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Dynamics of atoms in a condensing cluster
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The dynamics of single particles in a cluster on condensation from the supersaturated vapor phase is studied
by a kinetic approach. An insight into the distinctive flow field in the vicinity of a cluster is obtained for initial
and late stage evolution. Inside the core the single atoms diffuse freely and the initial velocity decays rapidly
with time. In the interfacial region between the cluster core and the vapor, the surface pressure produces a
directed radial motion and a long time radial drift into the cluster core. Far from the cluster, the atoms move
in the vapor state of low density and high diffusion constant. The mean square displacement and the velocity
correlation lend support to the results and are compared with recent molecular dynamics simulations on a
nucleating argon cluster.
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[. INTRODUCTION stant, close to the liquid value at the density and pressure of
coexistence. The atomic paths are typical of diffusive motion
Many problems in materials science are concerned witiwith a tendency to drift towards the center and remain there.
time dependent phenomena and fl¢%]. Nonequilibrium  The mean square displacement is linear in time and the dif-
systems are particularly challenging and of great practicafusion constant is close to the bulk liquid value at the same
interest as the path to fabricate a nanosystem often passtnperature. The velocity correlation decays rapidly and
through a phase transitig@]. Single particle dynamics plays Vanishes after less than one time step. A striking difference in
a decisive role in the dynamics of a phase transition, and thi'® dynamics is found if the motion is restricted to the inter-
theoretical framework must be derived from atomic scald@cial region where the density decays towards the vapor.
behavior and describes the evolution of microstructure o he motion is no longer diffusive, the atomic paths are

appropriate time and length scales, establishing a connectiosrﬁnomher’ and the circular trajectories can be observed. The

to the corresponding macroscopic properties. A model indeg,lngle atom dynamics are indicative of directed motion near

endent analvtical aoproach can rapidly explore arametethe cluster surface and cannot be described by simple free
P 1y pp . pidly exp par diffusion. The mean square displacement is a nonlinear func-
space and yield results for spatial dynamic avergggdt is

tion of time, velocity correlation occurs over a long time

complementary to a numerical simulation, which produces 2cale and can be fit to exponential decay with a long and a
detailed picture of atomic processps-8|. Each approach ot characteristic time.

involves a series of assumptions that can be tested by a com- | grder to understand the fundamental basis of the obser-
parative analysis. Much work, theoretical as well as experiyations and to compare with the results of Ré5], the short
mental, has been expended in achieving a better comprehegn |ong time dynamics of particles are calculated in a non-

sion of the dynamics involvefd—14. _ equilibrium cluster by using the kinetic approach.
The model case studied here is the aggregation of atoms

during condensation in the supersaturated vapor. During a

first-order phase transition, such as condensation, the meta- II. KINETIC APPROACH
stgble vapor develops into the stable. liquid phase by. nuple- As in molecular dynamics simulations, it is possible to
ation and growth processes. Atoms diffuse and combine mt@

£ diff : hich b | ass from an atomistic picture of a single atom path to a
aggregates of difierent sizes, which can subsequently gro ystem averaged mesoscopic analysis. In a stochastic system,

?y mchorpora;tlng cl)thir at'o'm's, O; ih”nlk as ato:cns, are IOthe single particle motion is not deterministic but can follow
rom the surface. In the vicinity of the cluster surface, atomsy, 5, nossible paths. An appropriate average over physically

arrive from the vapor and penetrate into the liquid core; in- . ) 2=
side the cluster, atoms diffuse and eventually reach the suP—OSS'bIe paths defines the probabil®(R,Ro,0,00,1) 10

face, and are ejected into the vapor. find a particle that started éo with VelOCity l70 at pOSition
The (p,T) ensemble has been used to study the singl® with velocity 7 after a timet. In the case of continuous
atom dynamics during condensation from the vapor of a LenMarkov processes subject to frequent small changes, a ki-
nard Jones clustdil5]. It was shown by the molecular dy- netic equation foiG is obtained[16,17. Calculation of the
namics simulation that three distinct regions occur for thesolution of the seven-dimensional equation @rhas been
dynamics of single atoms, which differ inside the cluster, inpossible only in a few simple cases. As was discussed in Ref.
the interfacial region and in the vapor phase. Far from th¢16], by the calculation of the momen{sv---) of G for a
cluster, the atoms move in the vapor state of low density anéixed initial position and velocity, the time and length in-
high diffusion constant. Inside the cluster, the density is convolved in the atomistic probability are increased to an experi-
mentally more accessible scale. A set of differential equa-
tions for the moments d& is found by the multiplication of

