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Interactions between proteins bound to biomembranes
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We study a physical model for the interaction between general inclusions bound to fluid membranes that
possess finite tensiop, as well as the usual bending rigidiy We are motivated by an interest in proteins
bound to cell membranes that apply forces to these membranes, due to either entropic or direct chemical
interactions. We find an exact analytic solution for the repulsive interaction between two similar circularly
symmetric inclusions. This repulsion extends over length scalgs/y and contrasts with the membrane-
mediated contact attraction for similar inclusions on tensionless membranes. For noncircularly symmetric
inclusions we study the small, algebraically long-ranged, attractive contribution to the force that arises. We
discuss the relevance of our results to biological phenomena, such as the budding of caveolae from cell
membranes and the striations that are observed on their coats. These, and other, “gnarly buds” may prove
fascinating to study further.
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[. INTRODUCTION bound on the bending moment would & Tb, higher for

larger aggregates.

A significant proportion of all proteins in a typical eukary-  Many theoretical studies have sought to calculate the ef-
otic cell are membrane proteins. These are found anchored fect of an adsorbed polymer on flexible, fluid membranes,
cell membranes. Many of these carry out tasks such as signsée, e.g., Ref$§15—19. One reason for this approach is that
transduction, pore or channel formation, cytoskeletal bindthe simplified models available from polymer physics allow
ing, etc.[1]. Others are involved in endocytosis and exocy-for a more or less exact computation of the entropic pressure
tosis. In particular, it is now understood that the formation ofexerted by the polymer on the membrane. Our work repre-
clathrin coated pits is driven by the controlled geometricsents a generalization of this approach. An anchored polymer
aggregation of clathrin which exerts corresponding forces of§ but one example, or model, of a membrane inclusion that
the cell membrang2,3]. There also exists a less well under- €Xerts a force on the membrane. Any membrane protein that
stood class of membrane invaginations, known as caveola not perfectly symmetrical across the membrane should ex-
that are less morphologically distinct than clathrin coatece't forces, the distribution of which will be dictated by the

pits and resemble aspherical invaginations with a typical siz8€CiS€ protein configuration. Furthermore, it can be argued
of the order of 100 nn{4]. There is good evidence that that the physical effect of integral membrane protein can also

caveolae are involved in endocytofts and play an impor- ibseadﬁzggt}i? zy ZrY;?gﬁEZZ?n (Ezr(t:k?edlesftfggtj g?g.rkl)_iltigfef?riree
tant role in cell signaling6]. Intriguingly, they are probably 7. = . =" 9 . y oltrary

. . . distributions on a flexible membrane. Our premier interests
also involved in the sensing of shear strg¢3s8]. Such

. are large peripheral membrane protein such as caveolin. Our
stresses would be expected to act on the t_en;mohth_e <_:e|| theory is, however, general enough to be applied to any flex-
membrane. Thus, the present work may yield predictions fofy,|e fii,ig interface with fixed tension, containing embedded
some of the direct physical consequences of surface tens'ofﬂnpurities.

e.g., on interprotein forces. In Sec. Il we discuss some quali- puch of the previous work on interaction between
tative effects of surface tension although a quantitativenembrane-bound objects has focused on membranes with
analysis of the effect of shear on membrane tension is bEVanishing surface tensidi5—18, although there have been
yond the scope of the present work. Recent elegant experéxceptions[20]. This work exists within the context of an
ments demonstrate that better control of the surface tensiogxtensive literature on membrane mediated interactions on
may be achieved via micropipette aspiration facilitating studtensionless membranes, see, e.g., R&-23, which fo-
ies of the effects of tension on membrane elastif®y11]  cussed mainly on Casimir-like forces originating from mem-
and permeability to watdrl2]. brane fluctuations. It was argued that these could be either
It has now been shown that caveolifis3], a recently attractive or repulsive, depending on the temperature and
discovered class of membrane-bound proteins, are necessamgrtain details of the model. The interest in tensionless mem-
for the formation of caveolae. These caveolins have a shotiranes has its origin in the fact that isolated, self-assembled
membrane spanning sequence and N- and C-termindpid membranes should be tensionless at equilibrium. Impor-
polypeptide “tails,” totalling about 150 amino acidboth  tantly, this is not the case for many cell membranes. Other
found on the cytoplasmic side of the cell membrane. It isstudies include tension as(shape dependenparameter de-
thought that these caveolin molecules are typically found irntermined self-consistently for closed membrane surfaces
small aggregates of size (a few nm containing approxi- [24]. A study of the behavior of membranes under constant
mately 15 moleculefl4]. A crude thermodynamitentropio  surface tension may shed light on the physics occurring on
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biological membrane, which are not truly at equilibrium andlim, . Vu(r)=0 and that lim_ ,u(r) exists. Since the com-
hence bear substantial tensid2$,26. Cells commonly ad-  mutator[ £;,£,]=0 it can be shown that

just their surface tension to a set value via a mechanism

known as surface-area regulati¢g7]. Hence membrane 1 , , , ,
phenomena over sufficiently long time scales effectively oc- u(r)= ;f [Ga(rr")=Ga(r,rHIf(rd%’,  (4)
cur at constant surface tension. Previous studies of the effects

of rodlike objects embedded in fluid membrah26], adhe- whereG,; andG, are the Green’s functions corresponding to
sive junctions[28], and impurities at gas-liquid interfaces the self-adjoint problems determined By and £, (and their

[29,3Q share certain similarities with this study. boundary conditions respectively. We now seek to find the
Green’s functions of these self-adjoint operators.
Il. ANALYSIS OF MEMBRANE DEFORMATION AND For £; we solve

MEMBRANE-MEDIATED INTERACTIONS £1G1(r,r')=VzGl(r,r’)= —8(r—r'). (5)

