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Compression-shear-induced tilt azimuthal orientation of amphiphilic monolayers at the air-water
interface: A C`\C2v transition in the flow of a two-dimensional hexatic structure
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Compression-shear-induced tilt azimuthal orientation of amphiphilic monolayer in tilting phases (L2 andL28)
at the air-water interface is analyzed as dynamical equilibrium of the elastic distortion of orthogonally hex-
agonal structure of the molecules under compression-induced shear flow. It is shown theoretically that the
compression can induce molecular tilts lying along and/or against the flow direction. All these tilts makeup the
initial random tilt azimuth of the molecular tails along a uniform direction. At a threshold compression speed,
it causes aC`→C2v-symmetry transition at the air-water interface. With Maxwell displacement current and
optical second-harmonic generation measurements, the above theoretical results are verified experimentally in
a monolayer of 4-heptyloxy-48-cyanobiphenyl.
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I. INTRODUCTION

Monolayers of amphiphilic molecules on a water surfa
exhibit very interesting behaviors as two-dimensional s
tems, and the physicochemical property of these monoly
has become a research topic in physics, chemistry, and
ogy since the discovery of the technique for the formation
floating monolayers by Langmuir@1#. With surface pressure
area (P-A) measurement, the rich polymorphism and t
phase transitions in monolayers of amphiphilic molecu
have been recognized from the existence of kinks or plate
in their P-A isotherms. Recently, a variety of experimen
techniques coupled withP-A isotherm measurement hav
been developed for exploring the structure of monolaye
The equilibrium properties of insoluble monolayers at t
air-water interface have been studied intensively, and m
structures of monolayer phases have been elucidated.
review paper by Kaganeret al., the phase diagrams of fatt
acid monolayers obtained from x-ray diffraction method a
other approaches have been summarized with theirP-A iso-
therms@2#. Among the recognized phases, liquid conden
phasesL2 and L28 are particularly interesting because th
happen at the meeting point of two- and three-dimensio
~2D, 3D! systems as well as in solid and liquid crystal~LC!
phases: In bothL2 and L28 phases, the polar heads of am
phiphilic molecules form a distorted hexatic lattice in a ma
ner as predicted by the theory@3# and shown schematicall
in Fig. 1. The long molecular axes of molecules inL2 andL28
phases are tilting toward a nearest neighbor~NN! if f50
@Fig. 1~a!#, and to a next nearest neighbor~NNN! if f
5p/2 @see Fig. 1~b!#, i.e., the stretching direction of th
hexatic lattice as revealed lately in x-ray diffraction@4#.
Here, one must understand that even though the tiltf
5p/2 has not happened,f5p/6 is a potential NNN direc-
tion ~Fig. 1!. However, once tilt happens, the distorte
hexatic lattice has only rectangle symmetry. Only two sta
of f5p/2 for NNN phase, andf50 for NN phase remain
even when the monolayer enters the solid phase (u50) are
probable as confirmed in x-ray experiment@4#. Very recently,
1063-651X/2003/67~4!/041711~14!/$20.00 67 0417
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the tilting phase transition was studied as a distortion of
orthogonal hexagonal orientation of molecules by a com
tition among the entropy of both head position and molecu
axes orientation distributions, Lenard-Jones potential,
the work done by surface and bulk pressures@5,6#. The
theory predicts a physically reasoning phase portion in
phase diagram between tilting and untilting phases
shows quantitative agreement with the measurement
monolayers ofC14-C24 acids@7#.

The discovery of 2D structure inL2 and L28 phases has
attracted much attention to the classical study of the fl
behavior of monolayers@1#, especially in searching for the
coupling between the flow and the structure and the orie
tion @8–12#. In the classical study of the flow in monolayer
a number of surface viscosity measurements have been
ployed, but the effects of flow on the underlying structure
the monolayers have been overlooked@1#. However, with the
development of the direct observation techniques such
Brewster angle microscopy~BAM !, x-ray diffraction, and
other spectroscopic techniques, this situation has been c
pletely improved. Using observation techniques, the c
pling between an imposed flow and the structure of mo
layers on the water surface can be searched. Fuller’s gr
@8–10#, using BAM observation, showed the existence o
strong coupling between external flow and the orientatio
order of the fatty acid monolayer. By studying theL2 , L28 ,
and S ~solid! phases, they argued that the structure of
monolayers is annealed by a shear flow, but the nature of
coupling depends on the phases. That is, onlyL28 and S
phases experience flow-induced reorientation in the latt
In more detail, induced reorientation is accompanied by
appearance of shear bands in the monolayer at an ang
45° to the flow axis. It was also revealed that sufficient e
tensional flow can induce a tilt azimuth aligned perpendi
lar to the extensional axis. With similar observation tec
nique, Schwartz’s group@11,12# revealed such shear-induce
orientations in theOv phase ~similar to L28 with NNN-
azimuthal tilt! in docosanoic acid monolayers and found
shear-induced molecular precession@11#, i.e., a flow-induced
©2003 The American Physical Society11-1
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FIG. 1. ~a! Model structure for untilted orthorhombic phase and its distortion towards a nearest neighbor~NN! regarded asL2 phase. The
structure ofL28 phase is tilted to the next nearest neighbor~NNN! and has been omitted in the figure.~b! The geometry for a random tilting

domain, wherexW is the compression direction of the monolayer, (xW M, yW M) is one set of~NN, NNN!-tilting directions, andmW ' denoted its tilt
azimuthal direction.
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alignment of alkyl chains. They then argued that the cha
in the monolayer structure is consistent with an alignmen
the degenerate symmetry lines of the underlying molec
lattice with the flow, and the nature of the alignment is qu
different from what is observed in nematic liquid crystals

The shear-induced orientation is well known in bulk L
@13# and can be described by Ericksen-Leslie~EL! theory
@14#. However, our understanding on the shear-induced
entation in monolayers is limited: EL theory deals only w
flow-orientation coupling in nematic LC in which molecule
possess orientation~director! ordering. So far there is no ac
cepted model of hexatic flow that couples with shear-indu
orientations. How to extend EL theory to the flow of mon
layers with 2D hexatic ordering becomes an urgent ch
lenge.

As a first step, let us study a compression-shear-indu
tilt azimuthal orientation~CSTAO! in both L2 and L28 ~in-
cludingOv) phases in a monolayer on the water surface. T
important and fundamental approach of our study is that:
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viewing the tilt C6 axis of the hexatic lattice as LC directo
mW in an EL-hydrodynamic~or viscous! stress tensor@14#, the
CSTAO is described as a dynamic equilibrium between
hydrodynamic and the static~or elastic! stresses given by the
tilt distortion of the orthogonal hexagonal monolayer stru
tures. The derived dynamic equation of CSTAO shows
threshold of the compression speed of the molecular a
VAC* , below ~above! which the initial random tilt distortion
of azimuth of the long tails of molecules rotates continuou
in a direction along or against~normal! the flow, and causes
a C`→C2v-symmetry transition in a monolayer at the a
water interface. Furthermore, this effect is clearly detected
a monolayer of 4-heptyloxy-48-cyanobiphenyl~7OCB! by
Maxwell displacement current~MDC! @15# and optical
second-harmonic generation~SHG! @16# measurement tech
niques. These techniques allow us to detect spontaneous
nonlinear polarization of monolayers that appear to be ph
dependent.

