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Optical measurement of azimuthal anchoring strength in nematic liquid crystals
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We have observed the azimuthal switching at the interface of nematic liquid crilsBdsand the aligning
substrate, induced by the planar electric field of a fine comb electrode. Optical transmittance as a function of
applied voltage was modeled by both the elastic theory with rigid anchoring and the Landau—de Gennes theory
with the interfacial energy expression Mr[(é—éo)z], whereQ is the liquid crystal order parameter and
(30 is the surface order parameter induced by the aligning substrate. Optical data on the in-plane switching LC
cells were found to differ qualitatively with the predictions of the rigid anchoring model but to agree well with
those of the Landau—de Gennes theory. We obtain not only the strdhgtlthe azimuthal anchoring, but also
find the surface order paramet8g,.cet0 be 20—30 % less than that of the bulk. The optically measured
azimuthal anchoring strength is in good agreement with the literature values determined through other means.
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In recent years, IP8n-plane switching techniques have patrticular, in the surface layer, the LC tensorial order param-
been used to realize a type of liquid crystal displagZDs)  eter (containing both the LC director and the scalar order
with high contrast and wide viewing anglé¢$,2]. IPS is parameteris coupled to the Laplace equation through the
generally achieved by using planar electric field generated bgnisotropic dielectric constant. The spatially dependent an-
comb electrodes with a stripe widtlorseparationof ~10  isotropic LC dielectric constant tensor is then determined
um. There are two IPS mechanisms. In the rigid anchoringself-consistently by minimizing the total free energy. The
limit, the liquid crystal(LC) director at the substrate-LC in- resulting optical characteristics of the cell are calculated and
terface is fixed, and IPS occurs through the twist of the LCcompared with experiments. In the case of soft anchoring,
director in a thin boundary layer next to the substrate. Alterthe anchoring strength is obtained as one of the two fitting
natively, the interfacial anchor can be broken so that the IP§arameters.
occurs partly through the reorientation of the surface direc- Consider a coordinate system, where xhgplane is par-
tor. In the latter case, the voltage dependence of optical trangdlel to the substrate surface, with thieaxis along the elec-
mittance contains information on the azimuthal surface antrode stripes, and axis pointing from the lower substrate
choring strength. In this work, we propose to utilize IPS withtowards the upper substrate. Since the length of the electrode
narrow electrode stripes-1 um) as a microscopic probe to stripes is large compared with the separation between adja-
measure the azimuthal anchoring strength through opticatent stripes and the cell thickness, the LC cell is assumed to
means. Here the small electrode width ensures the plan&e uniform in they direction. Hence, the problem is 2D in
electric field to be confined within a thin surface layer, hencecharacter and periodic along thedirection.
increasing the sensitivity to the field-induced local interfacial In the presence of externally applied field, the total free
variations. Data on optical transmittance versus voltage werenergyF of the system may be written in the dimensionless
found to differ qualitatively with the predictions of the rigid form [7]
anchoring model but to agree well with the results of simu-
lations assuming finite azimuthal anchoring strength.

It is well known that away from the surface layer, on the V= 33gajc3~ et e @
order of a few tenths of microns, LC can be accurately mod-
eled by the elastic theory, with the LC director as the onlywhere the Landau—de Gennes bulk free enefgyand the
spatially-dependent variable. Hence for the rigid anchoringree energyye (resulting from the coupling between the

model, where the director twist occurs through a length scal@ematic liquid crystal and the electric fi¢ldre expressed as
much larger than the surface layer, the elastic theory suffices.

However, if the IPS occurs through reorientation of the sur-
face director, then the properties of surface layer would have lﬂBZJ d3¢
to be taken into account. It is known that within the surface

layer there can be significant variation in tfeealaj liquid 2 —, p — —

crystalline ordef3—6], and the elastic theory is no longer + inj,k+ inj,jQik,k], 2
adequate. Also, the planar electric field applied through the

comb structure means that it is necessary to go beyond the

usual one-dimension&l.D) model, where the electric field is Ye=—sgn(Se,) =
assumed to be uniform and parallel to the substrate plane. In 3Ej
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Here(3 is the tensorial LC order parameteﬁ denotes the
ith component of the unit vector along the direction of ap-

plied electric fieldE, andEq= (47B%| e ,|C?) is the unit

of field strengthde,=¢,—¢, . In Egs.(2) and(3), the Ein-
stein notation is assumed, with summation implied for re-
peated, j, andk indices, and comma in the subscript means
derivative with respect to the spatial coordinate—%,
2—y, and 3-2). Also Q;=CQ;/B and {=X/A(A