Our aim is to construct a theoretical model for the N . ] ) ]
membrane-mediated interactions between proteins bound tghe only boundary conditions compatible with this equation
cell membranes. To achieve this we will denote the normaf® Von  Neumann  conditions at infinity, ie.,
membrane displacement from its average flat state(gs ~ IMr—r'—=VGy1(r—r')=0. This corresponds to the mem-
wherer is a two-dimensional2D) vector in the plane of the brane being asymptotically flat and yields the well known
unperturbed membrane. Motivated by a desire to ana|yzgreen’s function of Poisson’s equation in two-dimensions,
small membrane deviations, we employ an expansion of the 1
free energy of the membrane in powers and gradients of Gy(r,r')=—=—InAjr—r’|, (6)
The free energy of a deformed fluid membrane, without in- 2m

clusions, is well approximated 41 . _ L .
PP HyB1] whereA is an arbitrary constant with dimensions (&ngth

1 We chooseA=k for convenience, this choice corre-

Fmemb:f d?r f[vzu(r)]2+ Z[Vu(r)]2 , (1) sponds only to a definition of the zero of the free energy.
2 2 For £, we must solve
which represents the truncation of an arbitrary expansion at (V2=K?)Gy(r,r')=—8(r—r"), (7)

orderu? (odd orders are excluded by symmetand at the
second derivatives af. For a planar membrane, with normal subject to the boundary conditions specified above. This self-

in the z direction, the gradient operator ¥=x(d/dx)  adjoint problem has linearly independent solutidfig(k|r

+y(dlay). The only two parameters that are needed to de= "'} andlo(k[r—r']). These are, respectively, the zeroth
sc¥i(t)e t%% physics gf the rgembrane arethe elastic bending order modified Bessel functions of the first and second kind.

modulus(typically [32] 20k_T for biomembranesand y the The functionl 3(x) diverges ax— o, therefore we write the
B

surface tensiorfestimated to b§25] 10 * to 10" 2 pN/nm). Green's function as

To include the work done by the pressuyrermal force 1
per unit ared f(r) exerted by one or more inclusions we Gz(f—f'):EKo(kU—f'U- (8
exploit the fact that, for small deviations, the work done is
merely the surface integral of the product of pressure anfis gives us the solution of Eq3), subject to the stated
distance. The displacement has no effect on the pressure fielghyndary conditions as
at this order. Thus the total free energy, including the effect
of inclusions is

F=f d?r

where the term involving(r) is chosen to have a minus sign G(r,r')=— L[Ko(k|r— r'+Inklr—r'[].  (10)
to ensure that the membrane displacement has the desired 2y
sign. At thermodynamic equilibrium the free enerfgymust
reach its minimum value, at which point(r) satisfies the
Euler-Lagrange equation

u(r)=j G(r,r")f(r")d?r’ 9

K o2 2,7 2
E[V u(r)] +§[Vu(r)] —fu) |, @ with the Green’s function

Equations(9) and (10) represent a solution for the equi-
librium membrane displacemeni(r) due to an arbitrary
force distribution. The formal analysis is concluded in the

£(r) Appendix, where we show that this solution is unique.
Llczu(r)—Tzo (3)
A. Interaction potential between two proteins

with £,=V?2, £,=V2—k? andk?= y/« indicating an in- Consider a fluid membrane with two, not necessarily
trinsic length scalek™*~30 nm (with perhaps 6 nmek ! identical, inclusions bound to it. Denote the pressure fields
=100 nm). We solve this under the boundary conditionacting on the membrane surface due to each inclusion by
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B and (?). Without loss of generality we may et be  valid for r>|r’—r"|, and
centered at the origin and let the vectojoining the centers

of the pressure distributions lie along tkexis. Mathemati- 2m . ) ) ,
cally, this means that we write the total pressure distribution JO Lo(K[r"—=r"[)d@" =2l o(kr")Io(kr")  (15)
as
f(r)=y¢ D)+ A’ —r), (11)  valid for r’#r”. Thus we are able to derive an exact ana-

Iytical form for the interaction potential between nonoverlap-
where y?)(r’ —r) is the pressure distribution of the second ping (r >2b) circularly symmetric inclusions
inclusion centered at, rather that the origin. Hence the free
energy at equilibrium is given bf=F&)+F2)+d(r),
whereF(),. is the self-energy of théth inclusion and®d(r)
is the interaction energy. We are interested onlybi(r) as
this is what determines the physics of interest to us here. Byyhere (O=27f5r yD(r")o(kr')dr’ characterizes the

direct analysis or analogy with electrostatics this may be ®Xstrength of theith membrane-inclusion coupling. By em-

pressed as ploying the expansion ofy(kr’) the quantity!) can be
thought of as a series of moments of the force distribution.
q)(r):_f d2r’f d2r" O Y AG(r =1’ +1"), The radial force is as usual given by the derivative of the
potentialf,= —d®/dr. The interaction is everywherepul-

(12 sive Some previous studies have reported attractive interac-
tions between polymer chains grafted on tensionless mem-
braned15,16]. In these studies the positiarf0) of the chain

rafting point was fixed, effectively by a Lagrange force that
hen acted to ensure that there was no average force, al-
"though this condition was not identified explicitly by these
authors. In the case of vanishing tension it was found that
each pressure field is such that no average force ac pere V,\,'af‘s no i_nteractio_n between inclusions unless they
ouch,” i.e., their force fields overlap. One can understand

[[4(r")d?r’=0]. For inclusions that are not anchored to |, . .
) .. this as follows. For tensionless membranes the membrane
external structures, such as the cytoskeleton, this conditio : ST A
eformation under the force field is dictated by the minimi-

must be satisfied on general grounds. Indeed Newton'’s third_,. - i B
law requires that any average force applied to the membranze":lt'on of an energy similar to Eq2) but with y=0. The