The arrangement of this paper is as follows. In Sec. II,
1-2
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COMPRESSION-SHEAR-INDUCED TILT AZIMUTHAL . . . PHYSICAL REVIEW E 67, 041711 ~2003!
describe how to use the MDC-SHG spectroscopy metho
detect both the usual 2D-phase transition and the fl
induced transition by compression of a monolayer and
detailed implementation in a 7OCB monolayer. In Sec.
we build a continuum theory for the 2D monolayer wi
tilting-hexatic symmetry. The main task is devoted to der
the elastic stress tensor of distortion in the orthogonal h
agonal orientation and the number of elastic constants, ta
into account of theC6-tilting symmetry. In particular, the EL
theory and the viscous tensor for 3D LC are reformed int
2D representation to solve the monolayer flow-orientat
problem. In Sec. IV, the solution of compression-she
induced tilt azimuth orientation is extensively discussed
comparison with our experimental finding in the 7OC
monolayer as well as those observed by Fuller’s gro
@8–10# and Schwartz’s group@11,12#. Section V gives the
conclusion.

II. DETECTION OF C`\C2v TRANSITION BY MDC-SHG
MEASUREMENT

Different from the BAM observation and the x-ray di
fraction technique, MDC-SHG spectroscopy can provide
information on time dependent and continuous phase tra
tion process in a monolayer under compression. As its na
implies, the measurement setup is composed of two syst
one MDC measurement system and a SHG measurem
system. In this section, the two systems as well as the p
ciple and the method for detecting phase transition in mo
layers are summarized. The detailed geometric and phys
parameters for the whole system are given in Sec. IV.

Figure 2 shows a schematic diagram of our compo
MDC-SHG measurement system that is attached to a La
muir trough: A two-electrode arrangement~electrode area
45.4 cm2) is used to measure MDC in short circuit and
Q-switched Nd:YAG~yttrium aluminum garnet! laser ~Big
Sky Laser Tech. Inc., maximum power 50 mJ, wavelen
1.064mm, pulse duration,7 ns, pulse rate,20 Hz, laser
beam spot size 28 mm2) is used as a source of fundamen
wave for SHG measurement. Briefly, in the MDC measu

FIG. 2. Experimental setup for MDC and SHG measureme
The monolayer is described as thez50 plane and two moving
barriers are described as the two linesx56x0 on the plane att
50.
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ment, electrode 1 is suspended in air and is placed parall
the water surface at a distance of 1 mm from the water s
face. Electrode 2 is a golden spiral immersed in water. T
two electrodes are connected through an electrometer. Du
the spontaneous polarizationPz of the monolayer chargeQ1
is induced on electrode 1, where

Q152
PzB

L
2Cfs . ~1!

Here B is the working area of electrode 1,C is the capaci-
tance between electrode 1 and the water surface,L is the
distance between electrode 1 and the water surface, andfs is
the surface potential of water.

The induced chargeQ1 changes in accordance with th
orientational motion of the polar molecules on the water s
face and the change of surface density of molecules
monolayer compression. This change of charge gener
transient current and is recorded as MDC.Pz is expressed as
Pz5P0nW •mW , where nW is a unit vector in thez direction,
which is normal to the water surface@see Fig. 1~a! and Fig.
2#. P0 is the spontaneous polarization and is a function of
order parameter in the dipolar orientation around the direc
mW . As Pz changes along with the orientational motion arou
P0 and the directormW , the structural change in monolaye
accompanying the orientational change of thez component
can be detected by MDC measurement. The detailed for
las for calculation ofP0 from MDC can be found in Refs
@17,18#.

Similarly, as the monolayer symmetry is broken at t
interface, nonlinear polarization arising from quantum int
action between electrons in the molecules and the exte
electric field is induced in monolayers by laser irradiatio
Second harmonics~SH! is thus generated from monolaye
at the water surface. The induced nonlinear polarizationPW N

depends on the monolayer structure. For example, for mo
layer with uniaxialC` symmetry that orients its director in
the mW direction,PW N is expressed as@16#

PW N5s14~EW •mW !~EW 3mW !1@~s332s152s31!~EW •mW !21s31EW
2#mW

1s15~EW •mW !EW , ~2!

whereEW is the electric field of the source wave andsi j being
functions of the order parameters in the molecular orien
tion around the directormW are the components of secon
order susceptibility~SOS! tensor of monolayers. SincePW N

varies with the monolayer structure, the structural chan
can be detected sensitively by SHG. For the SHG meas
ment, the optical arrangement is also shown in the Fig
where u in and uo are the incident and the output angle
respectively. With polarizers (P1 ,P2 ,P3), s andp waves of
incident fundamental light and output SH light are separat

In the present MDC-SHG measurement, monolayers
7OCB are compressed from both sides by moving two b

t.
1-3



e

re
ul
ea
re
th

o

o

b
ll

e
r-
o-
te

le

in

t

is
no-

ry

ese
ich
ion
les
i.e.,

s

we
lay-

tical
yer
nge
ure.
n-
in

mp-

ten-

s
for

-
rage

the
at,

o-
ance
er

a-

ee

-

re
e
at
th

IWAMOTO et al. PHYSICAL REVIEW E 67, 041711 ~2003!
riers at a speed ofV0510 mm/min along thex direction, and
with a Wilhelmy plate, MDC-SHG signals together with th
P-A isotherm are recorded.

Figure 3 shows typical results of MDC-SHG measu
ment in a 7OCB monolayer, the surface pressure-molec
area diagramP-A of 7OCB. From the surface pressure ar
isotherm, the molecular area is tentatively divided into th
regions. The surface pressure is immeasurably low in
region of molecular surface area greater than 44 Å2 ~region
1!, it gradually increases with a slope in the region
36 Å2,A,44 Å2 ~region 2!, and finally it saturates at a
surface pressure of 5.8 mN/m~region 3!. But, judging from
the characteristic behaviors of MDC and SHGs observed
regions 1 and 2, it is postulated that the monolayer underg
a series of phase transitionsOv→L28→L2→U ~untilt phase!
with increasing area compression. In more detail, at the
ginning of the monolayer compression, MDC is very sma
but nonzero, in the region greater than 60 Å2 ~region 1a),
whereas it is generated in the region between 44 Å2 and
60 Å2 ~region 1b). These results indicate that the monolay
which initially consists of rich mosaic domains with pola
ization in thez direction are gradually packed up by mon
layer compression in the region 1. As MDC is genera
from the change of induced chargeQ1 given by Eq.~1! in
association with the orientational change of the molecu
MDC gives a peak in the vicinity of 50 Å2, in the region

