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Interactions between proteins bound to biomembranes
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We study a physical model for the interaction between general inclusions bound to fluid membranes that
possess finite tensiong, as well as the usual bending rigidityk. We are motivated by an interest in proteins
bound to cell membranes that apply forces to these membranes, due to either entropic or direct chemical
interactions. We find an exact analytic solution for the repulsive interaction between two similar circularly
symmetric inclusions. This repulsion extends over length scales;Ak/g and contrasts with the membrane-
mediated contact attraction for similar inclusions on tensionless membranes. For noncircularly symmetric
inclusions we study the small, algebraically long-ranged, attractive contribution to the force that arises. We
discuss the relevance of our results to biological phenomena, such as the budding of caveolae from cell
membranes and the striations that are observed on their coats. These, and other, ‘‘gnarly buds’’ may prove
fascinating to study further.
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I. INTRODUCTION

A significant proportion of all proteins in a typical eukar
otic cell are membrane proteins. These are found anchore
cell membranes. Many of these carry out tasks such as si
transduction, pore or channel formation, cytoskeletal bi
ing, etc.@1#. Others are involved in endocytosis and exoc
tosis. In particular, it is now understood that the formation
clathrin coated pits is driven by the controlled geomet
aggregation of clathrin which exerts corresponding forces
the cell membrane@2,3#. There also exists a less well unde
stood class of membrane invaginations, known as caveo
that are less morphologically distinct than clathrin coa
pits and resemble aspherical invaginations with a typical s
of the order of 100 nm@4#. There is good evidence tha
caveolae are involved in endocytosis@5# and play an impor-
tant role in cell signaling@6#. Intriguingly, they are probably
also involved in the sensing of shear stress@7,8#. Such
stresses would be expected to act on the tensiong of the cell
membrane. Thus, the present work may yield predictions
some of the direct physical consequences of surface ten
e.g., on interprotein forces. In Sec. II we discuss some qu
tative effects of surface tension although a quantitat
analysis of the effect of shear on membrane tension is
yond the scope of the present work. Recent elegant exp
ments demonstrate that better control of the surface ten
may be achieved via micropipette aspiration facilitating st
ies of the effects of tension on membrane elasticity@9–11#
and permeability to water@12#.

It has now been shown that caveolins@13#, a recently
discovered class of membrane-bound proteins, are nece
for the formation of caveolae. These caveolins have a s
membrane spanning sequence and N- and C-term
polypeptide ‘‘tails,’’ totalling about 150 amino acids,both
found on the cytoplasmic side of the cell membrane. It
thought that these caveolin molecules are typically found
small aggregates of sizeb ~a few nm! containing approxi-
mately 15 molecules@14#. A crude thermodynamic~entropic!
1063-651X/2003/67~4!/041907~10!/$20.00 67 0419
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bound on the bending moment would be*k
B
Tb, higher for

larger aggregates.
Many theoretical studies have sought to calculate the

fect of an adsorbed polymer on flexible, fluid membran
see, e.g., Refs.@15–19#. One reason for this approach is th
the simplified models available from polymer physics allo
for a more or less exact computation of the entropic press
exerted by the polymer on the membrane. Our work rep
sents a generalization of this approach. An anchored poly
is but one example, or model, of a membrane inclusion t
exerts a force on the membrane. Any membrane protein
is not perfectly symmetrical across the membrane should
ert forces, the distribution of which will be dictated by th
precise protein configuration. Furthermore, it can be arg
that the physical effect of integral membrane protein can a
be described by a well chosen force distribution. Hence th
is a need for a general theory on the effect of arbitrary fo
distributions on a flexible membrane. Our premier intere
are large peripheral membrane protein such as caveolin.
theory is, however, general enough to be applied to any fl
ible fluid interface with fixed tension, containing embedd
impurities.

Much of the previous work on interaction betwee
membrane-bound objects has focused on membranes
vanishing surface tension@15–18#, although there have bee
exceptions@20#. This work exists within the context of an
extensive literature on membrane mediated interactions
tensionless membranes, see, e.g., Refs.@21–23#, which fo-
cussed mainly on Casimir-like forces originating from me
brane fluctuations. It was argued that these could be ei
attractive or repulsive, depending on the temperature
certain details of the model. The interest in tensionless m
branes has its origin in the fact that isolated, self-assemb
lipid membranes should be tensionless at equilibrium. Imp
tantly, this is not the case for many cell membranes. Ot
studies include tension as a~shape dependent! parameter de-
termined self-consistently for closed membrane surfa
@24#. A study of the behavior of membranes under const
surface tension may shed light on the physics occurring
©2003 The American Physical Society07-1
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biological membrane, which are not truly at equilibrium a
hence bear substantial tensions@25,26#. Cells commonly ad-
just their surface tension to a set value via a mechan
known as surface-area regulation@27#. Hence membrane
phenomena over sufficiently long time scales effectively
cur at constant surface tension. Previous studies of the ef
of rodlike objects embedded in fluid membranes@20#, adhe-
sive junctions@28#, and impurities at gas-liquid interface
@29,30# share certain similarities with this study.