> > > >

*Email address: tenbosch@unice.fr the kinetic equation by thath rank tensorwvovo---0 and
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integration in momentum space with the condition that the of 0 .
surface terms in momentum space vanishifer«. A set of —=——"], (18
coupled differential equations, similar to hydrodynamics and ot JR
physically intuitive, is obtained for probability density
f(R,t)=(1), the average velocity(li,t)=<17>, the kinetic ) [ R
tensorT(R,t)=(¢v), and so on. As will be shown, the mo- aom ﬁT_ m Eu’ (1b)
ments can be calculated and used to characterize the dynam-
ics of the particles of the cluster. R .

The differential equations become a set of linear equa- aT 26, 2&6kT . j d
tions by the Fourier transformation. The method of solution =T+ —fE-——u (10

at 2
of Ref.[18] can be applied close to initiatidn—~0 and after m m MdR

a long time relative to a characteristic decay time'. For o . e .
ct<1 andct>1, the solution is simply of the forre® and The friction coefficienté also controls the diffusion in posi-

the relaxation timeso are found from the condition of van- tion through the Einstein relation. The particle massnis

ishing determinant of the linear system. A complete solution=2ch higher moment decays to the stationary solution with a
is the linear combination of the solutions for each eigenfrefaSter relaxation time than the moment before. The infinite

quency and is completely determined by the initial condi-hierarchy is truncated if the viscosity terms Pontained in the
tions. The boundary condition at the cluster surfibea  energy flux tensofvuv) are not considereck is the unit
yields terms of order<l for sufficiently large clusters. In tensor. The probability densitf(R,t) is the probability of
Ref.[15], the diffusive step was much shorter than the radiuginging a particle that started &, at pointR after a timet.

of the cluster for the times considered and the size effect I NP S
related to the cluster radius are neglected. The fluxj (R.) =f(R,)o(R,t) measures the average veloc-

The dynamics of atoms will be studied, which starts withiy U(R.t) of the particle at that point. The kinetic tensor
a given velocity at the center of the cluster and moves toT(R,t) is a measure of the local pressure tensor. These quan-
wards the surface, or which starts on the cluster surface arfities depend on the initial condition of the particle. On tak-
moves within the interface between the condensed clusténg the average of Eqsl) in all possible initial position§o
and the supersaturated vapor. The system is expected to ragnd velocities), the system average density, average veloc-
idly achieve thermal equilibrium and constant temperalure jty, and pressure tensor are obtained. From Ebs.the sta-
Close to the cluster surface, a chemical potential gradierﬁOnary solution for the average densitfR) and kinetic

must be considered due to the change in density from th‘t:ensorTeq is given by setting all time derivatives equal to
condensed phase() to the vapor Q) and decrease in the ;a5 which leads to

local interaction energy. The resulting local fiel(R) is the

energy of an atom at a given poiRtdue to all other atoms

A~ - . kT,
of the system. Ted R)=n(R) ——E,

. . 9 uR)
I1l. CLASSICAL KINETIC MODEL —J1(R)+n(R)—Q ( =0 2
The calculations are described in Sec. Il A and the results IR JR KT

are given inside the cluster core in Sec. IlIB and in the

interfacial region in Sec. Il C. The resulting dynamic behav-The first relation follows from Eq(lc) and the second from

ior is also related to the position and velocity correlationEq. (1b). From Eq. (18 the average flux vanishes in the

functions(Sec. Il D). equilibrium state. An equilibrium cluster size exists if the

pressure difference in the liquid vapor interface is balanced

by the surface curvature forc®0], producing a stationary

aggregate of constant radius. The time independent solution
The classical description of the phase space dynamics fomust correspond to a system of constant chemical potential

lows the well-known differential equation, usually called the(@/aﬁ)ﬂ(ﬁ):o and, using the Gibbs-Duhem relation, con-