FIG. 3. A typical example for 7OCB monolayer for the me
surement of MDC, SHG, andP with change of molecular areaA.
From the change ofP-A the diagram can be distinguished as thr
regions as shown in the figure: 1 forA.44 Å2, 2 for 36 Å2,A
,44 Å2, and 3 forA,36 Å2. However, with MDC-SHG measure
ment, regions 1 and 2 can be further divided as 1a forA.60 Å2, 1b
for 44 Å2,A,60 Å2, 2a for 41 Å2,A,44 Å2, and 2b for
36 Å2,A,41 Å2. The possible phase transitions in the cor
sponding regions are discussed in the text. The dashed lines ar
measured results in the compression process different from th
measuring the solid lines. Both show a good repetition of
present experimental approach.
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earlier than that of the so-calledC`→C2v transition to be
discussed later. On the other hand, in the 41 Å2,A,44 Å2

region 2a, the generation of SH is similar to that appeared
region 1, wherep-p ands-p SH signals are generated~also
reported in Fig. 1, Ref.@40#, where MDC-SHG experimen
using 532 nm wavelength laser beam is shown!, whereasp-s
and s-s SH signals are not generated. In contrast, MDC
nearly constant. This situation changes with further mo
layer compression as shown in region 2b, where a strongs-s
SHG signal appears suddenly at the onset the 36 Å2,A
,41 Å2 region 2b, while the measured MDC shows a ve
smooth change. Sudden appearance ofp-s SHG signal at the
same point is also detected, though not very strong. Th
characteristic behaviors in SHG and MDCs indicate that r
mosaic domains appearing in region 1 and further in reg
2a, where the tilt azimuths are in random, though molecu
are oriented in tilted hexatic structures in each domain,
macroscopically the surface is still inC` symmetry with the
surface normalnW as theC` axis. However, such a situation i
broken whenA,41 Å2, and in region 2b, C`→C2v transi-
tion of the interface symmetry happens. Experimentally,
may consider that the amphiphilic layers remain as mono
ers below the critical molecular surface area of 41 Å2 be-
cause changes of surface pressure and MDC at this cri
molecular area are smooth. If the layers lose the monola
structure, both MDC and surface pressure should cha
abruptly. However, such changes are not seen in the fig
In the following, we focus our attention on this phase tra
sition detected by SHG and MDC, and will discuss it
association with the CSTAO.

As mentioned earlier, nonlinear polarizationPW N induced
by laser irradiation can be expressed by Eq.~2! @16#. Origi-
nally, the derivation of this equation is based on the assu
tion that the macroscopic forms of theC` orientation still
holds for the present hexatic symmetry because the SOS
sor ofC6 symmetry is the same as that ofC` symmetry@19#.

With Eq. ~2! and of the geometry of the incident light a
shown in Fig. 2, the expression of nonlinear polarization
generation of the reflecteds-s SHG wave from each domain
can be obtained as

Ps2s
N 5PW N

•sW5Es
2@~s332s152s31!sin3u cos3g

1~s311s15!sinu cosg#. ~3!

In the derivation of Eq.~3!, it is assumed thatEW 5EssW with
sW5(1,0,0) andmW 5(sinu cosg,sinu sing,cosu) as in Eq.
~2!. Here,u is the tilt angle ofC6 axis mW from the surface
normalnW , andg is the azimuthal angle ofmW from the com-
pression directionx ~see Fig. 2!. In experiment, the gener
ated SH depends on the laser radiated area, i.e., the ave
of Ps2s

N over domains in the laser irradiated area. This is
main contribution to the generation of SH. It is found th
obviously, Ps2s

N Þ0 occurs only for̂ cosg& and ^cos3g& are
nonvanishing, wherê •••& denotes the average over d
mains in the laser irradiated area. Therefore, the appear
of s-s SHG signal reveals the tilt azimuth orientation eith
along or against the flow, i.e., the existence of aC`→C2v

-
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e
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transition of the interface. Similarly, nonlinear polarizatio
Pp2s

N for the generation of thep-s SHG can be calculated
and the sudden appearance ofp-s SH signals at the transition
point can be explained by the sameC`→C2v transition,
though it is not so clearly observed in Fig. 3. The differe
patterns ofPp2s

N and Ps2s
N can be understood from the ex

pression ofPp2s
N in a domain as@16#

Pp2s
N 5PW N

•sW5Ep
2@~s332s152s31!~sinu cosu insing

1cosu sinu in!21s31#sinu cosg. ~4!

Equation~4! is obtained from Eq.~2! by assuming that
EW 5EppW in with pW in5(0,cosuin ,sinuin), whereu in is the inci-
dent angle as defined above. Equation~4! reveals again tha
Pp2s

N Þ0 happens only when ^cosg&, ^cos3g&, and
^sing cosg& are nonvanishing. This is different fromPs2s

N .
The expression is more involved and depends on more
rameters, such asu in , etc. Therefore, as a signal to detect t
phase transition in a monolayer,Ps2s

N is more sensitive and
not be screened by the incident geometry. The reflected
tensity ofp-s is obviously lower than that ofs-s as shown in
Fig. 3 and may be due to the scratching off by the incid
geometry.

According to the mentioned analysis, one can conclu
that the SHG measurement shown in Fig. 3 does reve
compression-shear-induced tilted azimuth orientation: AC`

→C2v transition occurs in the 7OCB monolayer. Furthe
more, this transition is also confirmed by the smooth cha
of MDC observed at the onset of this transition in region 2b:
MDC reveals the phase transition accompanying the cha
of thez component of the molecular dipole change and m
be independent of the azimuthal orientation change@see Eq.
~1!#.

III. THE GENERALIZED EL THEORY

In order to understand the compression-induced orie
tion transition, it is necssesary to analyze the 2D flow and
effect on the orientation. The fluid dynamical property
monolayer is still a difficult subject@20#. In both classical
analysis @21,22# and modern studies@11,12,23–28#, the
monolayer flow is modeled as a flow resistance with a
surface viscosityms5mmh, wheremm is the equivalent 3D
bulk shear viscosity andh is the layer thickness~see, for
example, Ref.@26#!. Obviously, such a treatment does n
satisfy the present case where the monolayer is in theL2 or
L28 phase with tilting-hexatic symmetry. Especially, for th
discussion of the effect of flow-induced tilt azimuth orient
tion, such as experiments by Fuller and Schwartz’s gro
@8–12# as well as our observation in the 7OCB monolay
described in Sec. II, the anisotropy of the coupling betwe
flow and tilting must be taken into account. The first succe
ful treatment of an anisotropic flow was the dynamic
theory of nematic LC~NLC! developed by Ericksen@29# and
Leslie @30#. As mentioned in Sec. I, the EL theory of LC
allows for anisotropic coupling between the flow and t
orientation of the LC directormW ~in the present study,mW
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refers to the tilting direction ofL2 or L28 monolayer! but
takes no account of the hexagonal lattice structure of
monolayer inL2 andL28 phases. Therefore, in the followin
two sections, a brief description of the EL theory and
extension to make it to satisfy the lattice structures are giv
In sequent subsections, the extended EL theory is use
analyze the discussed problems.

A. EL theory

Assuming incompressible LC fluid, the usual Erickse
Leslie continuum theory for 3D bulk LC can be expressed
the following two dynamical equations@14#:

r
dvW

dt
5 fW1¹W • tJ, ~5!

