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Compression-shear-induced tilt azimuthal orientation of amphiphilic monolayers at the air-water
interface: A C,,—C,, transition in the flow of a two-dimensional hexatic structure
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Compression-shear-induced tilt azimuthal orientation of amphiphilic monolayer in tilting pHasesdL 5)
at the air-water interface is analyzed as dynamical equilibrium of the elastic distortion of orthogonally hex-
agonal structure of the molecules under compression-induced shear flow. It is shown theoretically that the
compression can induce molecular tilts lying along and/or against the flow direction. All these tilts makeup the
initial random tilt azimuth of the molecular tails along a uniform direction. At a threshold compression speed,
it causes &, — C,,-symmetry transition at the air-water interface. With Maxwell displacement current and
optical second-harmonic generation measurements, the above theoretical results are verified experimentally in
a monolayer of 4-heptyloxy‘4cyanobiphenyl.
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[. INTRODUCTION the tilting phase transition was studied as a distortion of the
orthogonal hexagonal orientation of molecules by a compe-
Monolayers of amphiphilic molecules on a water surfacetition among the entropy of both head position and molecular
exhibit very interesting behaviors as two-dimensional sysaxes orientation distributions, Lenard-Jones potential, and
tems, and the physicochemical property of these monolyerthe work done by surface and bulk pressuf&s]. The
has become a research topic in physics, chemistry, and biolheory predicts a physically reasoning phase portion in a
ogy since the discovery of the technique for the formation ofphase diagram between tilting and untilting phases and
floating monolayers by Langmuiii]. With surface pressure- shows quantitative agreement with the measurement in
area (I-A) measurement, the rich polymorphism and themonolayers ofC;,-C,, acids[7].
phase transitions in monolayers of amphiphilic molecules The discovery of 2D structure ih, andL; phases has
have been recognized from the existence of kinks or plateaustitracted much attention to the classical study of the flow
in their I1-A isotherms. Recently, a variety of experimental behavior of monolayer§l], especially in searching for the
techniques coupled witlhI-A isotherm measurement have coupling between the flow and the structure and the orienta-
been developed for exploring the structure of monolayerstion [8—12. In the classical study of the flow in monolayers,
The equilibrium properties of insoluble monolayers at thea number of surface viscosity measurements have been em-
air-water interface have been studied intensively, and mangloyed, but the effects of flow on the underlying structure of
structures of monolayer phases have been elucidated. Intae monolayers have been overlook&#l However, with the
review paper by Kaganest al, the phase diagrams of fatty development of the direct observation techniques such as
acid monolayers obtained from x-ray diffraction method andBrewster angle microscop{BAM), x-ray diffraction, and
other approaches have been summarized with fiief iso-  other spectroscopic techniques, this situation has been com-
therms[2]. Among the recognized phases, liquid condensegletely improved. Using observation techniques, the cou-
phasesL, and L, are particularly interesting because they pling between an imposed flow and the structure of mono-
happen at the meeting point of two- and three-dimensiondhyers on the water surface can be searched. Fuller’s group
(2D, 3D) systems as well as in solid and liquid crystaC) [8-10], using BAM observation, showed the existence of a
phases: In bothL, and L, phases, the polar heads of am- strong coupling between external flow and the orientational
phiphilic molecules form a distorted hexatic lattice in a man-order of the fatty acid monolayer. By studying the, L,
ner as predicted by the theof$] and shown schematically and S (solid) phases, they argued that the structure of the
in Fig. 1. The long molecular axes of moleculed inandL; monolayers is annealed by a shear flow, but the nature of the
phases are tilting toward a nearest neighfdN) if ¢=0 coupling depends on the phases. That is, dojyand S
[Fig. 1(@], and to a next nearest neighb@INN) if ¢  phases experience flow-induced reorientation in the lattice.
=m/2 [see Fig. 1b)], i.e., the stretching direction of the In more detail, induced reorientation is accompanied by an
hexatic lattice as revealed lately in x-ray diffractida]. appearance of shear bands in the monolayer at an angle of
Here, one must understand that even though the ¢tilt 45° to the flow axis. It was also revealed that sufficient ex-
=m/2 has not happenedy= 7/6 is a potential NNN direc- tensional flow can induce a tilt azimuth aligned perpendicu-
tion (Fig. 1). However, once tilt happens, the distorted lar to the extensional axis. With similar observation tech-
hexatic lattice has only rectangle symmetry. Only two statesique, Schwartz’s groufl1,12 revealed such shear-induced
of ¢=m/2 for NNN phase, an@g=0 for NN phase remain orientations in theO, phase (similar to L, with NNN-
even when the monolayer enters the solid phaseQ) are  azimuthal til) in docosanoic acid monolayers and found a
probable as confirmed in x-ray experim@#t. Very recently, shear-induced molecular precessjad], i.e., a flow-induced
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FIG. 1. () Model structure for untilted orthorhombic phase and its distortion towards a nearest neiighboegarded a& , phase. The
structure ofL; phase is tilted to the next nearest neighdéNN) and has been omitted in the figute) The geometry for a random tilting

domain, where is the compression direction of the monolay&n“,"(;?'\") is one set of NN, NNN)-tilting directions, andﬁL denoted its tilt
azimuthal direction.

alignment of alkyl chains. They then argued that the changeiewing the tilt C4 axis of the hexatic lattice as LC director
in the monolayer structure is consistent with an alignment ofn in an EL-hydrodynamicor viscous stress tensdrl4], the
the degenerate symmetry lines of the underlying moleculaCSTAO is described as a dynamic equilibrium between the
lattice with the flow, and the nature of the alignment is quitehydrodynamic and the statior elasti¢ stresses given by the
different from what is observed in nematic liquid crystals. tilt distortion of the orthogonal hexagonal monolayer struc-
The shear-induced orientation is well known in bulk LC tures. The derived dynamic equation of CSTAO shows a
[13] and can be described by Ericksen-Ledliel) theory  threshold of the compression speed of the molecular area
[14]. However, our understanding on the shear-induced oriv} ., below (above which the initial random tilt distortion
entation in monolayers is limited: EL theory deals only with of azimuth of the long tails of molecules rotates continuously
flow-orientation coupling in nematic LC in which molecules in a direction along or againghorma) the flow, and causes
possess orientatiofirecton ordering. So far there is no ac- a C,— C,,-symmetry transition in a monolayer at the air-
cepted model of hexatic flow that couples with shear-inducegvater interface. Furthermore, this effect is clearly detected in
orientations. How to extend EL theory to the flow of mono-a monolayer of 4-heptyloxy‘4cyanobiphenyl(7OCB) by
layers with 2D hexatic ordering becomes an urgent chaliMaxwell displacement currentMDC) [15] and optical
lenge. second-harmonic generatigBHG) [16] measurement tech-
As a first step, let us study a compression-shear-inducegliques. These techniques allow us to detect spontaneous and
tilt azimuthal orientation(CSTAO) in both L, and L, (in-  nonlinear polarization of monolayers that appear to be phase
cludingO,) phases in a monolayer on the water surface. Thelependent.
important and fundamental approach of our study is that: by The arrangement of this paper is as follows. In Sec. II, we
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ment, electrode 1 is suspended in air and is placed parallel to
the water surface at a distance of 1 mm from the water sur-
face. Electrode 2 is a golden spiral immersed in water. The
two electrodes are connected through an electrometer. Due to
the spontaneous polarizatiéh of the monolayer charg®,

+ is induced on electrode 1, where

P,B
Qi=———~Cs. M

---- ransmitted SH

Here B is the working area of electrode C, is the capaci-
. 77 tance between electrode 1 and the water surfacis, the

distance between electrode 1 and the water surfacepaisd
FIG. 2. Experimental setup for MDC and SHG measurementthe surface potential of water.