II. ANALYSIS OF MEMBRANE DEFORMATION AND
MEMBRANE-MEDIATED INTERACTIONS

Our aim is to construct a theoretical model for t
membrane-mediated interactions between proteins boun
cell membranes. To achieve this we will denote the norm
membrane displacement from its average flat state asu(r ),
wherer is a two-dimensional~2D! vector in the plane of the
unperturbed membrane. Motivated by a desire to ana
small membrane deviations, we employ an expansion of
free energy of the membrane in powers and gradients ou.
The free energy of a deformed fluid membrane, without
clusions, is well approximated by@31#

Fmemb5E d2r Fk2 @¹2u~r !#21
g

2
@“u~r !#2G , ~1!

which represents the truncation of an arbitrary expansio
orderu2 ~odd orders are excluded by symmetry! and at the
second derivatives ofu. For a planar membrane, with norm
in the ẑ direction, the gradient operator is“5 x̂(]/]x)
1 ŷ(]/]y). The only two parameters that are needed to
scribe the physics of the membrane arek, the elastic bending
modulus~typically @32# 20k

B
T for biomembranes! andg the

surface tension~estimated to be@25# 1021 to 1022 pN/nm).
To include the work done by the pressure~normal force

per unit area! f (r ) exerted by one or more inclusions w
exploit the fact that, for small deviations, the work done
merely the surface integral of the product of pressure
distance. The displacement has no effect on the pressure
at this order. Thus the total free energy, including the eff
of inclusions is

F5E d2r Fk2 @¹2u~r !#21
g

2
@“u~r !#22 f ~r !u~r !G , ~2!

where the term involvingf (r ) is chosen to have a minus sig
to ensure that the membrane displacement has the de
sign. At thermodynamic equilibrium the free energyF must
reach its minimum value, at which pointu(r ) satisfies the
Euler-Lagrange equation

L1L2u~r !2
f ~r !

k
50 ~3!

with L15¹2, L25¹22k2, and k25g/k indicating an in-
trinsic length scalek21'30 nm ~with perhaps 6 nm&k21

&100 nm). We solve this under the boundary conditi
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limr→`“u(r )50 and that limr→0u(r ) exists. Since the com
mutator@L1 ,L2#50 it can be shown that

u~r !5
1

gE @G1~r ,r 8!2G2~r ,r 8!# f ~r 8!d2r 8, ~4!

whereG1 andG2 are the Green’s functions corresponding
the self-adjoint problems determined byL1 andL2 ~and their
boundary conditions!, respectively. We now seek to find th
Green’s functions of these self-adjoint operators.

For L1 we solve

L1G1~r ,r 8!5¹2G1~r ,r 8!52d~r2r 8!. ~5!

The only boundary conditions compatible with this equati
are Von Neumann conditions at infinity, i.e
limr2r8→`“G1(r2r 8)50. This corresponds to the mem
brane being asymptotically flat and yields the well know
Green’s function of Poisson’s equation in two-dimensions

G1~r ,r 8!52
1

2p
ln Aur2r 8u, ~6!

whereA is an arbitrary constant with dimensions of~length!
21. We chooseA5k for convenience, this choice corre
sponds only to a definition of the zero of the free energy

For L2 we must solve

~¹22k2!G2~r ,r 8!52d~r2r 8!, ~7!

subject to the boundary conditions specified above. This s
adjoint problem has linearly independent solutionsK0(kur
2r 8u) and I 0(kur2r 8u). These are, respectively, the zero
order modified Bessel functions of the first and second ki
The functionI 0(x) diverges asx→`, therefore we write the
Green’s function as

G2~r2r 8!5
1

2p
K0~kur2r 8u!. ~8!

This gives us the solution of Eq.~3!, subject to the stated
boundary conditions as

u~r !5E G~r ,r 8! f ~r 8!d2r 8 ~9!

with the Green’s function

G~r ,r 8!52
1

2pg
@K0~kur2r 8u!1 lnkur2r 8u#. ~10!

Equations~9! and ~10! represent a solution for the equ
librium membrane displacementu(r ) due to an arbitrary
force distribution. The formal analysis is concluded in t
Appendix, where we show that this solution is unique.

A. Interaction potential between two proteins

Consider a fluid membrane with two, not necessar
identical, inclusions bound to it. Denote the pressure fie
acting on the membrane surface due to each inclusion
7-2
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c (1) andc (2). Without loss of generality we may letc (1) be
centered at the origin and let the vectorr joining the centers
of the pressure distributions lie along thex axis. Mathemati-
cally, this means that we write the total pressure distribut
as

f ~r 8!5c (1)~r 8!1c (2)~r 82r !, ~11!

wherec (2)(r 82r ) is the pressure distribution of the seco
inclusion centered atr , rather that the origin. Hence the fre
energy at equilibrium is given byF5Fsel f

(1) 1Fsel f
(2) 1F(r ),

whereFsel f
( i ) is the self-energy of thei th inclusion andF(r )

is the interaction energy. We are interested only inF(r ) as
this is what determines the physics of interest to us here
direct analysis or analogy with electrostatics this may be
pressed as

