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Dynamical mean-field theory of spiking neuron ensembles:
Response to a single spike with independent noises
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A semianalytical dynamical mean-field theory has been developed for a study of dynamics of an ensemble
of N-unit FitzHugh-Nagumo neurons subject to white noises. Assuming weak noises and the Gaussian distri-
bution of state variables, we have driven equations of motions for momentalfand global variables.
Dynamical mean-field approximatiofDMA) has replaced original, N-dimensional stochastic differential
equations(DEs) by eight-dimensional deterministic DEs, whereas the conventional moment method yields
N(2N+ 3)-dimensional deterministic DEs for local variables. We have discussed the dependence of the spike
firing precision and the synchronization on the noise intensity, synaptic coupling, and the size of the neuron
ensemble. The spike timing precision is shown to be improved by increasing the size of the neuron ensemble,
even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles
respond to an input spike with a partial synchronization. Results calculated by our DMA theory are in good
agreement with those obtained by direct simulations. DMA theory is extended to a large cluster which can be
divided into multiple subclusters according to their functions. A model calculation has demonstrated that when
the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy
subclusters with feed-forward couplings, as in the synfire chain. We have compared DMA theory with the
conventional moment method, showing that the former may be alternatively derived from the latter by a
reduction in the number of moments with the mean-field approximation.
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[. INTRODUCTION population rate-code model assumes that information is
coded in the relative firing rates of ensemble neurons, and
It has been controversial that how neurons communicatéas been adopted in most of the theoretical analyi§is On
information by firings or spikefl—6]. Many debates on the the contrary, in the population temporal-code model, it is
nature of the neural code have been focused mainly on th@ssumed that relative timings between spikes in ensemble
two issues. The first issue is whether information is encodefurons may be used as an encoding mechanism for percep-
in the average firing rate of neurorisate code or in the  tional processind17-19. A number of experimental data
precise firing timestemporal code Adrian [7] first noted supporting this code have been reported in recent years
the relationship between the neural firing rate and the stimu-20,21. For example, data has demonstrated that temporally

lus intensity, which forms the basis of the rate code. Actuallyce0rdinated spikes can systematically signal sensory object

firing activities of motor and sensory neurons are reported té%?lilé;e[’zg]v en in the absence of changes in firing rate of the

vary in response to applied stimuli. In recent years, hpwevgr? It is well known that neurons in brains are subject to
3nt a.:tecznat'll\(/e tFer.nporaI code has dtieerll propqsed Itn \;Vh'(l:\k/'arious kinds of noises, which can alter the response of neu-
detalled spike imings are assumed to piay an Important rolg, .« in v arious ways. Although firings of a single neocortical
in information transmission: information is encoded in inter-

o ) A o . neuron invitro are precise and reliable, those wivo are
spike intervals or in relative timings between firing times quuite unreliable[23]. This is due to noisy environment in

spikes[8—10]. Indeed, experimental evidences have accumug;ro, which makes the reliability of neuron firings worse. The
lated in the past several years, indicating a use of the tempQgrong criticism against the temporal code is that spikes are
ral coding in neural systenfd1-15. Human visual systems, yylnerable to noise, while the rate code performs robustly in
for example, have shown to classify patterns within 250 mshe presence of noise but with limited information capacity.
despite the fact that at least ten synaptic stages are involvaglhas been shown, however, that the response of neurons is
from retina to the temporal braifil5]. The transmission improved by background noises against our conventional
times between two successive stages of synaptic transmigdsdom. The typical example is the stochastic resonance
sion are suggested to be no more than 10 ms on the averag8R), in which weak noises enhance the transmission of sub-
This period is too short to allow rates to be determined acthreshold signal¢for review, see Refd.24,25). It has been
curately. shown that noise of appropriate magnitude linearlizes the
The second issue is whether information is encoded in theesponse of neurons, which leads to SR and maximizes
activity of a single(or very few neuron or that of a large input-output correlation, transformation, and cohere(foe
number of neurongpopulation or ensemble code The review, see Ref[26]). Recently, it has been demonstrated
that noises can enhance the firing-time reliability of neurons
stimulated by weak periodic and aperiodic inp{23—29.
*Email address: hasegawa@u-gakugei.ac.jp We may expect that a population of neuron ensembles plays
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important roles in the response of neurons subject to noisetive MF theory forN-unit FN neuron ensembles, replacing
Actually, SR in Hodgkin-Huxley{HH) neuron ensembles has 2N stochastic DEs bgightdeterministic DEs which are ex-
been first demonstrated for a single spike by Pei, Wilkenspressed in terms of means, variances, and covariances of
and Moss[30]. Subsequently, this pooling effect has beenlocal andglobal state variables.
supported for aperiodi31,32 and periodioanalog signals There are several nonlinear models which have been used
[33] and for spike-train inputE34,35. Quite recently, SR for  for the study of neuron activities. Among them, we employ
a transient spike signal in large-scale HH neuron ensemblidiere the FN modgi8,49 because it is relatively simple and
has been studied by using the wavelet analj3#. It may amenable to analysis although the FN model does not have
be possible that the firing-time precision is also improved byas firm an empirical basis as conductance-based model such
increasing the size of neuron ensembles. as the HH model. The property of the FN model has been
A small patch of cortex may contain thousands of similarintensively investigated. In recent years, SR of a single FN
neurons, each connecting with hundreds or thousands éfeuron[50-52and FN neuron ensemblg31,32,53,54 has
other neurons in that same patch or in other patches. Th@een studied. _
underlying dynamics of individual neurons includes a variety The paper is organized as follows. In Sec. I, we have
of voltage dependent ionic channels which can be describedeveloped a DMA theory foN-unit FN neuron ensembles,
by Hodgkin-Huxley-type differential equations. Computa- fexpandmg stochasth DEs in terms of dewa_tlons from means
tional neuroscientists have so far tried to gain understandinlj Order to get equations of motions for variances and cova-
of the properties of neuron ensembles with the use of twaélances of local and global variables. Comparing our DMA
approachesi(i) direct simulations andii) analytical ap- theory with the moment methof5], we show that the
proaches such as mean-fiéMF) theories and the Fokker- former may be alternatively derived from the latter by a re-
Plank equatiofFPB). Simulations have been made for large- duction in the number of moments with the mean-field ap-
scale networks mostly consisting of integrate-and-file  Proximation. In Sec. lll, some calculated results are reported
neurons. Since the time to simulate networks by convenof the response of ensemble neurons to a single spike with
tional methods grows a2 with N, the size of the network yvhlte noises. It_WlII be_shown that the spl_ke firing precision:
[36], it is rather difficult to simulate realistic neuron clusters, IS improved by increasing the ensemble size and the synaptic
in spite of recent computer development. In MF theoriescOUPlings, as expected. In Sec. IV, DMA theory is extended
[37-40, dynamics of globally coupled large-scale networks!©® @ large cIu_ster consisting of _muIt|pIe subglusters and
is described by a flow of phases or the population activity,mOdel c_alculanons are reported. Finally, Sec. V is devoted to
which determines the fraction of the firing rate of neurons.conclusions.
The stability condition for synchronous and asynchronous
states of neuron clusters has been investigated. Quite re- || pYNAMICAL MEAN-EIELD APPROXIMATION
cently, the population density method has been developed as . ]
a modeling tool for large-scale neuronal clustgt$,42. In A. Basic formulation
these MF approaches, the macroscopic variable of interest is We assume a neuron ensemble consistingN-afit FN
the firing rate following theate-codehypothesis. However, neurons. Dynamics of a single FN neurbin a given en-

only little MF approaches have so far been proposed basesemble is described by the nonlinear DEs given by
on the temporal-code hypothe$29,40.