Fokker-PlanckFP) equation: stant pressure. As discussed in R&8], the limit of thermo-

A. Fokker-Planck equation

9G ¢ KT o J dynamic equilibrium thus defines the mean fialdR) in Eq.
—=2|36+———G+v-—G|-¢-|—G (2) as the change in the internal energyif a particle is
g m m d0 dv v JR added or removed &:
lou ¢ - - >
+———GC. U(R)=———=u(R)—kTInn(R), ©)
myR dv on(R,t)

As discussed in Refl6], the truncated linear equations for where&F/én(ﬁ,t)zu(ﬁ) is the local chemical potential of
the first three moments are equilibrium density functional theor10]. For the equilib-
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rium cluster of radius , the capillary pressure of the curved R 3m2 1972

surface balances the external pressure difference, and the lif(R,1) =| 5-=7=
S ; 2kTétmr

ear approximation yieldg21]

am? (R _|* 1 [R
R<ag u(R)=u, <O Tl T ) | Tl
R>a, Uu(R)=u,—Qe ®'¢/R The flux is determined by the initial velocity flow:

Jq=fadoe (€M,
whereQ=20/ny. The system parameters arethe surface
energy;l., the density correlation length; angy(u,), the Forét/m>1, the pressure tensor dominates. The probability

mean field in the bulk vapaicondensed coje is diffusive:

The dynamics will be studied in the following for the 1 192 B2
almost stationary8,15,29 cluster of radiusa~a. close to f(ﬁ,t)= } ex;{ A
the equilibrium value. 47Dt 4Dt

with effective diffusion constar®d =kT/¢. A late stage prob-

B. Inside the core ability flux is found to be
Inside the core, the density is constéb¥] and the force . KT R
field vanishes. The particles move essentially as free par- J(Rt)y=———1%(R)1),
ticles in a bulk “liquid” phase. The exact solution for the ¢ dR

field free FP equation is knowii6,17 and the moments can
be calculated. In order to test the alternative approach d
scribed above, Eqsl) are solved directly by the three-

dimensional Fourier transformatioy;=fdRe?™IRy(R), C. I the interfacial region
yielding

é/yhich acts as a drift velocity away from the areas of large
density.

In the narrow region close to the cluster surf&ea and
¢9_fq_2 s 1/R~1/a and to the lowest order in 4/ the internal field
a7 Aa gradient is approximated by a constant force within the nar-
row interfacial zone as given byskT=du(R)/dR
5 ¢ ~Qe #¢/a?. A constant gradient approximation is required
Ya_ _ 2. +2migT,, (4)  for an analytical solution within the core and may overesti-
ot m-1 a mate the spatial decay of the probability density and the flux.
It can be justified by the effective field term, which, as seen
[ﬁ-q 26, 2kTE . !n Eq. .(1b), is ml_JItipIied by t_he rapid decay of the probabil-
=——Tqt—2f4E. ity to find a particle at a point beyond the cluster surface at
m m which it started. Equationd) for the moments can be solved
by the one-dimensional Fourier transformation(q)
The solution of the equation for the kinetic tensor is given by= [d Ré™Ry(R) of the coefficients of the expansion in

gt

an adiabatic approximation: spherical harmonics:
. kT kT, f(R)=> bu(RDY m(e,0),
quﬁfq—i_fq UVoUo— E)e 2Ct:qu. (5) L,M LM LM

J(RO=2, dm(RY w(e,6),

This approximation for the dynamics of the kinetic tensor is ™

valid, since the time decay for the flux is more rapid than that

of the density. The dynamics of the atoms can be studied TRH= U m(ROY (e, 0).
relative to the time scale *=m/¢. The kinetic tensor is Y

independent of time foct<l1l andct>1, the solution is

simply of the forme®! and the corresponding solutions for The set of linear equations is

eachw are calculated from the system of equations by use of db(q) _ oL

the initial conditions for the probability, the average velocity, Tt quz Z rag(a),

and the kinetic tensor &at=0. The particle starts from the - 6)
center of the cluster with a given velocity arig=1, j, 9a,(q) _ Ea (@)

