If nodej has the property tha
di , j<di ,k for anykPV, thenj is tagged as aglobal attractor
of nodei ( i is closest toj in the sense of average distance!.
Similarly, if j PEi anddi , j<di ,l for any l PEi , then j is an
local attractor of i ( i is closest toj among all its neares
neighbors!. We notice that, in general, the distance fromi to
j (di , j ) differs from that fromj to i (dj ,i). Consequently, ifj
is an attractor ofi, nodei is not necessarily also an attract
of j.

If a graph is divided into different subgroups, on the loc
scale we intuitively expect that each nodei will have a high
probability to be in the same subgroup as its local attractoj,
since among all the nearest neighboring nodes inEi , nodej
has the shortest ‘‘distance’’ from nodei. For simplicity let us
just assumethis probability to be unity~a possible improve-
ment is discussed later!. Thus, we can define alocal-
attractor-based community~or simply a ‘‘L community’’! as
a set of nodesL5$ i 1 , . . . ,i m% such that~1! if node i PL and
node j is an local attractor ofi, then j PL, ~2! if i PL and
node k has i as its local attractor,thenkPL, and ~3! any
subset ofL is not aL community. Clearly, twoL communi-
ties La and Lb are either identical (La[Lb) or disjoint
(LaùLb5B). Based on each node’s local attractor t
graph could be decomposed into a set ofL communities.

According to the same intuitive argument, on the glob
scale we expect that each node will have a high probab
to be in the same community as its global attractor, an
assume this probability to be unity we can similarly constr
the global-attractor-based communities~‘‘ G communities’’!
based on the global-attractor of each node. For small
works, we expect theL- and G-community structures to be
identical; while for large networks, eachG community may
contain severalL-communities as its subgroups. A comm
nity could be characterized by its sizeNc and an instability
index I c . A nodei in communityC is referred to as unstabl
if its total direct interaction with nodes in any another co
munity C8, (kPC8Aik , is stronger than its total direct inte
action with other nodes in its own community,(kPC\ iAik . I c
is the total number of such nodes in each community. We
also identify thecenterof a community~if it exists! as the
node that is the global attractor of itself.

Now we test the above-mentioned simple method
some well-documented networks whose community str
tures are known. The first example is the social netw
recorded by Zachary@16#. This network contains 34 node
and 77 weighted edges, and it was observed to spontaneo
fission into two groups of size 16 and 18, respectively@16#
@these two groups are marked by two colors in Fig. 1~a!#.
The results of our method is shown in Fig. 1~a!. Community
L1 contains 11 elements~node 13 is unstable and has stro
ger direct interaction withL2), L2 has six elements~node 9
has stronger direct interaction withL3), andL3 has 17 ele-
ments. Nodes 1~the manager!, 3, and 34~the officer! are the
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corresponding centers. We find that for this network theG
communities coincide with theL communities.

As another example, the scientific collaboration netwo
of Santa Fe Institute@7# is considered. The giant connecte
component contains 118 nodes and 200 weighted edges
weights are assigned according to the measure in Ref.@17#.
The present method divides the network into sixL commu-
nities, see Fig. 1~b!. All the nodes in communityL1 ~size 14!,
L2 ~41!, L4 ~8!, L5 ~26!, andL6 ~17! are locally stable, and
one node inL3 has stronger direct interaction with comm
nity L6. Same as the above example, theG-community struc-
ture is also identical to theL-community structure. Girvan
and Newman divided this network into four major groups
recursively removing edges of highest degree of between
@7#: the largest of which was further divided into three su
groups and the second largest was divided into two s
groups. There are still some minor differences between
six subgroups obtained by the present method and those
tained in Ref.@7#, which may be attributed to the fact that,
the treatment of Ref.@7# the network was regarded as u
weighted.

The method is further tested on a relatively more comp
cated case, the football match network compiled by Girv
and Newman@7#. It contains 115 nodes and 613 unweight
edges. These 115 teams were distributed into 12 confere
by the game organizers. Based on the connection pattern
present method divides them into 15L communities, of
which 11 are locally stable:L2 ~size 9!, L3 ~13!, L4 ~14!, L5
~10!, L6 ~8!, L7 ~6!, L8 ~7!, L9 ~6!, L10 ~4!, L11 ~6!, andL13
~size 9!. One element ofL1 ~size 9! has stronger interaction
with L10, and one element ofL12 ~size 10! has stronger
interaction withL3, and all the elements ofL14 ~size 2! and
L15 ~size 2! are locally unstable. TheG communities of this
network are also identical to theL communities. In Fig. 1~c!
the community structure of this network is shown, whe
nodes belonging to each identified community are loca
together, and the different colors encode the actual 12 c
ferences@7#. Figure 1~c! indicates that the predicted commu
nities coincide very well with the actual communities. Th
community structure obtained by the present method is a
in very good correspondence with that obtained by Girv
and Newman@7# based on edge betweenness.