The purpose of the present study is to construct a dynami-  dx;(t) w
cal mean-field approximatiolDMA) theory based on the dt :F[Xi(t)]_cyi(tHNjgi) GOxj (1) +119(1)
temporal-code hypothesis, generalizing the method previ-
ously proposed by Rodriguez and Tuckw@T) [43—44. In +& (1), (1)
the RT theory, the dynamics of the membrane potential of a
neuron subject to white noises is studied by replactay dyi(t)

chasticdifferential equation$DEs) by deterministicDEs de-
scribed by moments of state variables. RT's general theory
has first been applied to a single FitzHugh-NaguRdl)
neuron[43,44] and then a HH neurof5,46. In the case of WhereF[x(t)]=k x(t)[x(t)—a][1—x(t)], k=0.5,a=0.1,

a single FN neuron, two stochastic DEs are replaced by fiv®=0.015,c=1.0,d=0.003, ance=0 [43,44, andx; andy;
deterministic DEs, for which an improvement to the RTdenote the fastvoltage and slow(recovery variables, re-
theory has been recently propogéd]. When the RT theory spectively. The thi_rd term in qu) stands for the co_uplin_gs

is applied to anN-unit FN neuron network, B stochastic ~@mong neurons with the coupling strengttand the sigmoid
DEs are replaced byNo,=N(2N+3) deterministic DEs ~functionG(x) =1/(1+exf —(x—)/a]) with the threshold)
[43,46. In the case oN=1000, for example, we geYie, and the W|(;Ithc_z; the self-couplllr)g terms are excluded and
=2 003000, which is too large to perform calculations forthe normalization factor oN™ " is adopted instead ofN
realistic neuron ensembles. In their subsequent ppir ~ —1) " for a later study of thél=1 limit. The fourth term of
the result of ensemble neurons is transplanted to FPE for tHed- (1), 1(t), expresses an external, single spike input ap-
transition probability density, which is a partial DE with Plied to all neurons, given by

2N+ 1 independent variables. Solving such FPE is a hard

computational task. We will present in this paper, an alterna- 1) =AO(t—tj)O(tjy+ Ty, — 1), (©)

- =bxO-dyre (=1-N), @
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where®(x)=1 for x>0 and 0 otherwiseA stands for the
magnitude t;, the input time andrl,, the spike width. The
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We define the variances and covariances between local vari-
ables given by

last term of Eq(1), &(t), denotes the independent Gaussian

white noise with (&(t))=0 and (gi(t)gj(t’))=,825”-6(t
—t’), the bracket - - - ) denoting the average over stochastic
random variablegsee Eq.(8)].

After RT [43,44)], we will express these nonlinear DEs by

moments of variables. We define the global variables for the

ensemble by

1
X()=1 2 xi(0), (@)

1
Y(O)=5 2 ¥i(), (5)

and their averages by
pa(t)=(X(1)), (6)

() =(Y(1)). (@)

Here, the bracket of{Q(z,t)) denotes the averager the
expectation valueof an arbitrary functionQ(z,t) of N FN
neuron ensembles defined by

<Q(Z,t)>=f f dzQ(z,t)p(2), 8

wherep(z) denotes a probability distribution functigpdf)
for  2N-dimensional random variables of z
=(Xg, ... XN2Y1s - -+ oYn)! Rodriguez and Tuckwell43]
have shown that whep(z) is given by the Gauss distribu-
tion concentrated near the mean popat we may expand
(Q(z,t)) around Q(u,t) in terms of the first and second
moments of the variables. We express DEs given by Hgs.

1
YLITN EI (87, (14
1 2
Y227 Z (oY1), (15
1
YT 2 (6% 9Y;), (16)

and those between global variables given by

p11=(5X?), (17
p2=(5Y?), (18
p12=(0X3Y), (19

where 6X=X(t) — u1(t) and sY=Y(t) — u,(t). It is noted
thatvy, , expresses the spatial average of fluctuations in local
variables ofx; andy;, while p,, denotes fluctuations in
global variables oX andY (k,A=1,2).

We assume that the noise intensglyis weak and the
distribution of state variables takes the Gaussian form. The
first assumption allows us to expand the quantities in a
power series of fluctuation moments around means. As for
the second assumption, numerical simulations have shown
that for weak noises, the distribution &ft) of the mem-
brane potential of a single FN neuron nearly obeys the
Gaussian distribution, although for strong noises, the distri-

and(2) in terms of the deviations from their averages definedyytion of x(t) deviates from the Gaussian taking a bimodal

by
OXi (1) =X (t) — pq(t), 9)

oyi(t)=Yi(t) — mo(t), (10

to get(the argument is hereafter suppressed

dx
Tt = F (s +F () 8%+ 5F @ pag) o7+ §F ) ) O
—Cup—COY +1O+1®+ & | (11)
dy;
H=b,u,1—d,u.2+bé‘xi—d5yi+e, (12)
with
© —\y w '
[ 1—— Glp)+y G'(u1) 8%
i)
+ZG<2>(M1)5x2+ G<3>( )&f}. (13

form (see Fig. 8 of Refl44] and Fig. 3 of Ref[47]). Similar
behavior of the membrane-potential distribution has been re-
ported also in a HH neuron modeg27,28. Furthermore, we
adopt a mean-field approximation in which quantities aver-
aged at a given site are assumed to be the same as their
global averages. This type of approximations has been
widely adopted in mean-field theories such as the Weiss
theory for magnetisn{55] and the coherent-potential ap-
proximation for random alloy§56]. When we adopt the
Gaussian decoupling approximation and the mean-field ap-
proximation, averages of fluctuations are expressed in terms
of the first and second moments offigs. (A6)—(A9)]. Af-

ter some manipulations, we get equations of motiongfpr
Y, andp,., (k,A=1,2) given by(for details, see Appen-
dix A)

d/.Ll 1

¢ = fot favia—cuatw| 1- S |Uo+19(1), (20
d
;Z—bﬂl d,LL2+e (21)
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dyi1 =(Xi), (32)
at =2[(f1+3f3y10)v1,1-Cy12] |
my=(Y;) (33
Y11
+2wW| pyy— 7| Ust B, (22 for a calculation of variances and covariances betweeal
variables given by
d
Zzz—z(bylz dy22), (23) Crh=(AxiAx;), (34
C35=(Ayidyj), (35)
dYIZ—b711+(f1+3f3711 d)y12-Cy22 i

dt 127 (AXiAyj), (36)

WhereAxizxi—mil and Ayi:yi—mizz variances are given

Y12
Wl P12 Ty )Ula (24)

dpl,l_ 1
dt =2[(f1+3f3y1,0p11—Cp12l+2W 1_N p11U1

by settingi=j. Adopting the assumptions of weak noises
and the Gaussian distribution for state variables, we get DEs
for these moments given kyor details see Appendix A

W
B2 gt == fy+fhCy! _lez"'N > [g5+g5Cii]+16,
+—, (25 k(=1)
N (37)
dp22 dmi . .
gt~ 2(bp12=dp2 ), (26) d—tzzbm'l—dm'2+e, (39
dpi ' l ; i
gt~ Ppaat (f1+3f3y11=d)p1 o= Cpap m Bl (£ 4 3F5CH + £+ 3FLCh) Chl - o(ChL+ Cl)
1
w15l (27) Jrﬁ?aij 2 (gk+3gsChichl
with
+ 2 (014305 11}, (39
Uo=0ot 92711, (28) k(
1 €
fo= o F )(,le), (30) dC"
' T Z=bCl; Jl+(fl+3f3C' '1 d)C} 1o~ cC
1
ge_(e,) G(pa). (31) w e
*N k(zi) (91+393C11)Cr%h  (i,j=1-N),
The original 2N-dimensionalstochasticDEs given by
Egs.(1) and(2) are transformed to eight-dimensiordter- (41)
ministic DEs given by Eqs(20)—(27), which show much
variety depending on model parameters such as the strengw"l
of white noise ), couplings (), and the size of cluster 1 _
i (O)( i
(N). fo= o F(my), (42
B. Derivation of DMA theory from the moment method ) 1 .
ge=| 7] G (my) (43
Although DMA theory has been derived in preceding Sec. e e

IIA, from a calculation of equations of motions for means,
variances, and covariances of local and global variables, w&he original RT theory43] includes up to the second-order
will show that DMA theory may be derived also from the moments. The expression given by E(&/)—(41), however,
moment method initiated by Rodriguez and TuckwéiB].
For anN-unit FN neuron ensemble, the moment method deuse of the Gaussian decoupling approximatjé]: RT's
fines means of variables af andy; for the neuron given result may be given by Eqg37)—(41), but by settingf},

by =g5=

041903-4
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Comparing Eqs(4)-(7) and (14)-(19) with Egs. (32~ We may show thafu,= ., Ycx=7Ver» aNdper=per
(36), we define the quantities given by which hold even within the fourth-order moment approxima-
tion.
;KZE 2 miK: (44) For a single FN neuronN=1), the m_oment methoq and
N 5 DMA yield the same resultsee Appendix B For a pair of
FN neurons N=2), numbers of coupled DE equations are

— i Neg=14 and 8 in the moment and DMA methods, respec-
YeATN EI Cintdan (45) tively, where we employ the symmetry relations such as
CL2=C2%. Amore detailed comparison between DMA and
. 1 N moment methods for the caseNt 2 is provided in Appen-
Per= > 2 Cl (k=12 (46)  dix B with some numerical calculations.
| I

For a generaN-unit FN neuron ensemble, the number of
coupled DEs in the moment methdé&gs. (37)—(41)] is
Neqg=2N+N(2N+1)=N(2N+3), which is 230, 20300,

1 o and 2 003 000 foN=10, 100, and 1000, respectively, while
d"'*:N E om'.smy (470 Neq=8 independent oN in our DMA theory [Egs. (20)—
! (27)]. Thus,Ng, in the moment method has the exponential
| | N dependence, which prevents us from performing calcula-
oM, =M, — iy, (48 tions for realistic neuron ensembles.

