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Influence of solvent quality on effective pair potentials between polymers in solution

V. Krakoviack,* J.-P. Hansen, and A. A. Louis
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 21 November 2002; published 25 April 2003!

Solutions of interacting linear polymers are mapped onto a system of ‘‘soft’’ spherical particles interacting
via an effective pair potential. This coarse-graining reduces the individual monomer-level description to a
problem involving only the center of mass~c.m.! of the polymer coils. The effective pair potentials are derived
by inverting the c.m. pair distribution function, generated in Monte Carlo simulations, using the hypernetted
chain closure. The method, previously devised for the self-avoiding walk model of polymers in good solvent,
is extended to the case of polymers in solvents of variable quality by adding a finite nearest-neighbor
monomer-monomer attraction to the previous model and varying the temperature. The resulting effective pair
potential is found to depend strongly on temperature and polymer concentration. At low concentration the
effective interaction becomes increasingly attractive as the temperature decreases, eventually violating thermo-
dynamic stability criteria. However, as polymer concentration is increased at fixed temperature, the effective
interaction reverts to mostly repulsive behavior. These issues help to illustrate some fundamental difficulties
encountered when coarse-graining complex systems via effective pair potentials.

DOI: 10.1103/PhysRevE.67.041801 PACS number~s!: 61.25.Hq, 61.20.Gy, 05.20.Jj
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I. INTRODUCTION

While the computer simulation of single, isolated polym
chains, either on or off lattice, using a variety of conform
tion sampling algorithms, is nowadays relatively routine,
up to L.106 monomers or segments@1#, it is computation-
ally much more demanding to simulate polymer solutions
melts, involving large numbers of interacting polym
chains. Indeed, ifN is the number of such chains andL the
number of segments per polymer, then the total numbe
interacting particlesNL can become very large, particular
so, if L is sufficiently large for the scaling regime to b
reached@2#. Under these conditions it is tempting to seek
coarse-graining procedure to reduce the full segment-le
description to a model involving only the center of ma
~c.m.! or the central monomer of each chain, thus reduc
the initial NL-body problem to aN-body problem. This is
formally achieved by tracing out the individual monom
degrees of freedom, i.e., by averaging over polymer con
mations for fixed positions of the c.m.’s or central monom
of interacting polymer coils, taking into account the app
priate Boltzmann weights. This idea goes back to Flory a
Krigbaum@3#. They predicted that the effective repulsive i
teraction between the c.m.’s of linear self-avoiding wa
~SAW! polymers should diverge with molecular weight
full overlap, i.e., when the c.m.’s of the two coils coincide.
was first realized by Grosberget al. @4# that in fact the pair
potential between c.m.’s remains finite in the scaling lim
L→`, and of the order of a fewkBT, reflecting the purely
entropic origin of the effective interaction. The effective c.
pair potential between two isolated SAW polymer coils w
explicitly evaluated by Monte Carlo~MC! simulations of on-
and off-lattice models@5–7#, and by renormalization group
calculations@8#. These studies show that the effective p
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potential is purely repulsive, with an overlap~zero separa-
tion! value of about 2kBT and a range of the order of th
radius of gyrationRg . The zero concentration pair potenti
is reasonably well represented by a single Gaussian of w
Rg .

More recently the effective pair potential was determin
at finite polymer concentration by a combination o
monomer-level MC simulations of lattice SAW polymer
and an inversion technique based on integral equations
pair distribution functions in simple liquids@9#. The resulting
pair potentials depend now moderately on polymer conc
tration @7,10#, but they remain essentially repulsive and
rangeRg . They have been put to good use to reproduce
interfacial tension of semidilute polymer solutions near ha
walls or colloidal spheres@11#, and to determine the deple
tion interaction between colloidal particles induced by int
acting ~rather than ideal! polymer coils@12# and the result-
ing, depletion-induced phase diagram of colloid
dispersions@13#.

The present paper reports an extension of the above
version strategy to the case of dilute and semidilute soluti
of interacting linear polymers in solvents of variable quali
spanning the range between good solvent conditions, m
eled by the SAW, and poor solvent conditions, where
coils contract to avoid contact with the solvent. This gen
alization is achieved by adding a finite attractive interact
between nearest-neighbor monomers of the same or diffe
chains, while maintaining infinite repulsion between overla
ping monomers. The finite nearest-neighbor attraction in
duces an energy scale, and hence a temperature depen
of the effective pair potential. Good solvent conditions c
respond to the infinite temperature limit, leading back to
SAW model considered earlier, while increasingly poor s
vent conditions are mimicked by enhancing the attract
between monomers, or equivalently, decreasing the temp
ture.

The dependence of the properties of a single polymer c
like its radius of gyrationRg , on temperature, and, in par
©2003 The American Physical Society01-1
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ticular, around and below theu temperature where the coil t
globule transition takes place, has been studied by exten
MC simulations of very long chains (L up to 106) by Grass-
berger and co-workers@14#. Results for the temperature de
pendence of the effective pair potential for an off-latti
model of two polymer coils~i.e., in the infinite dilution limit!
were reported by Dautenhahn and Hall@6#. These authors
met with increasing MC sampling difficulties as the tempe
ture is decreased towards theu point. The present paper im
proves on their results by considering a lattice model, a
using an overlapping distribution method@15,16# to sample
rare conformations which become increasingly importan
the temperature decreases. The main objective of this p
is to consider the effective pair potential between the c.m
of polymer coils in poor solvent at finite polymer concentr
tion, i.e., to investigate both the temperature and concen
tion dependence of the c.m. pair potential, in particular,
the vicinity of theu point. The polymer model studied in thi
work is defined in Sec. II. The zero concentration limit
first considered in Sec. III, while finite polymer concentr
tions are examined next in Sec. IV. Some considerations
the use of effective interactions in relation to thermodynam
stability are presented in Sec. V and conclusions are draw
Sec. VI.