The monolayer is described as tze-0 plane and two moving The induced charg®, changes in accordance with the
barriers are described as the two lines +x, on the plane at  grientational motion of the polar molecules on the water sur-
=0. face and the change of surface density of molecules by

monolayer compression. This change of charge generates

describe how to use the MDC-SHG spectroscopy method t@ansient current and is recorded as MO%.is expressed as
detect both the usual 2D-phase transition and the ﬂOWPz= Poﬁ~rﬁ, wheren is a unit vector in thez direction,

induced transition by compression of a monolayer and itghich js normal to the water surfagsee Fig. 1a) and Fig.
deta|leq |mplem¢ntat|on in a 70CB monolayer. In Sec. _“"2]. P, is the spontaneous polarization and is a function of the
we build a'contlnuum theory fqr the 2.D monolayer W'j[h order parameter in the dipolar orientation around the director
tilting-hexatic symmetry. The main task is devoted to derive - . . . .
the elastic stress tensor of distortion in the orthogonal hex™ As P, changes aLong with the orientational motion around
agonal orientation and the number of elastic constants, takingo and the directom, the structural change in monolayers
into account of theCg-tilting symmetry. In particular, the EL  accompanying the orientational change of theomponent
theory and the viscous tensor for 3D LC are reformed into &an be detected by MDC measurement. The detailed formu-
2D representation to solve the monolayer flow-orientatioras for calculation ofP, from MDC can be found in Refs.
problem. In Sec. IV, the solution of compression-shear{17,18.
induced tilt azimuth orientation is extensively discussed in Similarly, as the monolayer symmetry is broken at the
comparison with our experimental finding in the 70CB interface, nonlinear polarization arising from quantum inter-
monolayer as well as those observed by Fuller's grougction between electrons in the molecules and the external
[8-10] and Schwartz's groupll,17. Section V gives the electric field is induced in monolayers by laser irradiation.
conclusion. Second harmonicéSH) is thus generated from monolayers
at the water surface. The induced nonlinear polarizalﬁHn

Il. DETECTION OF C.,—C,, TRANSITION BY MDC-sHG ~ d€Pends on the monolayer structure. For example, for mono-
MEASUREMENT IayeE with unlaxLaICoc symmetry that orients its director in
the m direction, PN is expressed &4 6]

Different from the BAM observation and the x-ray dif-
fraction technique, MDC-SHG spectroscopy can provide the_ oL L .. .
information on time dependent and continuous phase transP™=S14(E-m)(EX M) +[(Sa3— S15— S31) (E- M)+ s5,E2]m
tion process in a monolayer under compression. As its name e o
implies, the measurement setup is composed of two systems, ~ +Sis(E-M)E, 2
one MDC measurement system and a SHG measurement
system. In this section, the two systems as well as the prin- - - .
ciple and the method for detecting phase transition in mono\—’\’herfEE Is the electric field of the source wave asfl bemg
layers are summarized. The detailed geometric and physic‘I:@LImCtlons of the o'rder pflrameters in the molecular orienta-
parameters for the whole system are given in Sec. IV. tion around the directom are the components of second-

Figure 2 shows a schematic diagram of our composedrder susceptibilit(SOS tensor of monolayers. SinceN
MDC-SHG measurement system that is attached to a Langraries with the monolayer structure, the structural change
muir trough: A two-electrode arrangemef#lectrode area can be detected sensitively by SHG. For the SHG measure-
45.4 cnf) is used to measure MDC in short circuit and ament, the optical arrangement is also shown in the Fig. 2,
Q-switched Nd:YAG (yttrium aluminum garnetlaser (Big ~ where 6;, and 6, are the incident and the output angles,
Sky Laser Tech. Inc., maximum power 50 mJ, wavelengttrespectively. With polarizersR;,P,,P3), s andp waves of
1.064 um, pulse duration<7 ns, pulse rate<20 Hz, laser incident fundamental light and output SH light are separated.
beam spot size 28 mihis used as a source of fundamental In the present MDC-SHG measurement, monolayers of
wave for SHG measurement. Briefly, in the MDC measure-7OCB are compressed from both sides by moving two bar-
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] and s-s SH signals are not generated. In contrast, MDC is
nearly constant. This situation changes with further mono-
layer compression as shown in regio, 2vhere a strong-s
— SHG signal appears suddenly at the onset the 36 A

= S e tlo 1 earlier than that of the so-called..—C,, transition to be

s 0. L T discussed later. On the other hand, in the #xA<44 A
§§ [, A2 T egenta ] region 2a, the generation of SH is similar to that appeared in
3% 2 "-’§ ".'r"“ﬁ: TTTss + region 1, whergp-p ands-p SH signals are generatédlso
22 0'm,.'€ P ] reported in Fig. 1, Refl40], where MDC-SHG experiment
2 600F AL — using 532 nm wavelength laser beam is shpwrhereag-s
§

22100' - <41 A? region D, while the measured MDC shows a very
gg &l ] smooth change. Sudden appearance-efSHG signal at the
23 same point is also detected, though not very strong. These

I characteristic behaviors in SHG and MDCs indicate that rich
mosaic domains appearing in region 1 and further in region

oo

Compression speed -

£ 10 mow/min (5.6A%minfmolecule) 1 2a, where the tilt azimuths are in random, though molecules
gg 2 e . are oriented in tilted hexatic structures in each domain, i.e.,
aE 4 I macroscopically the surface is still @, symmetry with the
2 60 802 100 surface normah as theC.. axis. However, such a situation is
Molecular Surface Area (A°) broken wherA<41 A?, and in region ®, C.,—C,, transi-

tion of the interface symmetry happens. Experimentally, we
surement of MDC, SHG, anHl with change of molecular aroa may consider that the amphiphilic layers remain as monolay-

From the change dfl-A the diagram can be distinguished as three 'S below the critical molecular surface area of 421_%' .
regions as shown in the figure: 1 fér>44 A2, 2 for 36 <A  cause changes of surface pressure and MDC at this critical

<44 R2, and 3 forA<36 A2, However, with MDC-SHG measure- molecular area are smooth. If the layers lose the monolayer
ment, regions 1 and 2 can be further divided as 160 A2, 1b  Structure, both MDC and surface pressure should change
for 44 A2<A<60 A2, 2a for 41 R<A<44 A2, and 2b for abruptly. However, such changes are not seen in the figure.
36 A2<A<41 A2 The possible phase transitions in the corre-In the following, we focus our attention on this phase tran-
sponding regions are discussed in the text. The dashed lines are tfion detected by SHG and MDC, and will discuss it in
measured results in the compression process different from that idssociation with the CSTAO.

measuring the solid lines. Both show a good repetition of the As mentioned earlier, nonlinear po|arizati§)(ﬁ\‘ induced
present experimental approach. by laser irradiation can be expressed by B).[16]. Origi-
nally, the derivation of this equation is based on the assump-
tion that the macroscopic forms of thg, orientation still
holds for the present hexatic symmetry because the SOS ten-
sor of Cg symmetry is the same as that@f symmetry[19].

