PHYSICAL REVIEW E 67, 041802 (2003
Mechanical unfolding of directed polymers in a poor solvent: Critical exponents
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We study the thermodynamics of an exactly solvable model of a self-interacting, partially directed self-
avoiding walk in two dimensions when a force is applied on one end of the chain. The critical force for the
unfolding is determined exactly, as a function of the temperature, belo® ttransition. The transition is of
second order and is characterized by new critical exponents that are determined by a careful numerical
analysis. The usual polymer critical indexon the critical line, and another one which we calltakes a
nontrivial value that is numerically close to 2/3.
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[. INTRODUCTION double stranded DNALO-12. Here we will consider a sim-
plified polymer model where the chains are represented by
The nature of the collapsed phase that a polymer attains ipartially directed walks, i.e., steps with negative projection
poor solvent conditions is still under debdsze, e.g., Refs. along thex axis, (1,0), are forbidden. This model proved to
[1,2], and references thergirRecent experiments on pulling be helpful in the past in order to find the phase diagram in
of polymers and biopolymerésee, e.g., Refd.3-5]) have the(temperature, fugacijyplane for a simplified transition
enhanced theoretical interest on the unfolding transition §13—18. We take advantage of previous contributions and
collapsed polymer undergoes when subjected to an externgkneralize the model to the presence of a pulling force along
forcef applied at its extrema. Until very recently, most of the the direction (1,0)(see also Refl19]). Surprisingly, in this
existing studies on this subject dealt with a refined version ofersion the critical force as a function of the temperaftire
the mean field studies originally proposed in Réf. Acom-  can be found analytically. With transfer matrix techniques we
mon characteristic of such studies is that, for a self-attractingind that the end-to-end distance per monomer goes like (
polymer, they predict a first-order phase transition in any—f)¥~! with {<1. With a sophisticated enumeration
dimension at a critical forcé (T). At temperatures below techniqug16] we show that the correlation critical exponent
the O transition, where the self-attraction prevails, and for anv takes on a nontrivial value on the critical line, numerically
applied force less thari., the polymer is in a compact very close tov,=2/3, the exponent at th@ transition. It is
phase. For forces greater thin the self-attraction is unable not clear whether this is an accidental degeneracy or if it can
to maintain the polymer in its compact conformation and theapply also in the undirected case too. For example, in the
polymer chain is stretched along the force direction. How-three dimensional Sierpinski gasket, an exact renormaliza-
ever, ind=2 extensive Monte Carlo simulatiofg], per- tion leads to a nontrivial dependence of [8]).
formed on a self-avoiding wallSAW) model, suggested that Our work is structured as follows. In Sec. Il, we introduce
the transition is of second order. An exactly solvable modelthe model and the basic quantities of interest. In Sec. I, we
on a lattice of fractal dimension 2, has been analyzed in Refutline how the transfer matrix can be applied to our model,
[8] and a second-order transition was found at a critical forcdind explicitly the phase diagrareritical line), and give a
f«(T). In Ref.[9], a rationale was given for the change in rough estimate of the exponedt A scaling argument is
order of the transition as the spatial dimensibgoes past 2 proposed to suggest that at criticality=¢. In Sec. 1V, we
by means of a renormalization group based argument. Withineview the enumeration technique proposed in R&6],
this framework, it was found that, near criticality, the projec-which we use in Sec. V in order to estimate the value oh
tion of the end-to-end distance along the force direction pethe critical line. In Sec. VI, we critically analyze our scaling
monomer goes liké —f., near the phase transition, whdre ansatz and the hypothesis that {. Finally, in Sec. VII, we
is the force and . is the critical force. Numerical uncertain- draw our conclusions. In the Appendix, we derive thect
ties are too large to critically test this prediction in the SAW critical exponents in the continuum approximation through a
model of Refs[7,9]. Another feature of interest of the SAW technique developed in RdflL7] and generalized fof# 0.
model is that the transition lin&.(T) shows a reentrance at
low tgmperaturg, i.e.f'C(T) increases at I.owT and after Il. THE MODEL
reaching a maximum it decreases becoming zerb,atthe
transition. The reentrant behavior is due to the fact thatin The model is a directed SAWDSAW) on a two-
the low-T limit, since the entropy does not play any role, thedimensional square latticésee Fig. 1, with (nonconsecu-
energy dominates the free energy and the open chain is thitye) nearest-neighbor interactions. A fortedirected along
most favorable configuration. Let us notice that this behaviothe same axis of the walk, is pulling on one end of the
is similar to the one found in theoretical models of pulling of DSAW, the other one being fixed at the origin. Given a par-
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G(T.1,2)=2 G (T.2)exp( BTLy), (5)

----------------------------------- Vi1 where QLX=2,_Q,_'|_XZL, Q, 1, being the partition function
restricted to walks of total length, of which L, steps are
along thex direction.