! . - ._membrane deformation outside the extent of the force field
by an inclusion must be equal and opposite to the reaction.

force applied by the inclusion to some external structure. ”5|mply minimizes the curvature energy, hence has a zero

there is no external structure for this reaction force to ac{nean curvature and does not contribute to the total energy.

against then there can be no average force on the membrar’ﬁ‘eS two inclusions approach each other, the total energy does

We assume that the pressure fields do not overlap sa thatnOt change until one force field couples to the membrane

>2b. Under these assumptions the logarithmic term in Eqdeformation directly under the other force field, since the
(10) gives a vanishing contribution to the integral Ea2) deformation energy of any piece of membrane that it not in

due to Gauss theorem. It corresponds to the electric field du%IreCt contact with a force field is zero. There is no charac-

to two circularly svmmetric charaed disks in  two- teristic length scal& ™! to give the interactions’ finite range
dimensions eachycar}r/ying no averagge charge and thus wiiﬁhen y=0. In consequence, inclusions interact only when
zero field in the region outside both disks. This analogy will € two force fields overlap. In the case of grafted ideal poly-

o ) ) N mer chains the energy is decreased when the force fields
be revisited when we discuss noncircularly symmetric inclu- 9y

. : : : overlap because they both want to deform the membrane in
sions in Sec. IV below. The potential between two circularly T o .
. . . . the same direction, resulting in an attraction. We note that the
symmetric inclusions is therefore given by

interaction between overlapping membrane inclusions is
1 (b b very sensitive to the direct physical, rather than membrane
d(r)y=— r’dr’f rrdre” )y P(rm mediated, interactions between them, unlike 8d) which
2myJo 0 is universal. Were we to blindly apply our formalism to the
2 2 case of overlapping force distributions we are also able to
xf de’ d@"Ko(klr—=(r'=r")|), (13 recover a regime where the interactions are attractive. In the
0 0 v—0 limit Eqg. (16) gives vanishing interactions, entirely

o _ ) ) consistant with these earlier results for tensionless mem-
the upper limits of integration are bothsince(r’')=0 for  pranes.

O(r)= ﬁlyd“z(zko(kr), (16

whereG(r) is the real space Green'’s function.

For the case that we have two inclusions with circular
symmetry we are able to determine the interaction potenti
exactly. Consider two circularly symmetric inclusions, i.e.
JOY=gO(r'[)=¢D(r") such thaty(r')=0 for r’
>bh, whereb is some maximum radius of the inclusion. Also

r>b. We make use of the identities As mentioned in the Introduction, recent experiments on
) the effect of shear forces on living cells provide a crude
Ko(klr=(r =M Dde” = 27K (ki a(klr =" control on membrgne tension. In_future studies we plan to
f oKl =( D mRo(knlo(K] D calculate the precise effect of this on, e.g., surface phase

(14 equilibria and budding phenomena.
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lll. MICROPHASE SEPARATION AT THE SURFACE OF small perturbations §¢ [with the conservation rule
CAVEOLAR INVAGINATION JdSSé¢(r)=0] around the average surface coveragg

The free energy includes the pair interaction and the transla-

Membrang-medlated |nteract|onls betwegn membraanon entropy of the inclusions, for which we use the gas-on-
bound inclusions have been extensively studied theoretically_|5iice model Expanding the free energy.

[21] with, however, relatively little discussion of how experi-

ments could easily support these predictions. Although pre- ds

sumably long range, these interactions are expected to be F:fs_bW'” ¢+(1-¢)In(1-¢)]
quite small, and are probably often dominated by stronger,

(bio)chemically specific, short range phenomena. Long range 1( dsdsS

interactions can, however, profoundly influence the phase be- + 5[ 2 d(OV(r=r")e(r"),
havior of certain membrane proteins even if stronger, short b

range interactions, are present. As we emphasize below, stud- ds Sp?

ies of such surface phases might provide an indirect probe of oF= J —_—

the membrane-mediated interactions of interest here. This S 2¢0(1= o)

might be of particular relevance for the study of the phase 1( dsds

behavior of the protein caveolin, which is found at high den- +§f S—0d(r)V(r=r')ég(r’). (17
sity on certain membrane invaginations called cave(dae Sp

Sec. ). : _ 2 2 iq-
One peculiar feature of the caveolae bulbs is their textureThe Fourier transforme(r) =S/[d"q/(2m)°]6¢e" " al-

Distinct striations are seen at the surface of these bats lows us to investigate the formation of structures. It leads to
(see also Fig. 13.48 in Refl]). These are now thought to 5 2

. S . . 18 d q
correspond with the organization and alignment of caveolin SF==| — |62
oligomers on the membrari@3]. The observation of these 28y) (2m)? 4
surface stripes is intriguing, and the reader may find it inter-
esting that radially symmetrical oligomers can give rise towith
nonsymmetrical surface phases. We discuss this below, argu-

ing that the stripe phase may be a signature of the V.= T +£V (18)
membrane-mediated repulsion between protein aggregates, 9 po(l—g) s, I
such as those calculated in Sec. Il. Indeed, studying the

phase behavior of membrane inclusions may provide one df Vq. the Fourier transform 0¥(r), is sufficiently negative
the best ways to test theory against experiment in this fieldattractive for a given modeg then1,<0 and the mode is
Molecular dissection of the caveolin protein has shown thatinstable. Substituting the expression ¥r), we obtain
caveolin oligomers strongly attract each other through con-
tacts of specific protein sequendés (a short range attrac- 1
tion). It is well known that a solution of particles interacting 2¢o(1— o)
via hard core repulsion and a short range attraction under-

goes a gas-liquid phase separation. This results in large dense 1

regions(the liquid) coexisting with less dense regiofthe —Ea PR A= e
ga3. The caveolin oligomer being anchored to the cell mem- [1+(ba)?] k“+q
brane, there gmsts an additional membrane-mediated, Ionge_r In the absence of long range repulsion, the most unstable
range repulsion between between them, as demonstrated in