- VCL/B )'. For 5CH4-pentyI-4-n’-cyan0b|phenyl used FIG. 1. A schematic diagram of the comb electrodes on an ITO
in the experiments described below, the Laundau—de Genn%ss substrate.

parameter values ar@=0.065J/cm K, B=0.53J/cm,

C=0.98 J/c, L=4.5x10 **J/cm, p=1 [8,9], and S, does not have the comb structure and is grounded. Both the
=0.56 (T=20°C) [10]. The perpendicular and parallel di- top and bottom substrates are rubbed along the satripe
electric constants of 5CB are 5.64 and 2]13], respec- direction. Numerical simulation of IPS proceeds through a
tively. We model the interfacial potential imposed on the LCtwo-part iterative process whereby the solution for the elec-

by a rubbed polyimidePl) substrate a§12—14 tric potential¢ is obtained from the Laplace E(f), assum-
ing a fixedﬁ (or A for the elastic theory configuration,
o= %Wtr[(ﬁ—@o)z] (4) determined initially by minimizing the LC free energy ¥t

=0. The(3 (n) configuration is then updated by using the

where W is the surface anchoring strength a@ is the (t:)o?jugatﬁtgrad(ijent mgtho?, a1s_§umingNa fixedt potential dis:ri(—j

S - ) .__._bution obtained previously. These two parts are repeate
Fe”SS“a' interfacial order parameter. B¥ assuming unlaxlali/vithin each step Entil cons){stency is achigved. Opticalpchar-
ity, Qo= 3 Ssurtac{ MoMo— 3), WhereSgaceiS the surface or-  acteristics are then calculated by using an extension of the
der andn is the surface director. The surface potential im-4x 4 matrix method of Berremafi5]. This is because the
poses a penaltyfor W>0) on these configurations that fail original Berreman approach applies only to the propagation
to align at the boundary Witﬁo. It should be noted that in ©Of polarized light in a stratified media, i.e., media that are
general, the surface potential depends on the polar ahgle uniform in their dielectric properties in eachy plane. Due
and azimuthal angle. Here @ is the angle between the LC t0 the comb electrodes, this assumption is no longer valid. In
director and the substrate surface, anid the angle between the Appendixes, we outline our extension of the Berreman
the projection of the director on the substrate plane and the @PProach. We have used the generalized matrix approach to
axis. The polar anchoring strength is usually much stronge?a!cmate I'ght_ transmittance in our 2D I|qU|d_cry_staI_ cels,
than the azimuthal anchoring strength, and should be repré’-s'ng the ordinary and extraordinary refractive indices of

sented by a separate expression. Here we assume that {fe~ 1-5074 andn.=1.6661[11]. It tumns out that because

polar angle is fixed at the pretilt angle of PI. That leaves onlyN€ Xy inhomogeneitieddue to the comb electrodesxist

the weaker azimuthal anchoring energy to be determined. ONY in a thin layer, the diffraction effect is very weak. Thus
It should be noted that the elastic continuum theory ofin what follows the transmittance is defined to be the zeroth

rder component. There is no special difference in treating

liquid crystals can be obtained from the Landau—de Genne X e ,
theory by treating the scalar order parameter as having np'€ electrical potential in the case of the elastic theory, except