This is useful because no«_s}x_x can be written in terms of
a transfer matrixT of dimensionalityLﬁ, wherelL, is the
size of our system along thedirection[13,14]. Such a trans-
£ fer matrix T is defined via its actions on the vectors
{vitiz1 . 12, withv;=(Y;,Yi+1), Yi being the height of the
site in theith row, which precedes the right-bound horizontal
link in that column(see Fig. 1, as follows:

T(vi,vir1)=6€X min{|r;|,|r; O(—r;r;
FIG. 1. An example of a DSAW configuration. The quantityes (visi1) HA( n{| '| l '+1|}) (=rifi0)]
and the force direction are also displayed. Thick dashed lines indi- xexd (|ri|+1)Inz], (6)
cate contacts.

x=i x=i+1

wherer;=y;,1—Y; and #(x) is the Heaviside step function.

ticular configuratiorC, the energy is It can be shown thatj(T,f=0,z) develops a singularity
when \, the largest eigenvalue &f, goes through 120].
E,=—em—fR,, (1)  This means that for large,,
wherem is the number of interacting pairs amdhe energy gLXoc[)\(T,z)]'-x. 7

per pairs,f the modulus of the applied force, am], the
longitudinal extension of the walk. Then, the canonical par-Consequently, the force-dependent singulagt(T,f) oc-
tition function can be written as curs when

QL:QL(ﬂfyﬂf)=; e PEc 2) N(T,z)exp(pf)=1. ®)

Equation(8) has a rather deep consequence. In order for the
whereL is the number of the steps of the walk agd?  critical fugacity and hence the free energy to display a sin-
=T is the temperature in units of the Boltzmann constantgularity at a nonzero value of the force, i.e., in order for the
From now on, we will see=1 without loss of generality. force_-mducgo_l unfolding transition to exist as a thermody-
From the canonical partition function, we construct theN@mic transition and not only as a crossover, it is necessary

grancanonical partition functiofgenerating function that A(T,z), the largest eigenvalue of the transfer matrix
where there is no force, has itself a singularity zap-

* proacheg (T,f=0)=z,. Otherwise, from Eq(8) it is clear
GT.f20=> Q.7 (3)  that there can be no such singularity. If there is a transition,
L=1 then we get the following equation for the critical force:

z being the step fugacity. Theeal) singularity closest to the f(T)=—T lim In\(T,2) 9)
origin, z.(T,f), of the generating function, E(R), is related ¢ 725 "

to the f follows:
0 the Iree energy per monomer as 1ollows In Eq. (9), the value of\ to be put in the right hand side of

Ing, the equation is the one pertaining to the infinite system.
Inze(T,f)=— lim——. (4)  \(T,2) for z slightly less tharg, is plotted in Fig. 3 with a
L= lateral sizel, up to 40. Itis rather clear that a singularity has

to be expected at=z; in the infinite size limit. It was in-
deed shown 14,15 that for T<T, (T,=0.82(% . .. inthis
mode), there is a singularity of the grand partition function
for z=zo=exp(—B) and for this value of the fugacity, the
largest eigenvalue is strictly smaller than 1, befitid]

From the singularities of the generating function whére
=0, a complete phase diagram can be extracteg the
following Section and also Reff14,15,17). In particular, a
singularity is found in the free energy at a valueTot T,
called the® temperature.

B 2o(1+\zo)
ll. TRANSFER MATRIX CALCULATIONS NB,z=zp=exp—B))=\N(B)=—F——. (10
AND PHASE DIAGRAM 1- \/Z—O

Starting from the definition of the generating function, Eq. The ® transition temperature is obtained whegs,z=z,
(3), wheref=0, we observe that it can be conveniently re- =exp(—£))=1. Consequently, the critical link,(T) is ob-
written [13,14] as tained by putting\ (8) =exd —Bf«(T)], i.e.,

041802-2



MECHANICAL UNFOLDING OF DIRECTED POLYMERS . .. PHYSICAL REVIEW E 67, 041802 (2003

1 0.2 T T
08 T=0.4
— L=10
0.15 ¥
0.6 [
<
w2 . 01k
04t *L=20
+L=40
—— exact solution
02 L 0.05 -
L]
¢ L ]
0 . . . .
0 0.2 0.4 06 0.8 1 0 \ \ .
T -0.08 -0.06 -0.04 -0.02 0