The above-studied networks all have relatively small n
work sizes and the identifiedG communities coincide with
theL communities. Now we apply our method to the prote
interaction network~yeast core@18,19#! of baker’s yeast. The
giant connected component of this network contains 14
proteins and 2770 edges~assumed to be unweighted, sinc
the interaction strengths between the proteins are gene
undetermined!. The present method dissect this giant comp
nent into 14G communities~Table I! and into 69L commu-
nities ~11 of them contain one locally unstable node, 15
them have 2–7 locally unstable nodes, all the others
stable!. The relationship between theG andL communities is
demonstrated in Fig. 1~d!, where proteins are grouped intoL
communities and those of the sameG community have the
same color. We see from Fig. 1~d! that if two nodes are in the
sameL community, they are very probable to be in the sa
G community. The largestG community (G1) contains more
8-2
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FIG. 1. ~Color! Community structure of some model networks~the nodes of the sameL community are spatially grouped together!. ~a!
The karate club network compiled by Zachary@16# ~here nodes are colored according to their actual groupings!; ~b! the scientific collabo-
ration network compiled by Girvan and Newman@7#; ~c! the football match network compiled by Girvan and Newman@7# ~nodes are colored
according to their actual groupings!; and~d! the yeast protein interaction network@18,19#, here nodes of the sameG community are encoded
with the same color~open circles denote nodes inG1).
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than half of the proteins and is centered around nucleop
YMR047C, which, according to SWISS-PROT descripti
@20#, is ‘‘an essential component of nuclear pore comple
and ‘‘may be involved in both binding and translocation
the proteins during nucleocytoplasmic transport.’’ YMR047
interact directly only with 39 other proteins~it is even not the
most connected node in the system!, but associated with it is
a group of 935 proteins as suggested by the present me
The protein interaction network may be evolved to facilita
efficient protein transportation by protein-mediated indir
interactions.
in

’’

od.

t

What will happen if the protein YMR047C is remove
from the network? The resulting perturbed system has 1
nodes and 2729 edges, and we find that itsL-community
structure does not change much. Altogether 72L communi-
ties are identified, and most of them contain more or less
same set of elements as in the unperturbed network. H
ever, there is a dramatic change in theG community struc-
ture. There are now 21G communities~the largest of which
has 574 proteins!, while G1 of the original system breaks u
into eight smallerG communities. It was revealed that th
most highly connected proteins in the cell are the most
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portant for its survival, and mutations in these proteins
usually lethal@21#. Our work suggests that, these highly co
nected proteins are especially important because they
integrating many small functional modules (L communities!
into a larger unit (G community!, enabling the cell to per-
form concerted reactions in response to environment stim

In the above examples, the network studied are all fr
real world. We have also tested the performance of
method to some artificial networks generated by compu
To compare with the result of Ref.@7#, we generated an
ensemble of random graphs with 128 vertices. These vert
are divided into four groups of 32 vertices each. Each ver
has on average 16 edges,zout of which are linked to vertices
of other groups, and the remaining are to vertices within
group; all these edges are drawn randomly and indep
dently in all the other means. Using the method of Girv
and Newman, it was reported@7# that whenzout,6 all the
vertices could be classified with high probability. Our pres
method in its simplest form could work perfectly only whe
zout,2.5. In the artificial network, the vertices are identic
to each other in the statistical sense and there is no cor
tion between the degrees of two neighboring edges.
method seems not to be the best for such kind of rand
networks. However, an improved method based on
present work@24# outperforms Ref.@7#.

In summary, we have suggested a simple way of group
a graph of nodes and edges intodifferent subgraphs base

TABLE I. G communities of yeast’s protein interaction netwo
@18,19#. Nc is the community size,I c is the number of locally un-
stable nodes.

Index Nc I c Center Index Nc I c Center

G1 935 7 YMR047C G8 52 1 YBR109C
G2 90 3 YNL189W G9 37 1 YGR218W
G3 17 4 YER148W G10 19 2 YML109W
G4 57 5 YFL039C G11 26 0 YDR167W
G5 97 3 YDR388W G12 24 0 YDL140C
G6 59 0 YJR022W G13 13 0 YOL051W
G7 22 0 YDR448W G14 23 0 YJR091C
om
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the node-node distance measured by a Brownian part
The basic idea was applied to several real networked syst
and very encouraging results were obtained. The concep
random walking was also used in some recent efforts to
cilitate searching on networks~see, e.g., Refs.@22,23#!, the
present work is an attempt in applying it on identifying ne
work community structure. Some possible extensions of
method are immediately conceivable: First, in the pres
work we have assumed that a node will be in the same c
munity as its attractor with probability 1. Naturally, we ca
introduce an ‘‘inverse temperature’’b and suppose that nod
i be in the same community as nodej with probability pro-
portional to exp(2bdi,j). The present work discusses just th
zero temperature limit. We believe that the communit
identified at zero temperature will persist until the tempe
ture is high enough. Second, we can construct a gro
grained network by regarding eachL community as a single
node, and defining the distance from oneL community to
another as the average node-node distance between nod
these two communities. The present method can then be
plied, and the relationship between differentL communities
can be better understood. Third, for very large networks, i
impractical to consider the whole network when calculati
node-node distance. Actually this is not necessary, since
length of the shortest path between a given node and
attractor should be small. We can therefore focus on a lo
ized region of the network to identify the attractor of a giv
node.

Furthermore, based on the distance measure of the pre
paper, we can define a quantity called thedissimilarity index
for any two nearest-neighboring nodes. Nearest-neighbo
vertices of the same community tend to have small dissi
larity index, while those belonging to different communitie
tend to have high dissimilarity index. Extensions of t
present work will be reported in a forthcoming paper@24#.

An interesting task is to use extended versions of
present method to explore the landscape of the Intern
autonomous system@3# and that of the metabolic network o
coli @8,25#.

I am grateful to M. Girvan and M. E. J. Newman fo
sharing data and to Professor R. Lipowsky for support.
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