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Influence of solvent quality on effective pair potentials between polymers in solution
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Solutions of interacting linear polymers are mapped onto a system of “soft” spherical particles interacting
via an effective pair potential. This coarse-graining reduces the individual monomer-level description to a
problem involving only the center of maésm) of the polymer coils. The effective pair potentials are derived
by inverting the c.m. pair distribution function, generated in Monte Carlo simulations, using the hypernetted
chain closure. The method, previously devised for the self-avoiding walk model of polymers in good solvent,
is extended to the case of polymers in solvents of variable quality by adding a finite nearest-neighbor
monomer-monomer attraction to the previous model and varying the temperature. The resulting effective pair
potential is found to depend strongly on temperature and polymer concentration. At low concentration the
effective interaction becomes increasingly attractive as the temperature decreases, eventually violating thermo-
dynamic stability criteria. However, as polymer concentration is increased at fixed temperature, the effective
interaction reverts to mostly repulsive behavior. These issues help to illustrate some fundamental difficulties
encountered when coarse-graining complex systems via effective pair potentials.
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I. INTRODUCTION potential is purely repulsive, with an overldpero separa-
tion) value of about RgT and a range of the order of the
While the computer simulation of single, isolated polymerradius of gyratiorRy. The zero concentration pair potential
chains, either on or off lattice, using a variety of conforma-is reasonably well represented by a single Gaussian of width
tion sampling algorithms, is nowadays relatively routine, fong,
up to L=10° monomers or segmenf], it is computation- More recently the effective pair potential was determined
ally much more demanding to simulate polymer solutions orat finite polymer concentration by a combination of
melts, involving large numbers of interacting polymer monomer-level MC simulations of lattice SAW polymers,
chains. Indeed, iN is the number of such chains ahdhe  and an inversion technique based on integral equations for
number of segments per polymer, then the total number obair distribution functions in simple liquid®]. The resulting
interacting particleNL can become very large, particularly pair potentials depend now moderately on polymer concen-
so, if L is sufficiently large for the scaling regime to be tration [7,10], but they remain essentially repulsive and of
reached 2]. Under these conditions it is tempting to seek arangeRy. They have been put to good use to reproduce the
coarse-graining procedure to reduce the full segment-levehterfacial tension of semidilute polymer solutions near hard
description to a model involving only the center of masswalls or colloidal spherefll], and to determine the deple-
(c.m) or the central monomer of each chain, thus reducingion interaction between colloidal particles induced by inter-
the initial NL-body problem to a\-body problem. This is acting (rather than idealpolymer coils[12] and the result-
formally achieved by tracing out the individual monomering, depletion-induced phase diagram of colloidal
degrees of freedom, i.e., by averaging over polymer conforeispersiong§13].
mations for fixed positions of the c.m.’s or central monomers The present paper reports an extension of the above in-
of interacting polymer coils, taking into account the appro-version strategy to the case of dilute and semidilute solutions
priate Boltzmann weights. This idea goes back to Flory anf interacting linear polymers in solvents of variable quality,
Krigbaum([3]. They predicted that the effective repulsive in- spanning the range between good solvent conditions, mod-
teraction between the c.m.'s of linear self-avoiding walkeled by the SAW, and poor solvent conditions, where the
(SAW) polymers should diverge with molecular weight at coils contract to avoid contact with the solvent. This gener-
full overlap, i.e., when the c.m.’s of the two coils coincide. It alization is achieved by adding a finite attractive interaction
was first realized by Grosbegg al. [4] that in fact the pair  between nearest-neighbor monomers of the same or different
potential between c.m.’s remains finite in the scaling limitchains, while maintaining infinite repulsion between overlap-
L—o, and of the order of a fewgT, reflecting the purely ping monomers. The finite nearest-neighbor attraction intro-
entropic origin of the effective interaction. The effective c.m. duces an energy scale, and hence a temperature dependence
pair potential between two isolated SAW polymer coils wasof the effective pair potential. Good solvent conditions cor-
explicitly evaluated by Monte CarlMC) simulations of on-  respond to the infinite temperature limit, leading back to the
and off-lattice model$5-7], and by renormalization group SAW model considered earlier, while increasingly poor sol-
calculations[8]. These studies show that the effective pairvent conditions are mimicked by enhancing the attraction
between monomers, or equivalently, decreasing the tempera-
ture.
*Present address: Laboratoire de ChimieplE Normale Sufre The dependence of the properties of a single polymer caoill,
ieure de Lyon, 46, Alle d'ltalie, 69364 Lyon Cedex 07, France.  like its radius of gyratiorR,, on temperature, and, in par-
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ticular, around and below th&temperature where the coil to
globule transition takes place, has been studied by extensive
T ’

good solvent

MC simulations of very long chaind_(up to 1¢) by Grass-
berger and co-workersl4]. Results for the temperature de-
pendence of the effective pair potential for an off-lattice
model of two polymer coilgi.e., in the infinite dilution limij
were reported by Dautenhahn and Hg8l. These authors
met with increasing MC sampling difficulties as the tempera- .
ture is decreased towards thepoint. The present paper im- T 9 regime
proves on their results by considering a lattice model, and
using an overlapping distribution meth#l5,16 to sample

rare conformations which become increasingly important as Te
the temperature decreases. The main objective of this paper poor solvent

is to consider the effective pair potential between the c.m.’s

of polymer coils in poor solvent at finite polymer concentra- —
ion. i i i . 1/L
tion, i.e., to investigate both the temperature and concentra

tion dependence of the c.m. pair potential, in particular, in
the V|c_:|n|ty Qf theQ point. The polymer model Studlled in t'hl‘?’ the three regimes of polymer phenomenology and the behavior of
v_vork is d_eflned in Sec. Il. The_: zero concentration limit is yq temperatureS,, Tg, Tou, andT, (defined in the testrelated
f!rst conS|dered_ in Sec. I!I, while finite polymer_conc_entra- to the characterization of the regime.

tions are examined next in Sec. IV. Some considerations on

the use of effective interactions in relation to thermodynamigation Ry known to scale ak", wherevy=0.588 is the Flory

stability are presented in Sec. V and conclusions are drawn ixponent in three dimensiorjd8]. This regime has been
Sec. VI. extensively studied in the case of the SAW to which the

present model reduces in the infinite temperature Ijii@.
In the bad or poor solvent regime, corresponding here to
Il. MODEL AND BASIC PHENOMENOLOGY low temperatures, entropic effects are overwhelmed by the
attractive monomer-monomer interactions and a chain mol-
ecule collapses into a compact globule with a radius of gy-
ration scaling likeL '3,
Between these two extremes lies ttheegime, where en-