=0y, 'T'q=6060. For é&t/m<1, the probability distribution at m°t

remains sharply localized around the initial position at the SKT

center of the cluster and shows slow broadening through ve- + > 70| 27iqo . (g)— —b. . (q) ],
locity mediated motion: L' m
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20.(q) 2¢ 2& _ field from the radial surface pressure field. A tendency to
L(q - X N
b - mud@+ okTh(q)E radial symmetry with time is not found.
skT D. Position and velocity correlation

- 7,,..4.(q).
m & T More information on the dynamics of the atoms follow

. . o o .. from the mean square displacement MSD
The z axis is chosen in the direction of the initial position

> B . Re - - L
vector Ry and only theM =0 components are retained for pisp= f "dRf(R,t)(R—Ry)?
simplicity. Coupling between coefficients of different angu- Ro

lar momentum now occurs due to the local field: ) )
and the velocity correlation

zLLr:f d(,DSin0d6Y|_0((P,0)YL70(QD,0)éR, lif N R N ml})g

Ji dRfdo,f(R,t)Uv (R, t)exp — ——

. . . 2kT

where the basis vectors in the local polar coordinate system ngorz (7)
ér, €,, and€, are introduced. The kinetic tensor is again Ri j o io o2 .. mo3
given by Eq.(5) with more rapid decay of the flux than the |ioOIFUOIUOf(R*t:O)UOUOex T ok

density and]L=|5bL. The remaining equations are solved,
using the expansion in two harmonids=0, 1, to illustrate  cajculated for the initiaR, at the center and fin&; position

the main results. In order to study flow along the radial andat the core surface and for the initiﬁb at the core surface

circular directions defin@, =4, - €,, the current along the = . .
initial radial direction, andi_ X €,, the current in the circular and final Ry position ate. Size gffects due 1o th.e cluster'
Lo . N surface at a can be neglected in the range of time studied
d_|rect|on aroun(_:i the cluster. The C|.rcul.ar fix g follows a (D7/a?<1). Initial behavior and long time behavior are eas-
field free equation and decays rapidly: ily calculated. Inside the cluster core after a timég, FP
a X 8,=vX éze—ft/m_ results in complete loss of velocity correlation and for the
MSD a transition from dynamical motion itf to diffusive
The remaining set of four equations fag, a;, by, b; can  motion linear in time(also found directly from the FP equa-
be solved in the method used inside the cluster in the limitsion [16]). In the interfacial region, the MSD is nonlinear
ct<1 andct>1 and the four frequencies are found from theand, due to the initial velocity, quadratic in time fot<1.
condition of vanishing determinant. The initial conditions areThe velocity correlation demonstrates a rapid initial expo-
a fixed initial position on the cluster surface and a fixednential decay and a long time exponential with persistence of
initial velocity: correlation due to the surface force field.
eZq-riq.:-;l e271-isa
ap=Ug- éz—az— =a, b0=—az— =Db;. IV. KINETIC EQUATION WITH CONSTRAINTS

Ro

The kinetic equations for a dense fluid are based on an
For {t/m<1, the probability density and the flux are the jntuitive analysis of the nature of the random processes. The
same as inside the cluster with a tendency to linger at thFP equation uses the assumption that the average path fol-
initial position. Forét/m>1, the coupling terms cannot be |ows the classical equation of motion in the force field and,

neglected. The result for the probability density is as discussed in Reff16,17], may not apply to events hap-
R m d 3 2 pening at times shorter than/&. The present problem pro-
f(Rt)a’= 1__50@2_”—} vides a unique opportunity to test a fundamental kinetic
3¢ dRj| 47Dt theory by the confrontation of the results on the dynamics in
D)2 the cluster.
3| R—a+ st—) The proposed model is introduced in Sec. IV A and the
xexp — ———————{[Yoot+ Y1o( 0] results are given inside the cluster core in Sec. IVB and in
4Dt the interfacial region in Sec. IVC. The resulting dynamic
behavior is related to the position and velocity correlation
and for the flux functions(Sec. IV D and is compared with the FP solution
. , D/ g 3 2 as well as the molecular dynamics simulation.
i(Rt)-€a __E(EJFS)[—MTDJ . .
A. Persistence of velocity
3| R— a+st9> ’ To describe motion in phase space, the model incorporates
<exd — [Yoot Yio 0)] the idea suggested long af8] that single atom paths have
4Dt 00" 10\ ¥/ a tendency to follow the classical path and show persistence