I
d2

dt2
mW 5GW 1gW 1¹W •pJ , ~6!

wherer is the density of the LC~assumed to be constant!, I
is the density of inertia moment associated with the rotat
of the directormW , vW is the velocity field,fW is the density of
body force, tJ is the stress tensor, andGW is the director body
force induced by external fields~such as the electric field
used in LC display device!, while gW as well aspJ are the body
force and the surface stress of director, respectively, rela
to the Ossen-Zo¨cher-Frank-free energyF @31#. In details, the
free energyF, the most important formula in LC, serves
describe the elastic energy for deformed director pattern
can be written as

F5
1

2
k11~¹W •mW !21

1

2
k22~mW •¹W 3mW 2k2!2

1
1

2
k33~mW 3¹W 3mW !2, ~7!

where k11, k22, k33, and k2 are Frank-elastic constants
among whichk2 describes the chirality of the LC:k2.0 for
right handed cholesteric LC~chLC! and k2,0 for left
handed chLC, andk250 for achiral NLC. Thus,

gW 5gmW 2bW •¹W mW 2]F/]mW 1~m22m3!MW 1~m52m6!mW •dJ,
~8!

pJ5bW mW 1]F/]~¹W mW !, ~9!

wherem i , MW , anddJ will be described later in details.g and
bW are arbitrary scale and vector constants, and they can
determined by given boundary conditions and the relat
mW •mW 51.

Equation ~5! corresponds to the generalized Navie
Stokes equation, while Eq.~6! specifies the coupling be
tween the flow and the director rotation.
1-5
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IWAMOTO et al. PHYSICAL REVIEW E 67, 041711 ~2003!
For the present investigation, the most important quan
is the stress tensortJ which can be separated into a sta
~i.e., elastic! part and a hydrodynamic~i.e., viscous! part as

t i j 5t i j
0 1t i j8 , ~10!

where

t i j
0 52pd i j 2

]F

]mk,i
mk, j , ~11!

t i j8 5m1mkmndknmimj1m2miM j1m3mjMi1m4di j

1m5mimkdk j1m6mjmkdki . ~12!

In Eqs.~10!–~12!, p is the bulk pressure,m12m6 are the
coefficients of viscosity, named Leslie coefficients, anddi j

and wi j are the symmetric and asymmetric part of¹W vW , re-
spectively,

v i j 5di j 1wi j , ~13!

di j 5
1

2
~v i , j1v j ,i !, ~14!

wi j 5
1

2
~v i , j2v j ,i !. ~15!

From Eq.~15!, the vectorMW in Eq. ~8! is defined as

MW 5
d

dt
mW 2wJ•mW . ~16!

With these, the equations of the EL theory are complete

B. Fluid field of CSTAO

The generalization of the EL theory to deal with th
CSTAO problem requires two steps:~1! A straightforward
derivation for the change of 3D quantities and 3D equati
into their corresponding 2D forms;~2! Reconstruction of the
quantities and formulas to fulfill the novel symmetry a
structures. As a first example, we consider the velocity fie
In Sec. III A, we have assumedr5const for 3D LC. The
corresponding equation of conservation of mass is given

]

]t
r1¹W •~rvW !50. ~17!

However, in the case of CSTAO the monolayer cannot
assumed as incompressible, i.e.,rÞconst, apparently, it ha
a 2D-density form

r5
Nm0

2X0~ t !L
, ~18!

whereN is the total number of molecules in the monolay
m0 is the molecular mass, 2X0(t) is the distance betwee
two barriers at timet, and L is the width of the Langmuir
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trough along they direction@Fig. 2~b!#. Substitution ofr into
Eq. ~17! gives the velocity field

vW ~x,t !5S V0x

V0t2x0
,0D5~vx ,vy!, ~19!

where V0 is the speed of the barriers mentioned earlier
Sec. II and6x0 ~with x0.0) are the initial positions of the
two barriers from the central position (x50) of the rectan-
gular shaped Langmuir trough at timet50. To focus our
attention on the orientation mechanism, we consider the c
in which the velocity of the monolayer is dominant, whe
the coupling to the subphase~water! has been neglected a
treated in Ref.@12#. From Eq.~19! one can prove that for
uniform molecular area in the monolayer, the area at timet is
given by

A~ t !5A~0!~12V0t/x0!, ~20!

that is, the compressed speed

VAC5@A~0!2A~ t !#/t5A~0!V0 /x0 ~21!

is constant. In the present experiment on the 7OCB mo
layer,VAC55.6 Å2/min. The velocity field given in Eq.~19!
has a nonvanishing compression shear

d115]vx /]x52VAC /A~ t !. ~22!

Other tensor components,di j as well aswi j , are zero@see
Eqs. ~14! and ~15!#. Obviously, d11 increases as molecula
area compression increases. This is the reason why CS
can happen in theL2 andL28 phases, the region 2 in Fig. 3

The reconstruction of a 2D Frank-elastic energy is quit
task, though it can be carried out by a straight formed cal
lation from the 3DF @32,33#. Fortunately, the spatially uni
form d11 and A(t) shown in Eqs.~20! and ~22! offer the
possibility that the director fieldmW can also be assumed to b
spatially uniform in a domain. In other words, in the prese
study the detailed form of the 2D-Frank-free energy is te
porally not involved. In the present special case, terms re
ing to F in Eqs. ~8!–~11! are confined only to the elasti
energy of the distorted hexatic-tiltingFe ~see below for de-
tails!. That is, one should note that the Frank energyF is
only a part of the elastic energy to describe the deforma
of the tilt directormW . In order to reform EL theory to fulfill
the L2 and L28 phases, the elastic energy of the monolay
should include deformation energy of the hexatic latt
structure of the polar heads of molecules. Thus, the st
stress tensor given in Eq.~11! has to be extended to involv
the part induced by the lattice deformation as

t i j
0 52P i j 2s i j , ~23!

where the curvature stress has been discarded on accou
the reasons mentioned earlier,P i j is the 2D surface stress t
replace the original 3D bulk pressurepd i j , and the novel
stress tensors i j represents the elastic stress tensor of
hexagonal lattice during the tilting process, i.e., we have
ferred the untilting phase@Fig. 1~a!# as the equilibrium lattice
1-6
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state. One must note that in Eq.~23! the 2D P i j cannot be
written as 2D surface pressurePd i j because the considere
domains are now in the tiltingL2 or L28 phases and must b
treated as anisotropic surface. With our experimental ge
etry, generally, we haveP11ÞP22 and P1250 @see Fig.
2~b!#. The reason for doing this can be clearly seen from F
1: Tilting will induce stretching deformation of the hexag
nal lattice. Calculation of the elastic energy of monolayers
L2 andL28 phases has been a recent subject for study@34#. In
these studies, theL2 andL28 phases are treated as disorder
solids and a general form of the free energy for tiltedC6v
symmetry is established. It involves a set of order parame
where the coupling between the elastic 2D-lattice system
head groups and the rotational ordering of tails has b
described in terms of microscopic translational-rotatio
coupling parameters. In other words, in their theory, the o
entational and the 2D-lattice-order parameters are treate
dependently and relaxed in coupling. However, as co
mented in Ref.@35# by Sirota, in the condensed phase
where the long axes are like closely packed cylinders, tilt
of the long axis will determine the distortion complete
This distortion happens in a way that causes the stretchin
the projected lattice cell along the tilting direction with
ratio of 1/cosu, whereu is the tilting angle from the norma
direction. For example, as illustrated in Fig. 1~a!, on account
of the stretching induced by tilting, the six NN position
indicated by 1, 2, 3, . . . , and 6 inuntilting phase shift to the
corresponding six positions indicated by 18, 28, 38, . . . , and
68 in the tilting phase. In other words, the position expres
as

S a cosS n21

3
p2f D ,a sinS n21

3
p2f D ,0D

(n51,2, . . . ,6)

in xy coordinate with origin at~0, 0, 0! in theU-phase shifts
to

S a cosS n21

3
p2f D Y cosu,a sinS n21

3
p2f D ,0D

(n51,2, . . . ,6)

in the t phase if tilting occurs in the NN orx direction, where
a52d0 /A3. As mentioned in Sec. I, Sirota’s viewpoint ha
been used as an approach to calculate successfully the p
portion betweenU-t phase transition in theP-A diagram
@5,6#. In the following section, the same approach will
used to calculate the elastic stress tensors i j .