Sec. Il, which allows for a more complex phase behaviormOde Is alwaysq=0 (macrophase separationand the

. . liquid-gas transition is observed providedE2bo(1— ¢q)
[45]. It has been recently argued in the light of computer !
simulationg 34—-3€ that a long range repulsion should break >_kBT' Becaus_e of the membrane-_rr?edlate_d Ionag range4repu|-
the gas and liquid phases into microdomains. The short ranggon: tshe function/, presents a minimum i, > 3 E,(kDb)
attraction still locally drives a gas-liquid phase separation~10 °E, (for the typical numbersb=5 nm and k™*
but large aggregates are costly because of the long range30 nm). One sees that although the strength of membrane-
repulsion. The microdomains are circular liquid islands athediated interactiofEqg. (16)] is expected to be quite small:
low density, circular gas regions at high density, and stripe&:=10"°k T (see Sec. V A or Re{:37] for a more detailed
otherwise. analysis, it is of much longer range, and should be compe-

To gain a quantitative understanding of how stripes maytent to produce a well ordered phase.

form on caveolae we study the stability of an homogenous The phase separation occurs preferentially for a mode
(2D) solution of oligomers of ares,= b? interacting viaa  given bydVy/dq=0, and periodic arrays of dense and dilute
potentialV(r), which include a short rangghe particle size regions are observed. In the linkib<<1 the structure has a
b) attractive exponential interaction and the longer rangdypical size 27/q* which is independent of the range of the
membrane mediated repulsion of Eq16): V(r)= repulsion: g*b=(2E,/3E,)Y*=%. It thus defines dense
—E,e "P+E,Kq(kr), whereE, and E, are, respectively, stripes of width about five particle diameters, which agrees
the strengths of the attraction and the repulsion. We look afjuite well with the experimental observations. The existence

VCI = 2kBT

(19
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of a stripe phase at the surface of the biological structures T, T2-T2 Tiogrr2
known as caveolae is thus quantitatively consistent with the Ink|r—r|=Inkr— 42 5 1.1 3 2
existence of a membrane-mediated repulsion between pro- ' 2r 3r

teins described by Eq16).

. : e 6rara—ri-rs 1
This analysis does not help us to discriminate between vz 12 O<—5)- (21)
circular domains and stripes. Computer simulation have 4rt r
clearly shown that this transition indeed exists for high

enough surface coverag5,36. The conditions of no overall forcgd?r’(r')=0 and no
Note that the formation of striped mesostructures in memoverall momentfd?r'r’y(r')=0 for each inclusion mean

brane has been predicted on the basis of curvature effectsat the first nonvanishing contribution 6P~ 1/r, the

only [38,39. However, it can be shown that their existence atclassical result for electrostatic quadrupole-quadrupole inter-

the surface of invagination of such large curvature as thactions in two dimensions. Using=r’'—r" in Eq. (21) to

caveolae R~50 nm) is inconsistent with the existence of leading order in I/ we have[46]

invaginations with a well defined size.

1
5D = —47T7f dzr’f A2y ) DM Ink|r—r' +r"|
IV. FAR-FIELD INTERACTIONS OF NONCIRCULARLY

SYMMETRIC INCLUSIONS —3eMe?)
=———,—00sQ 6D+ 6(2)), (22)

If the force distribution of the inclusions is not circularly 2myr
symmetric then no general analytic solution to EtR) ex- ] o ) ) )
ists. However, we can still proceed by examining the far-fielgThis result demonstrates that elliptical inclusions attract if
S . - . . (1) p(2) = i i -
interactions of slightly asymmetric inclusions. In order to do@anged so tha#"™’+ “’=nm with n an integer, as re

this we will parametrize the asymmetry of teth inclusion porte.d_ in an earlier study of rodlike inplusiomgp]. This .
by condition represents a degenerate family of orientations in

which the orientation of the quadrupoles has reflectional

symmetry about the midplane. This perturbative interaction

is long-ranged, scaling like 1. Interestingly, this domi-
) . (20 nates the exponentially short ranged repulsion from(&E6).

for large enough separations.

There is a straightforward way to understand the appear-

ance of an algebraic potential for anisotropic inclusions. The
wherei andj are Cartesian indices, controls the average physics of Eq(5) is that of the Poisson equation in which the
(isotropig magnitude, ande controls the anisotropy of a force distribution is analogous to the electrostatic charge.
slightly “elliptical” force distribution, extended in thet di- ~ The potential due to a point charge in two-dimensions is
rection and contracted in the direction (for e>0). This therefore Eq.(6). Gauss law tells us that there is no field
force distribution can be rotated by the usual rotation matrixoutside a circularly symmetric charge distribution that has no
R(6) to obtain the effective momerRim(0(5))Rjn(0(5))Dfﬁ)n overall ch_arge(|mbalance. This condition is analogous to
of an “elliptical” force distribution rotated by an angle(® our requirement here that there be no overall force

2,1 A ’ : . _
relative to thex axis. This expression involves two rotations, 3 4 ¢ (") =0 by Newton's law. If there is no field the po
one for each factor of’ in Eq. (20). tential is constantzero without loss of generalityand no