in the direction of velocity{24]. This is often observed in
The probability is diffusive with a shift into the cluster with molecular dynamics simulation on liquids and gases. Details
time and a late stage contribution to the average velocityf the calculation are given in RdR4]. The resulting kinetic
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equation combines evolution of the probability by diffusion idly tends to be diagonal and given by the average kinetic

in position as well as in velocity17,19,25,

energy KTn(R,t)/m. The characteristic time is herecl/
=2c,/m. Similarly, the probability flux equatiof8b) con-

9G _ kT |3m n 9 iG LS iG tains the Navier-Stokes terms for the flow field of viscous
gt 2cy| kT 90 o0 kT oo fluids of constant density. As in Egél), the viscosity terms
that arise from the energy flux tensor will not be considered
_ J u d and the infinite hierarchy is truncated. Using E), the
- — k_ G+—G dominant terms for the stationary flux in a nonviscous fluid
dR KT IR -
give
kT Jd d u Jd d m. . kT . J
T (TT— G+——G IR =— —nRY) — 2
2¢q| \ 9R aR KT IR R 2¢c, m oR KT

Jd u J
+ — —_)G
(ﬁRkT)(ﬁR )

On inserting in the equation for the density evolution, the
Cahn Hilliard model of nucleatio[8] is recovered for times
ct>1. The same result applies as well to the long time solu-

As before, the set of differential equations for the momentdion of the FP equationgl).

of G is found. The relevant system of equations for the pro

p- The dynamics near a sufficiently large cluster of radius

ability density, the average velocity, and the kinetic tensoclose to the critical equilibrium value is calculated in the

following. The same method and approximations used previ-

are
ously in the FP approach are applied.
of d . KkT|a 4 g u d
—= et = f B. Dynamics of atoms within the cluster core
at IR 2cq| gR dR  oRKT 4R _ o
Inside the dense core, the density is constant and the mean
d 4 u field is uniform. As in the previous paragraph, the internal
+f—- TE_ : (83  field is fully compensated and does not contribute to the
JR IR motion. This case was calculated previously and revealed
_ different behavior as a function of time relative to a charac-
g m. i:l__ ~ J i+ k_T 9 if teristic time[24] 1/c=2c,/m. It is reconsidered to test the
ot 2c," 4R JRKT 2c4l 0B oR meth'od. The.three-.dlmenspnal Fourier transformatlon qf the
kinetic equations yields a linear system of first-order differ-
N 9 u 9 o 9 9 u @) ential equations:
= oItl= = of kT
JRKT 9R 9R gRKT 9o midi + — (24 d)2
P 2miqjqt 2Cd(27-r|q) fq,
aT m,. kT . -
Ao T ®3 Do b omiqiyt s 2mid), O
b b ot - 2Cqu qu q 2Cd( qu) JQ1

In Egs.(8), the square brackets replace the collision terms of A

an interacting fluid and play an important role in the initial ‘3_Tq: _ Tfl- i k_Tf E

stage of the dynamics. In the effective continuity equation at b ¥ ¢, 97

(8a), usually called the Smoluchowski equation in the litera- . ) . . )
ture[19] the total variation of the probability is caused by the I the adiabatic approximation, the solution of the equation
drift regulated by the entropy gradieditn f/dR, which tends  for the kinetic tensor is agaifas in Eq.(5)]

to disperse the atoms as well as by a field directed term kT
du/dR and includes a possible velocity field of the single To="r fat g
particles. The equilibrium solution of Eg&) is again given

by Eq.(2), andu(R) must thus be given by Eq3). The kinetic tensor is independent of time for<1 andct