II. MODEL AND BASIC PHENOMENOLOGY

For all the calculations in the present work, a latti
model defined on the simple cubic lattice~with a coordina-
tion number of six! was used@17#. A polymer chain of length
L is represented as a connected sequence ofL lattice sites.
The monomers, defined as occupied sites, interact with e
other via excluded volume repulsion, preventing two of th
from occupying the same lattice position, and lattice near
neighbor attraction«,0 between nonbonded pairs of mon
mers. For convenience, the temperatureT will be expressed
in units of 2«/kB , or equivalently we will set«521 and
kB51. With this convention, the usualb appearing in the
Boltzmann factor is simply the inverse of the temperatu
i.e., b51/T. In the following, we shall call ‘‘contact’’ any
nearest-neighbor pair of nonbonded monomers. We use
tramolecular’’ if both monomers belong to the same cha
and ‘‘intermolecular’’ otherwise. When a system consisti
of N chains ofL segments is considered on a portion of cu
lattice of M sites, the monomer packing fraction is equal
the fraction of lattice sites occupied by polymer segmentc
5NL/M , while the concentration of polymer chains isr
5c/L5N/M .

This simple model has been extensively studied in or
to investigate the properties of isolated polymer chains
of polymer solutions. In the phenomenology of these s
tems, three different domains, sketched on Fig. 1, are usu
defined, corresponding to different behaviors of an isola
chain.

In the good solvent regime, corresponding in the pres
model to high temperatures, the properties of the system
essentially determined by the entropic effects originating
connectivity and excluded volume interactions. An isola
chain takes swollen coil configurations with a radius of g
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rationRg known to scale asLn, wheren.0.588 is the Flory
exponent in three dimensions@18#. This regime has been
extensively studied in the case of the SAW to which t
present model reduces in the infinite temperature limit@19#.

In the bad or poor solvent regime, corresponding here
low temperatures, entropic effects are overwhelmed by
attractive monomer-monomer interactions and a chain m
ecule collapses into a compact globule with a radius of
ration scaling likeL1/3.

Between these two extremes lies theu regime, where en-
ergetic and entropic effects compensate each other. In
regime, in the limit of infinite length, a chain has the scali
properties of an ideal chain, for instance,Rg}L1/2. The char-
acterization of this domain has been the focus of many s
ies using the present lattice model@20–23#, with, in particu-
lar, extensive work by Grassberger and co-work
@14,24,25#.

Of key importance is the so-calledu temperatureTu at
which the tricritical coil-to-globule transition takes place f
an isolated chain in theL→` limit. It corresponds to a rea
thermodynamic singularity and its best estimate is prese
@24#

Tu53.71760.003,

i.e.,

bu50.269060.0002.

Obviously, simulations can only deal with chains of fini
length, for which the tricritical singularity is rounded off b
significant finite size corrections.Tu is thus not directly ac-
cessible and it is common practice, in simulations as wel
in experiments, to obtain it by extrapolation of relate
length-dependent characteristic temperatures.

The most widely used temperature is Boyle’s temperat
TB(L) defined as the temperature at which the osmotic s
ond virial coefficient of chains of lengthL vanishes. From its
knowledge, one can compute theu temperature from the
limit

FIG. 1. Schematic temperature-inverse length diagram show
the three regimes of polymer phenomenology and the behavio
the temperaturesTu , TB , Tstab, andTc ~defined in the text! related
to the characterization of theu regime.
1-2
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lim
L→`

TB~L !5Tu . ~1!

This route has been followed, in particular, in Ref.@14#,
where it was found thatTB(L) is always greater thanTu and
decreases with increasingL.

An alternative possibility is to use the demixing critic
temperature of the polymer solution. This marks the lim
between a high-temperature regime where the chains in
lution form a homogeneous fluid, and a low-temperature
main where the chains start to coagulate and the fluid
mixes into polymer-rich and polymer-poor phases. In
lattice model used here, where the solvent is taken into
count implicitly through the introduction of constant attra
tive monomer-monomer interactions and variations of
temperature, it is simply the critical temperatureTc(L) of the
liquid-gas transition of the system. As forTB(L), one has

lim
L→`

Tc~L !5Tu , ~2!

and it has been found in Refs.@23,25# that Tc(L) is always
smaller thanTu and increases with increasingL.

We anticipate on the following sections and introdu
here a third characteristic temperature called the ‘‘stabili
temperature denoted byTstab(L). It is associated with a fun
damental breakdown in the statistical-mechanical treatm
of the coarse-grained effective pair interactionv2(r ) be-
tween the c.m.’s of two polymer chains at low temperatu
Singularities of a similar nature have been encountered
various models for soft matter systems. For instance, B
ter’s sticky sphere model@26# displays anomalous clusterin
towards a closed-packed crystalline phase as a resu
breakdown of thermodynamic stability@27#. In the case of
polymers, the Domb-Joyce model@28# shows self-trapping
behavior, i.e., a chain remains of finite extent in the infin
length limit, when a negative energy is attributed to se
crossings@29#.

The relation betweenTstab(L) and theu point is unclear.
For any lengthL, Tstab(L) will be shown to be smaller than
TB(L), the equality being only achieved when the pair int
action is zero. For the specific lengthL5100 studied in de-
tail in this paper, it is found to fall betweenTB(L) andTu .
Because it corresponds to a singularity in the statistic
mechanical treatment of the system, it is tempting to assu
as it was done in Ref.@30#, that

lim
L→`

Tstab~L !5Tu , ~3!

and Fig. 1 has been drawn under this assumption. Inte
ingly, this would imply that, in the infinite length limit, sinc
TB(L→`)5Tstab(L→`)5Tu , the effective interaction be
tween two isolated polymer chains at theu point vanishes
identically for all distances, a behavior which is trivial
found in the case of the Domb-Joyce model@28#, when a
positive constant energy penalty is counted for each poly
crossing~note that in this model, the temperature scale
reversed since the SAW is obtained at zero temperature
ideal chain behavior is found at infinite temperature!.
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III. ZERO DENSITY LIMIT

A. Simulation methodology

In the zero density limit, the effective interaction potent
v2(r ) between two polymer chains is equal to the differen
between the free energy of the two chains with their cen
of mass constrained to stay at a fixed distancer, and the free
energy of the same chains infinitely far apart. It can be
pressed as follows.

Consider two polymer chains labeledA and B. When
these chains have conformationsGA and GB , respectively,
with the vectorrAB joining their centers of mass, the energ
of the pair is

H~rAB ;GA ,GB!5H intra~GA!1H intra~GB!

1H inter~rAB ;GA ,GB!, ~4!

where the intramolecular and intermolecular parts~including
the hard-core interactions! have been separated. Introducin
the intermolecular Boltzmann weight

W~ urABu;GA ,GB!5exp@2b H inter~rAB ;GA ,GB!#, ~5!

the effective pair potential is given by@31#

b v2~r ![2 ln^W~ urABu5r ;GA ,GB!&, ~6!

where the brackets denote an average over the probab
distribution of two isolated chains, which is the square of t
probability distributionP of a single chain, i.e.,

^W~ urABu5r ;GA ,GB!&5 (
GA ,GB

P~GA!P~GB!