with

where we employ the identitie§Xi=Axi+5mi1 and dy;
=Ay;+ém,. By using Egs.(37)—(41) and (44)—(46), we C. Property of DMA theory
get DEs fordu, /dt, dy, \/dt, anddp, , /dt from the mo- The DMA theory successfully reduces the number of
ment method. It may be shown that DEs obtained from th@ES' by tak|ng account OI'LK’ Viens and P for g|0ba|
second-order moment method, whefg=gs=0 in EQS. variables as well afocal variables instead of, and C!},
(37)—(41), exactly agree with corresponding DEs in DMA. for |ocal variables. The moment method imposes no con-
This is because DEs within the second-order moment apsiraints on the coupling strend#3—46. This is expected to
proximation are linear functions of the first- and second-pe the case also for DMA theory, although it may become
order moments, details being presented in AppendiE@s.  \yorse for stronger couplings because of the additionally in-
(B1)—(B8)]. In contrast, when the fourth-order moment yoquced mean-field approximation. One of the advantages
terms in these DEs are linearized with the use of the Gausgsi the moment method over the DMA is that the former may
ian and mean-field approximations as given by E844)—  take into account the intersite cross correlation between the
(B16), results obtained from the fourth-order moment yitferent neurons such &), for i#j, while DMA calcu-
method again agree with those of DMA. lates the averaged quantities. The DMA, however, has ad-
It is worthwhile to show that DMA theory may be more \aniaqes of a tractable small number of DEs and clear semi-
easily derived from the moment method when the followinganajytical nature, from which some qualitative results may
conditions are satisfied: be deduced without numerical calculations, as will be shown
shortly[e.g., Eq.(57)]. DMA is expected to be better applied
to largerN ensembles, which is inherent in mean-field theo-
ries[55,56|.

miK= m,, (49

Cih=8;Cant (1= 8))Cpx, (50)
) 1. Single-site self-consistent approximation
wherem, denotes the constant valuerof, independent of, . . , .
8 k P It is possible to regard DMA theory as teigle-site self-

and iij andC, stand for the intrasite and intersite terms .,ngistentheory. Let us assume a configuration in which a
of C\ , respectively. The conditions given by E¢89) and  sjngle neuroni is embedded in an effective medium whose
(50) will be satisfied in excitable neuron ensembles with uni-effect is realized by a given neuraras its effective external

form couplings, where the variables in all neurons are in th‘?nput through the couplingv. We replace quantities afk

rest state without external inputs, and nearest-neighbor Sit%k,k and (1N)S c in coupling terms of Ekqs

and far-neighbor sites of a given neuron are indistinguish-(3"7’))"(41) by eﬁeét(iq\&/ge)qsgrﬁfli(ties of ., v and p '
- K KN\ K\

able. Substituting Eqg49) and (50) in Eqs. (44—(46), we —(1/N)y,.\, respectively. Then, in order to determine these

get quantities just introduced, we impose the self-consistent con-
— dition given by[see Eqs(44)—(46)]

M=, (51

Yen=Cunr (52 =, (54)
1 1)\ . N
Pea= g Crat| 17 ) Crn- (53 Yer=Cli\, (55)
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1 1 . where (y) is the error function given by integrating(x)
PeaT N YRATN Z Ch- (56)  from — to y. Then the probability averaged over the en-
170 semble is given by
Note that Eqs(54)—(56) are assumed to hold independent of 1 o—
i and thatm, andC}’, on their righthand sides are functions W, (t)= N > Wei(t)=1— lﬂ( /'Ll). 63
of w,, Yer, andp, . The condition given by Eqg54)— i ¢
(56) yields DEs foru,, ¥.., andp,, which are again ) ) o ) )
given by Eqs(20)—(27). The self-consistent condition given The fraction of a given neuronemitting output spikes dtis
by Egs.(54)—(56), which assumes that the quantities aver-9iven by
aged at a given site are the same as those of the effective d W, (1) p q
. . . & . ¢ . M M1 :
medium, is common in mean-field theorigss,56]. Zu(t)= ()= - _)6(,“1)'
dt o dt\ o,

2. Firing-time distribution (64)

We should note that the noise contributiond$ in Eq.

(22), while that isB?/N in Eq. (25). It is easy to see that where p,=du, /dt. When we expandu,(t) in Eq. (64)

aroundt} , whereu,(ts)= 6, it becomes
71(,)\

for w/B%>—0 (57a t—t*\ d ()
pr=) N Ze(UN(ﬁ(é\t—) ﬁ(a—)@(ﬂl), (65)
Yer  for gAw—o0. (57b) of ¢
Equation(573 agrees with theentral-limit theorem Thus, with
the ratio p,,/v.\ changes as model parameters are
changed. We will show that these changepjn, and vy, , &Oezﬂ, (66)
reflect on the firing-time distribution and the degree of syn- M

chronous firings in neurons ensembles.

Thenth firing time of a given neuronin the ensemble is  where ,, u;, and o, are evaluated at=t* . Z,(t) pro-
defined as the time whex(t) crosses the thresholétifrom  vides the distribution of firing times showing that most of the
below: firing times of neurons are located in the range given as

toin={t[Xi(1) = 0;%,>0;t=tgin_1+ 77}, (58 tor e[ty — Stor, tg + Stoe]. (67)

where 7, denotes the refractory period introduced so as tdn the limit of vanishingB, Eq. (65) reduces to
avoid multiple firings in a short period arising from fluctua-

tions in voltage variables around the threshold. We get the Zo(t)=05(t—t}). (68
distribution for the membrane-potential varialdegiven by
(for detalls, see Appendix )C Similarly, we get the distribution for the global variatfe
L given by (for details, see Appendix D
Xi— M1
P(x;)= _) ¢(—)1 (59 1 X —
oy oy P(X)z(a-—) ¢( o_'ul), (69
where ¢(x) is the normal distribution function given by g g
with
1 X2 60
d)(X)— \/ﬂex - ? ’ ( ) Tg=p11 (70)
with This implies that the distribution of global voltage variable
X(t) is described by the Gaussian distribution with the mean
o=y 1. (61) of u4(t) and the variance op, 4(t). If we define themth

firing time relevant to the global variabk(t) as
This implies that the distribution of the voltage variak)ét)
is described by the Gaussian distribution with the mean of tgm={t|X(t)= 0;X(t)>0;t>tgm_1+ T} (7D
wna(t) and the variance o, 4(t). The probability given by
Eq. (59) depends on the time because of the time dependenche fraction of firing around=t} is given by
of x;(t) ando,(t). The probabilityW,;(t) whenx;(t) att is

above the threshold is given by[43] t—tg\d[u :
2y )= 5| | o | O (k). (72
(9_:“1) o9 g
Wyi(t)=1— , 62
a0 =1=u| = ©
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o 0.2————1—
&ng.—. (73)
M1
Then most oft,4 is located in the range given by
toge [t} — Styy, 5+ Sty. (74) od ] L s
I 0-3~100 200 300200 0"T00 200 300" 400
Sincep, ; is generally smaller thaw, ;, we getog<o, and t k
Stog=dty, . In particular, in the case of no couplings, Egs. 8885 T T ] gggs —T T T ]
57), (61), (66), (70), and(73) lead to LI 7 UL . 7]
(57), (62), (66), (70) (73 0.0041 ©) Y1 1 oo0f (d)pu__
0.003 E 0.003
St C ] L 100
Stog=—2  for w=0, (75) 0.002F 1 o002 *
WN 0.001F 1 0001l A ;
100~ 200300400 100~ 200300400
3. Synchronous response t t.
Now we consider the quantity given by 0.00004————T——7——  0.00004—————T1
0.00003- @© v 4 0.00003- ®p2 A
1 - n -
RO= 5 2 (D60 -x (D) =2(va0—pry. (76 000002 o oooooz- A X190,
i S | Y | NP L . y
. 0.00001 1 0.00001" F

When all neurons are in the completely synchronous state
we getx;(t)=X(t) for all i, and thenR(t)=0. On the con-
trary, in the asynchronougrandon) state, we getR(t)

100200300 "2

=2(1-1/N)y11=Ry(t). Then the quantity defined by 0.0001 ' 0.0001
(p1,1/v11—1IN) 0- 0-
S(t)—l—R(t)/Ro(t)——(l_l/N) (77 I I
. -0.0001 -0.0001
is 1 for the completely synchronous state and 0 for_ the_: asyn- 0100200360200 01002003003
chronous state. We hereafter c&lt) the synchronization t t
ratio, which provides the degree of synchronous firings in
the ensemble. We ge&=0 for W/132_>0, while S=1 for FIG. 1. Time courses of means, variances, and covariances cal-
B2lw—0 [Eq. (57)]. culated by DMA theory(solid curveg and simulations(dashed

curves: (@ pu1, (b) pp, (©) y11, (A p11, (€ ¥22, () P22, (9)

y12, and(h) p; , for A=0.10, 3=0.01,w=0.0, andN=100. Re-

sults of(d), (f), and(h) are multiplied by a factor of 100. The chain
We expect that our DMA equations given by E¢R0)— curve at the bottom ofa) expresses a single input spiké, in Eq.