FIG. 1. Schematic temperature-inverse length diagram showing

For all the calculations in the present work, a lattice
model defined on the simple cubic lattiteith a coordina-
tion number of sixwas used17]. A polymer chain of length

L is represented as a connected sequende laftice sites. : . .
! . . . ! rgetic and entropic effects compensate each other. In this
The monomers, defined as occupied sites, interact with each ®. ; S . :
fegime, in the limit of infinite length, a chain has the scaling

other via excluded volume repulsion, preventing two of them . . . . 112
from occupying the same lattice position, and lattice nearest? roperties of an ideal chain, for instan@,>L . The char-

. . : acterization of this domain has been the focus of many stud-
neighbor attractior <0 between nonbonded pairs of mono- . . . R )
; : ies using the present lattice mod@D—23, with, in particu-
mers. For convenience, the temperattireill be expressed

in units of —s/kg, or equivalently we will se=—1 and lar, extensive work by Grassberger and co-workers

kg=1. With this convention, the usug appearing in the [14’24’25'. .
S - Of key importance is the so-callefl temperatureT, at
Boltzmann factor is simply the inverse of the temperature hich the tricritical coil lobul - K | f
ie., B=1/T. In the following, we shall call “contact” any Which the tricritical coil-to-globule transition takes place for
r.1e.a’1rest-nei. hbor pair of non,bonded monomers. We use win@n isolated chain in the—oo limit. It corresponds to a real
g" bor p ) . thermodynamic singularity and its best estimate is presently

tramolecular” if both monomers belong to the same chain

'H ” . . [24]
and “intermolecular” otherwise. When a system consisting
of N chains ofL. segments is considered on a portion of cubic T,=3.717:0.003,
lattice of M sites, the monomer packing fraction is equal to
the fraction of lattice sites occupied by polymer segments !-€-:
il;l/t/EAN/v'\\//lhlle the concentration of polymer chains ps B,=0.2690+ 0.0002.

This simple model has been extensively studied in orde©bviously, simulations can only deal with chains of finite
to investigate the properties of isolated polymer chains antength, for which the tricritical singularity is rounded off by
of polymer solutions. In the phenomenology of these syssignificant finite size correctiond., is thus not directly ac-
tems, three different domains, sketched on Fig. 1, are usuallyessible and it is common practice, in simulations as well as
defined, corresponding to different behaviors of an isolatednh experiments, to obtain it by extrapolation of related,
chain. length-dependent characteristic temperatures.

In the good solvent regime, corresponding in the present The most widely used temperature is Boyle's temperature
model to high temperatures, the properties of the system arBs(L) defined as the temperature at which the osmotic sec-
essentially determined by the entropic effects originating inond virial coefficient of chains of length vanishes. From its
connectivity and excluded volume interactions. An isolatedknowledge, one can compute ttetemperature from the
chain takes swollen coil configurations with a radius of gy-limit
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lim Ta(L)=T,. (1) Ill. ZERO DENSITY LIMIT

Lo A. Simulation methodology
This route has been followed, in particular, in REL4], In the zero density limit, the effective interaction potential
where it was found thafz(L) is always greater thafi, and  v,(r) between two polymer chains is equal to the difference
decreases with increasirg between the free energy of the two chains with their centers

An alternative possibility is to use the demixing critical of mass constrained to stay at a fixed distanand the free
temperature of the polymer solution. This marks the limitenergy of the same chains infinitely far apart. It can be ex-
between a high-temperature regime where the chains in s@ressed as follows.
lution form a homogeneous fluid, and a low-temperature do- Consider two polymer chains labeledl and B. When
main where the chains start to coagulate and the fluid dethese chains have conformatiohg and I'g, respectively,
mixes into polymer-rich and polymer-poor phases. In thewith the vectorr ,g joining their centers of mass, the energy
lattice model used here, where the solvent is taken into aaf the pair is
count implicitly through the introduction of constant attrac-
tive monomer-monomer interactions and variations of the H(rag;I'a.I's) = HintraI'a) + Hingra(I's)
temperature, it is simply the critical temperatrg€L) of the . .
liquid-gas transition of the system. As fdg(L), one has FHinedPagil'a Te), @

where the intramolecular and intermolecular pairisiuding
the hard-core interactiopsiave been separated. Introducing
the intermolecular Boltzmann weight

limT,(L)=Ty, (2

L—oo

and it has been found in ReflR3,25 that T,(L) is always ) B )

smaller thanT, and increases with increasiig W(IraslilaI's) =€xH — BHine(TagiTa . T'e)l, ()
We anticipate on the following sections and introduce

here a third characteristic temperature called the “stability”

temperature denoted Biy,,{L). It is associated with a fun- Buy(r)=—IN(W(|ragl=1:Ta.T)), (6)

damental breakdown in the statistical-mechanical treatment

of the coarse-grained effective pair interactiop(r) be-  where the brackets denote an average over the probability

tween the c.m.’s of two polymer chains at low temperature gjsribution of two isolated chains, which is the square of the
Singularities of a similar nature have been encountered iBrobability distribution® of a single chain, i.e.,

various models for soft matter systems. For instance, Bax-
ter's sticky sphere mod¢R6] displays anomalous clustering
towards a closed-packed crystalline phase as a result of  (W(Iragl=rTa,Te))= 2 PTA)P(Tg)
breakdown of thermodynamic stabilif27]. In the case of Fa-Te
polymers, the Domb-Joyce modg8] shows self-trapping XW(|ragl=r;T'a,L'g), (7
behavior, i.e., a chain remains of finite extent in the infinite
length limit, when a negative energy is attributed to self-with
crossinggd29].
The relation betweeil L) and thed point is unclear. .
For any length_, T¢{L) will be shown to be smaller than P)=exd -8 Himra(r)]/ ; exd — B Hinwa(I')].

the effective pair potential is given 431]

Tg(L), the equality being only achieved when the pair inter- (8)
action is zero. For the specific length=100 studied in de-
tail in this paper, it is found to fall betweeRg(L) andT,. This result provides us with a direct means to compute the