It is important to first note is that the interaction can befprces act on the |nc|uS|on§. Howeve_r, |f_we relax the condi-
) . ) . _~tion that the forcécharge distribution is circularly symmet-
separated into two terms, one that is an integral mvolvmgriC there is no longer a simple symmetry argument that the
Ko(K|r—r’+r"|) and the other that is an integral involVing jial and azimuthal components of the field must be zero.
In k|r—.r’+r”|.'The first of these terms gives a contribution |ngeed they are not. As is usual in multipole expansions in
to the interaction potential that is dominated by a term likeg|ectrostatics an algebraic potential results. It is here analo-
Eq. (16), with corrections due to the asymmetry that aregous to the quadrupole-quadrupole interaction in electrostat-
smaller(and also asymptotically exponentially short ranged ics, since there are no dipole mome,ju§2r'r/>f(r/):0_
This conclusion is independent of the precise choice ofThis is due to the fact that there can be no external first force
asymmetry, provided only that it is small. The contribution moment(torque on the membrane if it is not anchored to
from the second term is more interesting and can be showany external structure against which the moment can act.
to give rise to a small bubng rangedcorrectioné® to the The physical consequences of these interactions are po-
interaction potential. This can be best understood by way ofentially significant. In spite of the fact that the dominant
multipolelike expansion of Ik —T|, where[r|<|r| and we interac_tion is repulsive, the surfaqe c_oncentrat_ion qf mem-
L - . . brane inclusions may often be maintained at fairly high sur-
choos.e the'dlrectlon of =rx to F’ef'”e ihex axis (the 1 face fractions by the regulatory mechanisms of the living
direction, without loss of generality. Thus; andr are the  cell. The composition of the surface coats of caveolae may
x andy components of and be further enriched in several important membrane compo-

c+ e 0
0 c— e

Di(f)=f d2r'r /v pO(r") =
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nents, including cholesterol and proteins in the caveolin famhow these models might apply to caveolin homo-oligomers.
ily, as well as otherd6,13]. This means that there is an Other recent studies of the physics of flexible polymers
effective surface pressure, driven by a chemical potential difgrafted onto tensionless fluid membrarié5—18 undoubt-
ference that forces the inclusions to partially overcome theiedly share similar motivation. One feature that these earlier
repulsion. In this situation the attracti@(e*e(?) interac-  studies all have in common is that there is only an attraction
tions might become significant, leading to an in plane anisofor polymer force distributions that overlap one-another on
tropic phase separation such as is observed in model systertige surface of the membrane and, when this is the case, the
[34-36,4Q and on the coats of caveol§4]. For caveolae interaction isattractive This is opposite in sign to the inter-
the typical interactions seem too wefd] to be solely re- actions that we predict on membranes that bear tension, see
sponsible for the stripe morphology, which may rather beEq. (16). Furthermore our interactions are extended, with
dominated by specific attractions, see Sec[38]. Finally, ranges~k !

the existence of an attractive interaction that can arise from

fluctuations in the inclusion force distributi¢gshape, as pa- A anchored polymers and polymer aggregates: Good solvent
rametrized bye, suggests the possibility of an attractive, conditions

fluctuation driven force reminiscent of van der Waals forces. ) ) ) ) ) )
This mechanism should extend to systems such as wetting Motivated by possible biophysical relevance we investi-

droplets at gas-liquid interfaces. These can potentially exed@t€ the effect of flexible polymer chains anchored to a small
much stronger forces on the interface, resulting in a mor@aich of membrane, of radius We assume that the chains

exaggerated effe¢see Sec. V B are in a good solvent, i.e., that they are found in extended,
hydrated random coil configurations. The chains form a
hemisphere of outer radils>a, see Fig. 1. This model may
V. ORIGIN OF THE FORCE DISTRIBUTION be used to treat polymer homo-oligomers made up of a gen-
. . . eral numberQ of chains. As such, it shares many features
Up to th|§ pqlnt we ha}’e merely postulated the eX'St?nCQNith those that are known for caveolin homo-oligomigir4].
of a force distributiony(r’) due to a membrane bound in- Within the “corona” of the polymer hemisphere, at radial

clusion. This force can arise from direct mechanical eﬁeCtSdistance§)<r<a from the center of the polymer aggregate,

such as due to the geometry and shape of the inclusion, €-9here exists a characteristic correlation length) for the

. ; - (bolymer chains which crudely represents the spatial distance
anchoring of, e.g., flexible hydrophilic polymers, to a MeM-hetween collisions between the segments of a chain with
'Sther chains or the membrand?2]. The conservation of

by the protein caveolin which is known to form small oligo- |\ ber of chains implie§43] 34mr2=Q¢(r)? for a<r

mers resembling a numper_of polypeptide chains extendin% b. This is since the surface area of a hemisphere of radius
only from the cytoplasmic side of the membrdrid,41. r is filled by close packed blobs, up to a constant of order

We have in mind that we have demonstrated that InteraCl]nity. From this one may immediately deduce the scaling of

tions should exist in general, but have not yet addressed ﬂYﬁe correlation lenatk(r) = (27/0YY2r . The work done in
question of how big they might typically be. We are particu- enerating each b?org(ils)BT,( indtg.?p))endént of the blob size.

larly interested in any models that can .be cho;en to .b hus we may write the pressure in this region as the energy
broadly comparable with membrane proteins. In this seCt'O'E)er blob divided by the volume of a bld43]

we will present two examples of models for the origin of a

force distribution arising from anchored polymer chains. KaT 32) T

, o : B Q B
This approach represents the application of a simple, and f(r)= :(—> — (23
hence rather “idealized,” theory drawn from polymer phys- &r)® \2m r

ics. Its exact quantitative applicability to polypeptide chains
is almost certainly limited to a small subset of peptide sefor a<r<b. Forr>b the pressure is here assumed to be
quences that either resemble a diffuse random coil or a dyzero[47]. The pressure in the core binding region is assumed
namic, dense hydrophobic globule. Nonetheless, in the aldo be constant and must involve a total force equal and op-
sence of any detailed microscopic information on a specifiQosite to that applied by the corona so that no average force
inclusion’s configuration and stability the approaches that weacts, as required by Newton's second law.