(27) may show bifurcation, synchronous and asynchronou$3 [see also Fig. @)].

states, as well as chaotic states. In this study, we pay our

attention to the response of the FN neuron ensembles to @lculated quantities are dimensionless.

single spike input] ®)(t) given by Eq.(3), which is applied The time courses of means pf, and u, calculated with

to all neurons in the ensemble. We have adopted the parang=0.01, w=0.0, andN=100 are shown in Figs.(4 and

eters of =05, «=0.1, ,=10, A=0.10, t;,=100, and 1(b), respectively, where solid curves denote the results of

T,,=10. Parameter values @f, 8, andN will be explained = DMA theory and dashed curves those of direct simulations.

shortly. We get the critical magnitude éf.=0.0442 below We note thaj,; andu, obtained by two methods are in very

which firings of neuron defined by E¢p8) cannot take place good agreement and they are indistinguishable. At the bot-

without noises B=0). We have adopted the value &f tom of Fig. X&), an input spike is plottefsee also Fig. @)].

=0.10 (>A,) for the study of response to a suprathresholdStates of neurons in an ensemble when an input spike is

input, related discussion being given in Sec. V. injected att=100 are randomized because noises have been
DMA calculations have been made by solving E@Q)— already added since=0. Figures 1{c)—1(h) show the time

(27) by the fourth-order Runge-Kutta method with a time courses of various variances and covariances. Agreements

step of 0.01. Direct simulations have been performed byetween the two methods are good far;, py1, ¥12, and

solving 2N DEs as given by Eqq1) and(2) by also using p;,. There is a fairly good agreement far,, and p, .

the fourth-order Runge-Kutta method with a time step ofComparing Figs. ), 1(e), and 1g) with 1(d), 1(f), and

0.01. Simulation results are the average of 100 trials, othert(h), respectively, we note that the relation given by &),

wise noticed. Initial values of variables are set to g  p, \=7,,/100 valid forw=0, is supported by simulations.

= W2= Y11= Y11= Y12=P11=P2,=p1.—=0 in DMA calcu-  Note that results in Figs.(d), 1(f), and 1h) are multiplied

lations, andk;=y;=0 fori=1 to N in direct simulations. All by a factor of 100.

Ill. CALCULATED RESULTS
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0-2_ T T T T T T T ] — T 1
2 00} ® — . Sty
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t - >
2 T T T T T T % -1 % -1
T ®) Z j\ ------------- | Wi E) éﬁ
§ 1 4 A | (a) | &
L ©) ] B=0.01 B=0.01
\ | | w=0.0 w=0.2
L 1 " L "
R P R, | R R T . |
0 100 1{0 120 130 20 t % 3 %) t % 3
M log;4(N) log;y(N)
T T T
5 3L @ [ LW ] FIG. 4. Log-log plots ofst,, (squarepand ét,, (circles against
& of ¢ ' ¢ 1 N for (a) w=0.0 and(b) w=0.2, filled symbols denoting results in
2 1 () . DMA theory and open symbols those in simulations. Shown at the
1_‘ 7 uppermost part ifb) are the DMA resul{small, filled squaresand
0" l(l)O L 1110 : liO —T30 results with Eq(E1) with n=1 and 2(thin solid curveg they are

shifted upward by 0.433 for the clarity of the figuigee text

FIG. 2. Time courses dfa) 119, (b) W, (the dashed curveand  global variableX(t) in DMA theory, while Fig. Ze) shows
Z, (the solid curvgin DMA theory, (c) Z, in simulations,(d) Wy 7 - obtained in simulations. Fluctuations in spike timings of
(the dashed cury@ndZ (the solid curvgin DMA theory, and(€)  the global variable arét,,=0.037 calculated by Eq73) in
Zg in simulations, forA=0.10, £=0.01,w=0.0, andN=100. DMA theory, and 0.041 in simulations which is the rms value
of firing times defined by Eq.71). These figures obt, for

Figures jza) shows a single spike input, .WhiCh ‘S_app”ed the global variable are ten times smaller than respective val-
att=100 with a duration off,= 10. The solid curve in Fig. ues ofst,, for the local variable
o .

2(b) expressZ,, the firing probability of the local variable
xj(t), which is a positive derivative ofV, shown by the
dashed curvgEqgs. (63) and (64)]. They are calculated for A. Noise-strength 8 dependence

p=0.01, w=0.0, andN=100 in DMA theory. For a com- We expect that as the noise strength is more increased, the
parison, the simulation result fa, is plotted in Fig. 2¢).  gjistribution of membrane potentials is more wider and fluc-
Firings of neurons occur a,~104-105 with a delay of yations of firing times are more increased. Filled squares in
about 4-5. Fluctuations of firing times of local variables Fig. 3@ show theg dependence oft,, obtained by DMA
.atog' are 0:37 calcglatgd by E¢6) in DMA theory, and 0.41 theory [Eq. (66)] with w=0.0 and N= 100, while open

in simulations, which is the root-mean-squans) value of squares express the rms value of firing times obtained by
firing times defined by E58). In contrast, dashed and solid gimylations. The agreement between the two methods is
curves in Fig. 2d) show W, and Z, respectively, for the  ¢airy good. In contrast, filled circles in Fig(& show theg
dependence ot relevant to the global variable obtained
by DMA theory [Eq. (73)] and open circles stand for RMS
values of firing times in simulations. We note thét,, is
much smaller thamt,, although bothst,y and ot are pro-
portional to 8 for weak noises under consideration. Figure
3(b) will be explained shortly in connection to the result of
the w dependence.

B. Cluster-sizeN dependence

Filled squares in Fig. @ show theN dependence of the
local fluctuation ofét,, for 3=0.01 andw=0.0, obtained
by DMA theory, while open squares express that obtained by
simulations. Simulations have not been performed Nor
>100 because of a limitation in our computer facility. We
note thatét,, is independent oN because of no couplings
(w=0). In contrast, filled circles in Fig.(d4) show theN

FIG. 3. (8 The 8 dependence oft,, (squares and ot,,  dependence of the global fluctuation 6f,, obtained by
(circles for w=0.0 and(b) that for w=0.2 with N=100; filed = DMA theory, while open circles that by simulations. The
symbols denoting results in DMA theory and open symbols those irfelation, &Ogu(llx/ﬁ), holds as given by Eq(75). Figure
simulations. 4(b) for finite w will be discussed shortly.
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0.5

203"
0.2
0.1

ot

FIG. 5. Thew dependence obt,, (squaresand dtqq (circles
for (8) N=100 and(b) N=10 with 8=0.01, filled symbols denot-

ing results in DMA theory and open symbols those in simulations,

Bold, dashed curves far<0.2 express Eq.78) (see texk

C. Coupling-strength w dependence

So far, we have neglected the coupliwgamong neurons,
which is now introduced. Filled squares in FigbBshow the
B dependence of local fluctuations ét,, calculated by
DMA theory for w=0.2 andN=100, while open squares

PHYSICAL REVIEW E67, 041903 (2003

0.05—————— 0.15————7—
0.04 : ®
0.03 0:t;

1%5) - ©n [

0.02_ 0.05
0.01 .
o 0p

_0.0](;.|.|.|.- T R T
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FIG. 6. The time course of synchronization rafdfor (a) w
=0.1 and(b) w=0.2 with 5=0.01 andN=100, the solid curve
denoting results of DMA theory and the dashed curve those of
simulations.