FIG. 2. Exact critical line as in Eq.ll) together with points -z,
corresponding to estimates with the transfer matrix calculation, with FIG. 3. Plot of the largest eigenvalud@£0.4<T

o g) VS z Itis
strip sizeL,=20 and 40.

apparent that the largest eigenvalue approaches a limit valze as
approachegy=exp(—p) (<1) from below. Thus, a transition ex-
1—exp(—BI2) ists in the thermodynamic sense.

exp(—B)[1+exp —B/2)]] (11)

f(T)=Tln
IV. THE METHOD OF ENUMERATION

and is plotted in Fig. 2, where also the results obtained with As already mentioned, the configurations of the model are
the transfer matrix with system size up kg=40 are dis- directed walks on a two-dimensional square lattice with
played. In view of Eqs(8) and (9), we can define a new nhearest-neighbor interactions. For convenience, we demand
critical exponent/ that characterizes the directed self- that these walks end with a horizontal segment. Since the
avoiding walk. From Eq(9), if the largest eigenvalue ap- Walks are directed in th& direction we can describe these

proaches its limit value according to the law configurations through a distancgbetween two horizontal
steps, measured in the positiyalirection. Thus, we associ-
_ ate to each configuration atuple (rq,r,, ... ry), corre-
Nzo)=N2)~(20—2)%, (12)

sponding to a configuration of total length== . |r;|+N.
The energy due to the nearest-neighbor interactions for

then one straightforwardly obtaifigia Egs.(8) and(9)] each of these configurations[isee Eq(6)]
N—-1
. (Ry(L _ .
im B B @9 U == 3 minr o).

(14
where(R,(L)) is the average projection of the end-to-end
distance of the DSAW along the axis (1,0). From Fig. 3 wen the following, we assign weights for steps in the hori-

esti_mat_ed 1/2 (<1, with (=07 t_hough a precist_%_determl- zontal direction andy for steps in the vertical direction.
nation is difficult. If /<1, in particular, the transition is of Then, the canonical partition function is

second order. It is widely accepted that tbr 2, the transi-
tion is of first order and sg=1. In Ref.[9], a renormaliza- L
tion group based argument @= 2, on the other hand, gave _ INN
the (undirectedd SAW {=1/2. This argument would also ap- Axy,@) Nzl (xe”)
ply to the present case. Given that the transition is of second

order in our model, it is also sensible to look for the value of 5 L=N,U(r1.rp, )
the critical exponenv (defined asky~L" for large number Irol+ro+ |yl =L—N
of stepsL, where Ry is the gyration radius of thé-site (15
polymer. In Sec. VI, using a scaling argument, we shall dem-
onstrate that=/{.

In the following section, we shall study the complete ca-wherew=exp(B).
nonical partition function, Eq(2), using a powerful method Now, it is convenient to consider the partition functions
of exact enumeration introduced in RgL6], which allows Z(LF)IZ(LF)(X,y,w) for walks of total lengthL+1 which
us to reach large values bf start with a vertical segment of heightThen, we have
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FIG. 4. Plot of(R,(L))/L vs f for a variable length_ of the
walk.

L
QLH(x,y,w):r:ZL zn, (16)

[note thatZ(?9=xQ, (x,y,w)] which satisfies the following
recursion relation:

L—|r|-1

Z(Lr)=XY"[5r|,L+eﬁf W92y

(17)

obtained concatenating these walks. In E@L7), r
=—L,...,L, with L=0,1,2.... Using the symmetry
zW=2("" Eq.(17) can be written only for non-negative
ras

s=—L+]r|+1

L-r—1
Z(Lr)zxyr{ & L +el SE_:O 29,
L-r—-1

+eff 521 WM Z) (19

Settingx=y=1 in Eq. (18), we obtain on iteration scheme
and the free energy, (w)=—(1/8L)In Z2{®). The average
longitudinal length of the walKR,(L)) is simply

_ J
V)

Then, we shall proceed as follows.

(1) We calculate the free energy using the iteration
scheme proposed in E(L8).

(2) Using Eqg. (19), we determine how the quantity
(Ry(L))/L varies against the applied forte

0
Inz©®,

(Ry(L)) (19

V. RESULTS

The plot of (R,(L))/L vs f for various values ofL is
represented on Fig. 4 dt=0.4, which is below the&® tran-
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TABLE |. Estimates for the critical exponents from a Paxge
proximant analysis. Note that in the>f_ case, the error is com-
pletely negligible.

f v L
<f. 0.501(7) <1900
=f. 0.68(8) <1900
>f, 1.00000 <1300

sition occurring afl ,2=0.82(% . . . . From Eg.(11), we have
f(T=0.4)=0.764. ...