3W~ urABu5r ;GA ,GB!, ~7!

with

P~G!5exp@2b H intra~G!#Y (
G

exp@2b H intra~G!#.

~8!

This result provides us with a direct means to compute
effective pair potential between two chains by Monte Ca
simulations. We sample configurations of two independ
chains using the pivot algorithm@32# and standard Metropo
lis acceptance rules. The latter ensure that the chain con
mations are generated according to the probability distri
tion P. After every 1000 pivot moves for each chain, w
calculate the intermolecular Boltzmann weight~5! as a func-
tion of the c.m. distance, by moving the polymers towar
each other, while checking for overlap and counting interm
lecular contacts. Eventually,b v2(r ) is obtained by perform-
ing the unweighted average ofW(urABu5r ;GA ,GB) on the
sample considered,

b v2~r !52 ln
(
i 51

N(r )

W~ urABu5r ;GA
i ,GB

i !

N~r !
, ~9!
1-3
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whereN(r ) is the number of two chain configurations wi
c.m.’s at distancer sampled during the simulation.

Using this algorithm, we have been able to compute w
good statistical accuracy effective pair potentials for vario
chain lengths (L5100, 200, and 500), providedb<0.2.

Unfortunately, this simple, direct method turns out to
inadequate at lower temperatures, where the results for
effective potential at short distances are found to fluctu
strongly with the sample considered, with no significant
duction of the corresponding statistical uncertainties wh
the size of this sample is increased. The origin of this pr
lem, already seen in the analogous off-lattice calculation
Dautenhahn and Hall@6#, has been carefully analyzed b
Grassberger and Hegger in their calculation of the sec
virial coefficient of the same lattice model as the one stud
here @14#. At low temperature, the polymer chains start
collapse significantly and are thus rather compact. T
means that at short distances, most two-chain configurat
obtained with the present direct algorithm will overlap a
the corresponding intermolecular Boltzmann weights
then identically zero. But, in the rare cases where the
chains do not overlap, many contacts will usually be form
leading to very low negative intermolecular energies a
thus huge intermolecular Boltzmann weights contributing
the pair potential. The need to average such unevenly dis
uted numbers of very different amplitudes gives rise to
large observed fluctuations and renders the direct appro
useless.

Hence, more elaborate algorithms must be used for
temperatures. In order to choose these new tools, it is he
to recognize the strong similarity between the previo
scheme and Widom’s particle insertion method for the co
putation of the chemical potential@33#. Both methods indeed
involve the averaging of a Boltzmann weight over the eq
librium distribution of some unperturbed system, and in f
the observed breakdown of the direct calculation of the
fective pair potential at low temperature parallels that of W
dom’s method at high fluid densities. In the latter case,
efficient approach to solve the problem has been devise
Shing and Gubbins@34#, which belongs to the general clas
of overlapping distribution methods first introduced by Be
nett to compute free-energy differences@15,16#. We have
thus implemented such a method which is described in de
in the Appendix.

Using this histogram method, we have been able to ext
our calculation of the effective pair potentials between cha
of length L5100 to lower temperatures, i.e., up tob50.3.
However, the method breaks down when applied to lon
chains, for mainly two reasons. Firstly, the acceptance r
of the elementary Monte Carlo move becomes extrem
small, leading to serious ergodicity problems in the simu
tions. Secondly, except for small separations correspon
to nearly complete overlap of the chains, the two compu
histograms do not overlap at all, rendering the estimation
the required free-energy difference quite problematic. T
origin of this problem can easily be understood on a qual
tive level. In the original system, the chains attract each o
strongly and lower their intermolecular energy at low te
perature by elongating towards each other along the
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joining their c.m.’s: there is thus a sizable volume where
two chains overlap with the consequent formation of co
tacts in large numbers@35#. On the contrary, in the referenc
system, only unfavorable excluded volume interactions e
between the two partly collapsed chains which are thus c
pressed along the axis joining their c.m.’s to limit their ove
lap @6#: contacts are then formed in small numbers only
the surface separating the two segregated chains. This
nificant separation in the number of contacts does not oc
~or at least is less pronounced for the lengths studied her! at
complete overlap because the system has then to keep
spherical symmetry of the isolated chains, thus leaving
possibility for the adverse changes of the chain shapes
in the cylindrical symmetry.

Although it would be possible to use alternative metho
~see, e.g., Refs.@14,23#! to sample even longer chains at lo
temperature, we use mainlyL5100 chains in this paper
since we do not expect the qualitative features we focus
here to depend strongly on chain length@36#. Of course,
quantitative features will vary withL, and the detailed scal
ing behavior can be quite complex@24,25#.

B. Results

The effective pair interactionsbv2(r ) between two poly-
mers of lengthL5100 are plotted, for various solvent qual
ties, in Fig. 2. The product of the potential by 4pr 2 is shown
as well, because the integral of this quantity plays an imp
tant role for the thermodynamics of the system@30,37#, and
to emphasize the features of the potential at large distan
In this figure and in all the following figures representin
effective pair potentials, all distances have been scale
each temperature by the radius of gyration of the isola
chain at this temperature, which is plotted in Fig. 3 for co
pleteness.

One can distinguish two temperature domains. In Ref.@7#,
where the infinite temperature limit of the model was stu
ied, bv2(r ) was found to be purely repulsive with a rough
Gaussian shape centered onr 50. Here we find that it re-
mains so, provided the temperature is high enough, i.eb
&0.2. The main effect of lowering the temperature is a
duction of the overall amplitude of the potential and a slig
decrease in its range in terms of the normalized distance

At lower temperatures,b.0.2, bv2(r ) begins to exhibit
qualitative changes: while the potential retains a repuls
Gaussian-like component at short distance, a negative, at
tive tail appears at large distance. As the temperature
creases further, the amplitude of the repulsive core decrea
following the trend of the previous high-temperature doma
whereas the attractive tail becomes more and more im
tant, ultimately dominating the whole picture, as seen forb
50.3, wherebv2(r ) is everywhere negative and only
modest repulsion shows up forr /Rg,1.