outline below probably represent the best chance for us to

obtain a rough idea of the likely scale of the effects that we Eca ® if 0<r<a

have described in this paper. It is quite possible that the _
forces exerted by membrane proteins with significant well f(r)= 2(1——aO/b)r
defined tertiary structure may be somewhat higher than the

-3 if a<r<b (24)

estimates that we will present below. This encourages us to 0 if r>b,
consider our estimates as approximate lower bounds on the
scale that these effects might reach. whereE, = f(0)a®=2kgT(1—a/b)(Q/2m)%?is a character-

In polymer physics terminology the two models that weistic energy related to the force applied at the center of the
consider for the force applied by a membrane-bound polyaggregate. This model represents one approximate frame-
mer will correspond to the two limits of “good” and “poor” work for the understanding of forces applied by membrane
solvent conditions, respectively2]. We will discuss below biopolymers, see Fig 1. It possesses several important fea-
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( ; Hydrophilic chains

f (unit Ey/a3) u (unit Eg/k a)

blobs

hydrophobic

membrane anchors
<—2bh—<2a> >

FIG. 1. Sketch of the form of the anchored polymer aggregate in good solvent conditions, when the polymer configurations are somewhat
extended from the membrane. Our model for the force distribdtfoh) is given by Eq.(24) and represents the force per area applied to the
membrane by the polymers. The membrane is pushed down by the “corona” of the grafted polymers eui=td nm and is pulled
upwards by the anchored “core” insidé=a=2 nm as a result. For aggregates residing on the cytoplasmic face of the membrane, including
caveolin homo-oligomers the cell interior would be above the membrane. The resulting deforafatiois shown out ta’ =15 nm for the
following values of the parameter valueg=10"% J/m 2, k= ZO&BT, andQ=15. The force and deformation can be expressed in terms of
the characteristic enerdy,, see Eq(24).

tures: It involves no average force being applied to the mem- For parameters that might be typical of caveolin homo-
brane. It involves no average first force moment by symmeeligomers,a=2 nm andb=5 nm, we find
try. The first nonvanishing moment is the second,
corresponding to a bending moment with magnitude con- a(k™1=6 nm=0.7 nm,
trolled by fr2f(r)d?r=E,a with the characteristic energy . .
scaleE,=k T that is entropic in origin. a(k”"=30 nm=1.5 nm, a(k""=100 nm=2 nm,
Models similar to this have been proposed elsewhEse- (28)
18] although, as emphasized previously, the physical behaynuch the same as for slightly larger inclusions wih
ior of these inclusions on fluid membranes that are undet1 nm andb=10 nm,
tension is rather different.
We now proceed to give an estimate of the membrane a(k™'=6 nm)=1.3 nm,
deformation and interaction potentials due to membrane-
bound biopolymers within the good solvent polymer brush ~ a(k™*=30 nm=2.7 nm, a(k~'=100 nm=4 nm.
model described above. (29
For biological membranes primarily composed of a bi- _ _ _ ) _
layer of phospholipids the tension and rigidites are typically 2. Membrane mediated interaction energy between inclusions

(32,29 The interaction energy is expressed as

k=10kgT—4KeT, Kpio=20kgT, E3
(Dbrush:7,81 (30)
y=10"°5-10"2 Jin?, ypi,=10"% Jin?, (25
which is the product of an energﬁ%/x, typically of the

wherex,, refers to what we would take as a single “typi- order ofk T, and a dimensionless numbgr Fora=2 nm
cal” value for biological membranes. From this we obtain , ' ¢ ;m

the length scale
1 -1 ﬂ(kilZG nm):3><1072,
k™*=6 nm-100 nm, Kg;=30 nm, (26)
, o , , Bk =30 nm=10"3, B(k =100 nm=10*,
which may crudely be identified with the range of the inter- (31)
actions.
while for a=1 nm andb=10 nm we find instead

1. Membrane deformation due to the inclusion

71: ]
The deformation at=0 is Bk 6 nm=0.13,

- B(k~1=30 nm=5x10"2,
0

u r=0)=—a«o 2
brush(F =0)=— @7) B(k~1=100 nm=5x10"*. (32

in a frame wherau=0 at infinity. This therefore represents

the total magnitude of the normal deviation of the membrane
expressed in terms of a dimensionless r&jd« and a char- If the polymer chains are more hydrophobic, and the sol-
acteristic lengtha. vent conditions are poor, the polymer chains may collapse

B. Poor solvent conditions
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u (unit Eg/k a)

~<—h /l\\ W

_membrane m

weting Gropiet ™\ | W ““ g\“ O\
/ » i\ “ h‘l“““

FIG. 2. Sketch of the shape of the anchored aggregate in poor solvent conditions, when the polymer forms a droplet on the membrane
that is assumed to largely exclude water. Our model for the force distrib@i(idn is given by Eq.(35). The membrane is now pulled
upwards by the resolved Young's force on the contact limé atb=5 nm and is pushed downwards by the Laplace hydrostatic pressure for
r’'<b as a result. The resulting deformatio(r’) is shown out ta’ =15 nm for the same total integrated forba?r’|f(r')| shown in Fig.
1, for comparison. All the other parameters’ values are also as given in the caption of Fig. 1. Even for the same integrated absolute force the
membrane deformation is an order of magnitude larger than shown in Fig. 1, as well as having opposite sign. The enhanced effect is due to
the concentration of the forces at the exterior of the aggregate.

into a tight, roughly hemispherical, region from which water =E_b that is enhanced by the localization of part of the force
is largely exuded. This represents the natural opposite limitlistribution around the exterior circumferenceb of the

to the good solvent polymer model considered above. In thénclusion’s footprint on the membrane. The characteristic en-
poor solvent case we propose to model the inclusion as if iergy scale is now chemical in origin, as it is controlled by
were a fluid droplet that partially “wets” the membrane sur- chemical parameters such ast is difficult to give a quan-
face[44]. At any point on the circumference of the drop the titative scale for this, although typical oil-water interfacial
forces per unit lengtiidue to the surface energgre in equi-  tensions of 0,,=3X102Jm ? suggest E,=o0,,b>
librium. Resolving these forces perpendicular to the mem= 18k Tw|th b~5 nm. This large energy suggests thermo-
brane we find a total force acting upward dynam|cally ‘strong” interactions.