Because it corresponds to a singularity in the statisticaleffective pair potential between two chains by Monte Carlo
mechanical treatment of the system, it is tempting to assumejmulations. We sample configurations of two independent

as it was done in Ref30], that chains using the pivot algorithi32] and standard Metropo-
lis acceptance rules. The latter ensure that the chain confor-
lim Ted L)=T,, (3)  mations are generated according to the probability distribu-
L—e tion P. After every 1000 pivot moves for each chain, we

) ) ] calculate the intermolecular Boltzmann weid@ht as a func-
and Fig. 1 has been drawn under this assumption. Interesfpn of the c.m. distance, by moving the polymers towards
ingly, this would imply that, in the infinite length limit, since gach other, while checking for overlap and counting intermo-
Tg(L—>)=TsafL—*)=T,, the effective interaction be- |ecylar contacts. Eventuallv,(r) is obtained by perform-

tween two isolated polymer chains at thepoint vanishes j,g the unweighted average ¥(|rag|=r;T'a,I's) on the
identically for all distances, a behavior which is trivially sample considered,

found in the case of the Domb-Joyce modi28], when a

positive constant energy penalty is counted for each polymer M) o
crossing(note that in this model, the temperature scale is D W(|ragl=r;Ty,Ty)
reversed since the SAW is obtained at zero temperature and Buy(r)=— InI:l 9)

ideal chain behavior is found at infinite temperajure M) '
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whereN(r) is the number of two chain configurations with joining their c.m.’s: there is thus a sizable volume where the
c.m.’s at distance sampled during the simulation. two chains overlap with the consequent formation of con-
Using this algorithm, we have been able to compute withtacts in large numbef85]. On the contrary, in the reference
good statistical accuracy effective pair potentials for varioussystem, only unfavorable excluded volume interactions exist
chain lengths (=100, 200, and 500), providei<0.2. between the two partly collapsed chains which are thus com-
Unfortunately, this simple, direct method turns out to bePressed along the axis joining their c.m.’s to limit their over-
inadequate at lower temperatures, where the results for tHaP [6]: contacts are then formed in small numbers only at
effective potential at short distances are found to fluctuatdn® surface separating the two segregated chains. This sig-
strongly with the sample considered, with no significant re-nificant sep'aratlon in the number of contacts doeg not occur
duction of the corresponding statistical uncertainties wher{©" &t I€astis less pronounced for the lengths studied lagre
the size of this sample is increased. The origin of this prob0MPplete overlap because the system has then to keep the
lem, already seen in the analogous off-lattice calculation ofPherical symmetry of the isolated chains, thus leaving no
Dautenhahn and Hall6], has been carefully analyzed by possibility for the adverse changes of the chain shapes seen

Grassberger and Hegger in their calculation of the seconlfl the cylindrical symmetry. _
virial coefficient of the same lattice model as the one studied Although it would be possible to use alternative methods
here[14]. At low temperature, the polymer chains start to (S€€, €.9., Ref$14,23) to sample even longer chains at low
collapse significantly and are thus rather compact. Thidémperature, we use mainly=100 chains in this paper,
means that at short distances, most two-chain configurationd"c€ We do not expect the qualitative features we focus on
obtained with the present direct algorithm will overlap andhere to depend strongly on chain lendB6]. Of course,
the corresponding intermolecular Boltzmann weights aré_quantltanv_e features WI!| vary with, and the detailed scal-
then identically zero. But, in the rare cases where the twdnd behavior can be quite compl¢24,25.
chains do not overlap, many contacts will usually be formed,
leading to very low negative intermolecular energies and
thus huge intermolecular Boltzmann weights contributing to
the pair potential. The need to average such unevenly distrib- The effective pair interactionSv,(r) between two poly-
uted numbers of very different amplitudes gives rise to theners of lengthL =100 are plotted, for various solvent quali-
large observed fluctuations and renders the direct approadies, in Fig. 2. The product of the potential by4* is shown
useless. as well, because the integral of this quantity plays an impor-
Hence, more elaborate algorithms must be used for loant role for the thermodynamics of the systg30,37, and
temperatures. In order to choose these new tools, it is helpfiip emphasize the features of the potential at large distances.
to recognize the strong similarity between the previoudn this figure and in all the following figures representing
scheme and Widom’s particle insertion method for the comeffective pair potentials, all distances have been scaled at
putation of the chemical potenti83]. Both methods indeed each temperature by the radius of gyration of the isolated
involve the averaging of a Boltzmann weight over the equi-chain at this temperature, which is plotted in Fig. 3 for com-
librium distribution of some unperturbed system, and in factoleteness.
the observed breakdown of the direct calculation of the ef- One can distinguish two temperature domains. In R&f.
fective pair potential at low temperature parallels that of Wi-where the infinite temperature limit of the model was stud-
dom’s method at high fluid densities. In the latter case, ar€d, Bv,(r) was found to be purely repulsive with a roughly
efficient approach to solve the problem has been devised bgaussian shape centered 01 0. Here we find that it re-
Shing and Gubbin§34], which belongs to the general class mains so, provided the temperature is high enough, ge.,
of overlapping distribution methods first introduced by Ben-=<0.2. The main effect of lowering the temperature is a re-
nett to compute free-energy differencgss,16. We have duction of the overall amplitude of the potential and a slight
thus implemented such a method which is described in detaflecrease in its range in terms of the normalized distance.
in the Appendix. At lower temperatures3>0.2, Bv,(r) begins to exhibit
Using this histogram method, we have been able to extengualitative changes: while the potential retains a repulsive
our calculation of the effective pair potentials between chaingsaussian-like component at short distance, a negative, attrac-
of lengthL=100 to lower temperatures, i.e., up f=0.3. tive tail appears at large distance. As the temperature de-
However, the method breaks down when applied to longegreases further, the amplitude of the repulsive core decreases,
chains, for mainly two reasons. Firstly, the acceptance ratiollowing the trend of the previous high-temperature domain,
of the elementary Monte Carlo move becomes extremelyvhereas the attractive tail becomes more and more impor-
small, leading to serious ergodicity problems in the simulatant, ultimately dominating the whole picture, as seengor
tions. Secondly, except for small separations corresponding 0.3, whereBv,(r) is everywhere negative and only a
to nearly complete overlap of the chains, the two computednodest repulsion shows up fofRy<1.
histograms do not overlap at all, rendering the estimation of A second, less prominent feature appears at low tempera-
the required free-energy difference quite problematic. Thdure (8=0.2) as well. Atr=0, the effective pair potential
origin of this problem can easily be understood on a qualitadisplays a small minimum, which becomes deeper when the
tive level. In the original system, the chains attract each othetemperature decreases. This means that full overlap is locally
strongly and lower their intermolecular energy at low tem-stable and that one has to overcom@redest free-energy
perature by elongating towards each other along the axibarrier to separate two chains in this configuration. For