C. Stress tensors i j

Before going into practical calculation let us first tra
back to the classical elastic mechanics of crystals@19,22#:
The elastic energy of distorted crystal is written in a tenso
summation as
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Fe5
1

2
ci jkl n i j nkl , ~24!

whereci jkl are the elastic constant tensors characterized
the symmetry of the crystal discussed in Ref.@19# andn i j is
a finite strain tensor. According to solid mechanics@22#, a
finite strain is defined as follows: When a material point
the equilibrium positionaW (rWU in our case! is shifted toxW (rW t

in our discussion! as a result of deformation, the displac
ment is written as

uW 5xW2aW . ~25!

HereaW is the Eulerian coordinate of the material point andxW
is the Lagrangian one. The strainn i j is then defined by

dxidxi2daidai52n i j daidaj , ~26!

and can be found as

n i j 5
1

2 S ]uj

]ai
1

]ui

]aj
1

]uk

]ai

]uk

]aj
D . ~27!

If the third term in Eq.~27! is neglected, it becomes a linea
relation with deformation and will be renamed as

si j 5
1

2 S ]uj

]xi
1

]ui

]xj
D . ~28!

On account of the tensor symmetry ofsi j 5sji , Eq. ~24! can
be rewritten as the abbreviation form

Fe5
1

2
cmnsmsn , ~29!

where the simpler matrix expression by index abbreviation
used in a manner as follows@19#: Ci jkl →cmn by (i j )→m
with 11→1, 22→2, 33→3, 23→4, 31→5 and 12→6,
while si j →sm for i 5 j (m5123), and 2si j →sm for iÞ j
(m5426) with the same index abbreviation. Now let u
turn to practical computation for the tilting deformation
shown in Fig. 1~b!, where (x,y) is the laboratory coordinate
system.x is in the compression direction of the monolayer
shown in Fig. 2, (xM,yM) is the frame fixed in the discusse
domain withxM direction parallel to NN one atu phase,m'

is the tilt azimuthal direction for the discussed domain, a
the tilted angle isu. As the geometry shown in Fig. 1~b!, we
consider the six NN points of the origin at the water surfa
with their positions in the domain system atu-phase, stated
in the preceding subsection, as

daW M (1)5S 2

A3
d0 ,0,0D , daW M (2)5S d0

A3
,d0,0D ,

daW M (3)5S 2
d0

A3
,d0,0D , . . . . ~30!
1-7
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We omit the termsdaW M (n) (n54,5,6). They can be obtaine
by

daW M (n)5
2d0

A3
S cosS n21

3
p D ,sinS n21

3
p D ,0D , ~31!

for n54, 5, and 6. They are not in the calculation since th
are symmetric with casesn51, 2, and 3, respectively. In th
tilting geometry given in Fig. 1~b!, daW M (n) changes to
dxW M (n), terms already calculated in Ref.@5#. udxW M (n)u2 can be
obtained exactly as

udxW M (n)u25dxi
M (n)dxi

M (n)

5S 2d0

A3 cosu
D 2F12sin2S n21

3
p2f D sin2uG .

~32!

Substitution of Eqs.~30!–~32! into Eqs. ~26!–~28! for n
51, 2, and 3, gives the following equations :

S 2d0

A3 cosu
D 2

@12sin2f sin2u#2S 2d0

A3
D 2

52s11
M S 2

A3
d0D 2

,

~33!

S 2d0

A3 cosu
D 2F12sin2S p

3
2f D sin2uG2S 2d0

A3
D 2

52s11
M S d0

A3
D 2

14s12
M S d0

2

A3
D 12s22

Md0
2 , ~34!

S 2d0

A3 cosu
D 2F12sin2S 2p

3
2f D sin2uG2S 2d0

A3
D 2

52s11
M S2

d0

A3
D 2

14s12
M S2

d0
2

A3
D 12s22

Md0
2 , ~35!

where smn
M is the tilt-induced strain tensor in the doma

frame. In fact, the calculation with the NN points o
n54, 5, and 6 gives the same equations, Eqs.~33!–~35!.
Solving Eqs.~33!–~35! lead to

s11
M5

1

2
tan2u cos2f,

s12
M5

1

2
tan2u sinf cosf, ~36!

s22
M5

1

2
tan2u sin2f.
04171
y

With the Sirota’s approach, the tilting also causes a co
pression of the thickness of the monolayer, a change fromh0
at u phase to theh0cosu at thet phase. Therefore, we have t
extend the above calculation to take into account the de
mation in thez dimension. The positions of the NN points
air-monolayer interface of the monolayer in theu phase are
given by

daW top
M (n)5S 2d0

A3
cos

n21

3
p,

2d0

A3
sin

n21

3
p,h0D .

~37!

It can be rewitten as

daW top
M (n)5008W1daW M (n), ~38!

where 008W is the position (0,0,h0) of the origin 08 on the top
surface anddaW M (n) is defined at the bottom as shown in E
~31!. After tilting, daW top

M (n) is deformed into

dxW top
M (n)5008W t1dxW M (n) ~39!

where 008W t is the deformed position of 08 @Fig. 1~b!# and
dxW M (n) is given by in Eq.~32!. Thus, we have

udaW top
M (n)u25h0

21udaW M (n)u2 ~40!

and

udxW top
M (n)u25h0

212008W t
•dxW M (n)1udxW M (n)u2. ~41!

From the geometry shown in Fig. 1~b!, we have

2008W t
•dxW M (1)5

4h0d0

A3
tanu cosf, ~42!

2008W t
•dxW M (2)5

2h0d0

A3
tanu~cosf1A3 sinf!, ~43!

2008W t
•dxW M (3)5

2h0d0

A3
tanu~A3 sinf2cosf!. ~44!

Together with Eqs.~30! and ~32!, substitution of Eqs.
~37!, ~40!–~44! into Eqs. ~26! and ~28!, respectively, gives
the novel equations forn51, 2, 3 as

4h0d0

A3
tanu cosf1S 2d0

A3 cosu
D 2

~12sin2f sin2u!

2S 2d0

A3 D 2

52s11
M S 2d0

A3
D 2

12s33
Mh0

214s13
M 2d0h0

A3
, ~45!
1-8
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2h0d0

A3
tanu~cosf1A3 sinf!1S 2d0

A3 cosu
D 2

3S 12sin2S p

3
2f D sin2u D2S 2d0

A3 D 2

52s11
M S d0

A3
D 2

14s12
M S d0

A3
D 2

12s22
Md0

212s33
Mh0

2

14s13
M 1

A3
d0h014s23

Md0h0, ~46!

2h0d0

A3
tanu~A3 sinf2cosf!1S 2d0

A3 cosu
D 2

3F12sin2S 2p

3
2f D sin2uG2S 2d0

A3 D 2

52s11
M S 2d0

A3
D 2

14s12
M S 2d0

A3
D 2

12s22
Md0

212s33
Mh0

2

14s13
M S 2d0h0

A3
D 14s23

Md0h0 . ~47!