spatial variation. Hence, the free energy depends only on thi'® diélectric tensor is now expressed a@{r)=e¢,
directorn: +oen(nn(r). _ _
By using photolithographical techniques, we have etched
1 R R ) comblike ITO(indium tin oxide electrodes on one substrate
Fd:if di[[kn( )%+ Kyy(R-VX1A)2+Kag(AXVXA)2]  (see the schematic shown in Fig. The area of the comb-
like electrode is X5 mm. Pl was coated onto the ITO by
1 . spin coating, and cured at 250 °C for 1.5 h. Typically this
o dgg[ E- ﬁ]z], (5)  process resulted in 400 A thick films. These films were then
rubbed using the standard rubbing machines. Cells with a
thickness of 7um were assembled with rubbing directions
aligned along the electrode stripes. Two polarizers were em-
ployed at the entrance and the exit of LC cells, with the
polarization direction of the entrance polarizer along the
electrode stripes and that of the exit polarizer perpendicular
to the electrode stripes. Thus, the init\a=0 state is dark.
_ _ _ In the experiments, we used 5CB without any chiral dopant.
where the LHC(stanc or low frequencydielectric tensorg” o types of polyimide(both from Merck with different
=e4+508e,Q with 9= (g,+2¢,)/3. The boundary condi- pretilt angle were used to align the LC molecules: CU-2012
tion is given by¢=V/2 and¢= —V/2 on alternate electrode with a low pretilt angle(about 19, and SN-7321 with a high
stripes on the bottom substrdtéig. 1), each 1um in width,  pretilt angle(about 115.
with center to center separation ofi2n. The top substrate To obtain optical transmittancEas a function of applied

wherekyy, Ky,, andkss are the splay, twist, and bend Frank
elastic constants, respectively.
The electrical potentiap satisfies the Laplace equation

V.8V¢=0, (6)
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FIG. 2. Optical transmission vs the applied planar voltage for Voltage (V)

rubbed Pl SN-7321. Here the symbols denote experimental data, the ) o ) )

solid line represents the theoretical prediction with parameters FIG. 4. Azimuthal angle variation of the LC director in the
given in the text, and the dash line represents the elastic theorjpiddle of the two Lc cells whose transmittance is shown in Fig. 3,
prediction with rigid surface anchoring. The light source used is thePlotted as a function of applied voltage.

He-Ne laser {=632.8 nm). The inset shows the schematic mea- o ) o
surement arrangement. there is significant magnitude of the planar electric field.

From electrostaticst should be on the order of periodicity

voltageV, we used a He-Ne lasé€632.8 nm with 2 mw  alongx (2 um). With rigid anchoring, the IPS is achieved
output power as the light source. The output signal was dethrough director twist over a scale defined byThe rela-
tected with a silicon photodiode. The experimental setup idively sharp onset is, therefore, a reflection of the
shown schematically in the inset to Fig. 2. DS345 SynthefFreedericksz-like character. It should be noted that the sharp
sized Function Generatg6tanford Research Systemsas  onset of the Fredericksz transition is independent of the
used as the driving voltage source. The data are shown &astic constants’ magnitude. Changing the elastic constants
symbols in Figs. 2 and 3. values would only vary the onset voltage.

To explain the experimental data, we first use the rigid To simulate the IPS through the soft-anchoring approach,
anchoring condition and the elastic continuum theory, calcu20 discrete voltage values were chosen for fitting Yha
lated with k;;=7.6x10 2N, k,,=5.1X10 2N, andks;  experimental results. Two fitting parametersy
=7.6x10 12 N. It was found that the predicted optical = Ssuracd Spuk @andK=3S5, W, were alternately optimized
transmittance, shown as dashed lines in Figs. 2 and 3, hasta minimize mean square error between the theory and the
relatively sharp onset as a function of voltage. This behavioexperiment. The resulting fits are shown as solid lines in
is in disagreement with the experimental data but nevertherigs. 2 and 3, with the following parameter values:
less understandable by comparison with the well-known
Freedericksz transition. That is, the Edericksz transition for SN-7321, »=0.81 andK=5.22x10"° J/n¥;
represents an abrupt orientational onset when(éhectrio
field coherence length becomes comparable to, or smaller for CU-2012, =0.68 andK=5.07x10"° J/nf.
than, the LC cell thickness. Here the LC cell thickness is

replaced by the vertical range above the substfatewhich If there is no order parameter variatiofe., Ssurace
=Sy, EQ. (4) reduces to the standard Rapini-Papoular ex-

pression, and is the usual azimuthal anchoring strength. It
is seen that the agreement between theory and experiment is
excellent, with values oK in the range of previously mea-
sured values of azimuthal anchoring strengila mechanical
mean$ obtained on rubbed polyimide surfacgkbs]. These
results present convincing evidence that director reorienta-
tion has indeed occurred at the LC-substrate interface,
thereby providing a means of measuring the azimuthal an-
choring strength through optical transmittance. In Fig. 4, we
plot the attendant azimuthal angle variation of LC directors
in the middle of the two LC cells.
: : : It is also seen that there is a small difference between
Voltage (v‘; € Ksn.7321 @and Keyooo10, but a significant difference betvyeen
Msn-73218Nd ¢ y.0012- IN both cases, we found th&facelS