B. Results
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FIG. 2. Zero density effective pair potentials at different inverse temperagifies polymers of lengthL =100 on the simple cubic
lattice. At each temperature, tieaxis is scaled with the correspondify(3), which is shown in Fig. 3.

chains of length. =100, it is difficult to know if this feature 1 (= 5
is a generic property of the effective pair potential or just a 12(B)= EJ' Buo(r)4mr=dr, (12)
lattice artifact due to the shortness of the chdths width of 0

the minimum is indeed of the order of the lattice spaging ) _ o o

chains at low temperature, we have seen evidence of a simi20). For systems intera_lcting througﬂensity-inc_jgpendent
lar minimum, but of larger width, for chains of length ~ Potentials, the sign of, gives a necessary condition for the

=500 at@=0.225, suggesting that this is a genuine physicapxistence of the thermodynamic limit and the stability of the
system against coalescer|@8,39, as will be further devel-

effect. ! : ¢ ruevel
One can compute various interesting scalar quantitiered in Sec. V. Accordingly, as discussed by anticipation in

from the knowledge of the effective pair potential. According S€¢. Il, a stability temperaturgs,{L) can be defined, at
which 1,(8) vanishes for chains of length, and below

to Sec. Il, the second osmotic virial coefficient, given by ! -l 'g -
which the necessary condition for stability against coales-

1~ ) cence is violated. The orderinfg,{L)=<Tg(L) discussed
Ba(B)=5 o [1-exp(—Buy(r)i4mradr, (100 apove is then an immediate consequence of the factxthat

=1—exp(—x).
is of particular importance. In addition, we introduce the Both quantities, normalized with the cube of the radius of
gyration to obtain dimensionless quantities, are plotted in

“stability” integral, ) altt ¢ .
Fig. 4. As was implicitly assumed above, they are decreasing
11—
10 ———————T
L B/RS --m--
' 3
0.9 - e L/R; -
@ I sl T - \\‘\ .
a r . RN
> - " e
& L L ~omh
> 08| R N
8] | ] F \‘\\‘\
r 0 - ‘\
F L =100 - > | \~
0.7 L =200 -~ m- L .
F L =500 @ L kY
L L 1 1 | )
0 0.1 02 0.3 -5 ' s ' '
8 0 0.1 0.2 0.3
B

FIG. 3. Radii of gyration of isolated polymer chains of different
lengthsL on the simple cubic lattice as functions of the inverse  FIG. 4. Reduced second osmotic virial coefficieBtz(Rg) and

temperatureB. The data are scaled with the infinite-temperaturereduced stability integral at zero density (Rg) as functions of the
values, Ry(L=100)=6.44, Ry(L=200)=9.76, andRy(L=500) inverse temperaturg for polymers of lengthL =100 on the simple
=16.84. cubic lattice.
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) T T T T T tistical inaccuracies in the simulation results are expected to

be modest, the potential seems to be more negative Wien
large; the same holds at complete overlap: trying to estimate
Buv,(0) for L=500 with the overlapping distribution
method, we find Bv,(0)=—-1.1, to be compared to
Bv,(0)=—0.15 forL=100.

All these results, if applied to E@10), are consistent with
the findings of Grassberger and Hegger for the variation of
the reduced second osmotic virial coefficig®g /RS with
temperature for various lengtisee Fig. 16 in Ref[14]).
Indeed, they found that the largerthe flatter this quantity is
in the high-temperature regime, the more abrupt the down-
ward bend of the curve when approachifg(L) and the
faster the divergence towards« in the poor solvent re-
gime.

Bua(r)

FIG. 5. Zero density effective pair potentials at different inverse IV. FINITE DENSITIES
temperatureg (from top to bottom, for a given lengtif8=0, 0.1,
0.2, and 0.3) for polymers of various length®n the simple cubic A. Methodology

Iattice._ At each temperature, theaxis is scaled with the corre- Having derived the effective potential between two iso-
spondingRy(/5). lated polymers, we now turn to polymers at finite density.

, i ) For this, we follow the route proposed in previous wrk,
functions of 8 and one finds, for the chains of length i, \yhich an effective pair potential was constructed to ex-
=100 studied here, thaltg= Tga=3.8. actly reproduce the two-body c.m. correlations of the full

Finally, we address the question of the dependence of thgnjerlying many-body system. In fact, it can be proven for a
zero density effective pair potential on the chain length. INyige variety of systems that for any given pair distribution
Ref. _[7], the |nf|n|te_ temperature case has been studied IRynctiong(r) at given inverse temperatu@and densityp,
detail over a wide range of polymer lengthsl ( there exists a corresponding unique two-body pair potential
=100-8000). Such an extensive study was not attempteg(r) which reproducesy(r) irrespective of the underlying
here and we only_ cons@ered two rather.short lengths (many—body interactions in the systdd0]. Of courseg(r)
=200 and 500) in addition to the previous data for gepends on density and temperature and contains contribu-
=100. All t_hese data, plotted in Fig. 5 Wlth the_one PreVi-tions not only from the bare pair potentiab(r), but also
ously described, have been computed with the direct methogyom the three- and more-body terms. As a consequence, the
leading to strong sta_ltistical uncertainties at the lowest teMatfective pair interaction will also be state dependent and a
perature corresponding #®=0.3. o new effective potential, hereafter denotedugy;p,8), must

To interpret these potentials one should keep in mind thage caiculated for each density and temperature. However,
Ry scales differently with temperature for the different s jnversion approach says nothing about a possible volume
lengths, as illustrated in Fig. 3. Alstg r_;deq are different  grm v1(p,B), in the coarse-grained total potential energy,
for each length. Following Ref§14,25, in which these tem-  \yhich contributes to the equation of state, but disectly to
peratures have been computed with great careLfed00  the pair correlation§41,43. Of course, the volume terms
Tc=3.10, Tg=3.86; for L=200, T;=3.33, Tg=3.81; for  may siill contributeindirectly, for example, when they in-
L=500T;=3.41, Tg=3.77. duce phase transitions.