Substitution of Eq.~36! into Eqs.~45!–~47! lead to solutions:

s13
M5

1

2
tanu cosf,

s23
M5

1

2
tanu sinf, ~48!

s33
M50.

Regardless of lengthy tedious calculations, the final ex
results ofsi j

M given by Eqs.~36! and ~48! are simple and
beautiful. With Eq.~29!, the results onsi j

M given by Eq.~48!,
and the consideration of theC6 symmetry of the untilt phase
the elastic energy of theL2 and theL28 phases is then given
by

Fe5c11~s1
21s2

2!/21c12s1s21c13~s1s31s2s3!

1c44~s4
21s5

2!/21c66s6
2/21c33s3

2 , ~49!

where thecmn’s are some nonzero components of the ela
constant matrix of hexagonal crystal withc665(c112c12)/2
~see Table 9 of Ref.@19#!, and s15s11

M , s25s22
M , s35s33

M ,
s452s23

M , s552s13
M , s652s12

M . From Eq.~49!, the nonzero
elements of the stress tensor in the domain system are g
by
04171
ct

c

en

s11
M5]Fe /]s15tan2u~c11 cos2f1c12 sin2f!/2,

s22
M5]Fe /]s25tan2u~c11 sin2f1c12 cos2 f!/2,

s12
M52]Fe /]s65

1

2
~c112c12!tan2u sin 2f,

s23
M52]Fe /]s452c44 tanu cosf,

s13
M52]Fe /]s552c44 tanu sinf,

s33
M5]Fe /]s35

1

2
c13 tan2u. ~50!

With the tensor transformations i j 5RikRjl skl
M ~where

R115cosb, R1252R215sinb, R225cosb, R3351, others
are zero, andb is the angle betweenx andxM @Fig. 1~b!#!,
the s i j ’s in the laboratory system are given by

s11,225
1

2
@K6m~cos 2f cos 2b12 sin 2f sin 2b!#tan2u,

s125s215
1

2
m@2 sin 2f cos 2b2cos 2f sin 2b#tan2u,

s1352c44 cos~f2b!tanu,

s2352c44 sin~f2b!tanu,

s335
1

2
C13 tan2u, ~51!

whereK5(c111c12)/2, m5(c112c12)/2 are the plane~hy-
drostatic! compression modulus and shear modulus, resp
tively, in a manner as predicted in the classical elastic
theory: The elastic properties of hexagonal crystal are iso
pic in the plane perpendicular to theC6 axis @22#. In other
words, the elastic stress is completely determined by the
main orientation~i.e., b), the tilt azimuthf, and the tiltu
~or molecular areaA becauseA5A0 /cosu @2,5,6,23# at L2

and L28 phases, whereA0 is the molecular area at untilting
phase!. Such an apparent expression, Eq.~51!, is first ob-
tained, though we note that similar calculation has been
ried out in some recent studies by Swanson@34#. If the de-
formation accompanies a change in the temperature, one
to add a thermal expansion stress tensor2a i j (T2T0) to
s i j , where the temperatureT0 is defined in the untilting
phase~see Ref.@22#, p. 14!. The complete form of Eq.~23! is
then given by

t i j
0 52P i j 2a i j ~T2T0!2s i j . ~52!
1-9
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IV. FLOW-INDUCED ORIENTATION

Now we come to calculate the hydrodynamic stress
duced byd11 given in Eq.~22!. As described in Ref.@23#, the
results of x-ray diffraction experiments agree with a cylind
tilt packing model ~i.e., cosu5A0 /A) through L2 and L28
phases. Similarly, the 2D flow monolayer as well as the
tice reorientation could be completely determined by
change of molecular tilt and azimuth~i.e., theC6 axismW ). In
other words, the hydrodynamic stress tensor of EL the
@29,30#, Eq.~12! is still valid if we consider theC6 axismW as
director. Assuming that the NN direction of the discuss
domain deviates by an angleb from thex direction then in
laboratory system theC6 axis mW can be described as@Fig.
1~b!#

mW 5„cos~f2b!sinu,sin~f2b!sinu,cosu…, ~53!

wheref is either zero~NN! or p/2 ~NNN! due to the strong
coupling between the tilt azimuth and the orientation of
local pseudohexagonal lattice, the effect of lock orientat
@1,3,4,8–12#. Both u andb change with timet represent the
orientational effect coming from compression-shear proc
Apparently, u(t) is given by u5arccos„A0 /A(t)… as has
been indicated. In addition, with Eqs.~20!–~22!, one can
have a relation for the shear fieldu,

du

dt
5 u̇5d11 cotu. ~54!

On the other hand, in previous studies, theoretical st
on b(t) lacks clear direction@8–12#, because its change ma
be either due to the domain rotation or to the reconstruc
of the molecular lattices. In what follows, we try to provid
a theoretical treatment for the problem. Firstly, we consi
the left side of the 2D Navier-Stokes equation, Eq.~5!. With
continuity equation, Eq.~17!, Eq. ~5! may be written as@22#

r
dvW

dt
5

]

]t
~rvW !1¹W •~rvW vW !. ~55!

With Eqs. ~18! and ~19!, together withX0(t)5x02v0t ~the
position of one barrier!, Eq. ~55! gives

r
dvW

dt
50. ~56!

In our experiment,mW is assumed to be homogeneous in d
mains. Besides, there is no other body forces, i.e.,fW50.
Under these conditions, for our experiment, Eq.~5! leads to

] i~ t i j8 1t i j
0 !50, ~57!

a result that satisfies the 2D Navier-Stokes equation. T
provides evidence for the prediction given in Sec. I that
CSTAO is described as the dynamical equilibrium betwe
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the hydrodynamic stresst i j8 and the static stresst i j
0 . To fur-

ther examine the prediction, we first calculatet i j8 @Eq. ~12!#, a

general form of tensor combined by the directormW , the flow
tensordJ, and the transformed vectorMW . The last termMW

defined in Eq.~16!, is to replacedmW /dt as a tensor invarian
under proper orthogonal transformation. In the present c
of wJ50, MW 5dmW /dt. Eq. ~53! now yields:

MW 5
dmW

dt
5„sin~f2b!sinu,2cos~f2b!sinu,0…

db

dt

1„cos~f2b!cosu,sin~f2b!cosu,2sinu…
du

dt
,

~58!

where du/dt is given by Eq.~54!. In other words, among
terms included int i j8 , only b(t) remains unknown. The dy
namical equilibrium equation, Eq.~57!, will be used to de-
termine it.

With Eqs.~22!, ~53!, and~58!, Eq. ~12! gives the apparen
expression oft i j8 as a function off, b, u, andḃ. Similarly,
substitution of Eq.~51! into Eq. ~52! yields also an expres
sion oft i j

0 in terms of functionsf, b, u, anddb/dt. The two
calculations are lengthy. The solution of Eq.~57! for i j
511,22, and 12, respectively, are

@m1 sin4u cos4~f2b!1~m21m3!cos2u cos2~f2b!1m4

1~m51m6!sin2u cos2~f2b!#d11

1~m21m3!sin2u cos~f2b!sin~f2b!
db

dt
1P11

0

5P111a11~T2T0!1
1

2
tan2u@K1m~cos 2f cos 2b

12 sin 2f sin 2b!#, ~ i , j 511!, ~59!