F~r !52E d2r 8E d2r 9c (1)~r 8!c (2)~r 9!G~r2r 81r 9!,

~12!

whereG(r ) is the real space Green’s function.
For the case that we have two inclusions with circu

symmetry we are able to determine the interaction poten
exactly. Consider two circularly symmetric inclusions, i.
c ( i )(r 8)5c ( i )(ur 8u)5c ( i )(r 8) such thatc ( i )(r 8)50 for r 8
.b, whereb is some maximum radius of the inclusion. Als
each pressure field is such that no average force
@*c ( i )(r 8)d2r 850#. For inclusions that are not anchored
external structures, such as the cytoskeleton, this cond
must be satisfied on general grounds. Indeed Newton’s t
law requires that any average force applied to the memb
by an inclusion must be equal and opposite to the reac
force applied by the inclusion to some external structure
there is no external structure for this reaction force to
against then there can be no average force on the memb
We assume that the pressure fields do not overlap so thr
.2b. Under these assumptions the logarithmic term in
~10! gives a vanishing contribution to the integral Eq.~12!
due to Gauss theorem. It corresponds to the electric field
to two circularly symmetric charged disks in two
dimensions, each carrying no average charge and thus
zero field in the region outside both disks. This analogy w
be revisited when we discuss noncircularly symmetric inc
sions in Sec. IV below. The potential between two circula
symmetric inclusions is therefore given by

F~r !5
1

2pgE0

b

r 8dr8E
0

b

r 9dr9c (1)~r 8!c (2)~r 9!

3E
0

2p

du8E
0

2p

du9K0~kur2~r 82r 9!u!, ~13!

the upper limits of integration are bothb sincec(r 8)50 for
r .b. We make use of the identities

E
0

2p

K0~kur2~r 82r 9!u!du952pK0~kr !I 0~kur 82r 9u!

~14!
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valid for r .ur 82r 9u, and

E
0

2p

I 0~kur 82r 9u!du852pI 0~kr8!I 0~kr9! ~15!

valid for r 8Þr 9. Thus we are able to derive an exact an
lytical form for the interaction potential between nonoverla
ping (r .2b) circularly symmetric inclusions

F~r !5
1

2pg
z (1)z (2)K0~kr !, ~16!

where z ( i )52p*0
`r 8c ( i )(r 8)I 0(kr8)dr8 characterizes the

strength of thei th membrane-inclusion coupling. By em
ploying the expansion ofI 0(kr8) the quantityz ( i ) can be
thought of as a series of moments of the force distributi
The radial force is as usual given by the derivative of t
potential f r52]F/]r . The interaction is everywhererepul-
sive. Some previous studies have reported attractive inte
tions between polymer chains grafted on tensionless m
branes@15,16#. In these studies the positionu(0) of the chain
grafting point was fixed, effectively by a Lagrange force th
then acted to ensure that there was no average force
though this condition was not identified explicitly by the
authors. In the case of vanishing tension it was found t
there was no interaction between inclusions unless t
‘‘touch,’’ i.e., their force fields overlap. One can understa
this as follows. For tensionless membranes the membr
deformation under the force field is dictated by the minim
zation of an energy similar to Eq.~2! but with g50. The
membrane deformation outside the extent of the force fi
simply minimizes the curvature energy, hence has a z
mean curvature and does not contribute to the total ene
As two inclusions approach each other, the total energy d
not change until one force field couples to the membra
deformation directly under the other force field, since t
deformation energy of any piece of membrane that it no
direct contact with a force field is zero. There is no char
teristic length scalek21 to give the interactions’ finite range
when g50. In consequence, inclusions interact only wh
the two force fields overlap. In the case of grafted ideal po
mer chains the energy is decreased when the force fi
overlap because they both want to deform the membran
the same direction, resulting in an attraction. We note that
interaction between overlapping membrane inclusions
very sensitive to the direct physical, rather than membr
mediated, interactions between them, unlike Eq.~16! which
is universal. Were we to blindly apply our formalism to th
case of overlapping force distributions we are also able
recover a regime where the interactions are attractive. In
g→0 limit Eq. ~16! gives vanishing interactions, entirel
consistant with these earlier results for tensionless m
branes.

As mentioned in the Introduction, recent experiments
the effect of shear forces on living cells provide a cru
control on membrane tension. In future studies we plan
calculate the precise effect of this on, e.g., surface ph
equilibria and budding phenomena.
7-3
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III. MICROPHASE SEPARATION AT THE SURFACE OF
CAVEOLAR INVAGINATION

Membrane-mediated interactions between membra
bound inclusions have been extensively studied theoretic
@21# with, however, relatively little discussion of how exper
ments could easily support these predictions. Although p
sumably long range, these interactions are expected to
quite small, and are probably often dominated by stron
~bio!chemically specific, short range phenomena. Long ra
interactions can, however, profoundly influence the phase
havior of certain membrane proteins even if stronger, sh
range interactions, are present. As we emphasize below, s
ies of such surface phases might provide an indirect prob
the membrane-mediated interactions of interest here. T
might be of particular relevance for the study of the pha
behavior of the protein caveolin, which is found at high de
sity on certain membrane invaginations called caveolae~see
Sec. I!.