A few qualitative observations can be made, at least for The inversion procedure, usirg(r) to extractv(r), is
B=0.2, where the statistics are good enough. With the norge|| known and has been studied extensively in the field of

malization chosen for the axis, no intersection between gimple fluids[43,44). We invertg(r) using the hypernetted
potentials corresponding to different valuesLot the same  chain (HNC) closure,

temperature is found. In Ref7], this feature was already

found for 8=0, combined with the fact that a largereads g(r)y=exd — Buv(r)+g(r)—c(r)—1], (12

to a less repulsive potential. We recover this result here and

the same qualitative behavior is found f6=0.1, but the of the Ornstein-Zernike equatidf]. While the simple HNC

potentials for different values df are closer. This behavior inversion procedure would be inadequate for dense fluids of

changes foB=0.2, where we now see that the larderthe  hard-core particles, where more sophisticated closures or it-

more repulsive the potential. Globally, we thus find that inerative procedures are requirgtB,44], we are able to dem-

the high-temperature domain, the decrease in the amplitudenstrate the consistency of the HNC inversion in the present

of the repulsive effective potential is slower for large valuescase.

of L. To compute the necessary structural information, we have
It is difficult to draw conclusions from the data @  performed canonical Monte Carlo simulations of polymer

=0.3, but it looks like the largek, the deeper the attractive solutions. We have studied chains of lengtk 100 in a cu-

potential. Indeed, for large c.m. distances, at which the stabic box of sizeM =100 with periodic boundary conditions,
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FIG. 6. Density and temperature dependence of the radius of gyration of polymer of lend®0 on the simple cubic latticéa) Radii
of gyration as functions of the monomer densitfor various inverse temperaturgs (b) Radii of gyration as functions of the inverse
temperature3 for various monomer densities

varying the number of polymers frofd=400 to N=3200 B. Results

(c=0.04-0.32). Iiour temperatures have been considered gefore presenting the results for the effective pair poten-
corresponding =0, 0.1, 0.2, and 0.3. Note that the low- tials, we first discuss briefly the behavior of the radius of

est temperature] =3.33, is slightly larger than the critical gyration with density and temperature, which is an important

temperature of the systend(L=100)=3.1 according to . . )
Ref. [25], thereby avoiding concerns with the possible two-easure of the physucal properties of t'he polymer. The cor
responding simulation data are plotted in Fig. 6. As found in

phase behavior of the system. To sample the configuration. ™" ; .
space of the system we have used standard techniques 3 llar previous WOH{A'S.]’ for a given tgmperaturefgg d_e—
polymer simulations: pivot move2], translation moves, C'€aSes when. the density of polymer increases if thls tem-
and, for high densities where the previous moves becomBerature falls into the good solvent regime, wherBgsn-
inefficient, configurational bias Monte Carlo moves, in Créases if this temperature is located below theegime
which an extremity or part of the interior of a chain are [Fig. 6@]. WhenRy is plotted as a function of temperature
regrown[16]. for various densities, this results in the existence of a regime,
In the course of the simulations, the c.m. of each polymetocated in thef region, whereRg is nearly independent af
was tracked in order to construct the c.m. radial pair distri-as can be seen in Figl®, where all the curves are seen to
bution functiong(r;B,p). The latter is only known up to a converge aroung=0.25.
cutoff radiusr., which corresponds to half the size of the  The effective temperature- and density-dependent pair po-
simulation box. For the inversion, we neg(r) for all r, so  tentials are plotted in Figs. 7 and 8 for two representative
we employ the following iterative scheme to extag(@). As  temperatures, corresponding fo=0.1 andB=0.3, respec-
an initial step, we seg(r)=1 for r>r; and calculate the tively. From these data, it is clear that the two temperature
corresponding (r) by inversion. We then set(r)=0 for  domains identified in the zero density study of Sec. Ill dis-
r>r. and determine the correspondig(y) for 0<r<<cc by  play obvious distinctive features in terms of the density de-
a regular HNC calculation, using a simple iterative proce-pendence of the effective pair potentials at fixed temperature.
dure. Theg(r) for r<r. is then replaced by the measured When 8=0.1 (Fig. 7), i.e., in the high-temperature re-
g(r) and the new (r) is calculated. This is again set to zero gime, a moderate density dependence is found. Starting from
for r>r., and the process is repeated until convergence. lithe purely repulsive, nearly Gaussian shape of the potential
fact, because of the finite box size, the inversion process ist zero density and increasing the density, one finds a slight
underdetermined, and our ansatz th&t)=0 for r>r.is increase in the amplitude and in the range of the repulsive
needed to find a unique soluti¢@0]. This is not unreason- potential for small separations of the polymer c.m.’s and the
able since we do not expect the interactions between thprogressive appearance of a weak negative attractive tail at
polymer coils to be significant beyond distances a few timesarge distance. This behavior is similar to the one found in
the radius of gyration. However, to make sure that this ishe infinite temperature limit studied in R€f7], with the
actually the case, we found that relatively large simulationonly minor difference that we do not see a decrease of the
boxes were needed, with a lattice size of up t®RJO1R. amplitude of the potential at short distances for the highest
This is particularly important at high density, where the in- concentrations.
verted potential becomes long ranged and more sensitive to The situation is completely different wheg= 0.3 (Fig.
small changes in the radial distribution functig(r). In all  8). Here, the density dependence of the effective pair poten-
our inversions, we checked explicitly thafr) becomes ef- tial is very important and leads to significant qualitative
fectively zero beforeg =r ., confirming our initial ansatz. changes in the shape of the potential: whereas at low density,
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FIG. 7. Effective pair potentials for polymers of lendgth=100 on the simple cubic lattice at the inverse temperamse).1 and at
various monomer densities The x axis is scaled with the radius of gyration corresponding+® and3=0.1.

v(r) is negative and essentially attractive, repulsion betweetive potentials in coarse-grained descriptions of material
center of mass progressively builds up when the density inproperties. The first question concethermodynamic stabil-
creases, so that an almost purely repulsive, Gaussian shapieg [38]: do the calculated pair potentials generate a valid
v(r) is eventually observed at the largest density. For thehermodynamic limit? Secondly, there is a questiomegire-
good solvent case a clear link has been found between thgntability [47]: for a given state point, how well can the
density dependence and the strength of the three- and highgjroperties of the underlying polymer system be coherently

body interaction$46,47). Presuming that the same link can represented by a single coarse-grained effective pair poten-
be made here, this would imply that the many-body interacyjg|,

tions are relatively more important at lower temperatures.