FIG. 3. A typical example for 7OCB monolayer for the mea-

riers at a speed &f ;=10 mm/min along the& direction, and
with a Wilhelmy plate, MDC-SHG signals together with the
IT-A isotherm are recorded.

Figure 3 shows typical results of MDC-SHG measure- : L :
ment in a 70CB monolayer, the surface pressure-moleculasrh With Eg. (2) and of the geometry of the incident light as

. own in Fig. 2, the expression of nonlinear polarization for
area diagraniI-A of 7OCB. From the surface pressure area g P P

isotherm, the molecular area is tentatively divided into threegeneratlon of the reflectesls SHG wave from each domain

) L . can be obtained as
regions. The surface pressure is immeasurably low in the

region of molecular surface area greater than 44r&gion N _pBN S_g2 e .
1), it gradually increases with a slope in the region of Ps-s=P"-s=E{[(Ssg~ S15~ Sap)sim ¢ cos’y

36 A2<A<44 A? (region 2, and finally it saturates at a + (Sa1+ S15)SiN 6 COSY]. 3
surface pressure of 5.8 mN/fregion 3. But, judging from

the characteristic behaviors of MDC and SHGs observed i, the derivation of Eq(3), it is assumed tha = Es with
regions land?2,itis po;@ulated th/at the monola)_/er undergoess:(l’oyo) andm= (sin@cosy,sindsiny,cosf) as in Eq.
a series of phase transitiofts, —L,—L,—U (untilt phase 2 H is the il le ofC i f h ;

with increasing area compression. In more detail, at the be?- ere,0is t _e uilt ang e 0fCe axism from the surface
ginning of the monolayer compression, MDC is very small,normain, andy is the azimuthal angle ah from the com-

but nonzero, in the region greater than 66 @egion ]_a), pression directiorx (See Flg 2 In experiment, the gener-
whereas it is generated in the region between 44aéd ated SH depends on the laser radiated area, i.e., the average
60 A2 (region 1b). These results indicate that the monolayerof PsN—s over domains in the laser irradiated area. This is the
which initially consists of rich mosaic domains with polar- main contrlt?\lutlon to the generation of SH. It is found that,
ization in thez direction are gradually packed up by mono- obviously, Py (#0 occurs only for(cosy) and(cos’y) are

layer compression in the region 1. As MDC is generatechonvanishing, wherég---) denotes the average over do-
from the change of induced char@y given by Eq.(1) in  mains in the laser irradiated area. Therefore, the appearance
association with the orientational change of the moleculespf s-s SHG signal reveals the tilt azimuth orientation either
MDC gives a peak in the vicinity of 504 in the region along or against the flow, i.e., the existence o€a—C,,
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transmon of the interface. Similarly, nonlinear polarization refers to the tilting direction ot, or L, monolayey but

¢ for the generation of thp-s SHG can be calculated, takes no account of the hexagonal lattice structure of the
and the sudden appearanceped SH signals at the transition monolayer inL, andL, phases. Therefore, in the following
point can be explained by the san®&.—C,, transition, two sections, a brief description of the EL theory and an
though it is not so clearly observed in Fig. 3. The differentextension to make it to satisfy the lattice structures are given.
patterns ofP}y_ and P} can be understood from the ex- In sequent subsections, the extended EL theory is used to

pression ofP,_ in a domain a$16] analyze the discussed problems.
P o=PN-S=EJ[(Sz3—S15— S31)(sin# cosbysiny A. EL theory
+0S6 Sin ;) %+ S41]sin 6 cOsY. (4) Assuming incompressible LC fluid, the usual Ericksen-

Leslie continuum theory for 3D bulk LC can be expressed by

Equation(4) is obtained from Eq(2) by assuming that the following two dynamical equatiorjd4]:

E=E,pi, With p;,=(0,c0s,,Sin6,), whered, is the inci- do

dent angle as defined above. Equatidnreveals again that pazf+ﬁ- t, (5)
PN <#0 happens only when(cosy), {(cosy), and

<S|n yCOSy) are nonvanishing. This is different fromy_

The expression is more involved and depends on more pa- d? - 2 e

rameters, such a4, , etc. Therefore, as a signal to detect the Iﬁm_Gﬂﬁ'V " ©®

phase transition in a monolayd®?  is more sensitive and
not be screened by the incident geometry. The reflected i

tensity ofp-s is obviously lower than that od-s as shown in is the density of |nert|a moment associated with the rotation
Fig. 3 and may be due to the scratching off by the incident

geometry. of the directorm, v is the velocity field.f is the density of

According to the mentioned analysis, one can conclud&ody force,'is the stress tensor, aélis the director body
that the SHG measurement shown in F|g 3 does reveal @rce induced by external fldd@UCh as the electric field
compression-shear-induced tilted azimuth orientatio®©,A  used in LC display devidewhile§ as well as are the body
—C,, transition occurs in the 70CB monolayer. Further-force and the surface stress of director, respectively, relating
more, this transition is also confirmed by the smooth changéo the Ossen-Zcher-Frank-free enerdy [31]. In details, the
of MDC observed at the onset of this transition in regidn 2 free energyF, the most important formula in LC, serves to
MDC reveals the phase transition accompanying the changdescribe the elastic energy for deformed director pattern and
of the z component of the molecular dipole change and mustan be written as
be independent of the azimuthal orientation chajsgpe Eq.

(D]

r1/'vherep is the density of the LGassumed to be constank

1 = -, 1 - e )
F=§kll(Vm) +§k22(mV><m—k2)
lll. THE GENERALIZED EL THEORY

In order to understand the compression-induced orienta- + §k33(m><V><m)2, ™
tion transition, it is necssesary to analyze the 2D flow and its
effect on the orientation. The fluid dynamical property of
monolayer is still a difficult subjecf20]. In both classical
analysis [21,22 and modern studie$11,12,23-28 the i
monolayer flow is modeled as a flow resistance with a 2Dh
surface viscosityus= u,h, whereu, is the equivalent 3D

where kq1, Ky, K33, and k, are Frank-elastic constants,
among whichk, describes the chirality of the L&,>0 for
ight handed cholesteric LGchLC) and k,<0 for left
anded chLC, an#t,=0 for achiral NLC. Thus,

bulk shear viscosity anth is the layer thicknesg¢see, for . . e
example, Ref[26]). Obviously, such a treatment does not g= ym—B-Vm—aF/dm+ (uy— ws)M+ (s — pwe)m-d,
satisfy the present case where the monolayer is ir_ther (8)
L, phase with tilting-hexatic symmetry. Especially, for the

discussion of the effect of flow-induced tilt azimuth orienta- 7= Bm+dF/a(Vm), 9

tion, such as experiments by Fuller and Schwartz's groups

[8—12] as well as our observation in the 70CB monolayer

described in Sec. Il, the anisotropy of the coupling betweeVherex , M, andd will be described later in details: and

flow and tilting must be taken into account. The first successﬁ are arbitrary scale and vector constants, and they can be
ful treatment of an anisotropic flow was the dynamicaldetermined by given boundary conditions and the relation
theory of nematic LGNLC) developed by Ericksef29]and m.m=1.