After an average in all possible initial positions and ve->1 and the solution is simply of the form!. The relax-
locities, the mean velocity field becomes the average particlgtion timew is found for vanishing determinant of the linear
flux J(R,t) and, using Eq(3), the dynamic equation for the system of equations by use of the initial conditions for the
density is obtained]: probability, the flux, and the kinetic tensor tat 0.

sgo— T et_ g
olo m q-

- R For ct<1, F(t)=0,vg, the kinetic tensor is dominated
nRY I R+ kT o n(RY) 9 p(R) by the initial motion and the flux is determined by the initial
at IR " 2cq| 9B "ar KT | velocity flow:

[(Rt)=f(Rt)goe °
Equation(8c) for the kinetic tensor is as in the FP theory. JRD=F(R.HTo
After averaging initial position and velocity, the tensor rap-and the probability density is diffusive:
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4

N kT d .
J(Rt)y=———F(R).
mc dR
34
The probability distribution is diffusive as well as flow di-
‘o rected and the long time effective diffusion constant is in-
creased to
24
2kTc, KT
= —2 + R
m 2cy
14
fxix10 and
N g, d\[ 1 ]*? R?
0 ' + — * f(Rt)=|1—-— - — || ——| exg ——|.
0 0,02 0,04 0,06 0,08 o1 0,12 C d ﬁ 4 T D t 4 D t

X

FIG. 1. For the cluster of radius the probability distributiof ~ The results of the previous solution of E4®8) are recovered
and radial average velocifyfor the particles that started at the core [24]
center and evolved within the cluster core as a function of distance
x=R/a to the core at a timé=4. The core diffusion coefficient is

e ] ' C. Dynamics of atoms within the interfacial region
8% 1073, the friction decay time~1=0.8, the radiusa=5. Mo-

lecular dynamic units MDU are usedr£4.4x10 ®s, ¢=3.4 Equations(8) for the probability, the flux, and the kinetic
x10°8 cm: T=85K, kT/m=3.3x10"2, a=5, effective surface tensor can be solved by expansion in the spherical harmon-
field as=12.5). ics:

R | 32 c4R? f(ﬁ,t)—g:,ﬂ bim(RDYm(e,6),

(RO=| 5kt 2kTt
For ct>1, the initial motion is lost. The kinetic tensor has FRH=2 auRDY (e 0),
spherical symmetry as determined by the equilibrium pres- L.M

sure tensor and the problem can be simplified by studying

the flux parallelj; and perpendicular to the wave vectpr B N

Immediately, the perpendicular component is found to follow TRy LEM Un(ROYLm(e,6).
free motion and

The one-dimensional Fourier transformation

y(@)= f dRE™IRY(R)

The remaining vectof=(f,jH) must fulfill the set of equa-

tions dZ/dt=M{ with the tensor leads again to a system of first-order differential equations in
_ the coefficients of the expansion:
Lq —27i
= . ab kT
and 2} L(L+1)
L T o rid)? —2miq s+5 Tz b (q),
q_2_cd( ’7qu) .
_ _ 9a,(q) m . .o
The eigenvalues are easily found from dett- wE)=0 to a Z—%aL(Q)+(27T|q—S)E Z/00.(q)
be L
2mi)? . 2mi)? . _T FV2_ o E
wy=—Cc+ Lq—( "4k, wp=Lg+ (2m)° <24, ¢, | (2 - 2mia| st o
c c
+
The results are given in Fig. 1. It is found that the motion — L(L—Zl) a(q),
proceeds along a radial direction as produced by the radial a
pressure gradient. The average velocity is caused solely by 20,(q) m KT
the need to achieve the equilibrium state of a uniform prob- L _ —U.(q)+ —b,(q)E. (10)
ability density ot Cp Ch
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The z axis is chosen in the direction of the initial position 0908
vectorlio and only theM =0 components are retained for
simplicity. Coupling between coefficients of different angu- o.ocs ¢

lar momentum again occurs due to the local field:
f(x)

0,004 4

ZLL’: f d(P SinedeYLo(QD,e)YLro((P,a)éR.