Log-log plots of Fig. 4b) show theN dependence aft,,
(squarep and 6t,q (circles for w=0.2 andN=100, filled
and open symbols denoting results of DMA and simulations,
respectively. Althougrﬁtogoc(ll\/ﬁ) as in the case ov=0
[Fig. 4(@], oty shows the peculiaN dependence, which
arises from the (+ 1/N) term in Eq.(78). TheN dependence
given by Eq.(78) with n=1 and 2 is shown by thin solid
curves at the uppermost part in Figb# which are shifted
upward by 0.433 for a clarity of the figure. The result with
n=1 is in better agreement with the result of DMA theory
shown by small filled squares than that witk-2 (see Ap-

that obtained by simulations. Filled and open circles exprespendix B.
global fluctuations ofét,q in the DMA theory and simula- Couplings among neurons work to increase the synchro-
tions, respectively. Comparing these results with those fonous dynamics and to suppress local fluctuations. Figures

w=0.0 shown in Fig. &), we note thatst,, is much re-
duced asw is increased, although there is little change in
Sog-

'Ighis is more clearly seen in Fig(&, which shows thev
dependence of firing-time fluctuations. Filled squares in Fig
5(a) show fluctuations obt,, for the local variable obtained
for B=0.01 andN=100 by the DMA theory, while open

6(a) and Gb) show the time sequence of the synchronization
ratio S(t) defined by Eq.(77) for w=0.1 andw=0.2, re-
spectively, with 8=0.01 andN=100. Solid and dashed
curves in Figs. @) and b) show results in DMA theory
and simulations, respectively. Both results are in fairly good
agreement. We note th&(t) has two peaks at times when
p14(t) also has double peaKsig. 1(d)]. The maximum

squares express those calculated by simulations. Filled andilue ofS(t) for w=0.2 isS;;,=0.132, which is larger than

open circles in Fig. & show fluctuations ofét,q for the
global variable obtained by the DMA theory and simulations,
respectively. Whemw is increasedst,, is considerably de-
creased, wheread, is almost constant. Figurglh shows
a similar plot of thew dependence of firing times when the
size of an ensemble is reducedNe-10. We note thabt,
for N=10 is 3.16 times larger thaft,y for N=100 because
Stog is proportional to 1{N.

Results obtained by DMA theory are analyzed in the Ap-
pendix E, where we get the expression for thendN de-

pendentst,, given by[see Eq(E1)]
(a;W+aw?+- - +),

R

where n=1, 6t,,(0,1)=2.71, a;=7.0, anda,=-11.0.
Bold, dashed curves fav=<0.2 in Figs. %a) and §b) show
the w dependence oft,, for N=100 and 10, respectively,
expressed by Eq.78), which are in good agreement with
results of DMA theory shown by filled squares.

n

1
2

&Of(W!N)
S0, T

Smax=0.041 forw=0.1. This trend is more clearly seen in
Fig. 7, where the maximum magnitude $fft), S,., is plot-
ted as a function ofv for N=10, 20, 50, and 100. It is shown

FIG. 7. Thew dependence of the maximum 8f S,,,, for N
=10 (squarey N=20 (triangleg, N=50 (inverted triangles and
N =100 (circles with 8=0.01, filled symbols denoting results of
DMA theory and open symbols those of simulation. Bold, dashed
curves forw=0.2 express Eq479)—(81) (see texk
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that S,,a is increased as the coupling strength is increasedyherex; andy; denote the fastvoltage variable and slow

as expected. Figure 7 also shows that the effect of coupling igecovery variable, respectivelyé;(t) the Gaussian white

more significant in ensembles with smallér noise with(&;(t))=0 and(&(t)&;(t"))= B? gijo(t—t’), the
An analysis of the result obtained in DMA theory yields bracket(- - -} denoting the averad&7]. In Eq.(82), I{°V(t)

the expression fow- and N-dependensS,,,, given by[see andli(cz)(t) are given by

Eq. (E8) in Appendix H

Sma W,N) = Caw -+ Cow?+ - -, (79 0= Em G(x(1)), (84)
with
12(1)= > ( ”’“)E G(x(1), (85)
1 1 n(zm | Np /Ken
oY
N N which express the couplings within the subclustemwith

strengthw,,,,, and those between subclusters with strength

1 1 1 Wmn, respectivelyN, the number of neurons in the subclus-

N N term, andG(x) is the sigmoid functionlL{®(t) stands for an
external single spike input applied to all neurons in the sub-

where b;=22 andb,=-290. Bold, dashed curves fav  clusterm, as given by Eq(3).

<0.2 in Fig. 7 showS,,,x expressed by Eq4.79-(81), As in the Sec. IIA, we first define the global variables for

which are in good agreement with results obtained in DMAthe subclustem by

theory shown by solid curves. If we define the coupling con-

stantw,,,(N) for which S, is, for example, 0.3 for a given _ - E xi(1), 86)

N, we getw,(N)=0.101, 0.147 0.237, and 0.322 fo¢ N i€

=10, 20, 50, and 100, respectively, which lead to

Wn(N)/w,(10)=1.0, 1.46, 2.35, and 3.19, respectively,

whenw,(N) is normalized byw,,(N=10). This suggests Y= E yi(t), (87)

2

C2: b2+ 1

bz} , (81)

that we may getv,,(N)/N. This arises from the fact that N i<

the relation: S,,,,W?/N nearly holds forS,.,=0.3, for  and their averages Hp7]

which the contribution from thev? term is more consider-

able than that from thes term in Eqs.(79)—(81). Of course, w7 () =(X"(t)), (89
it is not the case for much smaller value &, for which

the first term is more dominant than the second term. w2 (1) =(Y™(t)). (89

Expressions of EQSE1)—(E8) for w- and N dependence
of fluctuations and the synchronization ratio, which are obNext we define variances and covariances between local
tained based on the results calculated in DMA theory, ar&ariables in the subclusten, given by
useful in a phenomenological sense. For example, in the case
ofr!egatbe_(inhibitory) couplings, Eq;(El) and(E8) yield ,yrlnl:i 2 ((8x™)?2), (90)
an increase it,, and a negativ&, which are supported by Nm i
numerical calculations with DMA theory and simulations
(not shown. We have tried to extract coefficierds, a,, by, )2
and b, in Egs. (E1)—(E8), by expanding Eqs(20)—(27) in 7’22 N 2 ((ayi"?), (91)
terms ofw, but have not succeeded yet.

IV. DISCUSSIONS V1= No 2 ((8x"oy™M), (92)

It is possible to extend the DMA theory we proposed to a
large FN neuron cluster that is divided into multiplesub- b
clusters according to their functions. Dynamics of a single y
FN neuroni in a given subclustem (=1 to M) that consists M _ ((SX™)?2 93
of N,,, neurons is described by the nonlinear DEs given by p1={(OX™)%), ©3

and those between global variables in the subclusteiven

dx;(t) pzo=((8Y™?), (94)
R . v (c1) (c2)
at FIx;i(t)]—cy;(t)+1;77(t) + 1;°(1) pr((&Xm&Ym)), 95

(€)
Hm O+ &(), B2 where ox"=x (- uI(), HYI=yi()- I, X"
dyi(D =X"(t) - p'(t), and SYM=Y™(t)—u5\(t). Covarinaces
yi(t) Ca between variables belonging to different subclusters are not
dt =bx(H—dy()+e (i=1-Nm) (83) taken into account. As in the single ensemble case discussed

041903-10



DYNAMICAL MEAN-FIELD THEORY OF SPIKING . ..

PHYSICAL REVIEW E67, 041903 (2003

in Sec. Il A, we assume a weak noise and the Gaussian dis- When a given cluster can be divided into excitatory and
tribution of state variables adopting the mean-field approxiinhibitory subgroups and when variance and covariance
mation. After some manipulations, we get the following terms in Eqs(96)—(103 are neglected, we get

DEs:
d:tl fo+12711— CM2+Wmm(1 Nim)uom
+ > WplUon+19(1), (96)
n{(Zm)
dthZ_bM —dul+e, 97)
d711

at — - =2[(f7+ 35y yT1—cy1al

m

Y11
+ 2Wmm( Prlrjl_ N_) Uimt 2n(§m) Wmnp2,1U int B,

m
(98)

d?’?,z
it =2(by],—dv3y), (99
d71 2
ar =byl+ (F7+ 33— d)yI—cyd,
m 7T2 n
T Wmm| P12~ N_m Ulm+n(§m) Wmnpl,zuln,

(100

del_ m m_my _m m
T =2[(f1+3f3y1)p11~Cp17l

+2 (1 1) MU +B2 (101
Winm| 1= = 5
mml N, P11Y1m N,
dpzz
e z(bP12 sz 2 (102
dPlz
dt =bpT+ (f7'+3f3y1—d)pTHr—cp,
1 m
+Wmnm 1_N_ Pl,zulm: (103
m
with
UOm go+92 7’1 1 (104)
Uim=07+393"711, (109

where fP'= (1€ FO(u]) andg]=(1/£!)GO(u]). Now
we have to solve Bl-dimensional deterministic DEEQs.
(96)—(103)], which are more amenable thalN®1 stochastic
DEs.

d E
—:tl=f5—0u5+WEEUE+wE.u|+|(Ee>(t), (106)
sz
—g¢ ~bri—duste, (107)
d,U«1 ©
dt =fo—cubtwy U +wieUe+1{9(t), (108
sz
i ~bri—duste, (109

where the suprascripts and| stand for the excitatory and
inhibitory clusters, respectively. This corresponds to the re-
sult of Wilson and Cowah58]. Then our DMA theory given
by Egs.(96)—(103) may be regarded as a generalized version
of the Wilson-Cowan theory including fluctuations of local
and global variables.