Leslie [30]. As mentioned in Sec. |, the EL theory of LC  Equation (5) corresponds to the generalized Navier-
allows for anisotropic coupling between the flow anEI theStokeS equation, while EqG) Specifies the Coup"ng be-
orientation of the LC directom (in the present studyn  tween the flow and the director rotation.
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For the present investigation, the most important quantitytrough along the direction[Fig. 2(b)]. Substitution ofp into
is the stress tensof which can be separated into a static Eq. (17) gives the velocity field
(i.e., elasti¢ part and a hydrodynamig.e., viscou$ part as

- B VX ol = 19
tljztﬂ+t|’] , (10) U(X,t)— Vot_XO! _(vxvvy)l ( )
where where V, is the speed of the barriers mentioned earlier in
Sec. Il and=x, (with xo>0) are the initial positions of the
o JF two barriers from the central positiox€0) of the rectan-
ti=—pd&— ———my; (12) ; :
l Uoamy el gular shaped Langmuir trough at tinte=0. To focus our
attention on the orientation mechanism, we consider the case
ti,j = MMy GieyMim; + oMM+ amiM; + 40;; in which Fhe velocity of the monolayer is dominant, where
the coupling to the subphaswatep has been neglected as
+ psmmydy + pemmydy; . (12 treated in Ref[12]. From Eq.(19) one can prove that for

) uniform molecular area in the monolayer, the area at tilse
In Egs.(10—(12), p is the bulk pressurey,;— ug are the given by

coefficients of viscosity, named Leslie coefficients, ahd

andw;; are the symmetric and asymmetric part\s, re- A(t)=A(0)(1—-Vot/Xo), (20
spectively, that is, the compressed speed
0ij =y Wiy (13 Vac=[A(0)—A(t)J/t=A(0)Vo/xo 21)
d; :l(vi o), (14) is constant. In the present exper_ime_nt on the _7OCB mono-
2 0T layer,Vac=5.6 A2/min. The velocity field given in Eq(19)

has a nonvanishing compression shear
1
Wijzi(vi,j_vj,i)- (15 dy1= v/ Ix=—VaclA(t). (22)

Other tensor componentd;; as well asw;;, are zerg[see
Egs. (14) and (15)]. Obviously,d;; increases as molecular

d area compression increases. This is the reason why CSTAO
M= —m—W-m. (16)  can happen in the, andL; phases, the region 2 in Fig. 3.

dt The reconstruction of a 2D Frank-elastic energy is quite a
task, though it can be carried out by a straight formed calcu-
lation from the 3DF [32,33. Fortunately, the spatially uni-
form dy; and A(t) shown in Egs.(20) and (22) offer the

B. Fluid field of CSTAO possibility that the director fielth can also be assumed to be
The generalization of the EL theory to deal with the spatially uniform in a domain. In other words, in the present
CSTAO problem requires two stepét) A straightforward  study the detailed form of the 2D-Frank-free energy is tem-
derivation for the change of 3D quantities and 3D equationgorally not involved. In the present special case, terms relat-
into their corresponding 2D form$2) Reconstruction of the ing to F in Egs. (8)—(11) are confined only to the elastic
quantities and formulas to fulfill the novel symmetry and energy of the distorted hexatic-tilting, (see below for de-
structures. As a first example, we consider the velocity fieldtails). That is, one should note that the Frank eneFgis
In Sec. IIIA, we have assumegl=const for 3D LC. The only a part of the elastic energy to describe the deformation
corresponding equation of conservation of mass is given byf the tilt directorm. In order to reform EL theory to fulfill
p the L, andL, phases, the elastic energy of the monolayers
—p+V-(pv)=0. (17)  should include deformation energy of the hexatic lattice
ot structure of the polar heads of molecules. Thus, the static

) stress tensor given in E@GL1) has to be extended to involve
However, in the case of CSTAO the monolayer cannot bgpe part induced by the lattice deformation as

assumed as incompressible, i@# const, apparently, it has

From Eq.(15), the vectorM in Eq. (8) is defined as

With these, the equations of the EL theory are complete.

a 2D-density form th=—1ILj—oy, (23
~ Nmg (19) where the curvature stress has been discarded on account of
p= 2Xo(t)L’ the reasons mentioned earligl;; is the 2D surface stress to

replace the original 3D bulk pressupss;;, and the novel
whereN is the total number of molecules in the monolayer, stress tensotr;; represents the elastic stress tensor of the
Mg is the molecular mass,Xg(t) is the distance between hexagonal lattice during the tilting process, i.e., we have re-
two barriers at time, andL is the width of the Langmuir ferred the untilting phasi=ig. 1(a)] as the equilibrium lattice
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state. One must note that in E@3) the 2DII;; cannot be 1
written as 2D surface pressules;; because the considered Fe=7 Cijii Vij Vi » (24)
domains are now in the tilting, or L; phases and must be

treated as anisotropic surface. With our experimental 9€0Myherec;;, are the elastic constant tensors characterized by
etry, generally, we havél,;#II, and I1,=0 [see Fig. the symmetry of the crystal discussed in Ra®] and v is
2(b)]. The reason for doing this can be clearly seen from Figg finite strain tensor. According to solid mechanjeg], a
1: Tilting will induce stretching deformation of the hexago- finjte strain is defined as follows: When a material point in
nal lattice. Calculation of the elastic energy of monolayers in _ I . . > o
L, andL}, phases has been a recent subject for siay In f[he eqU|I_|br|um_ positiora (r~ in our casg |s_sh|fted tox (r

2 2P ; ) ) in our discussionas a result of deformation, the displace-
these studies, thie, andL; phases are treated as disordered, ant is written as
solids and a general form of the free energy for tilteg,
symmetry is established. It involves a set of order parameters
where the coupling between the elastic 2D-lattice system of
head groups and the rotational ordering of tails has been -, _ ) . -
described in terms of microscopic translational-rotational€rea is the Eulerian coordinate of the material point and
coupling parameters. In other words, in their theory, the oriiS the Lagrangian one. The straif) is then defined by
entational and the 2D-lattice-order parameters are treated in-
dependently and relaxed in coupling. However, as com-
mented in Ref.[35] by Sirota, in the condensed phases,
where the long axes are like closely packed cylinders, tilting?d can be found as
of the long axis will determine the distortion completely.
This distortion happens in a way that causes the stretching of - :E
the projected lattice cell along the tilting direction with a 2
ratio of 1/cosd, whered is the tilting angle from the normal
direction. For example, as illustrated in Figall on account If the third term in Eq.(27) is neglected, it becomes a linear
of the stretching induced by tilting, the six NN positions relation with deformation and will be renamed as
indicated by 1, 2, 3.. ., and 6 inuntilting phase shift to the