One peculiar feature of the caveolae bulbs is their textu
Distinct striations are seen at the surface of these buds@4#
~see also Fig. 13.48 in Ref.@1#!. These are now thought t
correspond with the organization and alignment of caveo
oligomers on the membrane@33#. The observation of thes
surface stripes is intriguing, and the reader may find it in
esting that radially symmetrical oligomers can give rise
nonsymmetrical surface phases. We discuss this below, a
ing that the stripe phase may be a signature of
membrane-mediated repulsion between protein aggreg
such as those calculated in Sec. II. Indeed, studying
phase behavior of membrane inclusions may provide on
the best ways to test theory against experiment in this fi
Molecular dissection of the caveolin protein has shown t
caveolin oligomers strongly attract each other through c
tacts of specific protein sequences@6# ~a short range attrac
tion!. It is well known that a solution of particles interactin
via hard core repulsion and a short range attraction un
goes a gas-liquid phase separation. This results in large d
regions~the liquid! coexisting with less dense regions~the
gas!. The caveolin oligomer being anchored to the cell me
brane, there exists an additional membrane-mediated, lo
range repulsion between between them, as demonstrate
Sec. II, which allows for a more complex phase behav
@45#. It has been recently argued in the light of compu
simulations@34–36# that a long range repulsion should bre
the gas and liquid phases into microdomains. The short ra
attraction still locally drives a gas-liquid phase separati
but large aggregates are costly because of the long ra
repulsion. The microdomains are circular liquid islands
low density, circular gas regions at high density, and stri
otherwise.

To gain a quantitative understanding of how stripes m
form on caveolae we study the stability of an homogen
~2D! solution of oligomers of areasb5pb2 interacting via a
potentialV(r ), which include a short range~the particle size
b) attractive exponential interaction and the longer ran
membrane mediated repulsion of Eq.~16!: V(r )5
2Eae2r /b1ErK0(kr), where Ea and Er are, respectively,
the strengths of the attraction and the repulsion. We loo
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small perturbations df @with the conservation rule
*dSdf(r )50] around the average surface coveragef0.
The free energy includes the pair interaction and the tran
tion entropy of the inclusions, for which we use the gas-o
a-lattice model. Expanding the free energy,

F5E dS

sb
@f ln f1~12f!ln~12f!#

1
1

2E dSdS8

sb
2

f~r !V~ ur 2r 8u!f~r 8!,

dF5E dS

sb

df2

2f0~12f0!

1
1

2E dSdS8

sb
2

df~r !V~ ur 2r 8u!df~r 8!. ~17!

The Fourier transformdf(r )5S*@d2q/(2p)2#dfqeiq•r al-
lows us to investigate the formation of structures. It leads

dF5
1

2

S2

sb
E d2q

~2p!2
Vqudfqu2

with

Vq5
T

f0~12f0!
1

1

sb
Vq . ~18!

If Vq , the Fourier transform ofV(r ), is sufficiently negative
~attractive! for a given modeq thenVq,0 and the mode is
unstable. Substituting the expression forV(r ), we obtain

Vq52kBTF 1

2f0~12f0!

1S 2Ea

1

@11~bq!2#3/2
1Er

1

k21q2D G . ~19!

In the absence of long range repulsion, the most unsta
mode is alwaysq50 ~macrophase separation!, and the
liquid-gas transition is observed provided 2Eaf0(12f0)
.k

B
T. Because of the membrane-mediated long range re

sion, the functionVq presents a minimum ifEr.
3
2 Ea(kb)4

;1023Ea ~for the typical numbersb.5 nm and k21

;30 nm). One sees that although the strength of membra
mediated interaction@Eq. ~16!# is expected to be quite smal
Er.1022k

B
T ~see Sec. V A or Ref.@37# for a more detailed

analysis!, it is of much longer range, and should be comp
tent to produce a well ordered phase.

The phase separation occurs preferentially for a m
given by]Vq /]q50, and periodic arrays of dense and dilu
regions are observed. In the limitkb!1 the structure has a
typical size 2p/q* which is independent of the range of th
repulsion: q* b5(2Er /3Ea)1/4. 1

4 . It thus defines dense
stripes of width about five particle diameters, which agre
quite well with the experimental observations. The existen
7-4
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of a stripe phase at the surface of the biological structu
known as caveolae is thus quantitatively consistent with
existence of a membrane-mediated repulsion between
teins described by Eq.~16!.

This analysis does not help us to discriminate betw
circular domains and stripes. Computer simulation ha
clearly shown that this transition indeed exists for hi
enough surface coverage@35,36#.

Note that the formation of striped mesostructures in me
brane has been predicted on the basis of curvature ef
only @38,39#. However, it can be shown that their existence
the surface of invagination of such large curvature as
caveolae (R;50 nm) is inconsistent with the existence
invaginations with a well defined size.