0,002 +

The equation for the kinetic tensor is unchanged and agair
the linear solution is usedy, =Fb, , so that

0,002 ¥+ j(x) x10

ﬁéL(Q)
ot

m
~ 50, (@) +(2mig - S)Z Z.FbL(a)

-0,004 + + + + +
0 0,05 01 0,15 0,2 0,25 03
x

2
s+ -
a

kT o )
+2— (27riq)°—2miq
d FIG. 2. For the cluster of radiug probability distributionf and

L(L+1) average velocity in the direction of the initial position vector for
Y a (q). (11 the particles that started at the core surface and evolved within the

cluster interface as a function of distance to the surfeedR/a
—1 at a timet=4. The diffusion coefficient in the interface is 8
The dynamics is complex, as the coupling between thec10-2, the friction decay time~1=1.1, the effective surface field
modes of differenl. become important but due to the ten- as=12.5, the radius=5 (MDU as in Fig. 2.

dency to conserve angular momentum, the modek>eD

decay as a slow decay with time towards radial distribution of spheri-

cal symmetry.

exr{ _ L(L+1)] kTt The particle flux and the kinetic tensor are dominated by
a® | cq the initial velocity: j(R,t)=f(R,t)i,e .. The loss of the

initial velocity follows the usual exponential decay with a
and a limited expansion is justified here. To illustrate the caseharacteristic time .
of a two-mode systenml.=0, 1 is given. Withd, =4&, -&,, Forct>1, the effect of the surface is important. An addi-
the current along the initial radial direction addx &,, the  tional relaxation time can be seen to appear due to the sur-
current in the circular direction around the cluster, the set oface force field, which enhances the drift of atoms in the
four equations foray, a;, by, b, can be solved in the radial direction:
method used inside the cluster in the limds<1l andct
>1 and the four frequencies are found from the condition of

172
vanishing determinant. The systefigg ,b,} and{a;,b} are f(Rt)a2=|1— 1 vo & ( d . }
decoupled. The initial conditions are a fixed initial position ' AR " 4Dt
on the cluster surface and a fixed initial velocity: KT  4KkTg,

[ R—a+ S+ —2) }
g2mida g2misa <exa — ZCd 3m
ap=00'€; a2 =a; bo= a2 =b;. 4D1t

2

The results are shown in Fig. 2.
For ct<1, the result for the probability density is

XY, Y100 kTt
oot Yol 0)€X g

th The effective diffusion constant is increased:
> 2: s _ d
fRYa™= 7751 & 4Dot 2kTe,
D=7 +5
kTt 3m 2¢cy
Cga

the numerical factor of 3 ilD; being a result of the limited
with an effective diffusion constanD,=kT/2c,. Atoms expansion in spherical harmonics.
starting on the surface show a tendency to be drawn into the The effect of the surface is also visible in the average
cluster by the capillary pressure term. The probability showselocity dominated by the response to the total external field:
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S +2tkT+4chb 2
0 eare 2KTo( 0 L —arisTa) N 2e, " 3m? y KTty
J( !t)'eza - m2 ﬁ S 47TD1t ex 4D1t OOeX W + 10( ) .
|
The radial flux persists with a relaxation given by the present model. The velocity correlation in both kinetics
demonstrates a rapid initial exponential decay and a long
2\2[ KT 4kTg)\? time exponential drop with persistence of correlation due to
tis+>l 5+ =22 the surface force fieldFigs. 3 and 4
al \2cq 3m
expg — D . A comparison to molecular dynamics provides a test for
1

the hypothesis on which kinetic equations are based. To com-
pare with the kinetic theory, the simulation results for the
MSD and the velocity correlation are also given in Figs. 3
and 4. Qualitative agreement is found. Quantitative agree-
ment is hampered by lack of independent values for the dif-

The initial circular flow is not coupled to the density and
vanishes rapidly due to the friction forces:

1/2
"B 242> wa 1 fusion constant and the friction constant in the interface, al-
J(R)X&a°=vyX8é, :
47Dt though these could be calculated in the method of Rie]
2\ KTHI2 or determined from the simulation.
Rear(sr2)a
Cexd — a/ 2¢q V. CONCLUSIONS
ex
4Dt