U=x-a. (25)

dXidXi_daidaiZZVijdaidaj, (26)

03, 0aj 03, &al

. (27)

corresponding six positions indicated by; 2, 3',..., and 1 %+ Iu; 28)
6’ in the tilting phase. In other words, the position expressed Sij 21 9x ax;)”
as

On account of the tensor symmetry f=s;; , Eq.(24) can
n—1 be rewritten as the abbreviation form

SRt

(n=12,...,6)

,asin

n—1
aco Tw—rﬁ

Fe S,, (29

:ECMVSM

, , ) . , ) where the simpler matrix expression by index abbreviation is
in xy coordinate with origin a0, 0, 0 in the U-phase shifts | .<aq in a manner as followd 9]: Cijq—C,., by (ij)—u
to with 111, 222, 33-3, 23-4, 3155 and 1246,
while s;;—s, for i=j (u=1-3), and %;;—s, for i#]
aco{Ew— ¢> / cosé.asin Ew—(b) 0) (n=4-6) with the same index abbreviation. Now let us
3 ' 3 ' turn to practical computation for the tilting deformation as
shown in Fig. 1b), where &,y) is the laboratory coordinate
(h=12,...,6) systemx is in the compression direction of the monolayer as
e shown in Fig.MZ, M,yM) is the frame fixed in the discussed
. I . L domain withx™ direction parallel to NN one at phasem,
in thet phase if tlltlng.occurg in the NN prd|rect!on, w_here is the tilt azimuthal direction for the discussed domain, and
a=2d,/+/3. As mentioned in Sec. I, Sirota’s viewpoint has the tilted angle ig. As the geometry shown in Fig(t), we
beep used as an approach to ca[qulatg successfu_lly the phagehsider the six NN points of the origin at the water’ surface
portion betweenU-t phase transition in thél-A diagram i their positions in the domain system @phase, stated
[5,6]. In the following section, the same approach will be;, the preceding subsection, as
used to calculate the elastic stress tensor ’
- 2 - d
C. Stress tensoro da"®= ( ﬁdmoao) , daM@)= ( \/—%,d0,0> )

Before going into practical calculation let us first trace
back to the classical elastic mechanics of crysfa 22: q
The elastic energy of distorted crystal is written in a tensorial dé“"(3):( - —O,do,O) o (30)
summation as 3
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We omit the termslaM™ (n=4,5,6). They can be obtained

o5t

n—1
3

dg‘M(n)zz_do

V3

n—1
3

ks

,0>, (31
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With the Sirota’s approach, the tilting also causes a com-
pression of the thickness of the monolayer, a change figm
atu phase to théycosé at thet phase. Therefore, we have to
extend the above calculation to take into account the defor-
mation in thez dimension. The positions of the NN points at
air-monolayer interface of the monolayer in thghase are
given by

forn=4, 5, and 6. They are not in the calculation since they

are symmetric with cases=1, 2, and 3, respectively. In the
tilting geometry given in Fig. (), da"™ changes to
dxM™ terms already calculated in R¢8]. |dx™(™|2 can be
obtained exactly as

|dxM M| 2= g xMM gy MM

Substitution of Eqs.(30)—(32) into Egs. (26)—(28) for n
=1, 2, and 3, gives the following equations :

2d,

2
V3 cosa)

1—sin2(n;—177— qﬁ)sinza

(32

2 2 2
2d, 2d, 2
1-sirt¢ sirfe]—| — =25M(—d ) ,
(ﬁcosf))[ oemel (@) i
(33
2 2
1-sir?| - — ¢ |sirff|— | —
( V3 cosﬁ) 3 ¢ V3
2 2
do do
=2V —| +4sM —|+2sWd3, 34
11( \/5) 12 \/5 22 ( )
2 2
2d 2 2d
( 0 ) 1—sin2(—w—¢>sin20}—(—o)
J3 cosf 3 J3
2 2
d d
=23'f'1(—\/—%) +4s§"2(—\/—% +2shd2, (35)
where sl'\f',, is the tilt-induced strain tensor in the domain

frame. In fact, the calculation with the NN points of
n=4, 5, and 6 gives the same equations, E§8)—(35).
Solving Egs.(33)—(35) lead to

sh= % tarf 6 cog ¢,
(36)

1
SQ"z:E tar? 6 sin ¢ cosé,

1
sg"2=§ tarf 6 sir .

- 2dg n—1 2dg n—1
da¥W=|—= cos m—— sin ——m,h
a'top \/§ 3 \E 3 0
(37)
It can be rewitten as
dafp{V =00 +da(", (38)

where 00 is the position (0,() of the origin 0 on the top
surface andia¥(™ is defined at the bottom as shown in Eq.
(31). After tilting, dafs{" is deformed into

AR = G 4 M0

(39

where 00! is the deformed position of ‘0[Fig. 1(b)] and
dxM(™ s given by in Eq.(32). Thus, we have

|dafey”|?=hg+[da"(™]? (40
and
|dxpatV|2=h3+200'" dxMO 4 [dxM™M[2 (42)
From the geometry shown in Fig(ld), we have
. 4hyd
200" dxM®="—"22 tang cos, (42)
V3

. 2hod
zogt.dXM@):% tand(cosp+ 3 sing), (43)

- 2hyd
200t-dx“"(3)=%tanﬁ(\/3_sin¢—cos¢). (44)

Together with Egs(30) and (32), substitution of Egs.
(37), (40)—(44) into Egs.(26) and (28), respectively, gives
the novel equations fan=1, 2, 3 as

2
4hyd 2d
J‘%O tané cos¢+ ﬁ—oe) (1—sirP ¢ sir?6)
COS
2d,)\ 2 2d,\ 2dgho
_<ﬁ) zzsgﬂl(ﬁ +25g"3h(2)+432"3—\/§ , (45
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2hydy - 2dy )"
Y tan6(cose+ 3 S'”¢)+(\/§cosﬁ)
. . 2dg\ 2
X 1_sm2(§—¢)sw?0)—(ﬁ>

2 2
d d
=2$’1"1<\/—%) +4s§"2(\/—% +2s)hd3+ 2shh3
+4s§”3id0h0+4sg”3doho (46)
\/§ 1
2
2hydg ) 2d,
tané(\/3 sing—cosep)+| ———
5 (3 sing—cos¢) ﬁcosg)
2 2d,y)\?
X 1—sin2(?w—¢)sin26 _<T3O)
—d,\? —dp\?
:25'141(?0) +4S¥Z(WO +2sMd2+2sMh32
—dohg
+4s NG )+4sg"3doho. (47)

Substitution of Eq(36) into Eqgs.(45)—(47) lead to solutions:

v 1
S15=5 tand cos¢,

M 1 :
Sy3= > tané sin ¢, (48

sye=0.