IV. FAR-FIELD INTERACTIONS OF NONCIRCULARLY
SYMMETRIC INCLUSIONS

If the force distribution of the inclusions is not circular
symmetric then no general analytic solution to Eq.~12! ex-
ists. However, we can still proceed by examining the far-fi
interactions of slightly asymmetric inclusions. In order to
this we will parametrize the asymmetry of thesth inclusion
by

Di j
(s)5E d2r 8r i8r j8c

(s)~r 8!5S c1e (s) 0

0 c2e (s)D , ~20!

where i and j are Cartesian indices,c controls the average
~isotropic! magnitude, ande controls the anisotropy of a
slightly ‘‘elliptical’’ force distribution, extended in thex di-
rection and contracted in they direction ~for e.0). This
force distribution can be rotated by the usual rotation ma
R(u) to obtain the effective momentRim(u (s))Rjn(u (s))Dmn

(s)

of an ‘‘elliptical’’ force distribution rotated by an angleu (s)

relative to thex axis. This expression involves two rotation
one for each factor ofr 8 in Eq. ~20!.

It is important to first note is that the interaction can
separated into two terms, one that is an integral involv
K0(kur2r 81r 9u) and the other that is an integral involvin
ln kur2r 81r 9u. The first of these terms gives a contributio
to the interaction potential that is dominated by a term l
Eq. ~16!, with corrections due to the asymmetry that a
smaller~and also asymptotically exponentially short range!.
This conclusion is independent of the precise choice
asymmetry, provided only that it is small. The contributi
from the second term is more interesting and can be sh
to give rise to a small butlong rangedcorrectiondF to the
interaction potential. This can be best understood by wa

multipolelike expansion of lnkur2 r̃ u, whereu r̃ u!ur u and we

choose the direction ofr5rx̂ to define thex axis ~the 1
direction!, without loss of generality. Thusr̃ 1 and r̃ 2 are the
x andy components ofr̃ and
04190
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ln kur2 r̃ u5 ln kr2
r̃ 1

r
1

r̃ 2
22 r̃ 1

2

2r 2
2

r̃ 1
323r̃ 1r̃ 2

2

3r 3

1
6r̃ 1

2r̃ 2
22 r̃ 1

42 r̃ 2
4

4r 4
1OS 1

r 5D . ~21!

The conditions of no overall force*d2r 8c(r 8)50 and no
overall moment*d2r 8r 8c(r 8)50 for each inclusion mean
that the first nonvanishing contribution todF;1/r 4, the
classical result for electrostatic quadrupole-quadrupole in
actions in two dimensions. Usingr̃5r 82r 9 in Eq. ~21! to
leading order in 1/r we have@46#

dF5
1

4pgE d2r 8E d2r 9c (1)~r 8!c (2)~r 9!ln kur2r 81r 9u

5
23e (1)e (2)

2pgr 4
cos 2~u (1)1u (2)!. ~22!

This result demonstrates that elliptical inclusions attrac
arranged so thatu (1)1u (2)5np with n an integer, as re-
ported in an earlier study of rodlike inclusions@20#. This
condition represents a degenerate family of orientations
which the orientation of the quadrupoles has reflectio
symmetry about the midplane. This perturbative interact
is long-ranged, scaling like 1/r 4. Interestingly, this domi-
nates the exponentially short ranged repulsion from Eq.~16!
for large enough separations.

There is a straightforward way to understand the appe
ance of an algebraic potential for anisotropic inclusions. T
physics of Eq.~5! is that of the Poisson equation in which th
force distribution is analogous to the electrostatic char
The potential due to a point charge in two-dimensions
therefore Eq.~6!. Gauss law tells us that there is no fie
outside a circularly symmetric charge distribution that has
overall charge~imbalance!. This condition is analogous to
our requirement here that there be no overall fo
*d2r 8 f (r 8)50 by Newton’s law. If there is no field the po
tential is constant~zero without loss of generality! and no
forces act on the inclusions. However, if we relax the con
tion that the force~charge! distribution is circularly symmet-
ric there is no longer a simple symmetry argument that
radial and azimuthal components of the field must be ze
Indeed they are not. As is usual in multipole expansions
electrostatics an algebraic potential results. It is here an
gous to the quadrupole-quadrupole interaction in electros
ics, since there are no dipole moments*d2r 8r 8& f (r 8)50.
This is due to the fact that there can be no external first fo
moment~torque! on the membrane if it is not anchored
any external structure against which the moment can ac

The physical consequences of these interactions are
tentially significant. In spite of the fact that the domina
interaction is repulsive, the surface concentration of me
brane inclusions may often be maintained at fairly high s
face fractions by the regulatory mechanisms of the livi
cell. The composition of the surface coats of caveolae m
be further enriched in several important membrane com
7-5
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nents, including cholesterol and proteins in the caveolin fa
ily, as well as others@6,13#. This means that there is a
effective surface pressure, driven by a chemical potential
ference that forces the inclusions to partially overcome th
repulsion. In this situation the attractiveO(e (1)e (2)) interac-
tions might become significant, leading to an in plane ani
tropic phase separation such as is observed in model sys
@34–36,40# and on the coats of caveolae@4#. For caveolae
the typical interactions seem too weak@37# to be solely re-
sponsible for the stripe morphology, which may rather
dominated by specific attractions, see Sec. III@33#. Finally,
the existence of an attractive interaction that can arise f
fluctuations in the inclusion force distribution~shape!, as pa-
rametrized bye, suggests the possibility of an attractiv
fluctuation driven force reminiscent of van der Waals forc
This mechanism should extend to systems such as we
droplets at gas-liquid interfaces. These can potentially e
much stronger forces on the interface, resulting in a m
exaggerated effect~see Sec. V B!.