FIG. 3. Optical transmission versus the applied planar voltage20%—30% less thay,,x. That is, the rubbed PI substrate
for rubbed PI CU2012. The symbols and lines have the same meaglecreases significantly the liquid crystalline order in the in-
ing as those in Fig. 2. terfacial layer. Thus the optical approach, coupled with IPS,
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offers a more complete picture, as well as a relatively conz=d(>0)]. In Eq. (A1) E(x,y,z,t) andﬁ(x,y,z,t) are the
venient measurement method for the azimuthal anchoring|ectromagnetic-field vectors with their respective conven-
strength and the related surface order. tional connotations. The angular frequeneys related to the
This research was supported by CERG Grant Nowavelength in vacuum,, and the speed of light, and the
HKUST6133/97P and the Hong Kong Innovation and Tech-wavenumbek, by the relationw=2mc/\y=ckg.

nology Fund. From the periodicity of the dielectric constant and Eqg.
(A1), the electromagnetic fields can be expressed in the
APPENDIX A Bloch-wave representation:
In our 2D geometry,? (dielectric constant_ter)sbis in- E(x,y,z,t)= E(X,Z)e—iwteiko(nx+§y),
dependent of thg spatial component and periodic along the (A2)
X axis, i.e., ' (x+P,y,z) =" (X,Yq,2), whereP is the pe- H(x.y.z.t)=Fi(x,z)e" teiko(7 &)
riod. The incident light is a plane wave given by Y.z, 0= ' '
Ei(x,ylz,t):Eioefi(wtflz-i):éioefiw(tfnx/cfgy/c)ﬂkziz, where
R T (A1) 2 _e
Hi(x,y,z,t)=H;ge (@t k0=, g Telt=m/e-tyle)+ikyiz E(x,z)=E(x+P,z),
(A3)

where E;, and H;, are constant vectors and,; H(x,z)=H(x+P,z).

=(wlc)\1— »?— &>0 [without the loss of generality, we
assume that the incidence planeis0 and the exit plane is From Maxwell equations, we obtain the following relation:

EX(X,Z) CexEx CE><,Hy CE><,Ey — CEx,Hx EX(X,Z)
d Hy(X,2) | | CHyEx CHy,Hy CHy,Ey  ~ CHy,Hx Hy(x,2) (Ad)
0z EV(X’Z) Cey,Ex Cey,Hy Cey,Ey ~Cey,Hx Ey(X,Z) ,
—H,(X,z —H,(X,z
(%:2) “Chx,Ex T CHxHy T CHxEy Chx,Hx x )
where the matrix elements
~ q &
CA,B:CA,B C!kosvlL'l’Ornlgv&um (A!B:EXIEyrHX and Hy)

can be obtained from E@B8) in Appendix B.
By utilizing a discretization scheme wittN points [x=—P/2,—(P/2)+ (P/N),—(P/2)+2(P/N),...,— (P/2)+ (N
—2)(PIN),—(P/2)+(N—1)(P/N)] and defining

E.(—P/22) E,(—P/22z)
E.(—P/2+PIN,z) E,(—P/2+P/IN,z)
Enx(2=| E{~PR+2PINZ) |, Eyy2)=| EJ(-PR+2PIN2) |,
Ex(—P/2+(N—1)P/N,z) E,(—P/2+(N—1)P/N,z)
Hy(—P22) H,(—P/2z)
H,(—P/2+PIN,2) Hy(—P/2+P/N,z)
Hyx(2)= Hy(—P/2+2PIN,2) ., Hyy(2)= Hy(—P/2+2PIN,2) , (A5)
H(—P/2+(N—1)P/N,z) Hy(—P/2+(N-1)P/N,z)

we obtain the following relation from EqA4):