Regardless of lengthy tedious calculations, the final exa

results ofsi'\j’I given by Egs.(36) and (48) are simple and
beautiful. With Eq.(29), the results ors!{ given by Eq.(48),
and the consideration of thg; symmetry of the untilt phase,
the elastic energy of the, and theL, phases is then given
by

_ 2,2
Fe=C11(ST+55)/24C181S,+ C13(S1S3+ S2S3)

+Cyu(S5+S2)/2+ CoeSel 2+ Caa55, (49)

where thec,,,’s are some nonzero components of the elasti

constant matrix of hexagonal crystal witig=(c11—C19)/2
(see Table 9 of Ref{19]), ands;=s}|, s,=Syy, S3=S3s,
S, =2S%, S5=2S)%, Sg=2s)5. From Eq.(49), the nonzero

PHYSICAL REVIEW E 67, 041711 (2003

o= 0F ¢l 9s;=tarff(cy; coSp+Cy, SirP )12,

o= 0F ¢l ds,=tarf0(cy; Sifp+cy1, cOS ¢)/2,

M 1 H
oy=20F o/ 9sg= 5 (Cu- citarfdsin 2¢,

o= 20F o195, =2C44 tand cose,

o= 20F o1 355 =2C44 tand sin ¢,

1
O'g/lsz &Fe/&SQ’: §C13 tar120 (50)

With the tensor transformatiomr;; = RikR”om (where
Ri1=c0sB, Ri,=—Ry;=sinB, Ry,,=c0sB, Rzz=1, others
are zero, angB is the angle betweer andx™ [Fig. 1(b)]),
the oy;’s in the laboratory system are given by

1
011,277 5 [ K+ 11(COS 2 cOS 28+ 2 sin 2 sin 2B)tart e,

1
1= 021=§,u[2 sin 2¢ cos 28— cos 2 sin 2B ]tar? 6,

013= 2C44 COY ¢ — B)tand,

0237 2C44 SIN(H— B)tand,

1
0'3325013 tar'|20, (51)

whereK=(cq;+¢12)/2, u=(cq;—C1,)/2 are the planghy-
drostatig compression modulus and shear modulus, respec-
Cﬁvely, in a manner as predicted in the classical elasticity
theory: The elastic properties of hexagonal crystal are isotro-
pic in the plane perpendicular to tl&; axis[22]. In other
words, the elastic stress is completely determined by the do-
main orientation(i.e., 8), the tilt azimuth¢, and the tiltd

(or molecular ared becauseA=A,/cosf [2,5,6,23 at L,
andL, phases, wherd, is the molecular area at untilting
phase¢. Such an apparent expression, Egl), is first ob-
tained, though we note that similar calculation has been car-
ried out in some recent studies by Swan$a4]. If the de-
formation accompanies a change in the temperature, one has
Cto add a thermal expansion stress tensad;;(T—T,) to

aij, where the temperaturg, is defined in the untilting
phasesee Ref[22], p. 14. The complete form of Eq23) is
then given by

elements of the stress tensor in the domain system are given

by

tﬂ:_nij_aij(T_To)_Uij. (52)
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IV. FLOW-INDUCED ORIENTATION

Now we come to calculate the hydrodynamic stress in-

duced byd;; given in Eq.(22). As described in Ref23], the

PHYSICAL REVIEW E 67, 041711 (2003

the hydrodynamic strest.';‘1 and the static strest.% . To fur-
ther examine the prediction, we first calculatgEq. (12)], a

general form of tensor combined by the direator the flow

results of x-ray diffraction experiments agree with a cylindertensord, and the transformed vectdd. The last termM

tilt packing model(i.e., cosf=Ay/A) through L, and L}

phases. Similarly, the 2D flow monolayer as well as the latunder proper orthogonal transformation. In the present case

defined in Eq(16), is to replacedm/dt as a tensor invariant

tice reorientation could be completely determined by theof W=0. M=dnmdt. Eq. (53) now yields:

change of molecular tilt and azimuthe., theCq axism). In

other words, the hydrodynamic stress tensor of EL theory

[29,30, Eq.(12) is still valid if we consider theCg axism as

director. Assuming that the NN direction of the discussed

domain deviates by an ange from the x direction then in
laboratory system th€g4 axis m can be described d§ig.

1(b)]

m=(cos ¢— B)sin@,sin(¢— B)sin6,cosd),  (53)

where ¢ is either zerdNN) or /2 (NNN) due to the strong

>

. dm , . ag
M= E—(sm(¢—,8)sm 0,—cog ¢— B)sin 0,0)a

+(coq ¢— B)cosh,sin(¢— B)coss, —sin 9)% ,
(58)

whered#/dt is given by Eq.(54). In other words, among

terms included irt{;, only B(t) remains unknown. The dy-

coupling between the tilt azimuth and the orientation of thenamical equilibrium equation, E457), will be used to de-
local pseudohexagonal lattice, the effect of lock orientatiorf€rmine it.

[1,3,4,8—12 Both # and B change with time represent the

With Egs.(22), (53), and(58), Eq.(12) gives the apparent

orientational effect coming from compression-shear procesxpression oti'j as a function ofp, B, 6, and,B. Similarly,

Apparently, 6(t) is given by =arccogAy/A(t)) as has
been indicated. In addition, with Eq$20)—(22), one can
have a relation for the shear fiety

de .
L 0=d11 coté.

dt 69

On the other hand, in previous studies, theoretical study
on B(t) lacks clear directiof8—12], because its change may

substitution of Eq(51) into Eq. (52) yields also an expres-
sion oft?j in terms of functionsp, B, 6, anddg/dt. The two
calculations are lengthy. The solution of E7) for ij
=11,22, and 12, respectively, are

[ w1 Sin'0cos'(p— B) + (ot p3)cos 0 cOS(bp— ) + g
+ (st pe)Sir 0 cos(¢— B)]dy;

- in rotati - . | dB
be either due to the domain rotation or to the reconstruction +(,u2+,u3)sm20cos{¢—,8)sm(d>—,8)a+H‘1)1

of the molecular lattices. In what follows, we try to provide

a theoretical treatment for the problem. Firstly, we consider

the left side of the 2D Navier-Stokes equation, Eg). With
continuity equation, Eq(17), Eq. (5) may be written a$22]

_2 - +V-(pvv 55
e Gl “(pvv). (55
With Egs. (18) and(19), together withXy(t) =Xg—wv,t (the
position of one barrigr Eq. (55) gives

dv

In our experimentm is assumed to be homogeneous in do-

mains. Besides, there is no other body forces, feD.
Under these conditions, for our experiment, Es).leads to

di(tf;+13)=0, (57)

1
=1+ ayy(T—To) + 5 tarf 6 K + w(cos 2p cos 28

+2sin2¢sin28)], (i,j=11), (59

[u1Sin* 6 coS(p— B)SIP(p— )+ (pp+ p3)
X oS 0 SinF(p— B)]d11— (o + p3)SinP cog ¢p— B)
d
><sin<¢—ﬂ>d—f+r182