V. ORIGIN OF THE FORCE DISTRIBUTION

Up to this point we have merely postulated the existe
of a force distributionc(r 8) due to a membrane bound in
clusion. This force can arise from direct mechanical effe
such as due to the geometry and shape of the inclusion,
the protein clathrin, or entropic effects due to the asymme
anchoring of, e.g., flexible hydrophilic polymers, to a me
brane. The budding of caveolae is now thought to be dri
by the protein caveolin which is known to form small olig
mers resembling a number of polypeptide chains extend
only from the cytoplasmic side of the membrane@14,41#.

We have in mind that we have demonstrated that inte
tions should exist in general, but have not yet addressed
question of how big they might typically be. We are partic
larly interested in any models that can be chosen to
broadly comparable with membrane proteins. In this sec
we will present two examples of models for the origin of
force distribution arising from anchored polymer chain
This approach represents the application of a simple,
hence rather ‘‘idealized,’’ theory drawn from polymer phy
ics. Its exact quantitative applicability to polypeptide cha
is almost certainly limited to a small subset of peptide
quences that either resemble a diffuse random coil or a
namic, dense hydrophobic globule. Nonetheless, in the
sence of any detailed microscopic information on a spec
inclusion’s configuration and stability the approaches that
outline below probably represent the best chance for u
obtain a rough idea of the likely scale of the effects that
have described in this paper. It is quite possible that
forces exerted by membrane proteins with significant w
defined tertiary structure may be somewhat higher than
estimates that we will present below. This encourages u
consider our estimates as approximate lower bounds on
scale that these effects might reach.

In polymer physics terminology the two models that w
consider for the force applied by a membrane-bound po
mer will correspond to the two limits of ‘‘good’’ and ‘‘poor’’
solvent conditions, respectively@42#. We will discuss below
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how these models might apply to caveolin homo-oligome
Other recent studies of the physics of flexible polyme
grafted onto tensionless fluid membranes@15–18# undoubt-
edly share similar motivation. One feature that these ear
studies all have in common is that there is only an attract
for polymer force distributions that overlap one-another
the surface of the membrane and, when this is the case
interaction isattractive. This is opposite in sign to the inter
actions that we predict on membranes that bear tension,
Eq. ~16!. Furthermore our interactions are extended, w
ranges;k21.

A. Anchored polymers and polymer aggregates: Good solvent
conditions

Motivated by possible biophysical relevance we inves
gate the effect of flexible polymer chains anchored to a sm
patch of membrane, of radiusa. We assume that the chain
are in a good solvent, i.e., that they are found in extend
hydrated random coil configurations. The chains form
hemisphere of outer radiusb.a, see Fig. 1. This model may
be used to treat polymer homo-oligomers made up of a g
eral numberQ of chains. As such, it shares many featur
with those that are known for caveolin homo-oligomers@14#.

Within the ‘‘corona’’ of the polymer hemisphere, at radi
distancesb,r ,a from the center of the polymer aggregat
there exists a characteristic correlation lengthj(r ) for the
polymer chains which crudely represents the spatial dista
between collisions between the segments of a chain w
other chains or the membrane@42#. The conservation of
number of chains implies@43# 1

2 4pr 2.Qj(r )2 for a,r
,b. This is since the surface area of a hemisphere of rad
r is filled by close packed blobs, up to a constant of ord
unity. From this one may immediately deduce the scaling
the correlation lengthj(r )5(2p/Q)1/2r . The work done in
generating each blob iskBT, independent of the blob size
Thus we may write the pressure in this region as the ene
per blob divided by the volume of a blob@43#

f ~r !5
kBT

j~r !3
5S Q

2p D 3/2kBT

r 3
~23!

for a,r ,b. For r .b the pressure is here assumed to
zero@47#. The pressure in the core binding region is assum
to be constant and must involve a total force equal and
posite to that applied by the corona so that no average fo
acts, as required by Newton’s second law.

f ~r !5H Eoa23 if 0 ,r ,a

2Eo

2~12a/b!
r 23 if a,r ,b

0 if r .b,

~24!

whereEo5 f (0)a352kBT(12a/b)(Q/2p)3/2 is a character-
istic energy related to the force applied at the center of
aggregate. This model represents one approximate fra
work for the understanding of forces applied by membra
biopolymers, see Fig 1. It possesses several important
7-6
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FIG. 1. Sketch of the form of the anchored polymer aggregate in good solvent conditions, when the polymer configurations are s
extended from the membrane. Our model for the force distributionf (r 8) is given by Eq.~24! and represents the force per area applied to
membrane by the polymers. The membrane is pushed down by the ‘‘corona’’ of the grafted polymers out tor 5b55 nm and is pulled
upwards by the anchored ‘‘core’’ insider 85a52 nm as a result. For aggregates residing on the cytoplasmic face of the membrane, inc
caveolin homo-oligomers the cell interior would be above the membrane. The resulting deformationu(r 8) is shown out tor 8515 nm for the
following values of the parameter values:g51024 J/m22, k520k

B
T, andQ515. The force and deformation can be expressed in term

the characteristic energyEo , see Eq.~24!.
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tures: It involves no average force being applied to the me
brane. It involves no average first force moment by symm
try. The first nonvanishing moment is the secon
corresponding to a bending moment with magnitude c
trolled by *r 2f (r )d2r .Eoa with the characteristic energ
scaleEo*k

B
T that is entropic in origin.