EN,X(Z) Cexex(2) Cexry(2) Cexey(2)  —Cexnx(2) EN,X(Z)
i H:N,y(z) _ Chy,ex(2) Chiy,y(2) Chyey(2)  —Chynx(2) H:N'y(z) (A6)
9z| En,(2) Ceyex(2) Cey.hy(2) Ceyey(2)  —Cgynx(2) Eny(2) |’

_F'N,x(z) —Chxex(2)  —Chxny(2) —Cuxey(2)  Chxnx(2) _ﬁN,x(Z)
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whereCp g (A, B=Ey, Ey, Hy, andH,) is theNXN co-
efficient matrix, obtainable from EqB8) in Appendix B.
Equation(A6) can be abbreviated as

PHYSICAL REVIEW E67, 041713 (2003

E.(X,y,z,t)=E,(x,2)e ' “teikolmx+&y)

N-1 )

—aiot 2 alkpnX

=e w 20 er'ne r,n s
n=

J
_ - (A13)
Jz W(2)=A2)¢(2), (A7) ﬁr(xyy,z,t):H*r(x,z)e—iwteiko(nxﬂy)
where ¢ denotes a Kl-component vector as given in Eq. SN
(AB6). If the matrix A is approximately independent afover Ief'th hr,ne'k“”'x,
some short intervadz, then the solution of this equation can n=0
be expressed by where
_ pA(2)- 62 N-1
Y(z+ 6z)=e W(2) =S &  en@mPixgke,
=(1+ 6zA(2)+(62)?A%(2) 12+ ) y(2). n=0 '
(A8) N1 (A14)
J — N in(27/P)Xqikypnz
By discretizing the LC component of the célith thickness Hi(x.2) ngo i ne e
h) into M layers, the transmittance matrix can be expressed
by ér,n:(er,n,Xaer,n,y-er,n,z) andhr,n:(hr,n,Xahr,n,y1hr,n,z) are

constant 3D vectors, and

Tic(h)
— AN/MGA(M=1)/M)- /M, . . oA (/M) hIM) gA (/M) -hiM

(A9)

The total transmittance matrix can be expressed by

TtotaI: Telectrode_cTPITLC( h ) TPITeIectrode_p ’ (AlO)

whereTepectrodecr Telectrodep, @NdTpy are the constant trans-
mittance matrices of the comb-like ITO electrode layer at the

o \/1
n ng,f,

The transmitted electromagnetic fields can be expressed as

Krn=K nClo=

2
n+n %) — §2> .
(A15)

Et(X,y,z,t) = Et(x,z)e—iwteiko( X+ EY)

N-1 i
—e oty g ektn (a0
n=0

bottom of the LC cell, the layered ITO electrode layer at the - - ot kot E) (A16)
top of the LC cell, and the PI layer, respectively. We define Hi(Xy,z,)=H(x,z)e "“"e"°
i, ¥, andy, to be the N-component vectors of the inci- N-1 i
dent light, reflective light, and transmitted light of the LC :efith ﬁt neiki,n-(ifd%o),
cell, respectively. The transmittance matrix relates the total n=0 '
field vectors at the incident plane to the field vectors at the .
exit plane. That is, wherez denotes the unit vector along theaxis,
N—1
D= Tooa i+ ). (A11) E(x,2)= S & enemPrgikznz—d)
n=0
From Eq.(A3), we can rewrite the vector of the electromag- (A17)
netic field as follows: N-1
Hi(x,2)= > hy,en@mPxgikznz=d),
N—-1 n=0 '
E(X,Z)= E én(Z)ei(27T/P)nx, i R
n=0 €n=(€nx:€ny Cnz) andhy,=(hpx.heny.hen,) are

(A12) constant vectors, and

N—1
H(X,Z) — 2 ﬁn(z)ei(Zw/P)nX’
n=0

where fi=0,...N—1) (N being the number of uniformly
spaced discrete pointsand [x=—P/2,—(P/2)+(P/N),
—(P/2)+2(PIN),...,— (P/2)+(N—-2)(P/N),— (P/2)+ (N
—1)(P/N)]. It is noted thate'?™P)"* (n=0,...N—1) con-
stitutes a complete set of discrete orthogonal functions.
The reflected electromagnetic fields can be expressed as