1
=Tt az(T-To)+ 5 tar? [ K — u(cos 24 cos 28

+2sin2¢4sin28)], (i,j=22), (60)

[ w1 Sin'0 cos (p— B)sin(p— B) + (o + ) COS O SIN( b
—B)cod ¢— B) + ug SiPf cog ¢— B)sin( ¢— B)]1d1y

a result that satisfies the 2D Navier-Stokes equation. This

provides evidence for the prediction given in Sec. | that the
CSTAO is described as the dynamical equilibrium between

d
SO 13 S ( G )~ 03 b B)] g
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1 domain orientation will be either parallel or perpendicular to
= E,utanza[z €0Ss 28 sin 2¢p— sin 23 cos 2], the flow direction. Such consideration was also invoked by
Fuller's group, e.g., they argued that “because of the sym-
metry of the four-roll mill flow, any flow-induced orienta-
(ij=12). (61) tions must appear at 0° or 90° relative to the fI_ow directioq”
[9]. The main progress of the present theory is the descrip-
1‘[‘1)1 and 1‘[82 are integral constants, their physical meaningtion of how the orientation can occur. For domainsLof
will be given later. Here, in the derivation of E(1), taking  phase wheren tilts along the NN directiotii.e., $=0), with
account of the geometry of our experiment, we have invokedome algebraic transformation, the above three equations to-
I1,,=0. This assumption implies that; due to symmetry, thegether with Eq.(22) yield

1K tarf 09— Vac cos6[ uy Sin*0 cogB+ (ump+ 3)COS 0+ g+ (us+ ug)Sirtd cosB], (62

—7170_ _ _
=11~ a(T-To)~ 5 SA

d
AIT=ATI°—Aa(T—Ty) — u tarf0 cos 28— (uy+ p3)Sirfd sin Zﬁd—f

- % cosO[{ St 0 coS B+ (up+ w3)C0Z0}Cc0S 28+ wy+ (us+ we)Sin?d cosB], (63)
0
Vac cosé 4 . )
ap | M tanz0+(A—){,u1 sin*0 co€ B+ (up+ w3)COL O+ ug SirF 6} |sin 28
—= ° _ , (64)
dt [(12— pa) + (ma+ pg)cos 28]sir’e

wherell=(I1,;,+11,,)/2, All=11,,—11,, are the isotropic bers of each group have the same symmetry. This can be
part and the anisotropic part of;; . These forl1%= %(H‘l’1 used as a check for the above derivation. It is interesting to
+113,), a=%(an+ayy), Aa=a;—az. As Vac—0, 6  note thatATI-ATI° and II-I1° do not vanish even in the
—0, Egs.(62) and(63) lead tolI=T1° andAII=AII® i.e., untilted phase §=0) on account of the contribution of com-
I1° and ATI? are the isotropic and the anisotropic parts ofpression sheaW,c#0. In physics, this is true, because
IT;; at the equilibrium untilting phase, i.e., tf&phase. In  V,c#0 means the monolayers are not in real isothermal
Ref. [4], the observation by x-ray diffraction experiment, transition. Equatior(64) shows the most important conclu-
ATI? is also nonzero since in the,— S transition the tilt  sion, that is,3—0, 7 or = 7/2 are two possible stable states
angle tends to become zero, but the head groups remain arn account ofdg/dt=0 in both cases. This confirms the
ranged on the distorted hexagonal lattice. From E@.and  finding by Fuller's groud8-12: the domain tilt will orient
(63), one finds thatll,«,K appear in one equation and either along or against the flow direction, or normal to the
AIl,Aa,u in another. This comes from the fact that mem-flow direction. Moreover, Eq(64) can be rewritten as

Vc cosé
dsir’g A,

dt [(p2— p3) + (po+ ps)cos 28sin 6

wtarf 6+

){,ul sin*0 co€ B+ (up+ w3)COSL O+ ug SirF o} |sir? 28

(65

Generally, we have u; siff0coSB+(uy+ uz)CoSo+ ugSif0<0 and  (up— u3) + (up+ w3)cos B<0 are held [for
N-(p-methoxybenzylidenep’-buthylaniline(MBBA), u,= —77.5, u3= — 1.2, u1=6.5, ug= — 34.4 CPH36]]. From Eq.(65),
we find that the interesting result that there exists a threshold of compression shear

_AOIU’ S|n20

*~(NN)=
actNN) coS Oy Sin*0 cogB+ (up+ u3)COS O+ ug sin20]>

0. (66)
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Below the threshold[V,c<Vac(NN)], one finds that fined and reversible. This explains qualitatively the observa-
d sir?B/dt<0, i.e., B is monotonously decreasing to 0 or in- tion reported by Fuller’s group8—12. Despite of the fact
creasing torr. This means that the flow-induced orientation that the fluid fields of our simple compression are different
starts from the very small compression shear inlth@hase.  from those generated by the four-roll midee, e.g., Fig. 2 in
Therefore’ on account O-t/: B, a Steady Compression can Ref. [9]), the flows of the latter at the “shear bands” with
induce nonvanishing cos’y) and { cosy) in Eq. (3). This ~ +45° tox andy axes are nearly the same as ours. Therefore,
prediction is well confirmed by our SHG measurement in thethe above analysis satisfies qualitatively in these regions,
70CB monolayer. We detected an increadiggSHG signal  Where the domain distortion df, phase was found to be
as the molecular area begins to become less than2,42ds_\, reverSible, and the initial domain pattern could be apprOXi'
the appearance ofla, phase transition. Thie_ curve given mately restored during a reversal of the flow directibiy. 4

on the top of Fig. 3 shows nonmonotonous increase with thé Ref.[9]). The behavior of thé.; phase will be shown to
compression. This is also in good agreement with the thedbe different from that ofL, phase. Puttingp= /2 [i.e.,
retical prediction. In Eq(3), the formula OfPsN—S! the terms  NNN tilt, Fig. 1(b)],- the calculatiop similar to the derivation

( cosy) and( cos'y) increase with the flow-induced orienta- Of Egs.(62—(64) gives the following relations:

tion, however, the coefficients sihand siffé decrease with

the compression, respectively. The flow behaviok jrphase

can be discussed qualitatively by the above analysis. Equa-
tion (63) indicates clearly that th&, phase tension shows
anisotropy. This has been reported in the experiment of X[ puySirt 0 SinP B+ (o + ug)cOS 0

uniaxially compressed heneicosanoic acid monold@&i. . .