In the proposed kinetic model, the following picture for
et the average motion of a particle inside a sufficiently large
e " —0. condensing cluster is revealed. For atoms starting at the cen-

ter of the aggregate with a given velocity, the average veloc-
] . ity initially follows the initial direction but decays rapidly
D. Correlation functions due to onset of diffusive motion, as does the initial kinetic
Inside the cluster core, the coupling between position andensor that directs the motion along the initial velocity. With
velocity in the persistent diffusion model leads to a lineartime, entropy dominates as the directing force for the prob-
time dependence for the MSD with an increase in diffusionability flow and the motion is accelerated by the tendency to
constant and total loss of velocity correlation after a timesSmooth out the nonuniform probability density. The results
¢ L. In the interfacial region, the MSD in both kinetics is for a particle starting on the cluster surface demonstrate a
nonlinear and initially quadratic in time, but the cause isgradual loss of initial flow and directed radial motion of the
different, arising from velocity effects in the FP rather than ,
due to accelerated motion by the surface pressure gradient ii

X

kTt

2

0,8 4
MSD

164 .
0.6 +

12 4+ Y

. 04t

0.2 4+

0 5 10 15

FIG. 4. The velocity correlatioWcqg as a function of time in
FIG. 3. The mean square displaceméSD) as a function of  the interface(—) for the parameters of Figs. 2 and 3. The short
time within the core(——A——) and the interfacd—) for the (ct<1) and long €t>1) time behavior are plotted separately, the
parameters of Figs. 1 and 2. The results of the molecular dynamicsum is shown ag+++). The results of the molecular dynamics
simulation in the coré--A--) and interfacg- - - -) are shown for  simulation(- - - -) are shown for comparisofil5] (MDU as in
comparison(15] (MDU as in Fig. 1. Fig. 1). The initial velocity is radial into the core center.
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atoms into the cluster due to the favorable chemical potentidhere folds atomistic understanding into a mesoscopic formu-
gradient near the cluster surface. The random thermal motiokation in terms of average density, flux, and stress tensors and
lessens the directed flow and causes the tendency to spherican be compared directly to experiment and molecular dy-
symmetry with time. A cluster surface is thus found to benamics. Collective behavior is captured on this scale and is
surrounded by a narrow zone of capture where particle moembedded in a continuum mechanics approach. The mean
tion is affected by the cluster field and the need to enter théield approach of density functional theory is extended to
new stable phase. Outside this zone, motion is mainly diffunonequilibrium systems to include effects of flow fields and
sive. variations in pressure and temperature. Experiments and
Similar effects occur in the classical Fokker-Planck ap-simulation can benefit from the guidance provided by the
proach for the properties, parameters, and time scales exaranalytical modeling, and the analytical theory is useful in
ined. In both approaches, the long and short time correlatioapplied science, as it is detached from a specific given ma-
functions are in qualitative agreement with the molecularterial. The method is of interest and could be used in other
dynamics simulation on an Argon cluster. A picture of thenanosystems. The assumptions of the model are not limited
dynamics of atoms emerges, which is universal and indeperie atomic systems and are pertinent to cluster formation in
dent of an interaction model. Metal clusters are of impor-suspensiong27].
tance in applications; it would be interesting to explore the The presence of characteristic flow fields in the vicinity of
importance of the electronic contribution to the dynamics ofnucleating clusters was suggested long £} and may be
a nucleating metal cluster, possibly using the embedded atoexpected to play an important role in the doping of clusters
potential already applied to wettii@6. [29], in coalescencé30,31], for deposition near a surface,
Atomic scale physics explores theoretically or experimen-notably in electrochemical depositi¢82].
tally the underlying atomistic processes of a phase transition:
aggregation, diffusion, coalescence, and dissolution, which
determine the morphology and characteristics of the system
at a given instant of time. The crucial question remains ac- This work was suggested by D. Zhukhovitskii and prof-
cess to nonequilibrium properties. The method presentetied greatly from his expertise.
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