041713-5

Et,n: kt'nC/(,():

Lo \/1
Ui nF,&

From the orthogonality ofe'®™P"™ (n=0,..N—1) and
Maxwell equations, we have the following relations:

2
n+n %) — 52) .
(A18)

Kin' € n= 0, Ktn* ht,n:Or



ZHANG, SHENG, AND KWOK PHYSICAL REVIEW E67, 041713 (2003

RinX € n=Cuohin and &, ,-& =0, 5(x,y.z)): E(x+ Px,y,z))
E(xy,2)] | X+ Py,y,z)
’?r,n‘ﬁr,nzoy Er,nXér,n:CMOHr,n- (A19) and
From Egs.(A15) and (A19), we know thath, ,,, andh, £(X,Y,2) E(xy+Py,2)
can be represented by a linear combinationepf, , and ([Z(X Y,Z) :(ﬁ(x y+P z))
L 1 1 y!

er.ny [see Eq(B9) in Appendix BJ. Thusl—TN,X,r(z=0) [rep-

resenting theN-dimensional vector in Eq(A5) of the re- (£ and i being the dielectric constant tensor and permittiv-
flected magnetic field, the same notation is used blmd ity tensor respectivelyP, and P, being the periodicities
Hn.y,((z=0) can be expressed in terms . ,(z=0) and  along thex andy directions, respectively

Eny.(z=0) as

APPENDIX B
H*N,y(z=0) A B EN,X(2=0) Here we derive the relevant matrix elements used in Ap-
_|:|N (z=0) - C, D, EN ,(z=0) ' pendix A from the Maxwell equations. The matrix represen-
' r : r

tation of the Maxwell equations is given by
whereA,, B,, C,, andD, areNXN constant matrices ob-

tainable from Eq(B9) in Appendix B. From Eqs(A18) and 0 0 0 0o - i i
(A19), the similar relation for the transmitted field is given dz  dy
by a a
0 0 0 — 0o —-—
R R 0z X E
Hyy(z=d) | [At Bi)[Eynx(z=d) g 9 EX
—Hux(z=d)] \C. DJ\Eyy(z=d)] o 0o 0 -= % 0 ’
N.x t (B Ny t ay X E,
whereA;, B, C,, andD; areNXN constant matricegsee 0 2 _2 o 0 0 H,
Eqg. (B9) in Appendix B|. Therefore,i, and ¢; can be ex- Jz ay Hy
pressed, respectively, by P H,
-— 0 — 0 0 0
R 9z ax
EN,X(ZZO) I 0 00 9 9
. Hny(z=0) | | A B 0 0 N 0 0 0
' Eny(z=0) 0O I 00 5
~Hyx(z=0)/ \C, D, 0 0 D;
- Jd | D
Enx,r(z=0) =—| _* (B1)
N at| Bx
EN,y,r(Z:o)
x| - (A20a) By
Enx,t(z=d) B,
Eny.(z=d)
- The constitutive equations can be written as
Enx(z=0d) 0O 01 ©O
j = 0 0 A B
= EN’V(Z j) =10 o Ot It €11 €12 €13\ [ E,
F’\;,y(?_ ()j) 0 o o b D=8E=¢o| €21 €22 €23]||Ey (B2
_ 7=
Nx t C €31 €32 £33 z
E_:N,x,r(zzo) and
E z=0
x| Enr(2=0) (A20b)
Enxi(z=d) 1 0 0\ /H,
EN,y,t(Z:d) é:ﬁﬁ:ﬂo 0 l 0 ( Hy) y (83)
Combining Egs.(A11) and (A20), we obtain the reflected 0 0 1/ \H;
fields at the incidence plane and the transmitted fields at the _ R _ R
exit plane. whereE(x,y,z,t), D(X,y,zt), H(X,y,z,t), andB(X,y,z,t)
It is noted that the present approach can be simply exare defined in Appendix A, and, and uy are dielectric
tended to the 3D case with constant and permittivity of the vacuum, respectively. By
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combining Egs.(B1)—(B3) and assuming harmonic time where