A second, less prominent feature appears at low temp
ture (b*0.2) as well. Atr 50, the effective pair potentia
displays a small minimum, which becomes deeper when
temperature decreases. This means that full overlap is loc
stable and that one has to overcome a~modest! free-energy
barrier to separate two chains in this configuration. F
1-4
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FIG. 2. Zero density effective pair potentials at different inverse temperaturesb for polymers of lengthL5100 on the simple cubic
lattice. At each temperature, thex axis is scaled with the correspondingRg(b), which is shown in Fig. 3.
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chains of lengthL5100, it is difficult to know if this feature
is a generic property of the effective pair potential or jus
lattice artifact due to the shortness of the chains~the width of
the minimum is indeed of the order of the lattice spacin!.
However, despite our limited ability to investigate long
chains at low temperature, we have seen evidence of a s
lar minimum, but of larger width, for chains of lengthL
5500 atb50.225, suggesting that this is a genuine physi
effect.

One can compute various interesting scalar quanti
from the knowledge of the effective pair potential. Accordi
to Sec. II, the second osmotic virial coefficient, given by

B2~b!5
1

2E0

`

@12exp$2b v2~r !%#4pr 2dr, ~10!

is of particular importance. In addition, we introduce t
‘‘stability’’ integral,

FIG. 3. Radii of gyration of isolated polymer chains of differe
lengthsL on the simple cubic lattice as functions of the inver
temperatureb. The data are scaled with the infinite-temperatu
values, Rg(L5100)56.44, Rg(L5200)59.76, andRg(L5500)
516.84.
04180
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I 2~b!5
1

2E0

`

bv2~r !4pr 2dr, ~11!

which results from the linearization of the exponential in E
~10!. For systems interacting throughdensity-independen
potentials, the sign ofI 2 gives a necessary condition for th
existence of the thermodynamic limit and the stability of t
system against coalescence@38,39#, as will be further devel-
oped in Sec. V. Accordingly, as discussed by anticipation
Sec. II, a stability temperatureTstab(L) can be defined, a
which I 2(b) vanishes for chains of lengthL, and below
which the necessary condition for stability against coal
cence is violated. The orderingTstab(L)<TB(L) discussed
above is then an immediate consequence of the fact thx
>12exp(2x).

Both quantities, normalized with the cube of the radius
gyration to obtain dimensionless quantities, are plotted
Fig. 4. As was implicitly assumed above, they are decreas

FIG. 4. Reduced second osmotic virial coefficient (B2 /Rg
3) and

reduced stability integral at zero density (I 2 /Rg
3) as functions of the

inverse temperatureb for polymers of lengthL5100 on the simple
cubic lattice.
1-5
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KRAKOVIACK, HANSEN, AND LOUIS PHYSICAL REVIEW E 67, 041801 ~2003!
functions of b and one finds, for the chains of lengthL
5100 studied here, thatTB*Tstab.3.8.

Finally, we address the question of the dependence of
zero density effective pair potential on the chain length.
Ref. @7#, the infinite temperature case has been studied
detail over a wide range of polymer lengths (L
5100–8000). Such an extensive study was not attemp
here and we only considered two rather short lengthsL
5200 and 500) in addition to the previous data forL
5100. All these data, plotted in Fig. 5 with the one pre
ously described, have been computed with the direct met
leading to strong statistical uncertainties at the lowest te
perature corresponding tob50.3.

To interpret these potentials one should keep in mind
Rg scales differently with temperature for the differe
lengths, as illustrated in Fig. 3. Also,TB andTc are different
for each length. Following Refs.@14,25#, in which these tem-
peratures have been computed with great care, forL5100
Tc.3.10, TB.3.86; for L5200, Tc.3.33, TB.3.81; for
L5500 Tc.3.41, TB.3.77.

A few qualitative observations can be made, at least
b<0.2, where the statistics are good enough. With the n
malization chosen for thex axis, no intersection betwee
potentials corresponding to different values ofL at the same
temperature is found. In Ref.@7#, this feature was alread
found forb50, combined with the fact that a largerL leads
to a less repulsive potential. We recover this result here
the same qualitative behavior is found forb50.1, but the
potentials for different values ofL are closer. This behavio
changes forb50.2, where we now see that the largerL, the
more repulsive the potential. Globally, we thus find that
the high-temperature domain, the decrease in the ampli
of the repulsive effective potential is slower for large valu
of L.

It is difficult to draw conclusions from the data atb
50.3, but it looks like the largerL, the deeper the attractiv
potential. Indeed, for large c.m. distances, at which the

FIG. 5. Zero density effective pair potentials at different inve
temperaturesb ~from top to bottom, for a given length,b50, 0.1,
0.2, and 0.3) for polymers of various lengthsL on the simple cubic
lattice. At each temperature, thex axis is scaled with the corre
spondingRg(b).
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tistical inaccuracies in the simulation results are expecte
be modest, the potential seems to be more negative whenL is
large; the same holds at complete overlap: trying to estim
bv2(0) for L5500 with the overlapping distribution
method, we find bv2(0).21.1, to be compared to
bv2(0).20.15 forL5100.

All these results, if applied to Eq.~10!, are consistent with
the findings of Grassberger and Hegger for the variation
the reduced second osmotic virial coefficientB2 /Rg

3 with
temperature for various lengths~see Fig. 16 in Ref.@14#!.
Indeed, they found that the largerL, the flatter this quantity is
in the high-temperature regime, the more abrupt the do
ward bend of the curve when approachingTB(L) and the
faster the divergence towards2` in the poor solvent re-
gime.

IV. FINITE DENSITIES

A. Methodology

Having derived the effective potential between two is
lated polymers, we now turn to polymers at finite dens
For this, we follow the route proposed in previous work@7#,
in which an effective pair potential was constructed to e
actly reproduce the two-body c.m. correlations of the f
underlying many-body system. In fact, it can be proven fo
wide variety of systems that for any given pair distributio
function g(r ) at given inverse temperatureb and densityr,
there exists a corresponding unique two-body pair poten
v(r ) which reproducesg(r ) irrespective of the underlying
many-body interactions in the system@40#. Of course,g(r )
depends on density and temperature and contains cont
tions not only from the bare pair potentialv2(r ), but also
from the three- and more-body terms. As a consequence
effective pair interaction will also be state dependent an
new effective potential, hereafter denoted byv(r ;r,b), must
be calculated for each density and temperature. Howe
this inversion approach says nothing about a possible volu
term v1(r,b), in the coarse-grained total potential energ
which contributes to the equation of state, but notdirectly to
the pair correlations@41,42#. Of course, the volume term
may still contributeindirectly, for example, when they in-
duce phase transitions.