F=2mosing, (33 1. Membrane deformation due to the inclusion

whereb is the radius of the dropy is the energy cost per For b=10 nm, o=40 dyn/cm[48] the membrane’s nor-
unit area of producing the interface between the inclusiormal deformation at =0 is

and the external poor solvent, typically water, afds the 4

contact angle given by Young’s laj44]. Since we are in Ug(k™ =9 nm)=37 nm,

equilibrium this force must be balanced by the force acting _ _

on the interface between the dréipclusion and the mem-  Yo(K '=30 nm=65 nm, ug(k '=90 nmM=92 nm
brane forr<b. To find the corresponding pressure we need (36)
only consider the partial wetting droplet as if it formed part ¢,
of a larger sphere. The pressure is constant everywhere in-

side the sphere and is given by the Laplace law, b=100 nm, =40 dyn/cm,
_JE 20 Uo(k~1=9 nm)=2700 nm,
= V- R’ (34

Ug(k™1=30 nm =15 um, uy(k 1=90 nm=37 um.
whereR=b/sin# is the radius of the sphere. The radils 37
can therefore be related to the volume of the damdb) by
simple geometry. Hence we may write the pressure distribu- 2. Membrane mediated interaction energy between inclusions
tion as The interaction potential energy has a simple analytical
form:

(1) = [ba(r —b)~20(b-1)], (39 L £
(1):mZZKo(kF)Zm(kb)zKo(kf)ﬁz, (38)

where®(x) is the Heaviside unit step function.
This model represents a different possible physical origirwith
for the pressure distribution that might be valid, e.g., for
surface-anchored hydrophobic polymers in the poor solvent 277 Kb 2 I kb (39
regime, when little water penetrates the protein chains, see B= (kb) lo(kb) = 1(kb) J.
Fig. 2. It also preserves the same features as the good solvent
polymer model: It involves no average applied force or first  For b=10 nm ando=40 dyn/cm the energy scalg,
force moment and has a bending momeft®f(r)d?r [simply the potentiatb divided by Ky(kr)kgT] is
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Eo(k 1=9 nm) =25, Eq(k 1=30 nm=2, icilipid membranes utilizes many of the results derived here
37].
Eo(k 1=90 nm=0.2 (40
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VI. CONCLUSIONS

We show that a model for the interactions between inclu-APPENDIX: UNIQUENESS OF THE SOLUTION FOR THE
sions bound to fluid membranes can be solved exactly for EQUILIBRIUM MEMBRANE DISPLACEMENT DUE
circularly symmetric inclusions bound to membranes that are TO AN ARBITRARY FORCE DISTRIBUTION

under tension. We argue that proteins 'bound to cell mem- Equations(9) and (10) permit the calculation of the equi-
branes can apply no average force, or first moment of forcg;pjy;m membrane displacement due to an arbitrary force

to the membrane unless they are also anchored to an externglintion. This solution is unique, as may be demonstrated
structure, such as the cytoskeleton. By this we mean that thes ¢/1ows.

total of any and all forg:es that the membrane protein acts to o may add to our solution any solution of the homoge-
apply downwards against the membrane must exactly equalaqs version of Eq(3) without changing the result. Let
the magnitude of similar forces applied upwards. This is ,(r) satisfy

consequence of Newton’s laws of motion.

We proposed idealized models for the origin of these V2(V2—Kk?)uy(r)=0 (A1)
forces due to either entropic or direct chemical interactions.

The interactions between two circularly symmetric inclu- and the boundary conditions imposed. Multiplying ty(r)
sions arerepulsive and are asymptotically exponentially and integrating we have

short ranged with a typical extent on biological membranes
that is of the order ok~ 1~30 nm. This result contrasts with
the attraction predicted to appear between similar inclusions
on tensionless membranes. For non circularly symmetric in-
clusions we predict an additional algebraically long rangedntegrating by parts and noting that the integrated terms are
attractive contribution. zero by virtue of the boundary conditions we obtain

We discuss how competing attractive and repulsive inter-
actions are known to sometimes produce a stripelike mor-
phology. These phases are reminiscent of the stripes ob-
served on the surface of caveloae, which we refer to as
“gnarly buds,” and we discuss how a similar lateral phaseThe integrand is everywhere positive so we must have
separation could occur in these systems with typical Iengthul(r)zo andVu,(r)=0 everywhere. Thus the only ad-
scales comparable to the ranges of the interactions. missible solution of the homogeneous equationuig)

We believe that the results discussed here may have wider const. This corresponds only to a redefinition of the zero
applications in understanding biological phenomena, includef the displacement and so without loss of generality we take
ing lateral phase separation in phospholipid membranes arttliis constant to be zero. This freedom of choice is a conse-
endocytotic budding. Indeed, a detailed theoretical analysiguence of the translational symmetry of the problem in the
of the formation of caveolae invaginations on model phos-direction perpendicular to the planar membrane.

f uy(r)V23(V2—k?)yu,(r)d?r=0. (A2)

f [V2u (N P+ K Vuy(N]2dr=0.  (A3)

[1] B. Albertset al, Molecular Biology of the CellGarland, New [9] W. Rawiczet al, Biophys. J.79, 328 (2000.