The fraction of firings of neurons in the subclusteris
given by

d
Zom(t):¢( o0 )d_ ) (/U'l) (110

with
Tem= VY11 (111
When we expanduf'(t) in Eqg. (110 aroundt}, where
wl(ts) =6, it becomes
* d /.L
Zonf)~ ¢( )d—(—l) o), (112
with
Blom=—, (113
Mg

where u', u', and o, are evaluated at=t¥,. This
shows that most of the firing times of a given subcluster
are located in the range given as

tome [t:m_ otom, tgm+ Stoml- (114

The synchronization ratio of a given subclusters given
by

m m
_ P14 v1,1~ IMNp
Sn(t)= TN, (115

which is 0 and 1 for completely asynchronous and synchro-
nous states, respectively.

We have performed model calculations, assumivig
(=10) subclusters, each of which consistd\gf(=N) neu-

041903-11



HIDEO HASEGAWA PHYSICAL REVIEW E67, 041903 (2003

20— 20—y 20— 20—
(a) Il m=1 (b) IA )\ "=l (©) 'A m=1 d m=1
- 9) . -
2 I ) M 0 A O S '
= - ‘
Sr—— g ¢ cl E——
E £ g g
N ll n C M 1 No [75) i
B=0.05 | B=0.05 AN | =023 =023
I I =10 A I TN v
0 100 150 200 0 100 ; 150 200 0 100t 150 200 0 100 ¢ 150 200
t

FIG. 8. Time courses ofa) Z,, and (b) S, for 8=0.05 and those ofc) Z,,, and (d) S, for 8=0.23 calculated wittw,=w,=0.1,
N=100, andM=10 by DMA theory.

rons. They are connected by feed-forward intersubclustest,,, for variousg with w;=w,=0.1 andN=100. We note
coupling given byw,,,=W,3,m_1, Which is allowed to be
different from the intrasubcluster coupling given k.,
=w, for all m. A single spike input given by EqJ3) is

applied only to the first subclustem= 1), and an output of

ters, isw,.=0.064, 0.028, and 0.020 fav,=0.0, 0.1, and
0.2, respectively, witiB=0.0 andN=100.

Figure 8a) shows the time course &, (t) calculated in
the DMA theory with3=0.05, w;=w,=0.1, andN=100.
Signals propagate through subclusters with,,~ 0.8 for all

6(b)]. The maximum value 08,(t), for example, is 0.022

form=1 att=122.2.

In contrast, Fig. &) shows the time course &,,(t) for

the increased noise intensity gf=0.23, which shows that

not satisfactory. Synchronization rati&,(t) for 8=0.23
shown in Fig. 8d) have multiple peaks for<m=4, double

peaks form=5, a single peak fom=6, and it disappears

for m>6.

O3 46 810
m

Otom

[ o-0-0-0-0-0-0-003

PR I
6 8 10

FIG. 9. 6ty as a function ofm for (a) w;=w,=0.1 and(b)
w;=0.1 andw,=0.0 with N=100 andM =10.

that 6t,, is almost constant fg8=0.05 and 0.10. In the case
of B=0.23, however,st,,, is divergently increased an
=5. This behavior is not changed when we adopt a different
set of parameters. Figurél® shows a similar plot obt,, as
a subclustemis subsequently forwarded to the next subclus-a function ofm for w;=0.0, w,=0.1, andN=100. Signals
ter m+1. This is conceptually similar to the synfire chain propagate withét,,,=0.04 and 0.12 fo3=0.01 and 0.05,
[59]. Whenw,, is too small, signals cannot propagate throughrespectively. For3=0.09, however, a spike dies out @t
subclusters. The critical value of the intersubcluster coupling=8.
W, , below which a spike cannot propagate through subclus- Figure 10 shows thev; dependence of the critical noise
strengthB., above which signals cannot propagate. We get
.=0.09 and 0.23 fow;=0.0 and 0.1, respectively, fod
=100 as discussed above. When is set to be 0.2,
becomes 0.38 foN=100. We note thagB. is almost linearly
increased by increasing,. Figure 10 also shows that the
m. The result is in good agreement with that obtained incritical value of 8, becomes larger as the size of subcluster
direct simulationgnot shown. Synchronization ratioS;(t)
shown in Fig. 8b) have double peakksee Figs. @) and

(N) is larger.

V. CONCLUSIONS

We have proposed a DMA theory for stochastic FN neu-
ron ensembles, in which means, variances, and covariances
signals cannot propagate, dying out at the sixth subcluster. 16f local and global variables are taken into account. Our

this case, the agreement of DMA results with simulations i9DMA theory, which assumes weak noises and the Gaussian
distribtuion of state variables with the mean-field approxima-

tion, has been derived in various way$) equations of mo-
tions for means, variances, and covariances of local and glo-
bal variables(Sec. 11 A), (2) a reduction in the number of

Figure 9a) shows them dependence of local fluctuations moments in the moment method with the mean-field ap-

0.5 T
. N=1000
0.4 wy=0.1 100\
0 3'_ 10 ]
= L
0.2 i
0.1k I -
I 1
0.1
W

0.2

FIG. 10. Thew,; dependence oB, for variousN values with

W2:01
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proximation(Sec. 11 B, and(3) a single-site self-consistent sively studied in recent yeaf$3]. Such calculations are in
approximation to the moment methp8ec. 11 Cl. In particu-  progress and will be reported in a separate paper.

lar, results obtained from the second-order moment method

[43] have been shown to exactly agree with those of DMA. ACKNOWLEDGMENTS

Calculated results based on DMA theory are in good agree- . .
y 9 g The author would like to express his sincere thanks to

ment with those obtained by direct simulations for weak . X o . ;
y Professor Hideo Nitta for a critical reading of the manuscript.

noises. When the noise intensity becomes stronger, the staulaﬁis work was partly supported by a Grant-in-Aid for Scien-

variable distribution more deviates from the Gaussian form.,. . .
(see Fig. 3 of Ref[47]), and the agreement of results OPtSIrZRSeSg?trSCthg)eTJQe ;niip?gﬁﬁ?}ol\lﬂolg;/stry of Education, Cul-

DMA theory with those of simulations becomes worse. Nev-
ertheless, our DMA theory is expected to be meaningful for
gualitative or semiquantitative discussion on the properties
of neuron ensembles or clusters. It is possible to regard non-
linear DEs given by Eq920)—(27) [or Egs.(96)—(103)] as From Egs.(9)—(13), we get DEs for the deviations @;
the mean-field FN modeior neuron ensembles or clusters. and dy; of the neuron, given by

We hope that our DMA theory may play a role of the

molecular-field(Weiss theory in magnetismi55]: the Weiss dox;

) e . o =f 10X+ (X — yy )+ FaC— oy + &+ 6119,
theory provides a clear physical picture on various magnetic dt 10X To(OX7 = y1,) + fadX7—coyit & :

APPENDIX A: DERIVATION OF EQS. (20)—(27)
AND EQS. (32)—(36)

properties despite some disadvantages such that it yields too- (A1)
high critical (Curie) temperature, wrong critical indices, and

wrong temperature dependence for magnetization at low ﬂ —box,— ddy; (A2)
temperatures. Our DMA theory may be applied to a general dt ! v

conductance-based nonlinear systems. When we consider an

ensemble oN-unit neurons, each of which is described by with

K-variable nonlinear DEs, the number of the deterministic

DEs in DMA is Ngq=K+K(K+1)=K(K+2) independent Sl i(C):W(% 8%+ 0
of N. For an ensemble o HH neurons K=4), for ex- N i)

ample, DMA yieldsN¢q= 24 which is more amenable than

original 4N stochastic equation$60]. Furthermore, our +
DMA theory based on moments of local and global variables

can be applied to more general stochastic systems besid
neural network$61].

In summary, we have developed a semianalytical DM
theory for FN neuron ensembles. In order to show the feasi—d
bility of the DMA theory, we have studied the response of
ensembles of FN neurons to a single spike input. The result dt
is summarized as follows.