Models similar to this have been proposed elsewhere@15–
18# although, as emphasized previously, the physical beh
ior of these inclusions on fluid membranes that are un
tension is rather different.

We now proceed to give an estimate of the membr
deformation and interaction potentials due to membra
bound biopolymers within the good solvent polymer bru
model described above.

For biological membranes primarily composed of a
layer of phospholipids the tension and rigidites are typica
@32,25#

k510kBT–40kBT, kbio520kBT,

g51025–1023 J/m2, gbio51024 J/m2, ~25!

wherexbio refers to what we would take as a single ‘‘typ
cal’’ value for biological membranes. From this we obta
the length scale

k2156 nm–100 nm, kbio
21530 nm, ~26!

which may crudely be identified with the range of the inte
actions.

1. Membrane deformation due to the inclusion

The deformation atr 50 is

ubrush~r 50!5
E0

k
a ~27!

in a frame whereu50 at infinity. This therefore represen
the total magnitude of the normal deviation of the membra
expressed in terms of a dimensionless ratioE0 /k and a char-
acteristic lengtha.
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For parameters that might be typical of caveolin hom
oligomers,a52 nm andb55 nm, we find

a~k2156 nm!50.7 nm,

a~k21530 nm!51.5 nm, a~k215100 nm!52 nm,

~28!

much the same as for slightly larger inclusions witha
51 nm andb510 nm,

a~k2156 nm!51.3 nm,

a~k21530 nm!52.7 nm, a~k215100 nm!54 nm.
~29!

2. Membrane mediated interaction energy between inclusions

The interaction energy is expressed as

Fbrush5
E0

2

k
b, ~30!

which is the product of an energyE0
2/k, typically of the

order ofk
B
T, and a dimensionless numberb. For a52 nm

andb55 nm,

b~k2156 nm!5331022,

b~k21530 nm!51023, b~k215100 nm!51024,
~31!

while for a51 nm andb510 nm we find instead

b~k2156 nm!50.13,

b~k21530 nm!5531023,

b~k215100 nm!5531024. ~32!

B. Poor solvent conditions

If the polymer chains are more hydrophobic, and the s
vent conditions are poor, the polymer chains may colla
7-7
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FIG. 2. Sketch of the shape of the anchored aggregate in poor solvent conditions, when the polymer forms a droplet on the m
that is assumed to largely exclude water. Our model for the force distributionf (r 8) is given by Eq.~35!. The membrane is now pulled
upwards by the resolved Young’s force on the contact line atr 85b55 nm and is pushed downwards by the Laplace hydrostatic pressur
r 8,b as a result. The resulting deformationu(r 8) is shown out tor 8515 nm for the same total integrated force*d2r 8u f (r 8)u shown in Fig.
1, for comparison. All the other parameters’ values are also as given in the caption of Fig. 1. Even for the same integrated absolute
membrane deformation is an order of magnitude larger than shown in Fig. 1, as well as having opposite sign. The enhanced effec
the concentration of the forces at the exterior of the aggregate.
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into a tight, roughly hemispherical, region from which wat
is largely exuded. This represents the natural opposite l
to the good solvent polymer model considered above. In
poor solvent case we propose to model the inclusion as
were a fluid droplet that partially ‘‘wets’’ the membrane su
face@44#. At any point on the circumference of the drop th
forces per unit length~due to the surface energy! are in equi-
librium. Resolving these forces perpendicular to the me
brane we find a total force acting upward

F52ps sinu, ~33!

whereb is the radius of the drop,s is the energy cost pe
unit area of producing the interface between the inclus
and the external poor solvent, typically water, andu is the
contact angle given by Young’s law@44#. Since we are in
equilibrium this force must be balanced by the force act
on the interface between the drop~inclusion! and the mem-
brane forr ,b. To find the corresponding pressure we ne
only consider the partial wetting droplet as if it formed pa
of a larger sphere. The pressure is constant everywhere
side the sphere and is given by the Laplace law,

P5
]E

]V
5

2s

R
, ~34!

whereR5b/sinu is the radius of the sphere. The radiusR
can therefore be related to the volume of the drop~andb) by
simple geometry. Hence we may write the pressure distr
tion as

f ~r !5
s

R
@bd~r 2b!22Q~b2r !#, ~35!

whereQ(x) is the Heaviside unit step function.
This model represents a different possible physical ori

for the pressure distribution that might be valid, e.g.,
surface-anchored hydrophobic polymers in the poor solv
regime, when little water penetrates the protein chains,
Fig. 2. It also preserves the same features as the good so
polymer model: It involves no average applied force or fi
force moment and has a bending moment*r 2f (r )d2r
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.Eob that is enhanced by the localization of part of the for
distribution around the exterior circumferencer 5b of the
inclusion’s footprint on the membrane. The characteristic
ergy scale is now chemical in origin, as it is controlled
chemical parameters such ass. It is difficult to give a quan-
titative scale for this, although typical oil-water interfaci
tensions of sow*331022 J m22 suggest Eo*sowb2

'180k
B
T with b'5 nm. This large energy suggests therm

dynamically ‘‘strong’’ interactions.