The virial coefficient has no clear interpretation for poten- ) o _ i
tials obtained at finite global densities, whereas the stability ~ A- Thermodynamic stability of effective potentials
integral does still define a lower limit to the existence of a e briefly repeat the criteria for the existence of a ther-
thermodynamic limit of the coarse-grained system. As can benodynamic limit described by Ruel[88] and valid for state
directly seen from Fig. @), at all densities, except the larg- independent interactions. Consider a systerN particles in
est €=0.32), the stability integral of the computed poten- 4 yolumeV. If the total interaction energyy,, which can be
tials is negative, leading to serious consistency issues to B it from pair and higher order terms, satisfies, for Mll

discussed in the following section. >0 and for all configurationér;} in the configuration space
N . .
V. CONSIDERATIONS OF THERMODYNAMIC R", the inequality
STABILITY Vn(r1, ... fn)=—BN, (13
The potentials computed in this work raise a number of
interesting conceptual issues with regard to the use of effeawith B=0, then, according to definition 3.2.1. in RER8],
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FIG. 8. Effective pair potentials for polymers of lendth=100 on the simple cubic lattice at the inverse temperafi#.3 and at
various monomer densitiess The x axis is scaled with the radius of gyration corresponding+d and8=0.3.
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the system istable the grand partition function converges, 1 y y - T -
and there is a well-defined thermodynamic limit. Potentials
that do not satisfy this criterion are termedtastrophicby
Ruelle. Specializing to pair potentials, i.e.,

0.001 .
V@(ry, ... r0= 2 wvallri—rj)), (14) -
1<i<]j=N S
Yy
condition(13) leads to the following necessaflyut not suf- 1076 |
ficient) condition for the existence of a thermodynamic limit:
5(0)=J vo(r)4mr2dr>0, (15)
0 109
which, following Eq.(11), can be rewritteri,>0, hence the 0 /R 2
T/

name stability integral fol,. If Eq. (15) is not satisfied, then
condition(13) can be violated for configurations of a homo- FIG. 9. Pair distribution functions of two collapsed soft colloid

geneous fluid. As N—c, the free-energy grows gystems, witiN=400 andN=3200 particles, respectively. In both
superextensively—the system has no thermodynamic limit—ases, the space integral Bfr) has been normalized to one to
and particles coalesce to form a dense cluster. Condiisn  3jiow a more significant comparison. The interaction potential is the
is necessary, but not sufficient, for the existence of a thermaeffective pair potential obtained for a polymer systenat0.3 and
dynamic limit, since one can also construct potentials folc=0.04.
which 5(0)>O, but where the system in a microscopically
inhomogeneoustypically, crystalling state is unstable to pler one we employ48]. For a given potential then, E¢L5)
coalescence. See Ref88] and[30] for explicit examples.  allows us to define the stability temperatufg,, below
Effective potentials with hard cores, such as those used thich the effective pair potential becomes catastrophic. This
describe simple atomic and molecular materials, can be eagxplains our nomenclature in Secs. Il and IlI.
ily shown to satisfy the criteriofil3). In contrast, the poten- The potentials derived at zero density violate Ef5)
tials describing the effective interactions between the c.m.’delow a temperatur@,;~3.8; the potentials are expected
of polymers studied in the present work do not have a hardo become unstable to inhomogeneous coalescence at some
core, leading to the possibility that two or more “effective” temperature above that. If one were to use potentials derived
particles occupy the same position in space. The existence &dr T<T,, at a finite density, the system would be cata-
a thermodynamic limit, where the free energy per particle isstrophic.
bounded, is therefore much more subtle. This naturally leads to the next question: what about the
Although the potentials calculated in this work are statepotentials we derived at finite density ? There, as shown in
dependent and technically only relevant at the density foFig. 8, the pair potential can also violate E@.5), even
which they have been obtained, it is, nevertheless, interestindpough the underlying polymer system is stable, both to coa-
to consider what would happen should one of them be usedgescence and phase separation, sificel for our L=100
independently of the density, to describe a systenNbf2 SAW lattice chains. For large enough densitieshe poten-
particles in a volumeV. To this end, we first consider the tials again satisfy Eq(15).
zero density potentials shown in Fig. 2. Serious difficulties are thus emerging with the present
When the underlying SAW polymer system has nocoarse-graining procedure: in certain portions of the
nearest-neighbor monomer attractions, the effective pair pdemperature-density plane, we replace a complex, but per-
tentials were shown to be positi{/¢,30|, so that the criterion fectly well behaved, polymer system by a simple soft colloid
(13) is obeyed. However, as Fig. 2 demonstrates, the introfluid with pathological thermodynamics. This also raises a
duction of nearest-neighbor attractions leads to effective poeertain number of formal concerns. The first one is about the
tentials which are no longer positive definite. As the tem-unicity of the mapping betweeg(r) andv(r) invoked in
perature is lowered, the potential grows more and moré&ec. IV and demonstrated in Rg40]. The theorems rely on
attractive, until finally it violates the Ruelle criterion and well-defined statistical ensembles and their derivations are
becomes catastrophic. This can be diagnosed in Fig. 4, wher® longer valid when a catastrophic potential is the outcome
I, becomes negative at low temperature and the necessaoy their application. Similarly, the lack of a well-defined en-
condition (15) is, thus, violated. In principle, the stability semble also leads to questions about the validity of the liquid
limit of the system should be traced by looking for a statestate theory, including the Ornstein-Zernike equation, etc.
point at which the potential leads to coalescence into micro- However, in spite of these formal difficulties, one could
scopically inhomogeneous states, a rather difficult task, iake a purely pragmatic attitude: Since it is numerically pos-
general. Here we will use a simpler, approximate criterionsible to extract effective pair potentials using the proposed
namely, Eqg.(15), which is a necessary, but not sufficient procedure, why not just ignore all the previous concerns and
condition for stability. We will make the heuristic assumption see if these potentials can be of any practical use? To inves-
that the true stability limit is not far removed from the sim- tigate this point, MC simulations of a soft colloid system
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T T particles, suggesting that the homogeneous fluid is meta-
I polymers e stable with respect to catastrophic coalescence. In this case,
soft colloids the potential energy per partickeis, as expected, indepen-
1 dent of the size of the system, i.e5=—0.176 for systems
containing 400 or 3200 particles.