The inversion procedure, usingg(r ) to extractv(r ), is
well known and has been studied extensively in the field
simple fluids@43,44#. We invertg(r ) using the hypernetted
chain ~HNC! closure,

g~r !5exp@2bv~r !1g~r !2c~r !21#, ~12!

of the Ornstein-Zernike equation@9#. While the simple HNC
inversion procedure would be inadequate for dense fluid
hard-core particles, where more sophisticated closures o
erative procedures are required@43,44#, we are able to dem-
onstrate the consistency of the HNC inversion in the pres
case.

To compute the necessary structural information, we h
performed canonical Monte Carlo simulations of polym
solutions. We have studied chains of lengthL5100 in a cu-
bic box of sizeM51003 with periodic boundary conditions
1-6
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FIG. 6. Density and temperature dependence of the radius of gyration of polymer of lengthL5100 on the simple cubic lattice.~a! Radii
of gyration as functions of the monomer densityc for various inverse temperaturesb. ~b! Radii of gyration as functions of the invers
temperatureb for various monomer densitiesc.
er
-
l

o
tio
s

,
m
in
re

e
tr

e

e
d

ro
.
s

-
th
e
i

io

in
e

en-
of

ant
or-
in

em-

e
me,

to

po-
ive

ure
is-
e-

ure.
-
rom
tial

ight
ive

the
il at
in

the
est

ten-
ve
sity,
varying the number of polymers fromN5400 to N53200
(c50.04–0.32). Four temperatures have been consid
corresponding tob50, 0.1, 0.2, and 0.3. Note that the low
est temperature,T53.33, is slightly larger than the critica
temperature of the system,Tc(L5100).3.1 according to
Ref. @25#, thereby avoiding concerns with the possible tw
phase behavior of the system. To sample the configura
space of the system we have used standard technique
polymer simulations: pivot moves@32#, translation moves
and, for high densities where the previous moves beco
inefficient, configurational bias Monte Carlo moves,
which an extremity or part of the interior of a chain a
regrown@16#.

In the course of the simulations, the c.m. of each polym
was tracked in order to construct the c.m. radial pair dis
bution functiong(r ;b,r). The latter is only known up to a
cutoff radiusr c , which corresponds to half the size of th
simulation box. For the inversion, we needg(r ) for all r, so
we employ the following iterative scheme to extendg(r ). As
an initial step, we setg(r )51 for r .r c and calculate the
correspondingv(r ) by inversion. We then setv(r )50 for
r .r c and determine the correspondingg(r ) for 0,r ,` by
a regular HNC calculation, using a simple iterative proc
dure. Theg(r ) for r ,r c is then replaced by the measure
g(r ) and the newv(r ) is calculated. This is again set to ze
for r .r c , and the process is repeated until convergence
fact, because of the finite box size, the inversion proces
underdetermined, and our ansatz thatv(r )50 for r .r c is
needed to find a unique solution@10#. This is not unreason
able since we do not expect the interactions between
polymer coils to be significant beyond distances a few tim
the radius of gyration. However, to make sure that this
actually the case, we found that relatively large simulat
boxes were needed, with a lattice size of up to 10Rg–15Rg .
This is particularly important at high density, where the
verted potential becomes long ranged and more sensitiv
small changes in the radial distribution functiong(r ). In all
our inversions, we checked explicitly thatv(r ) becomes ef-
fectively zero beforer 5r c , confirming our initial ansatz.
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B. Results

Before presenting the results for the effective pair pot
tials, we first discuss briefly the behavior of the radius
gyration with density and temperature, which is an import
measure of the physical properties of the polymer. The c
responding simulation data are plotted in Fig. 6. As found
similar previous work@45#, for a given temperature,Rg de-
creases when the density of polymer increases if this t
perature falls into the good solvent regime, whereasRg in-
creases if this temperature is located below theu regime
@Fig. 6~a!#. WhenRg is plotted as a function of temperatur
for various densities, this results in the existence of a regi
located in theu region, whereRg is nearly independent ofc,
as can be seen in Fig 6~b!, where all the curves are seen
converge aroundb.0.25.

The effective temperature- and density-dependent pair
tentials are plotted in Figs. 7 and 8 for two representat
temperatures, corresponding tob50.1 andb50.3, respec-
tively. From these data, it is clear that the two temperat
domains identified in the zero density study of Sec. III d
play obvious distinctive features in terms of the density d
pendence of the effective pair potentials at fixed temperat

When b50.1 ~Fig. 7!, i.e., in the high-temperature re
gime, a moderate density dependence is found. Starting f
the purely repulsive, nearly Gaussian shape of the poten
at zero density and increasing the density, one finds a sl
increase in the amplitude and in the range of the repuls
potential for small separations of the polymer c.m.’s and
progressive appearance of a weak negative attractive ta
large distance. This behavior is similar to the one found
the infinite temperature limit studied in Ref.@7#, with the
only minor difference that we do not see a decrease of
amplitude of the potential at short distances for the high
concentrations.

The situation is completely different whenb50.3 ~Fig.
8!. Here, the density dependence of the effective pair po
tial is very important and leads to significant qualitati
changes in the shape of the potential: whereas at low den
1-7
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FIG. 7. Effective pair potentials for polymers of lengthL5100 on the simple cubic lattice at the inverse temperatureb50.1 and at
various monomer densitiesc. Thex axis is scaled with the radius of gyration corresponding toc50 andb50.1.
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v(r ) is negative and essentially attractive, repulsion betw
center of mass progressively builds up when the density
creases, so that an almost purely repulsive, Gaussian sh
v(r ) is eventually observed at the largest density. For
good solvent case a clear link has been found between
density dependence and the strength of the three- and hig
body interactions@46,47#. Presuming that the same link ca
be made here, this would imply that the many-body inter
tions are relatively more important at lower temperatures

The virial coefficient has no clear interpretation for pote
tials obtained at finite global densities, whereas the stab
integral does still define a lower limit to the existence o
thermodynamic limit of the coarse-grained system. As can
directly seen from Fig. 8~b!, at all densities, except the larg
est (c50.32), the stability integral of the computed pote
tials is negative, leading to serious consistency issues t
discussed in the following section.