PR
N &) N7

(A3)

z|®

3
o).

i(#1)

%ﬁe differential equations for the variances and covariances
aare given by

K,\

d/1
=a(ﬁ>2 ([ 80801+ (8% 0Y)) 8161

2
(i) The spike timing precision of the global variable is (Y1) 820)21),
much improved by increasing the ensemble size, even when 1 déox; dox;
there is no coupling among constituent neurons. N 2 <:2[5Xi(w)}5"15"1+[éy‘(W)
(ii) By increasing the coupling strength, the spike trans- !
mission is enhanced by the synchronous response. doy; ddy;
(iii) The spike propagation with a fairly precise timing is + 6X; T”@ﬁxz*‘z ayi(w) } 5,<25>\2] >
possible in large-scale clusters when the noise strength is
moderate. (A4)
The origin of the item(i) is the same as that yielding the
central-limit theorem. The couplings suppress local fluctua-dp _, d [ 1
tions and increase the synchronization rgEqg. (77)]. Items d_t,z rrilee 2 E ([(6X;6%;) 8,16x1
(i) and(ii) are consistent with the results reported previously N7/
[39—35. The |t§m(||| ) agrees with the resu_lt of recent simu- + (8% 8Y}) 8.1 0n2+ (8Y18Y;) 8,28021)
lations for synfire chains, each layer of which consists of 100
IF neurong62]. ltems(i)—(iii) are beneficial to the popula- 1 dox; dox;
tion temporal-code hypothesis mentioned in the Introduction. == > > <{2 5Xi<T) } Ox16\1t Wi(w)
Although calculations reported in this paper have been lim- N= T
ited to suprathreshold inputs, it is possible to study the re- ddy; day;
sponse to subthreshold inputs with the use of DMA theory. + 6X; T”&d&d"'z Wi(w)}@(z@\z] >
We may investigate combined effects of white noises and the
heterogeneity in model parameters, which have been inten- (A5)
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In the process of the calculation using E¢R0)—(27), we dys, Y12
have adopted the following Gaussian decoupling and mean- — = =by11+ (fy=d)y1 - Cyatw 91(/012 N )
field approximations.

(1) The fourth-order variances are assumed t¢4¥8

1 S
+3f3 N)E. DyD1>
1
N 2 (=3 y71a, (A6)
rowg 5| S 3 obtcis-oioia
1
N 2 (9oy)=3 iz, (A7) (85)
d 1ot o oyt 2w 1= S gupy B
an at 411117 Cpy, N J1p11 N
1 3 1 Li el
N2 2 (00)=3y1ps, (A8) +6fs| 5|3 3 pyicik
1 +6W0s L > > > bkkcik (B6)
@EI ; (8Y;6x)=3y11p1, (A9) N3 TG TR
other fourth-order terms being set to zero. szz_z(bp12 dpso), (B7)
(2) The third-order variances and terms higher than fourth dt

order are neglected,

Calculations of means, variances, and covariances given dPl,Z_b Y (f.—d N 1
by Egs.(32)—(36) in the moment method are similarly per- gt~ Pprat (fi=d)pa=CpootW| 110101
formed to get Eqs(37)—(41) if we read asm}— u,, m,
— o, AXj— 8X;, andAy;— 8y, for the calculation in DMA i
theory presented above. +3f3 N 2 2 Dy 1C
APPENDIX B: COMPARISON OF DMA WITH THE Kk K
MOMENT METHOD +3Wg3( )E 2 k(z#. Piicia, (B8

With the use of Eqs(37)— (41) and Egs.(44)—(46), DEs

| | | i
for du,/dt, dy,,/dt, anddp, , /dt are given by(bars are whereD ;,=Cy\+d, andd,, is given by Egs(47) and

(48). In derlvmg Egs.(B1)—(B8), we employ expressions

neglected given by
d 1 P . . .
Ot ot Favaa ez | 1o ) (G Gy + 10900, fo=fot faomi+ (ol fo(m*+ -, (B9
(B1) fi=f,+2f,6m,+3fz(6m)2+---,  (B10)
d P .
:tZ_le duyte, (B2) fl="f,+3fz3omi+---, (B11)

and corresponding ones fgkJ gl, andg2 in Egs.(42) and

dyy Y11 (43). Furthermore, we adopt DEs fdwm)/dt anddém./dt

— 2
dt =2(fyy11—cy1 +2w gl<pl,1_W +B given by
1 L dsm! . . . . .
+6f3(ﬁ>zi DyiD7)y Tl=f15m'1+f2(D'1'"l— y1.0) + f3[3CH L+ (smh)2]omi
+6W93< )E > [DYXCH DYDY 8, —-c 5m2+ E {g16mk+ga(D5E—y10)
(B3) +gs[3C§:1+(6m1>2]5m1}, (B12)
d722 d6m|2 i i
gt~ 20y dy2)), (B4) g~ bomi—déms, (B13)
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and the Gasussin approximation given by 2.N=2 case

1 As mentioned above, expressions ©f, u,, ¥,, and
= (5mi‘<)35mi)\23d“dm_ (B14)  p2. for a pair of neuron ensembléNE 2) derived from the
N < moment method agree with the DMA results. Expressions of
) Y11, Y12, P11, @ndpy , given by Eqs(B3), (B5), (B6), and
We note that DEs fojt;, wy, v22, andp,, given by Egs. (B8) for N=2 become
(B1), (B2), (B4), and(B7) agree with those in DMA given

by Egs.(20), (21), (23), and(26), respectively. In contrast, dyiq

although thesecond-ordemoment terms in DEs fory, ;, gt~ 2(faria—cCyi+2w 91(911
Y12, P11, andpy » given by Eqs(B3), (B5), (B6), and(B8)
agree with those in DMA given by Eq&22), (24), (25), and
(27), respectively, theifourth-order moment terms withf 5
andg; reduce to the corresponding terms in DMA when we

l
+ B2

3
+3 f3[DﬂDﬂ+ DﬁDifH—(z w

adopt the mean-field approximations as given by xg3[D11(Cy1— D1+ DI CHi-DIE
1 +D7iD1 7+ DD, (B23)
NZi st 11—f3711 2 D11 LEDZRVZRT
(B15) dyip Y12
at =byi 1t (F1—d)y1 o= Cyo ot W da| p1o— >
1 )
— DXCH (o 3 3
N2 2| Ek Js 117 93711( Z 2 11 ( 3[D1 11+D1 Di;§]+ E)W
=971 618 X g3 DIH(CT3-D1d + DA CEE-D3
with which Egs.(B3), (B5), (B6), and(B8) fully agree with +D§€Dij§+ DﬂDﬁ] (B24)

Egs.(22), (24), (25), and (27), respectively. It is noted that
Egs.(B14)—(B16) are similar to Eqs(A6)—(A9).

dp11 1) B
=2(f c +2w +—=
1 N=1 case dt (fip11—Cp12) 91P11 2
For a single neuronN=1), Egs.(B1)—(B8) reduce to 3
fo[D1(CT+Cr) + D23 ci9]
d,LLl ()
=fotfayri—cu +119(1), (B17) 3
dt — 2,2/ ~1,2 2,2 2,1
+ 2 Wg3[D1,1(C1,l+C1,1)+D icy 1+Cl,1)]:
duo
ot ~Pmi—duate, (B19) (B25)
d'yll dp12 1
. —2(flyll+3f3yll Cy12+ 6% (B19) dat =bpy it (fi—d)pyo— CP22tW| 5]01P12
d D +D% c?
2= 3(by1 - dys), (B20) +| 3] otet ot s otci oia)
3
dyi, +(§ wgs[DIH(Cy+ I+ Dy Cizt CIo).
dat =byy 1+ (f1—=d)y12+3f3y11712-Cy2p2,
(B21) (B26)
Per=Vir- (B22)  Adopting the mean-field approximation as given by Egs.

(B15 and (B16), we get the following results obtained in
Equations(B17)—(B22) show that results of the moment DMA:
method of Rodriguez and TuckwelRT) [44] and Tanabe

and PakdamafiTP) [47] agree with those of DMA with the duq 1
relations:u,.=m, andy, ,=p,,=Cy5 . In RT, the fourth- ot~ Totfavia—Cuat|s
order terms which appear in the process of calculating

dyys/dt anddy; ,/dt in Egs.(B19) and(B21) are assumed g

to be zero, whereas in TP, they are assumed to be given b M2

Egs. (A6) and (A7). g wen sy gt~ Pma—duate, (B28)

w U+ 1@(t), (B27)
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1
5 WpqiUq,
(B34)

dt =bpy 1+ (f1+3f3y11—d)p1o—Cpy ot

whereUp=go+Jzy11andU;=g;+303y11-

Figures 11a)—11(h) show the numerical comparison be-
tween DMA and moment methods for a typical set of model
parameters of3=0.01, w=0.2, andN=2 with an external
input given by Eq.(3) for A=0.1, t;;=100, andT,=10.
Left panels[Figs. 1Xa), 11(c), 11(e) and 11g)] express re-
sults in DMA and right panelfFigs. 11b), 11(d), 11(f), and
11(h)] those in the moment method. We note that our model
satisfies the condition given by Eq49) and(50), for which
DMA and the moment method yield the same result for the
averaged quantities given by, = u,=(1/2) (m1+m2)
Y™ )/K}\—(]_/Z)(Cij)'\ ]}-\)1 and P x= P
=(1/4)(Ck} c2§+ 22y for N 2. Actually F|gs
11(a) and 1Ib) show that,ul—m1 m? and u,=ms=ma.
Figure 11c) expresses; ; andp; 5, which consist of intra-
site (Cy1=C%% and intersite componentsC{i=C%7)
shown in Figs. 1dd). For an adopted value of=0.2, the
intersite(1,1) component ofC1?=CZ%7, which vanishes for
w=0, has an appreciable magnitude comparableCd
=c? f while an input is applied at 180t<110. This is true
also for intersite(2,2) components @22 C22) and (1,2
components ¢5=C%3), which are shown in Figs. 14—
11(h). Calculated results of DMA and moment methods are
in good agreement with those of simulatiom®t shown.