From a careful examination of Fig. 4, we deduce that the
quantity (R(L))/L decreases ak”" !, where thecritical
exponentr might depend on the temperatureln particular,
the data are consistent with<1 if f<f (T) andv=1 if f
>f.(T). In order to find more precise values for the critical
exponent, we shall proceed along the same lines of [R6f.

An estimation of the critical exponent through the use of
the Padeapproximantg21] is given in Table I.

Our estimate of the critical exponent, at the critical force,
is close to$ , the v value at the® point atf=0 [15,17. As
shown in the Appendix, this is thexactvalue.

To get a better insight, let us define brdependent criti-
cal exponent/(L) through the formula

CIN(R(L+1))—In(Ry(L))
B In(L+1)—InL

v(L) (20)

Plotting »(L) vs an estimated correction-to-scaling term, a
careful extrapolation td. —« can be performed, determin-
ing the critical exponent for all values of the force. Let us
consider three different regimes:

(a) f<f,. As an example, let us considér=0.4. We
have found that successive estimates for the exponerit
with increasingL follow a straight line when plotted against
a correction-to-scaling term of 19° (see also the case of
Ref.[16] atf=0). The plot is shown in Fig. 5. The extrapo-
lated value fol.—x givesv—1=—0.4998, therv=3, the
exponent typical of a compact phase.

-0.494

f=0.4 < f,

—0.495 -
-0.496 -

— 0497 |

|
>

—0.498 -

—0.499 -

05 . . . .
002 0025 003 0.035

1/L 0.5

0 0.005 0.01 0.015 0.04

FIG. 5. Plot ofv—1 vs 1L%%for f<f_ andL up to 3000.
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0 ' ' ' TABLE II. Estimates for the critical exponents from an extrapo-
lation toL —co, obtained plotting thé.-dependent critical exponent
v(L), Eg.(20), vs an estimated correction-to-scaling term.

-0.001 f=1 0> fc
f v
—0.002 | 1 <f. 12
— =f. 2/3
4 >f, 1
-0.003 - E

Finally, in Table Il we have summarized the above results.
-0.004 |- N In the following section, we shall introduce a scaling
theory that rationalizes what we have found on the critical
behavior of the average horizontal end-to-end displacement

0005 0.0005 0,001 0.0015 0.002 (Ry(L)).
1/L
FIG. 6. Plot ofv—1 vs 1L for f>f. andL up to 3000. VI. SCALING THEORY

Our previous results suggest the following scaling ansatz
(b) f>f.. As before, we have plotted the exponent (see also Ref[7)):

—1 against a well-defined correction-to-scaling term. Now,

this term is of the order of L. Figure 6 shows thé=1.0 (R(L))=L"®(AfLY), (21

case as a typical example. Now, the extrapolated value gives

v—1=3.0x10 8, thenvy=1 within the numerical precision. whereAf=f—f (T). The scaling functiori(x) must have
(c) f=f.. Now, the correction-to-scaling term is of the the following behavior:

order of 1L.%28 (see Fig. 7 andv— 1= —0.3336, which im-

p|ies Vz%_ X(l_v)/l// if X—+x
Thus, we find that the value offor f=f,(T) is equal(in
the limit of numerical precisionto the value3, which cor- d(x)~4 Po if x—0 (22)
responds to that fof=0 at T=T, [15,17. This is a non-
trivial result. In particular, we have to expect that along all |x| (M2 i x— — oo,

the critical linesf=f(T), v takes the valué (see also the

Appendi¥. Moreover, as pointed out in Refl7], the With ®, a nonzero constant value. Then, the quantity
correction-to-scaling term, whefe=0 andT=T,, is of the ~ (R«(L)) obeys the equations