V. CONSIDERATIONS OF THERMODYNAMIC
STABILITY

The potentials computed in this work raise a number
interesting conceptual issues with regard to the use of ef
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tive potentials in coarse-grained descriptions of mate
properties. The first question concernsthermodynamic stabil-
ity @38#: do the calculated pair potentials generate a va
thermodynamic limit? Secondly, there is a question ofrepre-
sentability @47#: for a given state point, how well can th
properties of the underlying polymer system be coheren
represented by a single coarse-grained effective pair po
tial?

A. Thermodynamic stability of effective potentials

We briefly repeat the criteria for the existence of a th
modynamic limit described by Ruelle@38# and valid for state
independent interactions. Consider a system ofN particles in
a volumeV. If the total interaction energyVN , which can be
built from pair and higher order terms, satisfies, for allN
.0 and for all configurations$r i% in the configuration space
RN, the inequality

VN~r1 , . . . ,rN!>2BN, ~13!

with B>0, then, according to definition 3.2.1. in Ref.@38#,
FIG. 8. Effective pair potentials for polymers of lengthL5100 on the simple cubic lattice at the inverse temperatureb50.3 and at
various monomer densitiesc. Thex axis is scaled with the radius of gyration corresponding toc50 andb50.3.
1-8
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INFLUENCE OF SOLVENT QUALITY ON EFFECTIVE . . . PHYSICAL REVIEW E 67, 041801 ~2003!
the system isstable: the grand partition function converge
and there is a well-defined thermodynamic limit. Potenti
that do not satisfy this criterion are termedcatastrophicby
Ruelle. Specializing to pair potentials, i.e.,

VN
(2)~r1 , . . . ,rN!5 (

1< i , j <N
v2~ ur i2r j u!, ~14!

condition~13! leads to the following necessary~but not suf-
ficient! condition for the existence of a thermodynamic lim

v̂~0!5E
0

`

v2~r !4pr 2dr.0, ~15!

which, following Eq.~11!, can be rewrittenI 2.0, hence the
name stability integral forI 2. If Eq. ~15! is not satisfied, then
condition~13! can be violated for configurations of a hom
geneous fluid. As N→`, the free-energy grows
superextensively—the system has no thermodynamic lim
and particles coalesce to form a dense cluster. Condition~15!
is necessary, but not sufficient, for the existence of a ther
dynamic limit, since one can also construct potentials
which v̂(0).0, but where the system in a microscopica
inhomogeneous~typically, crystalline! state is unstable to
coalescence. See Refs.@38# and @30# for explicit examples.

Effective potentials with hard cores, such as those use
describe simple atomic and molecular materials, can be
ily shown to satisfy the criterion~13!. In contrast, the poten
tials describing the effective interactions between the c.m
of polymers studied in the present work do not have a h
core, leading to the possibility that two or more ‘‘effective
particles occupy the same position in space. The existenc
a thermodynamic limit, where the free energy per particle
bounded, is therefore much more subtle.

Although the potentials calculated in this work are st
dependent and technically only relevant at the density
which they have been obtained, it is, nevertheless, interes
to consider what would happen should one of them be u
independently of the density, to describe a system ofN.2
particles in a volumeV. To this end, we first consider th
zero density potentials shown in Fig. 2.

When the underlying SAW polymer system has
nearest-neighbor monomer attractions, the effective pair
tentials were shown to be positive@7,30#, so that the criterion
~13! is obeyed. However, as Fig. 2 demonstrates, the in
duction of nearest-neighbor attractions leads to effective
tentials which are no longer positive definite. As the te
perature is lowered, the potential grows more and m
attractive, until finally it violates the Ruelle criterion an
becomes catastrophic. This can be diagnosed in Fig. 4, w
I 2 becomes negative at low temperature and the neces
condition ~15! is, thus, violated. In principle, the stabilit
limit of the system should be traced by looking for a sta
point at which the potential leads to coalescence into mic
scopically inhomogeneous states, a rather difficult task
general. Here we will use a simpler, approximate criteri
namely, Eq.~15!, which is a necessary, but not sufficie
condition for stability. We will make the heuristic assumptio
that the true stability limit is not far removed from the sim
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pler one we employ@48#. For a given potential then, Eq.~15!
allows us to define the stability temperatureTstab below
which the effective pair potential becomes catastrophic. T
explains our nomenclature in Secs. II and III.

The potentials derived at zero density violate Eq.~15!
below a temperatureTstab'3.8; the potentials are expecte
to become unstable to inhomogeneous coalescence at
temperature above that. If one were to use potentials der
for T<Tstab at a finite density, the system would be cat
strophic.

This naturally leads to the next question: what about
potentials we derived at finite density ? There, as shown
Fig. 8, the pair potential can also violate Eq.~15!, even
though the underlying polymer system is stable, both to c
lescence and phase separation, sinceT.Tc for our L5100
SAW lattice chains. For large enough densitiesc, the poten-
tials again satisfy Eq.~15!.

Serious difficulties are thus emerging with the pres
coarse-graining procedure: in certain portions of t
temperature-density plane, we replace a complex, but
fectly well behaved, polymer system by a simple soft collo
fluid with pathological thermodynamics. This also raises
certain number of formal concerns. The first one is about
unicity of the mapping betweeng(r ) and v(r ) invoked in
Sec. IV and demonstrated in Ref.@40#. The theorems rely on
well-defined statistical ensembles and their derivations
no longer valid when a catastrophic potential is the outco
of their application. Similarly, the lack of a well-defined e
semble also leads to questions about the validity of the liq
state theory, including the Ornstein-Zernike equation, etc

However, in spite of these formal difficulties, one cou
take a purely pragmatic attitude: Since it is numerically p
sible to extract effective pair potentials using the propos
procedure, why not just ignore all the previous concerns
see if these potentials can be of any practical use? To in
tigate this point, MC simulations of a soft colloid syste

FIG. 9. Pair distribution functions of two collapsed soft collo
systems, withN5400 andN53200 particles, respectively. In bot
cases, the space integral off (r ) has been normalized to one t
allow a more significant comparison. The interaction potential is
effective pair potential obtained for a polymer system atb50.3 and
c50.04.
1-9
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KRAKOVIACK, HANSEN, AND LOUIS PHYSICAL REVIEW E 67, 041801 ~2003!
interacting through the catastrophic effective pair poten
obtained for polymers atb50.3 and c50.04 were per-
formed, revealing a very interesting behavior.