@m1 sin4u cos2~f2b!sin2~f2b!1~m21m3!

3cos2u sin2~f2b!#d112~m21m3!sin2u cos~f2b!

3sin~f2b!
db

dt
1P22

0

5P221a22~T2T0!1
1

2
tan2u@K2m~cos 2f cos 2b

12 sin 2f sin 2b!#, ~ i , j 522!, ~60!

@m1 sin4u cos3~f2b!sin~f2b!1~m21m3!cos2u sin~f

2b!cos~f2b!1m6 sin2u cos~f2b!sin~f2b!#d11

1sin2u@m3 sin2~f2b!2m2 cos2~f2b!#
db

dt
1-10
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5
1

2
mtan2u@2 cos 2b sin 2f2sin 2b cos 2f#,

~ i j 512!. ~61!

P11
0 and P22

0 are integral constants, their physical meani
will be given later. Here, in the derivation of Eq.~61!, taking
account of the geometry of our experiment, we have invo
P1250. This assumption implies that; due to symmetry,
o

t,

n

d

04171
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domain orientation will be either parallel or perpendicular
the flow direction. Such consideration was also invoked
Fuller’s group, e.g., they argued that ‘‘because of the sy
metry of the four-roll mill flow, any flow-induced orienta
tions must appear at 0° or 90° relative to the flow directio
@9#. The main progress of the present theory is the desc
tion of how the orientation can occur. For domains ofL2

phase wheremW tilts along the NN direction~i.e.,f50), with
some algebraic transformation, the above three equation
gether with Eq.~22! yield
P5P02a~T2T0!2
1

2
K tan2u2

VAC

2A0
cosu@m1 sin4u cos2b1~m21m3!cos2u1m41~m51m6!sin2u cos2b#, ~62!

DP5DP02Da~T2T0!2m tan2u cos 2b2~m21m3!sin2u sin 2b
db

dt

2
VAC

A0
cosu@$m1sin4u cos2b1~m21m3!cos2u%cos 2b1m41~m51m6!sin2u cos2b#, ~63!

db

dt
5

Fm tan2u1S VAC cosu

A0
D $m1 sin4u cos2b1~m21m3!cos2u1m6 sin2u%Gsin 2b

@~m22m3!1~m21m3!cos 2b#sin2u
, ~64!
be
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whereP5(P111P22)/2, DP5P112P22 are the isotropic
part and the anisotropic part ofP i j . These forP05 1

2 (P11
0

1P22
0 ), a5 1

2 (a111a22), Da5a112a22. As VAC→0, u
→0, Eqs.~62! and~63! lead toP5P0 andDP5DP0, i.e.,
P0 and DP0 are the isotropic and the anisotropic parts
P i j at the equilibrium untilting phase, i.e., theS phase. In
Ref. @4#, the observation by x-ray diffraction experimen
DP0 is also nonzero since in theL28→S transition the tilt
angle tends to become zero, but the head groups remai
ranged on the distorted hexagonal lattice. From Eqs.~62! and
~63!, one finds thatP,a,K appear in one equation an
DP,Da,m in another. This comes from the fact that mem
f

ar-

-

bers of each group have the same symmetry. This can
used as a check for the above derivation. It is interesting
note thatDP-DP0 and P-P0 do not vanish even in the
untilted phase (u50) on account of the contribution of com
pression shearVACÞ0. In physics, this is true, becaus
VACÞ0 means the monolayers are not in real isotherm
transition. Equation~64! shows the most important conclu
sion, that is,b→0, p or 6p/2 are two possible stable state
on account ofdb/dt50 in both cases. This confirms th
finding by Fuller’s group@8–12#: the domain tilt will orient
either along or against the flow direction, or normal to t
flow direction. Moreover, Eq.~64! can be rewritten as
d sin2b

dt
5

Fm tan2u1S VAC cosu

A0
D $m1 sin4u cos2b1~m21m3!cos2u1m6 sin2u%Gsin2 2b

@~m22m3!1~m21m3!cos 2bsin2u
. ~65!

Generally, we have m1 sin4u cos2b1(m21m3)cos2u1m6 sin2u,0 and (m22m3)1(m21m3)cos 2b,0 are held @for
N-~p-methoxybenzylidene!-p8-buthylaniline~MBBA !, m25277.5,m3521.2, m156.5, m65234.4 CP@36##. From Eq.~65!,
we find that the interesting result that there exists a threshold of compression shear

VAC* ~NN!5
2A0m sin2u

cos3u@m1 sin4u cos2b1~m21m3!cos2u1m6 sin2u#
.0. ~66!
1-11
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Below the threshold@VAC,VAC* (NN)#, one finds that
d sin2b/dt,0, i.e.,b is monotonously decreasing to 0 or in
creasing top. This means that the flow-induced orientatio
starts from the very small compression shear in theL2 phase.
Therefore, on account ofg5b, a steady compression ca
induce nonvanishinĝ cos3g& and ^ cosg& in Eq. ~3!. This
prediction is well confirmed by our SHG measurement in
7OCB monolayer. We detected an increasingI s-s SHG signal
as the molecular area begins to become less than 42 Å2, i.e.,
the appearance of aL2 phase transition. TheI s2s curve given
on the top of Fig. 3 shows nonmonotonous increase with
compression. This is also in good agreement with the th
retical prediction. In Eq.~3!, the formula ofPs-s

N , the terms
^ cosg& and ^ cos3g& increase with the flow-induced orienta
tion, however, the coefficients sinu and sin3u decrease with
the compression, respectively. The flow behavior inL2 phase
can be discussed qualitatively by the above analysis. Eq
tion ~63! indicates clearly that theL2 phase tension show
anisotropy. This has been reported in the experiment
uniaxially compressed heneicosanoic acid monolayer@37#.
More anomalous properties of surface tensionP and its an-
isotropy DP given in Eqs.~62! and ~63! show dependence
on the compression shearVAC and the flow-induced orienta
tion @relating tob(t)]. For discussion on Eq.~66!, the flow
orientation is always easy to be achieved. Therefore, fo
spatially steady flow field, once the orientation is establish
~i.e., b50 or p), both P and DP do not depend on the
stochastic factor ofb(t) and the shape deformation of th
domains induced byP and DP with change ofVAC is af-
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fined and reversible. This explains qualitatively the obser
tion reported by Fuller’s group@8–12#. Despite of the fact
that the fluid fields of our simple compression are differe
from those generated by the four-roll mill~see, e.g., Fig. 2 in
Ref. @9#!, the flows of the latter at the ‘‘shear bands’’ wit
645° tox andy axes are nearly the same as ours. Therefo
the above analysis satisfies qualitatively in these regio
where the domain distortion ofL2 phase was found to be
reversible, and the initial domain pattern could be appro
mately restored during a reversal of the flow direction~Fig. 4
in Ref. @9#!. The behavior of theL28 phase will be shown to
be different from that ofL2 phase. Puttingf5p/2 @i.e.,
NNN tilt, Fig. 1~b!#, the calculation similar to the derivatio
of Eqs.~62!–~64! gives the following relations:

P5P02a~T2T0!2
1

2
K tan2u2

VAC

2A0
cosu

3@m1sin4u sin2b1~m21m3!cos2u

1m41~m51m6!sin2u sin2b#, ~67!