order of 1LY3 In our case, we found that this correction

increases to 1 28 for T=0.4. Within the numerical errors, ( LAF(— 0y it Af>0, 1 V>0
this implies that the correction-to-scaling term depends on ]
force as well as on temperature, and that the size of our
system has to increase in order to find the right critical ex- (Ry(L))~¢ L” if Af=0
ponent.
LVZAf|az0 it af<0, Y2 Vg,
-0.28333 \ (23)
f=
029333 | ’ ] in agreement with the results found in the preceding section.
Now, let us observe that the free-energy contribution to
the singular part is
-0.30333 - 1
n AF=(R(L)f=(Ry(L))fc=(Ry(L))Af=AFL"D(AFLY),
> (29
-0.31333 E
where we have used E@21), f is the applied force, and
032333 | ] ®(x)=xP(x). SinceAF is a contribution to theotal free-
energy(not a free energy densjtywe expect that it depends
only on the “dimensionless” combination of the scaling
03338 e 004 006 008 01 042 044 0.6 fieldsAf andL with appropriate exponents. This implies that
1/].%%8 v=1.
Comparing Egs.(13) and (23), we deduce that=v
FIG. 7. Plot ofv—1 vs 1L.%%for f=f, andL up to 3000. =2/3. Then, Eq(21) becomeg R (L))=L?*d(AfL?3).
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FIG. 8. Plot of (R (L)) scaled byL?3 vs f—f,. Finite size FIG. 10. Exact critical line in the continuum approximation.

scaling corrections to the critical force are evident.
=f. [see Eq.23)] is different both from 1/2, the collapsed
To test this prediction, we have plotted in Fig. 8 the func-polymer value, and from 1, the extended polymer vikes
tion L~ #%R,(L)) vs f—f., wheref is again determined again Eq.(23)]. The { exponent characterizes the singular
from the exact formula, Eq11). It is evident that, apart from behavior of the chain elongation per monomer along the
the obvious finite size scaling corrections, our ansatz is jusforce direction as the critical force is approached from above
tified. Then, we have derived the scaling functfx). The [see Eq.(13)]. Through a powerful enumeration technique

final result is shown in Fig. 9. taken from the literaturgl6], coupled with a finite size scal-
ing to extrapolate our results to infinitely long chains, we
VIl. CONCLUSIONS find thatv is very close to 2/3. A scaling analysis also sug-

gests thatv= ¢ at least within our numerical precision. Fur-

In this work we have analyzed a model of self-avoiding,ther investigations are required to extend our results to the
partially directed chains on a square lattice, with a forceyndirected SAW case.

pulling along one of the two lattice directions. The model is
simple enough to yield the exact form of the temperature

dependent critical forcé.(T) [see Eq.(11)]. However, the APPENDIX: EXACT EVALUATION
critical indices of the unfolding transition, which is of second OF THE CRITICAL EXPONENTS
order, are not trivial. The transition is characterized by two
exponents: the usual correlation length critical exponent
and one that we called. In particular, the exponent at f

In this appendix we will show that, generalizing the con-
tinuum approximation of Ref.17] for f+0, the exact criti-
cal line f,(T) can be calculated. More importantly, we have
5 : : ‘ : : ] ‘ obtained an exact derivation of the critical exponentd at
>f.andf="f., and we will show that they do not depend on
T for T<T,.

First of all, we briefly outline the main results of Ref.
[17]. The authors proposed a continuous model of DSAW,
where ther;’s in the nearest-neighbor energy term, Etj),
are not restricted to integer values. As shown, this model is
the continuous limit of the discrete DSAW and has the same
critical exponents. After some algebra, they derived the fol-
lowing exactform for thex-generalized partition function

Jy(o\

; 1 G(X,Z;w)=—1+0'_1M, (A1)
SHEN

‘9 = = o 0 10 20 30 40 where x is the fugacity along the horizontal direction,

=—Inz, o=(4x/B)Y? and\=p/(r—p). J, andJ; are,
FIG. 9. Successive estimates for the scaling functiqix) are  respectively, the Bessel function of orderand its deriva-
shown for increasing lengths of the walk. tive. The desiredgeneralized partition function is given by
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Eq. (A1), with x=1. The critical fugacity is given by the plotted in Fig. 10. It can be easily understood, once it is
solution of the equatiod; (oc\)=0 and the critical point is realized that Eq(11) for e# 1 reads
given byo=1 or B,=4.

From Eq.(Al), it is possible to define an average hori-
zontal length as 1—exp(— Bel2)

(=T gt exp—ge2]” A
dInG(x,z;w)
N=""mx (A2)
x=1 It is easy to verify that the continuum limit is formally
achieved where—0.

When f=0, the exact critical exponents aree=1 for T The exact critical exponents ate=1 for f>f; (o>1)

>Ty (0>1) andv=2/3 forT=T, (c=1). and v=2/3 for f=f., which agree with the results of the
To generalize fof # 0, we have replacedwith xe®’ and,  discrete model in Sec. V.
then, putx=1. Formally, Eqgs.(Al) and (A2) still remain Notice that the shape of the transition line at Idvis an

valid, with o= (4e?"/8)*2. The critical line, determined by unphysical feature of the continuum approximation, as dis-
the equationoc=1, gives f,=f,(T)=(1/8)In(B/4) and is cussed in Refd.10,11].
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