We indeed find that the behavior of the soft colloid flu
depends strongly on the configuration from which the sim
lation is initiated. When an initial configuration is setup wi
all soft particles gathered in a single dense cluster, the sys
coalesces: the particles stay together indefinitely~after a few
million MC steps per particle, not a single one has been s
to escape the cluster!, and the potential energy per particlee
appears unbounded, increasing in absolute value with
creasingN; more precisely, we finde.224.6 for N5400
and e.2202 for N53200, which would givee(N).
20.062N. This is exactly the type of behavior expected fro
a system interacting through a catastrophic potential.
structure of the clusters also shows distinctive features
can be seen in Fig. 9, where pair distribution functionsf (r )
are plotted for the previous cluster sizes. ForN53200, f (r )
displays three peaks, located atr /Rg50, r /Rg.1, and
r /Rg.1.5. Quite evidently, the first two peaks originate
the formation of groups of superimposed particles separ
by the distance corresponding to the interaction poten
minimum. This is indeed a very efficient way for the syste
to lower its energy, since the energy cost for overlapp
particles is modest compared to the stabilization of pairs
particles at distancer .Rg . As for the third peak, it is very
likely that it has to be associated with the position of t
second nearest neighbors. In comparison, forN5400, f (r )
is rather featureless and long ranged. This change in sha
f (r ) is again easily understood from the clustering mec
nism. For smallN, smaller groups of superimposed particl
can be formed, creating less deep energy wells at dista
r .Rg ; the resulting clusters are thus more diffuse and l
structured than for largeN.

But, if the initial conditions correspond to a homogeneo
distribution of particles in the simulation box, the fluid
found to remain homogeneous over the entire time of
simulations~up to 453106 MC steps per particle for 400

FIG. 10. Comparison of the pair distribution functions obtain
from simulations of a polymer system~symbols! and of the corre-
sponding soft colloid fluid in its homogeneous phase~solid line!.
Here,b50.3, N5400, L5100, M51003, and hence,c50.04.
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particles!, suggesting that the homogeneous fluid is me
stable with respect to catastrophic coalescence. In this c
the potential energy per particlee is, as expected, indepen
dent of the size of the system, i.e.,e.20.176 for systems
containing 400 or 3200 particles.

Of course, the original polymer system, which is perfec
stable, does not show such a dependence of its behavio
the initial conditions. This can be easily checked by prep
ing an initial configuration consisting of a dense cluster
polymer chains: the cluster ‘‘evaporates’’ very rapidly, a
the density becomes uniform again within a few thousa
MC steps per chain only.

In Fig. 10, we compare theg(r ) of the metastable fluid
phase of the catastrophic soft colloid system to theg(r ) of
the c.m.’s of the underlying polymer system atc50.04 and
b50.3. The agreement is excellent. This suggests that
HNC closure used in the inversion procedure, a clos
which has been shown to be very accurate for bounded st
potentials@30,37#, still works, in spite of the fact that the
potential it produces is catastrophic@49#. The situation is
akin to that of the Percus-Yevick solution for the structure
Baxter’s sticky sphere model@26#, which is useful for de-
scribing hard colloidal systems with very short-ranged attr
tive interactions in spite of the fact that the underlying mod
system is actually catastrophic@27#. In both cases, the prob
lem is most likely circumvented by the approximate char
ter of the chosen closure.

B. Representability problems for effective potentials

The considerations of the preceding section, where
coarse-graining procedure led to catastrophic potentials,
examples of the more general problems oftransferabilityand
representabilityof effective potentials used to describe com
plex systems, issues discussed in more detail in a recen
view @47#.

Transferability problems occur when an effective pote
tial derived at one state point is not applicable at a differ
state point. In essence all the derived effective potential
this paper suffer from transferability problems, since th
vary with density and with temperature. However, for hi
temperatures, the density dependence is not that strong
that the transferability problems are not as important as t
appear to be at lower temperatures. For example, the e
tive potentials in Fig. 8 vary much more rapidly with densi
suggesting that one must be very careful in using a poten
derived at one state point as an approximate one for ano
state point.

Representability problems occur when effective potent
derived to reproduce one physical property, do not ea
describe another physical property@47#. For example, one
can calculate the~unique! pair potentialvg(r ) that repro-
duces the homogeneous structure@described byg(r )] of a
system interacting via a Hamiltonian with pair and tripl
interaction terms~similarly to what was done in this paper!.
If the usual equations for the internal energy or the vir
pressure, valid for normal pair potentials, are applied
vg(r ), then the latter thermodynamic quantities are not c
rectly reproduced. This was pointed out many years ago
1-10
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INFLUENCE OF SOLVENT QUALITY ON EFFECTIVE . . . PHYSICAL REVIEW E 67, 041801 ~2003!
the context of simple fluids@50#. The same representabilit
problems were already found for the athermal polymer c
@47#. They are expected to be more pronounced when
density dependence is as prominent as in Fig. 8. Moreo
as pointed out in the preceding section, even more vex
representability problems occur, because the derived e
tive potentials can lead to systems without a well-defin
thermodynamic limit.

The problems of transferability and representability a
more important for inhomogeneous systems. For exampl
any interface between two phases, it is not clear which
tential should be used. Similarly, for the temperature reg
that leads to the catastrophic potentials of the preceding
tion, the apparent metastability of the effective soft collo
system allows for the inversions to work for a homogene
system, but this breaks down if the simulations are sta
with certain inhomogeneous initial conditions. Using som
measure of the local density may be a better path to foll
Taking again the example of Fig. 8, if one were to use a lo
density dependence, the effective system could be st
against collapse, as the potentials would become more re
sive for higher local densities. This would then more clos
resemble the underlying polymer system. However, presc
tions for taking local density dependence into account wh
are both accurate and tractable are not yet well develop

A final issue not yet resolved is the possible role of v
ume terms—contributions to the free energy which are in
pendent of the particular c.m. configuration. Their effects
phase behavior can be subtle~see, e.g.,@41,42#!, and they
may appear in certain coarse-graining schemes@51#. For the
case of polymers in a good solvent, they were shown to
negligible @7,42#, but that may no longer be the case f
poorer solvents.