DP5DP02Da~T2T0!1m tan2u cos 2b

1~m21m3!sin2u sin 2b
db

dt
1

VAC

A0

3cosu@$m1 sin4u cos2b1~m21m3!cos2u%

3cos 2b2m42~m51m6!sin2u sin2b#, ~68!
sts a
db

dt
5

Fm tan2u1S VAC cosu

A0
D $m1 sin4u sin2b1~m21m3!cos2u1m6 sin2u%Gsin 2b

@~m32m2!1~m21m3!cos 2b#sin2u
. ~69!

They are the same equations Eq.~62!, Eq. ~63!, and Eq.~64!, respectively. Equation~69! can also be written as

d sin2b

dt
5

Fm tan2u1S VAC cosu

A0
D $m1 sin4u sin2b1~m21m3!cos2u1m6 sin2u%Gsin22b

@~m32m2!1~m21m3!cos 2b#sin2u
. ~70!

With the same estimate form1 , m2 , m3, andm6 as above, we find that under the similar orientation condition, there exi
threshold

VAC* ~NNN!5
2A0m sin2u

cos3u@m1 sin4u sin2b1~m21m3!cos2u1m6 sin2u#
. ~71!
1-12
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Below the threshold,d sin2b/dt.0 is always true, i.e.,b is
monotonously decreasing to2p/2 or increasing top/2, cor-
responding to tilt along the flow or against the flow, resp
tively @see Fig. 1~b!#. There is no difference of the flow
induced orientation at lowVAC . Especially, the substitution
of b50,p into Eq. ~66! and b56p/2 into Eq. ~71!, gives
the expressions

VAC* ~NN!5
2A0m sin2u

cos3u@~m1sin2u1m6!sin2u1~m21m3!cos2u
,

~72!

and

VAC* ~NNN!

5
2A0m sin2u

cos3u@~m1 sin2 u1m6!sin2u1~m21m3!cos2u
.

~73!

However, it is the expressionsL2(NN) andL28(NNN) phase
reveal the difference of the flow behavior.L2 happens at low
surface pressure, whileL28 at high surface pressure@8–12#.
The fact thatuNN is always larger thanuNNN leads to

VAC* ~NNN!,VAC* ~NN!. ~74!

In other words, the equilibrium of the orientation along
against the flow is broken easier inL28 than in L2, i.e., as
VAC.VAC* , the tilt will change to be normal to the flow. Thi
may give an interpretation of the finding by Fuller’s grou
that L28 shows more obvious flow induced reorientation th
L2 @10#. In fact, as mentioned earlier, they found the sa
result as ours that extensional flows of sufficient magnitu
can induce the tilt azimuth to align perpendicular to the
tensional axis for molecules at the ‘‘shear bands,’’ where
hexatic lattice undergoes homogeneous shear. The tilt oL28
normal to the flow is also reported by the same gro
@8–10#. This may happen in the case ofVAC* (NNN),VAC

,VAC* (NN). The tilt orientation changes from parallel to th
flow to normal to the flow atVAC5VAC* , and will cause a
sudden change ofdb/dt and so forDP @see, Eq.~68!#. The
latter will induce a strong nonsymmetric deformation of t
domain and even a breakup of the domains as was obse
by Fuller’s group@10#.

The shear-induced molecular precession inL28 discovered
by Ignes-Mullol and Schwartz@11# is the case that the shea
flow induces not only domain rotation but also cooperat
continuum rotation of the molecular orientation. In order
treat this situation the abovef-lock assumption of letting
f50 or p/2 must be changed tof5f(t). This is possible
in some higher temperature phases such asOv phase, where
the molecular tails have more activity. The calculation w
the present model for this case is in progress and will
reported in the future. In principle, it is not difficult in un
derstanding the present model.
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It is interesting to compare the present model with pre
ous theoretical work on static elastic models in 2D syste
In the work of generalized Wulff construction to 2D mate
als of orientational order but without positional order, Ru
nick and Bruinsma have argued that the 2D anisotropic s
face energy s(b)5s01a2cos 2b corresponds to 2D
nematic@38#. Our present result shown in Eqs.~62!, ~63!,
~67!, and ~68! gives a similar expression for the surfac
stress tensor~our P, DP have the same meaning ass in
Ref. @38#! that the monolayer ofL2 and L28 phases can be
treated as 2D nematic LC but theirs0 anda2 will vary with
the tilt angleu and the flow fields. In a very recent study o
the analysis of the flow-induced domain formation inL28 , the
so-called ‘‘shear bends’’ reported in Ref.@9# we also showed
that the 2D surface stress tensor has to include the hydr
namic~i.e., viscous! component given in Eq.~12! @39#. These
features are different from those described in Ref.@38#.

Finally, for future use, we should note that the elas
moduli K, m, and the EL’s viscosity coefficientsm1–m6 ap-
peared above are defined in the 2D system, therefore,
values can be estimated by the corresponding values in
3D system divided byh0 for K, andm and multiplied byh0

for m1–m6. Here,h0 is the length of the molecular tail in
monolayers. Such a simple scaling treatment is based on
feature that a monolayer can be seen as a 3D layer
thickness ofh0. The 2DK, m of crystalline decanol mono
layer have been measured by x-ray diffraction by Zakriet al.
@24# but with some uncertainty@25#. The 2D values of
m1–m6 of monolayer have not been reported in literatu
however, we can use 3D values ofm126

3D in LC ~about
1022–1021 g/cm s @14#, p. 150! to estimate 2Dm126 as
m126

3D
•h0;1026–1025 g/s with h0;1024 cm. The result is

in precise agreement with the typical surface viscosity m
sured by Schwartz and his co-workers@12# in channel flow
in a Langmuir monolayer and a calculation by Stone in
theoretical analysis@26#. This gives evidence for the prese
theory. With above estimate form126 , A0'20 Å2, and the
lower value ofm51 mN/m measured by Zakri and Berg
@25#, we obtain from Eq. ~71!, VAC* (NNN)'2
3106 sin2u Å2/s51.23108sin2u Å2/min. In other words,
VAC55.6 Å2/min in our MDC-SHG experiment discussed
Sec. II is far away to achieveVAC* except for u,0.01°.
Therefore, on the way from NNN→U phase transition, we
cannot find a distinguishable reorientation in our experime
This is again true as shown in Fig. 3. The above estimatio
still a rough approximation because we have used the da
m126

3D obtained from bulk MBBA and p-azoxyanisole~PAA!.
They are rather rigid LC molecules and do not have much
common with fatty acids in Fuller’s experiments. Therefo
a measurement ofVAC* on the fatty acids to provide mor
exact values of theirm126

2D is a challenge in future study.

V. CONCLUSION

We have treated the flow-induced tilt azimuth orientati
of monolayers inL2 andL28 phases as dynamical equilibrium
1-13
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between viscous and elastic stresses by successfully ada
the Leslie-Ericksen theory for liquid crystal dynamics. T
BAM-observed facts in the flow-induced orientation
Langmuir monolayers in condensed phases@8–12# as well as
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ingthe MDC-SHG observation ofPs2s
N Þ0 in the 7OCB mono-

layers obtained here do confirm our theoretical prediction
other words, the present study establishes an accepted m
for the hexatic flow.
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