1. Membrane deformation due to the inclusion

For b510 nm, s540 dyn/cm@48# the membrane’s nor-
mal deformation atr 50 is

u0~k2159 nm!537 nm,

u0~k21530 nm!565 nm, u0~k21590 nm!592 nm
~36!

for

b5100 nm, s540 dyn/cm,

u0~k2159 nm!52700 nm,

u0~k21530 nm!515 mm, u0~k21590 nm!537 mm.
~37!

2. Membrane mediated interaction energy between inclusions

The interaction potential energy has a simple analyti
form:

F5
1

2pg
z2K0~kr !5

Eb
2

2pk
~kb!2K0~kr !b2, ~38!

with

b5
2p

~kb!2 S I 0~kb!2
2

kb
I 1~kb! D . ~39!

For b510 nm ands540 dyn/cm the energy scaleE0
@simply the potentialF divided byK0(kr)kBT] is
7-8
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INTERACTIONS BETWEEN PROTEINS BOUND TO . . . PHYSICAL REVIEW E67, 041907 ~2003!
E0~k2159 nm!525, E0~k21530 nm!52,

E0~k21590 nm!50.2 ~40!

for b5100 nms540 dyn/cm,

E0~k2159 nm!5109,

E0~k21530 nm!533106, E0~k21590 nm!523105.
~41!

VI. CONCLUSIONS

We show that a model for the interactions between inc
sions bound to fluid membranes can be solved exactly
circularly symmetric inclusions bound to membranes that
under tension. We argue that proteins bound to cell me
branes can apply no average force, or first moment of fo
to the membrane unless they are also anchored to an ext
structure, such as the cytoskeleton. By this we mean tha
total of any and all forces that the membrane protein act
apply downwards against the membrane must exactly e
the magnitude of similar forces applied upwards. This i
consequence of Newton’s laws of motion.

We proposed idealized models for the origin of the
forces due to either entropic or direct chemical interactio
The interactions between two circularly symmetric inc
sions are repulsive and are asymptotically exponential
short ranged with a typical extent on biological membran
that is of the order ofk21'30 nm. This result contrasts wit
the attraction predicted to appear between similar inclusi
on tensionless membranes. For non circularly symmetric
clusions we predict an additional algebraically long rang
attractive contribution.

We discuss how competing attractive and repulsive in
actions are known to sometimes produce a stripelike m
phology. These phases are reminiscent of the stripes
served on the surface of caveloae, which we refer to
‘‘gnarly buds,’’ and we discuss how a similar lateral pha
separation could occur in these systems with typical len
scales comparable to the ranges of the interactions.

We believe that the results discussed here may have w
applications in understanding biological phenomena, incl
ing lateral phase separation in phospholipid membranes
endocytotic budding. Indeed, a detailed theoretical anal
of the formation of caveolae invaginations on model ph
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pholipid membranes utilizes many of the results derived h
@37#.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Robin Ball a
George Rowlands~Warwick!, Albert Johner~Strasbourg!,
and Michael Lisanti~Albert Einstein College of Medicine!.
M.S.T. acknowledges the support of the Royal Society~UK!.
The authors would like to thank K. Meehan for encouragi
them to study gnarly buds.

APPENDIX: UNIQUENESS OF THE SOLUTION FOR THE
EQUILIBRIUM MEMBRANE DISPLACEMENT DUE

TO AN ARBITRARY FORCE DISTRIBUTION

Equations~9! and~10! permit the calculation of the equi
librium membrane displacement due to an arbitrary fo
distribution. This solution is unique, as may be demonstra
as follows.

We may add to our solution any solution of the homog
neous version of Eq.~3! without changing the result. Le
u1(r ) satisfy

¹2~¹22k2!u1~r !50 ~A1!

and the boundary conditions imposed. Multiplying byu1(r )
and integrating we have

E u1~r !¹2~¹22k2!u1~r !d2r50. ~A2!

Integrating by parts and noting that the integrated terms
zero by virtue of the boundary conditions we obtain

E $@¹2u1~r !#21k2@“u1~r !#2%d2r50. ~A3!

The integrand is everywhere positive so we must ha
¹2u1(r )50 and¹u1(r )50 everywhere. Thus the only ad
missible solution of the homogeneous equation isu(r )
5const. This corresponds only to a redefinition of the ze
of the displacement and so without loss of generality we t
this constant to be zero. This freedom of choice is a con
quence of the translational symmetry of the problem in
direction perpendicular to the planar membrane.
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