More anomalous properties of surface tendibrand its an- + pat (st we)Sin’ o sir’ ], (67)
isotropy AII given in Egs.(62) and (63) show dependence
on the compression she¥ and the flow-induced orienta- ATl =A%~ Aa(T~To) + utarfd cos 28
tion [relating to 8(t)]. For discussion on E(66), the flow

1 Vac
I=I1°-a(T-Ty) - =K tarf— —— cosé
o2 2A,

orientation is always easy to be achieved. Therefore, for a + (ot ws)Sinté sin 2’3d_'6+ E
spatially steady flow field, once the orientation is established dt = Ao
(i.e., B=0 or ), both IT and AIl do not depend on the % COSH Sif* 0 coLB+ (s + 1) Co20
stochastic factor of3(t) and the shape deformation of the [{p Bt (uat pa) ;
domains induced byl and ATl with change ofVc is af- X €0S 28— pa— (us+ ug)Sin? 0 sir ], (68)
V¢ cosé
ds ,utanze+(ACA— {uq SinfOsi? B+ (up+ w3)COS O+ ug Sirf 6} |sin 23
. : . (69
t [(3— o)+ (po+ ps)cos 28]sinP o
They are the same equations E62), Eq. (63), and Eq.(64), respectively. Equatiof69) can also be written as
V¢ Ccosé
dsip ,utanzoJr(AcA—){,ul Sin* @ sirt B+ (uo+ u3)CoS O+ ug Sit o} [sinf23
0
= : (70)
dt [(13— p2) + (ot ps)cos 2B]sir 6

With the same estimate for,, u», n3, andug as above, we find that under the similar orientation condition, there exists a
threshold

—Ao,u Slnzb’

*~(NNN)= .
Act ) coS [ wq SN0 sirPB+ (uy+ u3)coS 0+ ug Sit ]

(71)
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Below the thresholdd sir?8/dt>0 is always true, i.e.8 is It is interesting to compare the present model with previ-
monotonously decreasing to/2 or increasing tar/2, cor-  ous theoretical work on static elastic models in 2D systems.
responding to tilt along the flow or against the flow, respec4n the work of generalized Wulff construction to 2D materi-
tively [see Fig. 1b)]. There is no difference of the flow- als of orientational order but without positional order, Rud-
induced orientation at low 5c. Especially, the substitution nick and Bruinsma have argued that the 2D anisotropic sur-
of B=0,7 into Eq. (66) and == /2 into Eq.(71), gives  face energy o(B)=0,+a,cos2B corresponds to 2D

the expressions nematic[38]. Our present result shown in Eq&2), (63),
(67), and (68) gives a similar expression for the surface
— Ao Siro stress tensofour 11, AIl have the same meaning asin
Vic(NN)= Ref. [38]) that the monolayer of , and L, phases can be

COS'6L (1S 6+ pg)SiIT O+ (uz + 1) COS 6 treated as 2D nematic LC but theit, anda, will vary with
(72 the tilt angled and the flow fields. In a very recent study on
and the analysis of the flow-induced domain formatiorLif, the
so-called “shear bends” reported in R¢8] we also showed
that the 2D surface stress tensor has to include the hydrody-
namic(i.e., viscoug component given in Eq12) [39]. These
— Ao SIrEO features are different from those described in R88).
= - - . Finally, for future use, we should note that the elastic
coSO[ (wy SIN? O+ ) Sin? 6+ (up+ 113)COS 0 moduli K, x, and the EL’s viscosity coefficients; —ug ap-
(73)  peared above are defined in the 2D system, therefore, their
values can be estimated by the corresponding values in the
However, it is the expressions,(NN) andL,(NNN) phase 3D system divided by, for K, and . and multiplied byh,
reveal the difference of the flow behaviar, happens atlow  for u,—ug. Here, hy is the length of the molecular tail in
surface pressure, while, at high surface pressui€-12.  monolayers. Such a simple scaling treatment is based on the

VEc(NNN)

The fact thato"N is always larger tha®™NN leads to feature that a monolayer can be seen as a 3D layer with
thickness ofhy. The 2DK, w of crystalline decanol mono-
% S(NNN)< V% (NN). (74)  layer have been measured by x-ray diffraction by Zakral.

[24] but with some uncertaintf25]. The 2D values of

In other words, the equilibrium of the orientation along or x;—ue Of monolayer have not been reported in literature,
against the flow is broken easier i} than inL,, i.e., as however, we can use 3D values pf:°4 in LC (about
Vac>Vic, the tilt will change to be normal to the flow. This 1072-10"! g/lcms[14], p. 150 to estimate 2Du, ¢ as
may give an interpretation of the finding by Fuller's group u3°,-hy~10"6-10"° g/s with hy~10"* cm. The result is
thatL, shows more obvious flow induced reorientation thanin precise agreement with the typical surface viscosity mea-
L, [10]. In fact, as mentioned earlier, they found the samesured by Schwartz and his co-workgf] in channel flow
result as ours that extensional flows of sufficient magnitudén a Langmuir monolayer and a calculation by Stone in a
can induce the tilt azimuth to align perpendicular to the ex-theoretical analysig26]. This gives evidence for the present
tensional axis for molecules at the “shear bands,” where thaheory. With above estimate fqr, 5, Ag~20 A2, and the
hexatic lattice undergoes homogeneous shear. The til,of |ower value of w=1 mN/m measured by Zakri and Berge
normal to the flow is also reported by the same groug25], we obtain from Eq. (71), Vic(NNN)=~2
[8—10. This may happen in the case Wh(NNN)<V,c  x10PsinfdA%/s=1.2x10°sirPd A%/min. In other words,
<Vixc(NN). The tilt orientation changes from parallel to the V,c=5.6 A/min in our MDC-SHG experiment discussed in
flow to normal to the flow alV,c=Vac, and will cause a Sec. Il is far away to achiev&¥. except for §9<0.01°.
sudden change afg/dt and so forAIl [see, Eq(68)]. The  Therefore, on the way from NNNU phase transition, we
latter will induce a strong nonsymmetric deformation of thecannot find a distinguishable reorientation in our experiment.
domain and even a breakup of the domains as was observéadhis is again true as shown in Fig. 3. The above estimation is
by Fuller’s group[10]. still a rough approximation because we have used the data of

The shear-induced molecular precessioh jndiscovered ,uf'36 obtained from bulk MBBA and p-azoxyanisolBAA).
by Ignes-Mullol and Schwartgl1] is the case that the shear They are rather rigid LC molecules and do not have much in
flow induces not only domain rotation but also cooperativecommon with fatty acids in Fuller’s experiments. Therefore,
continuum rotation of the molecular orientation. In order toa measurement 0¥ on the fatty acids to provide more
treat this situation the abové-lock assumption of letting exact values of theiui?e is a challenge in future study.
¢=0 or /2 must be changed t¢= ¢(t). This is possible
in some higher temperature phases sucaghase, where
the molecular tails have more activity. The calculation with V. CONCLUSION

the present model for this case is in progress and will be
reported in the future. In principle, it is not difficult in un-  We have treated the flow-induced tilt azimuth orientation

derstanding the present model. of monolayers irL, andL, phases as dynamical equilibrium
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between viscous and elastic stresses by successfully adaptittge MDC-SHG observation dfPQ',S#O in the 70CB mono-

the Leslie-Ericksen theory for liquid crystal dynamics. Thelayers obtained here do confirm our theoretical prediction. In
BAM-observed facts in the flow-induced orientation of other words, the present study establishes an accepted model
Langmuir monolayers in condensed phdses12 as well as  for the hexatic flow.
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