Of course, the original polymer system, which is perfectly
stable, does not show such a dependence of its behavior on
the initial conditions. This can be easily checked by prepar-
ing an initial configuration consisting of a dense cluster of
polymer chains: the cluster “evaporates” very rapidly, and
the density becomes uniform again within a few thousand
MC steps per chain only.

L L . In Fig. 10, we compare thg(r) of the metastable fluid
0 9 4 phase of the catastrophic soft colloid system to ¢ite) of
r/R, the c.m.’s of the underlying polymer systemcat 0.04 and
B=0.3. The agreement is excellent. This suggests that the

FIG. 10. Comparison of the pair distribution functions obtained HNC closure used in the inversion procedure, a closure
from simulations of a polymer systefsymbolg and of the corre-  Which has been shown to be very accurate for bounded stable
sponding soft colloid fluid in its homogeneous phdselid line). potentials[30,37)], still works, in spite of the fact that the
Here, 8=0.3, N=400, L=100, M=10C%, and hencegc=0.04. potential it produces is catastrophi¢9]. The situation is

akin to that of the Percus-Yevick solution for the structure of
interacting through the catastrophic effective pair potentiaBaxter’s sticky sphere mod¢k6], which is useful for de-
obtained for polymers ap=0.3 andc=0.04 were per- scribing hard colloidal systems with very short-ranged attrac-
formed, revealing a very interesting behavior. tive interactions in spite of the fact that the underlying model

We indeed find that the behavior of the soft colloid fluid System is actually catastropHi27]. In both cases, the prob-
depends strongly on the configuration from which the simudem is most likely circumvented by the approximate charac-
lation is initiated. When an initial configuration is setup with ter of the chosen closure.
all soft particles gathered in a single dense cluster, the system
coalesces: the particles stay together indefinitefier a few N ) _
million MC steps per particle, not a single one has been seen  B- Representability problems for effective potentials
to escape the clusterand the potential energy per partiele The considerations of the preceding section, where the
appears unbounded, increasing in absolute value with incoarse-graining procedure led to catastrophic potentials, are
creasingN; more precisely, we fing=—24.6 forN=400  examples of the more general problemsrahsferabilityand
and e=—202 for N=3200, which would givee(N)=  representabilityof effective potentials used to describe com-
—0.062N. This is exactly the type of behavior expected from plex systems, issues discussed in more detail in a recent re-
a system interacting through a catastrophic potential. Theiew [47].
structure of the clusters also shows distinctive features, as Transferability problems occur when an effective poten-
can be seen in Fig. 9, where pair distribution functié(ss)  tial derived at one state point is not applicable at a different
are plotted for the previous cluster sizes. Nox 3200, f(r)  state point. In essence all the derived effective potentials in
displays three peaks, located atR,=0, r/Ry=1, and this paper suffer from transferability problems, since they
r/Ry=1.5. Quite evidently, the first two peaks originate in vary with density and with temperature. However, for high
the formation of groups of superimposed particles separategmperatures, the density dependence is not that strong, so
by the distance corresponding to the interaction potentialhat the transferability problems are not as important as they
minimum. This is indeed a very efficient way for the systemappear to be at lower temperatures. For example, the effec-
to lower its energy, since the energy cost for overlappingive potentials in Fig. 8 vary much more rapidly with density,
particles is modest compared to the stabilization of pairs ofuggesting that one must be very careful in using a potential
particles at distance=R,. As for the third peak, it is very derived at one state point as an approximate one for another
likely that it has to be associated with the position of thestate point.
second nearest neighbors. In comparison,Ner400, f(r) Representability problems occur when effective potentials
is rather featureless and long ranged. This change in shape dérived to reproduce one physical property, do not easily
f(r) is again easily understood from the clustering mechadescribe another physical propef#7]. For example, one
nism. For smalN, smaller groups of superimposed particlescan calculate théunique pair potentialvy(r) that repro-
can be formed, creating less deep energy wells at distanauces the homogeneous structiidescribed byg(r)] of a
r=Ry; the resulting clusters are thus more diffuse and lessystem interacting via a Hamiltonian with pair and triplet
structured than for larghl. interaction termgsimilarly to what was done in this paper

But, if the initial conditions correspond to a homogeneouslf the usual equations for the internal energy or the virial
distribution of particles in the simulation box, the fluid is pressure, valid for normal pair potentials, are applied to
found to remain homogeneous over the entire time of ouby(r), then the latter thermodynamic quantities are not cor-
simulations(up to 45<10° MC steps per particle for 400 rectIy reproduced. This was pointed out many years ago in

g(r)
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the context of simple fluid§50]. The same representability ingly poor solvent conditions by adding nearest-neighbor at-
problems were already found for the athermal polymer cas@actions to the initial lattice SAW model, and gradually
[47]. They are expected to be more pronounced when thiwering the temperature. As in the earlier wérk10,44, an
density dependence is as prominent as in Fig. 8. Moreovesffective pair potentiab(r) between the center of mass of
as pointed out in the preceding section, even more vexinghe linear polymer coils was extracted from the Monte Carlo
representability problems occur, because the derived effegrenerated c.m.-c.m. pair distribution functigfr), using the
tive potentials can lead to systems without a well-definedync closure, which is known to be very accurate in the
thermodynamic limit. . - absence of any hard-core repulsion. In the infinite dilution
The problems of transferability and representability Ar€imit the effective pair potentialu,(r) is close to a

more important for inhomogeneous systems. For example, %aussian-shaped repulsion, of amplity@le(0)~2, at high

any interface between two phases, it is not clear which pofemperature$corresponding to the SAW limjitbut this am-

tential should be used. Similarly, for the temperature regimeIit de decr the inverse temperaguiecr - an
that leads to the catastrophic potentials of the preceding seftU0€ deCTeases as the Inverse tempe giunecreases, a
tion, the apparent metastability of the effective soft colloig attractive tail develops and at the lowest temperature inves-

system allows for the inversions to work for a homogeneoud!92téd in our MC simulations, the effective pair potential is
system, but this breaks down if the simulations are starte§ntirely attractive, signaling a tendency of the system to coa-

with certain inhomogeneous initial conditions. Using some/€SCe- N
measure of the local density may be a better path to follow, At these low temperatures, severe ergodicity problems
Taking again the example of Fig. 8, if one were to use a locafi'S€ I the MC simulations, and, in the zero density limit, an

density dependence, the effective system could be stabRVerlapping histogram method must be used to extract statis-

against collapse, as the potentials would become more reptﬁi_cally significant results. The problgm worsens with increas-
sive for higher local densities. This would then more closelylnd Polymer lengthL, so that our simulations were mostly