variation[i.e., E, H(x,y,zt)=E, andH(x,y,z)e”'*], the
Maxwell equations become

€11 €12 €13 0 0 0
€21 &2 E&23 0 0 0
0 0 0 _i i M = €31 €3 €33 0 0 O
9z oy 0O 0 0 100
o o0 o0 ai o - ai 0O 0 0 010
z X E, O 0 0 00 1
J Jd E
0 0 - = 0 y
ay  ox E,
0 d d 0 0 0 CuoHy If the electric and magnetic fields can be represented in the
gz ay CuoHy form
(9 C,lLoHZ
-— 0 — 0 0 0
Jz X
F " e 0 o o E(x,y,2)=E(x,2)eol ™" &),
o x (85)
Ex
Ey H(X,y,z)=H(x,z)eko(7+&),
kM| 2 B4
- | 0 Clu’OHX ’ ( )
CioHy where » and ¢ are constants, then the Maxwell equations in
CuoH, the matrix form can be further simplified as follows:
0 0 0 7 i&
d(Ko2)
J 1%
0 0 —ip—
d(kyz) d(koX) E (x.2)
i E,(x,2)
0 0 0 i int ——— y
£ in d(koX) E,(X,2)
d , CuoHx(X,2)
0 9(Ke2) i¢ 0 0 0 CaoHy(x,2)
9 0 ) 9 0 0 C/.LoHZ(X,Z)
" a(Ko2) 1 S kox)
P& i J 0 0 0 0
"1 5 (keX)
Ex(x,2)
Ey(x,2)
. E.(x,2)
=—iM . B6
CroHx(X,2) (B6)
CuoHy(X,2)
CIU’OHZ(X1Z)
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From Eq.(B6) we obtain
E,= ! H H,)+i i H
= om §(cpoH,) — n(cuoHy) lﬁ(k—OX)(CMo y)

1
- _(831EX+ 832Ey), (B?a)
€33

.0
— éE,+ mE,—i ——E,.

(C,(.Lon): 5(k0X)

(B7b)
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a
+|77_(C/“L0 y) a(k X) (Clu‘OHy)

Substituting the above formula into the Maxwell equations

(B6), we obtain

J _ Jd €31 €31 €31 0
mmaa‘{mmmaé £33 eag d(KoX)
J €32 g3 0
{'9 koX) €33 778—33 Y egz dlkox) Y

1
+§[ a(k X) 833 8_33 (C/'LOHX)

l
P y 1
T 5ox) oaa SR T 0 o
! H
- 77833 ﬁ(k X) (C/LO )
! —2&2 (cuoHy), (B8a)
C
' oa (k)7 CHO

: ==
L;'(k—()Z)Ey —If—E—f—aE-i- —3—1 (C/.LOHX)

- né & 0
—i 8_3,3(CM0Hy)—8_33&(k—0X)(CMOHy)1
(B8b)

Jd Jd
m(CMon)Z [ né— 821+ 31}'E fa(k x)E

e 23 J
+1 n 822"!‘ 33832E +27](7(k X)

P . €23
_I&(k—OX)ZEy_Igs_?,?,(CMOHX)

(B8o)
L(C,u H )=—i[ 2 et 138 E,
d(ko2) oy Mgyt
+i 77§+812_— f&(k X) Ey
+I§—(CM0HX)—H7 (CMoHy)
813 J
£33 (9(k0X)( Mo y) (BSd)

Also, from Eqgs.(A15), (A18), and(A19) in Appendix A, we

have the following linear relations between, andhs, (s
=t,r):

Ao Ao
& 77"'”; € nxt|1- 77"'”; €tny
Cuohtnx=— >
1-| p+tn—| —
7tng) &
(B9a)
2 Mo
(1-&)enxté 7]"’”; €tny
CMOht,n,y: (B9b)
)\ 2
\/1 7;+n— - &
No Ao\ ?
& 77""”; € nxt|1- 77""”; €rny
Cuohy nx= > )
1-{n+tn—| —
ntng) ¢
(B9¢)
2 Mo
(1-8)ernxt§ 77+nF €rny
Cuolrny™ . (B9d)
)\ 2
\/1 77+n—) — &
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