APPENDIX C: DERIVATION OF EQ. (59
FIG. 11. A numerical comparison between DMA and moment

methods foN=2 with A=0.10, 8=0.01, andv=0.2: (&) u, and

o, () m; andmy, (0) 11 andpy 1, (d) Cil, (&) y2.andpy 4, (f)

C5L, (@) yi2andp;,, and(h) Ct4 (i,j=1,2). Results of DMA p(xi):J' f I1; +iydx; IT;dy;
agree with those of the moment meth@ae text

The distributionP(x;) in Eq. (59) is formally given by

XP(Xy « oo XNoY1s - - YN (C1)
d71,1_2 f f 2 1,
gr 2L+ 3fayi)yia— vl +2w| pra— 57Uy with the Gaussian distribution function(pdf) of
P(X1, -+ - XN:Y1s - --.Yyn) for the 2N-dimensionl vectorz
+p2, (B29  =(xq,...XN,\Y1s--..¥yn), given by
d')/ p(xlv <o XN Y "'!yN)
5 =2(by1,-dy5)), (B30
1 1
=————expg —5(z- W'V i{z—p]|,
dy.s 2N F{ 5(Z=m (z=p)
dt =byy 1+ (f1+3f3y11—d)y12—-Cy2p (C2)
+w(p12 Y12 Uy, (B31) where_;u andV express th_e mean vector and the variance-
2 covariance matrix, respectively,
In the case of a single FN neuroN€ 1), pdf is given by
dPl,l 2
TZZ[(f1+3f371,1)P1,1_ CPl,ﬂ+WP1,1U1+?7 P(X1,Y1) = Pa(X1,Y1)
(532) 1 F{ 1( )tvfl( )
=———exg —s(z—nm z—p |,
ar ==2(bp1,—dp2>), (B33 3
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with
z= (Xl 'yl)tl (C4)
=g, p2)", (CH
V:( Y11 71,2). (o)
Y12 VY22

Substituting Eqs(C3)—(C6) into Eq.(C1), we get

1 X1 M1
P(Xl):f dy;p(Xy,y1)=——¢ , (CD)

VY11 Y11

where ¢(x) denotes the normal distribution function,

1 X2
d)(X) = \/?Tex - ?> . (C8)

In the case of arbitraril under consideration, the calcu-
lation of P(x;) may be performed within DMA as follows.

As mentioned in Sec. IIC, our DMA theory assumes the

configuration in which asingle neuron is embedded in an
effective medium characterized by, , y,.,, andp, \ [Egs.
(54)—(56)]. Thus, it is effectively the problem of a single
neuron in the effective medium. Meaps,, variancesy, .,
and covariances, , of local variables are determined by
Eqgs.(20)—(24). Then the calculation dP(x;) for N>1 is the
same as that fo=1 mentioned above, and it is given by

Xj— M1

Y11

(C9

1
P(xj)= f dyip(Xq,y1)= T‘ﬁ
1,1

APPENDIX D: DERIVATION OF EQ.

Equations(20), (21), and(25)—(27) form DEs for means
., variancesp, ., and covariancep, , for global vari-
ables,X andY. ThenP(X) in Eq. (69) is given by

(69

P(X)=f dypX,Y), (DD

with pdf for the two-dimensional vecta=(X,Y)! given by

(X Y)—;ex;{—l(z— YW (z— )}
p ! - 2 \/_ 2 M M ’

V|V
(D2)
with
”:(#lwu“Z)ti (DS)
p P
v=( o “). (D4)
P12 P22

Substituting Eqs(D2)—(D4) in Eg. (D1), we obtain

PHYSICAL REVIEW E67, 041903 (2003

X—
P11

P(X)=

Voo

where ¢(x) denotes the normal distributidieq. (C8)].
Alternatively, P(X) is expressed by

' (D3

POO= [ [ Maximaypoa, - e, -y

X6

1
X-3 2 xi) , (D6)
N <
where p(Xq, ... XN,Y1, ---.YN) Stands for pdf for
2N-dimensional vectofEg. (C2)]. However, a calculation of
P(X) based on Eq(D6) is difficult, except for the no cou-
pling case w=0), for which pdf is given by
yn) =1ipa(xiy), (D7)

p(X].Y e 1XNyyl, -

p1(X;, yi) being pdf forN=1 [Eqg. (C3)]. Performing inte-
grals with respect ty; in Eq. (D6) with Eq. (D7), we get

1

VY11

Xi— M1

Y11

¢

P(X)=f J I, dx I

X & (D8)

X—%Ei xi>.

By using the procedure conventionally used for proving the
central-limit theorem, we obtain Eq(D5) with p;,

= 71,1/\/N (for w=0). We should note that a calculation of
P(X) based on EqD1) is easier than that based on EQ6)
and that the former is applicable for finite couplings.

APPENDIX E: ANALYSIS OF NOISE, COUPLING,
AND SIZE DEPENDENCE

1.ty and dt,4

Based on the calculated results of DMA theory, we have
tried to obtain the analytical expression of tBew, andN
dependence obt,, and dt,q. Figures 8a) and 3b) show
that ot,, and 6ty are proportional tg3 for weak noises, for
which both y;; and p; ; are proportional toB? [see Egs.
(61), (66), (70), and(73)]. From results shown in Figs. 4 and
5, we have obtained expressions given by

Stoe(W,N) 1 n

Sor(0.D) _(§)<1_N (alw+a2W2+"')’(E1)
Otog(W,N) 1
o 0D N’ E2)

wheren=1, 6t,,(0,1)=2.71,a,=7.0, anda,= —11.0. The

N dependence oft,, expressed by EqE1) with n=1 and

2 are shown by thin solid curves at the uppermost part in Fig.
4(b) with DMA result (small filled squares these results are
shifted upward by 0.433 for clarity of the figure. The result
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with n=1 in better agreement with the DMA result than that

with n=2. On the other hand, bold, dashed curves in Figs.

5(a) and §b) show thew dependence aft,, for N=100 and
10, respectively, expressed by E&1) with n=1, which is

in good agreement with results of DMA theory shown by
filled squares. This implies from Eqg&1), (66), (70), and
(73) that thew andN dependence of, ; andp, ; evaluated
att=t} , whereu,(ty)= 6, are given by

71,1(W1N) 1 )
m~l—(l—ﬁ (ayw+a,w?+---), (E3
p11(W,N) ~£
140D N (E4)

Note thatdt,,(0,1) andy, 4(0,1) are proportional tgg and
B?, respectively.

2. Shax

In order to discuss the expression®f w, andN depen-
dentS;,.x, We have analyzed results 8f,,, shown in Fig. 7

by

Smax= CiW+ Cow?+ - - - (E5)

to guess how expansion coefficientsogfandc, depend on
N. After several trials, we have concluded that thandN

dependence ofy,; and p;, evaluated att=t{", where
p11(t) has the maximum value, may be given by

PHYSICAL REVIEW E67, 041903 (2003

Y1.1(W,N) \m ,
mwl_(l_ﬁ) (byw+bow?+- ), (E)
praw,N) 1
y110) N (E7)
yielding Sy, given by[see Eq(77)]
_( 1)( 1)m—1
SmaxXW,N)= N 1_N
1 2
X byw+|by+ 1_N) b2 WZ], (E8)

wherem=2, b;=22, andb,=—290. Bold, dashed curves
in Fig. 7 show thew dependence 08,,,, expressed by Eq.
(E8) for variousN values, which are in fairly good agree-
ment with results of DMA theory shown by solid curves. We
should point out that a factor of (11/N) in Egs.(E1), (E3),
(E6), and(E8) appears because the couplingloes not work

in a single-neuron caséNE1) and that at least the second
power (m=2) is necessary in EGE6) for S,,,4to vanish in
theN=1 limit. A functional form of Eq.(E3) may be differ-
ent from that of Eq(E6) because the former is evaluated at
t* , while the latter at{™ . Our DMA calculation shows that
when B is increased for a fixedfinite) w value, S5, IS
gradually decreased, although EE8) has no8 dependence.
This is due to contributions d®(8*) to y; ; andp, 1, which
have not been included in the above discussion.
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