York, 1994. [10] A. Albersdorfer, R. Bruinsma, and E. Sackmann, Europhys.
[2] F.M. Brodsky et al, Annu. Rev. Cell Dev. Biol.17, 517 Lett. 42, 227 (1998.
(2001. [11] W. Hackl, U. Seifert, and E. Sackmann, J. Phys7,11141
[3] R.J. Mashl and R.F. Bruinsma, Biophys.73, 2862(1998. (1997.
[4] K.G. Rothberget al., Cell 68, 673(1992. [12] K. Olbrich, W. Rawicz, D. Needham, and E. Evans, Biophys.
[5] A. Gilbert et al,, J. Cell. Sci.112, 1101(1999. J. 79, 321(2000.
[6] A. Schlegelet al.,, Cell Signall0, 457 (1998. [13] M.P. Lisantiet al, J. Cell Biol. 126, 111 (1994).
[7] H. Parket al, Am. J. Physiol 278 H1285(2000. [14] M. Sargiacomeet al, Proc. Natl. Acad. Sci. U.S.£02, 9407
[8] H. Parket al, J. Biol. Chem.273 32 304(1998. (1995.

041907-9



EVANS, TURNER, AND SENS

[15] M. Breidenich, R.R. Net, and R. Lipowsky, Europhys. Lé8,
431 (2000.

[16] T. Bickel, C. Jeppesen, and C.M. Marques, Eur. Phys. 4. E
33 (2001).

[17] R. Lipowsky, Colloids Surf., AL28 255 (1997).

[18] C. Hiergeist, V.A. Indrani, and R. Lipowsky, Europhys. Lett.
36, 491 (1996.

[19] Y.W. Kim and W. Sung, Europhys. Let.7, 292 (1999.

[20] R. Golestanian, M. Goulian, and M. Kardar, Phys. Re\b4=
6725(1996.

[21] M. Goulian, Curr. Opin. Colloid Interface Sci, 358 (1996.

[22] M. Goulian, R. Bruinsma, and P. Pincus, Europhys. L2#.
145 (1993.

[23] M. Goulian, R. Bruinsma, and P. Pincus, Europhys. L28.
155 (1993.

[24] U. Seifert, Adv. Phys46, 13 (1997.

[25] M.P. Sheetz and J.W. Dai, Trends Cell Bi6].85 (1996.

[26] B. Lorz, R. Simson, J. Nardi, and E. Sackmann, Europhys.

Lett. 51, 468(2000.
[27] C.E. Morris and U. Homann, J. Membr. Bidl79, 79 (200J.

[28] R. Bruinsma and E. Sackmann, C. R. Acad. Sci., Ser IV: Phys.

Astrophys.2, 803 (2002.

[29] J.B. Fournier and P. Galatola, Phys. Re\6%: 031601(2002.

[30] D. Stamou, C. Duschl, and D. Johannsmann, Phys. Ré2, E
5263(2000.

[31] S. A. Safran,Statistical Thermodynamics of Surfaces, Inter-
faces and Membrang®erseus, Cambridge, MA, 1994

[32] E. Evans and D. Needham, J. Phys. Ch8y.4219(1987).

[33] A. Schlegel, R.G. Pestell, and M.P. Lisanti, Front Biog;i.
D929 (2000.

[34] W.M. Gelbartet al, Faraday Discus<s12, 299(1999.

[35] R.P. Seaet al, Phys. Rev. 559, R6255(1999.

[36] R.P. Sear and W.M. Gelbart, J. Chem. PHy), 4582(1999.

[37] P. Sens and M. S. Turner, Proc. Natl. Acad. Sci. U.$tébe
published.

PHYSICAL REVIEW E67, 041907 (2003

[38] S. Leibler, J. Phys(France 47, 507 (1986.

[39] S. Leibler and D. Andelman, J. Phys¢France 48, 2013
(1987.

[40] M. Seul and D. Andelman, Scien@&7, 476 (1995.

[41] S. Monieret al, Mol. Biol. Cell 6, 911 (1995.

[42] P. G. de GennesScaling Concepts in Polymer Physi@Sor-
nell University Press, Ithaca, NY, 1991

[43] M. Daoud and J.P. Cotton, J. Phys43, 531(1982.

[44] L. Leger and J.F. Joanny, Rep. Prog. Pt85;.431(1992.

[45] A number of other factors, including variation in the mem-
brane composition, may influence the phase behavior of these
objects.

[46] From 5D = (L14myr®) fd?r’ fd?r" O (r") P (r")

X 3[4ax' X"y y" — (X &y’ 2) (X% y"?) ] hence 5P

= 1/47T'yr4Rim(0 (l)) F{jn (0(1)) Dmn(E(l)) Rkp(e(z)) qu(g(Z))

XD pg(e@)Gij with the interactions defined by the kernal

gijkl = % [45i15125k15|2 - (5i15j1 - 5i25j2) (6k1611— 6k2912) ]

and the result follows by contracting over all indices.

[47] In nature there will often be a smooth crossover around
=b. Nonetheless, we consider our approximation to be as

, good as any alternative and insist that, at large distances, the
pressure must ultimately vanish due to the finite lengths of the
polymer chains.

[48] The wetting drop is characterized by a surface tension, which
for highly hydrophobic chains approaches the oil-water tension
=10 dyn/cm—-40 dyn/cm 2.5-1&kgT/nn?, and a curvature
radius for the surface of the drdp=1-100 nm. These com-
bine to give a pressuré,=o/R=2.5X 10" 2—10kgT/nn?.

We arbitrarily choosé=R/2 to give an idea of the scales and
define the energy unit E,=f,b3=0R%8, so E,
=0.%gT-10kgT. With o,;,=40 dyn/cm=10kgT/nn? and
Ryio=10 nm we obtain fypio=1kgT/nm® and Eppio
=12%gT. We give only the results for=40 dyn/cm and for
k=20kgT for compactness. With these valuek !
=9-90 nm.

041907-10