VI. CONCLUSION

We have extended previous work on a coarse-grained
scription of polymer solutions in good solvent to increa
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ingly poor solvent conditions by adding nearest-neighbor
tractions to the initial lattice SAW model, and gradual
lowering the temperature. As in the earlier work@7,10,46#, an
effective pair potentialv(r ) between the center of mass o
the linear polymer coils was extracted from the Monte Ca
generated c.m.-c.m. pair distribution functiong(r ), using the
HNC closure, which is known to be very accurate in t
absence of any hard-core repulsion. In the infinite diluti
limit, the effective pair potentialv2(r ) is close to a
Gaussian-shaped repulsion, of amplitudebv2(0)'2, at high
temperatures~corresponding to the SAW limit!, but this am-
plitude decreases as the inverse temperatureb increases; an
attractive tail develops and at the lowest temperature inv
tigated in our MC simulations, the effective pair potential
entirely attractive, signaling a tendency of the system to c
lesce.

At these low temperatures, severe ergodicity proble
arise in the MC simulations, and, in the zero density limit,
overlapping histogram method must be used to extract st
tically significant results. The problem worsens with increa
ing polymer lengthL, so that our simulations were mostl
restricted toL5100.

Increasing the polymer concentration at fixed temperat
leads to a ‘‘restabilization’’ of the solution in the sense th
the effective pair potential exhibits an increasingly repuls
component as the system is taken from the ultradilute to
semidilute regime. Even at the lowest temperature inve
gated (b50.3), the effective pair potential reverts to an a
most exclusively repulsive Gaussian-like shape atc50.32
~which, for these polymers, is close to the melt regime!.

The occurrence of strongly attractive and significan
state-dependent effective pair potentials between poly
c.m.’s raises the question of the thermodynamic stability
systems of particles interacting via such ‘‘catastrophic’’ p
tentials, and of the appropriateness of the coarse-grain
procedure to describe solutions of interacting polyme
which are intrinsically stable, close to theu temperature. The
h
s,
FIG. 11. Distribution functions for the numbernc of intermolecular contacts between two simple cubic lattice chains of lengtL
5100 atb50.3 and with c.m.’s constrained to stay at distancer 54.2. porig(r ,nc) andp ref(r ,nc) refer to the original and reference system
respectively.~a! Log plot of porig(r ,nc) andp ref(r ,nc) as functions ofnc . ~b! Determination of the free-energy differencev2(r )2v2

ref(r )
using Eq.~A1!. As expected from the theory, no explicit dependence of the combination ln@porig(r ,nc)/p ref(r ,nc)#1b«nc on nc is found.
1-11
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KRAKOVIACK, HANSEN, AND LOUIS PHYSICAL REVIEW E 67, 041801 ~2003!
observation that the effective coarse-grained pair poten
v(r ) is capable of reproducing theg(r ) ~derived from mono-
mer scale simulations! despite the catastrophic nature of t
pair potential, points to the possible existence of metasta
homogeneous states generated by these potentials. T
metastable states appear to exhibit proper thermodyna
extensivity properties, and may be stabilized against ultim
coalescence by sufficiently high kinetic barriers. If this
indeed the case, the catastrophic effective pair potentials
still provide a useful coarse-graining tool to describe hom
geneous states. Strongly inhomogeneous states, generat
coalescence, lead to widely different local densities, a
hence would require the use of effective pair potentials
pending on the local density. The fact that the effective p
potential tends to become more repulsive at higher den
might provide the stabilizing mechanism for the homog
neous state.

We plan to extend the present work to examine polym
c.m. density profiles near interfaces, and to extract the
motic equation of state of polymer solutions as a function
concentration and temperature.
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APPENDIX: OVERLAPPING HISTOGRAM METHOD FOR
THE COMPUTATION OF THE EFFECTIVE

POTENTIAL BETWEEN TWO CHAINS

We first introduce a reference system consisting of t
polymer chains similar to the original ones, except that

FIG. 12. Comparison of the zero density effective pair potent
obtained with the overlapping histogram method~symbols! and
with the direct approach~solid lines! at various inverse tempera
turesb for polymers of lengthL5100 on the simple cubic lattice
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intermolecular interaction does not include an attract
nearest-neighbor contribution. The corresponding effec
pair potentialsv2

ref(r ) can be efficiently computed with th
direct method, since the intermolecular Boltzmann weig
can only be either zero or one in this case.

The overlapping distribution method is then used to co
pute v2(r )2v2

ref(r ), the free-energy difference between th
two original chains, with their c.m.’s constrained to stay a
given distancer, and the two reference chains under t
same geometrical constraint. To do so, we need to know
these systems the distribution functionsporig(r ,nc) and
p ref(r ,nc), respectively, of the numbernc of intermolecular
contacts@52#, which, according to the theory of the overla
ping distribution method, obey the relation

bv2~r !2bv2
ref~r !5 ln

porig~r ,nc!

p ref~r ,nc!
1b«nc , ~A1!

where«521 denotes the nearest-neighbor pair attractio
These histograms have been computed by sampling

canonical Monte Carlo simulations, for both the original a
the reference systems, the ensemble of two-chain config
tions with c.m.’s at distancer. The elementary move we us
is the following. One chain is chosen at random and a pi
move is attempted on it. If no self-overlap, leading to imm
diate rejection, occurs for this chain, a random position w
c.m.’s at distancer is chosen for the modified chain aroun
the other coil. If in this position the two-chains overlap, t
move is rejected, else it is accepted or rejected accordin
the standard Metropolis rules depending on the chang
total energy.

Examples of the accumulated histograms, together w
their combination through formula~A1!, are shown in Fig.
11. Clearly, the explicit dependence of the left-hand side
Eq. ~A1! on nc is found to disappear as prescribed by t
theory, giving us a good indication of the convergence of
method.

The corresponding zero density pair potentials for po
mer chains of lengthL5100 are shown in Fig. 12, wher
they are compared with the results obtained with the dir
simulation method.b50.2 is the largest value at which th
direct method gives smooth and reproducible results and
has been used as a test case for the overlapping histo
approach: as can be seen on the figure, the curves obta
with both simulation methods are indistinguishable. F
larger b ’s, the effective pair potentials computed with th
direct method display irregularities at small distances, es
cially apparent forb50.3, and originating in the samplin
difficulties mentioned in Sec. III. This is clearly not the ca
of those obtained with the histogram approach which
perfectly smooth and meet the preceding curves for la
enough distances at which sampling problems disappear

s
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