resemble the underlying polymer system. However, prescriptestricted toL =100. _ _
tions for taking local density dependence into account which Increasing the polymer concentration at fixed temperature

are both accurate and tractable are not yet well developed.'eads to a “restabilization” of the solution in the sense that
A final issue not yet resolved is the possible role of vol-the effective pair potential exhibits an increasingly repulsive

ume terms—contributions to the free energy which are indeSomponent as the system is taken from the ultradilute to the
pendent of the particular c.m. configuration. Their effects orseMmidilute regime. Even at the lowest temperature investi-
phase behavior can be subtlee, e.g.[41,47), and they gated (8=O.3), the effec;uve pair pptermal reverts to an al-
may appear in certain coarse-graining schefsd For the ~ Most exclusively repulsive Gaussian-like shapecat0.32
case of polymers in a good solvent, they were shown to béVhich, for these polymers, is close to the melt regime

negligible [7,42), but that may no longer be the case for 1he occurrence of strongly attractive and significantly
poorer solvents. state-dependent effective pair potentials between polymer

c.m.’s raises the question of the thermodynamic stability of
systems of particles interacting via such “catastrophic” po-
tentials, and of the appropriateness of the coarse-graining
We have extended previous work on a coarse-grained dgrocedure to describe solutions of interacting polymers,
scription of polymer solutions in good solvent to increas-which are intrinsically stable, close to tldegemperature. The

VI. CONCLUSION
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FIG. 11. Distribution functions for the number, of intermolecular contacts between two simple cubic lattice chains of length
=100 atB=0.3 and with c.m.’s constrained to stay at distaneet.2. m,4(r,nc) andm(r,nc) refer to the original and reference systems,
respectively.(a) Log plot of myg(r,ne) and m(r,nc) as functions oin.. (b) Determination of the free-energy diﬁerenc@(r)—v;ef(r)
using Eq.(A1). As expected from the theory, no explicit dependence of the combinafiag,ir,nc)/ mAr,nc) 1+ Ben, on ng is found.
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ﬁ'_ 0.2 ' intermolecular interaction does not include an attractive

I
1 =025 : | nearest-neighbor contribution. The corresponding effective
B=0275 e pair potentials:;rzef(r) can be efficiently computed with the
8=03 A direct method, since the intermolecular Boltzmann weights

can only be either zero or one in this case.

The overlapping distribution method is then used to com-
putevz(r)—vrzef(r), the free-energy difference between the
two original chains, with their c.m.’s constrained to stay at a
given distancer, and the two reference chains under the
same geometrical constraint. To do so, we need to know for
these systems the distribution functions,;,(r,n;) and
medr,Ne), respectively, of the number, of intermolecular
contactg52], which, according to the theory of the overlap-
ping distribution method, obey the relation

r/Ry

FIG. 12. Comparison of the zero density effective pair potentials ( )
obtained with the overlapping histogram meth@ymbolg and ref, .\ _ 1. Torigt " Me
- ) T . . - =In——F——+ ,
with the direct approaclisolid lineg at various inverse tempera- Bua(r) = puz (1) =In Ted F,Ng) Benc (AD)
tures B for polymers of lengtiL =100 on the simple cubic lattice.

observation that the effective coarse-grained pair potentighheres = —1 denotes the nearest-neighbor pair attraction.
v(r) is capable of reproducing thigr) (derived from mono- These histograms have been computed by sampling in
mer scale simulationsiespite the catastrophic nature of the .angnical Monte Carlo simulations, for both the original and
pair potential, points to the possible existence of metastablg . (eference systems, the ensemble of two-chain configura-
homogeneous states generated by these potentials. Thegg,q \yith ¢.m.'s at distance The elementary move we use

metastable states appear to exhibit proper thermodynam|g the following. One chain is chosen at random and a pivot

extensivity properties, and may be stabilized against ultimate : . . .
i ; S . . ._Mmove is attempted on it. If no self-overlap, leading to imme-
coalescence by sufficiently high kinetic barriers. If this is

. . . . . diate rejection, occurs for this chain, a random position with
indeed the case, the catastrophic effective pair potentials may_ . : o .
. . . . .m.’s at distance is chosen for the modified chain around

still provide a useful coarse-graining tool to describe homo-, . X ) " .

- the other coil. If in this position the two-chains overlap, the
geneous states. Strongly inhomogeneous states, generated L e . .

. ) o move is rejected, else it is accepted or rejected according to
coalescence, lead to widely different local densities, an

hence would require the use of effective pair potentials defgfalséigcrjg;d Metropolis rules depending on the change in

pendin_g on the local density. The fact that the e_ffective pair Examples of the accumulated histograms, together with

pqtentlal te_nds to beco!"‘.‘e. more repul_swe at higher denSI%eir combination through formuléAl), are shbwn in Fig.

nmégzg Zzg}[/éde the stabilizing mechanism for the homoge—ll' Clearly, the explicit dependence of the left-hand side of
: Eqg. (A1) on n; is found to disappear as prescribed by the

We plan to extend the present work to examine pOIymeE[heory, giving us a good indication of the convergence of the

c.m. density profiles near interfaces, and to extract the os- ethod
motic equation of state of polymer solutions as a function o ) . . . .
concentration and temperature. The c_orrespondlng zero density pair _pote_ntlals for poly-
mer chains of length. =100 are shown in Fig. 12, where
they are compared with the results obtained with the direct
ACKNOWLEDGMENTS simulation methodB=0.2 is the largest value at which the

V.K. acknowledges support from the EPSRC under Granflirect method gives smooth and reproducible results and thus
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Isaac Newton Trust, Cambridge, and the Royal Society. weapproach: as can be seen on the figure, the curves obtained

thank Chris Addison for a careful reading of the manuscriptWith both simulation methods are indistinguishable. For
larger B's, the effective pair potentials computed with the

direct method display irregularities at small distances, espe-
cially apparent for3=0.3, and originating in the sampling
difficulties mentioned in Sec. lll. This is clearly not the case
of those obtained with the histogram approach which are
We first introduce a reference system consisting of twaperfectly smooth and meet the preceding curves for large
polymer chains similar to the original ones, except that theenough distances at which sampling problems disappear.

APPENDIX: OVERLAPPING HISTOGRAM METHOD FOR
THE COMPUTATION OF THE EFFECTIVE
POTENTIAL BETWEEN TWO CHAINS
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