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Self-organized criticality in a bead pile
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Self-organized criticality has been proposed to explain complex dynamical systems near their critical points.
This experiment examined a monodisperse conical bead pile and how the distribution of avalanches is affected
by the pattern of beads glued on a base, by the size or shape of the base, and by the height at which each bead
was dropped onto the pile. By measuring the number of avalanches for a given size that occurred during the
experiment, the resulting distribution could be compared to a power law description. When the beads were
dropped from a small height, all data were consistent with a simple power law of expetehtwhich is the
mean-field model value. The data showed that neither the bead pattern on the base nor the base size or shape
significantly affected the power law behavior. However, when the bead is dropped from different heights, then
the power law description breaks down and a power law times an exponential is more appropriate. We found
a scaling relationship in the distribution of avalanches for different heights and relate the data to an energy
dissipation model. We both confirm self-organized criticality and observe deviations from it.
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INTRODUCTION pile near the critical angle of repose. As more sand is
sprinkled on the pile, avalanches of all sizes would form but

Substantial effort has been devoted in recent years to urthe vast majority would be small in size and take place
derstanding a new paradigm for complex, dynamical systemguickly. However, a few would deplete a significant portion
that are governed by short range interactions. After Bakpf the pile. BTW[1] developed a cellular automata simula-
Tang, and WiesenfeldBTW) [1] proposed self-organized tion of a sandpile with “toppling rules” that produced a
criticality (SOQ in 1987 as a way to explain phenomena aspower law behavior for the distributions of avalanche sizes
diverse as earthquakes, the stock market, forest fires, armhd duration. Subsequent to their original article, many
ecology, some experiments and many simulations have beeimulations and a few experiments have been conducted to
conducted. In SOC, a composite system whose many partest the robustness of SOC. Several reviews of granular sys-
influence each other with short range forces would naturallfems have been writte7,8]. We will overview some of the
evolve to a critical state where a small perturbation couldnore relevant work on the simple sandpile system.
lead to a minor or major event. The system would self-
organize to a critical state without the need for a controlling
parameter, such as temperature. The analogy of such a sys-
tem being at its critical point and the implications for univer-  Experiments in avalanche dynamics in granular material
sal behavior were proposed by Bak and TéRpand further  have been in either “one-dimensiondD)” piles, in slowly
developed by others3—-6]. rotating cylindrical drums, or in conical piles. Altshuletr al.

A system exhibiting SOC would have fluctuations on all[9] studied the effect of the bead spacing on the base layer
length and time scales so that the distribution of eventdor a 1D pile confined between glass plates, which is a 2D
would follow a power law, perhaps with universal exponents,geometry with flow in one dimension. When dropping 4-mm
with many more small events than large ones and with modbeads from 10 cm above the top of the pile, they found that
taking little time to complete. For example, the probability the avalanche dynamics did not follow a power law in the
P(s) of an event of sizes would be given by the simple size distribution, but did find a strong dependence on the

PRIOR WORK AND THEORY

power law expression base layer’s bead spacing. Christens¢ml. [10] studied a
rice pile in a similar 2D geometry and found SOC power law
P(s)=Pys 7, (1) behavior for a region of avalanche sizes with an exponent

of 2.4+0.2. Another study of rice in the same geométty]
where 7 is the exponent. The system would not obey simpleused the energy dissipated between successive profiles to
determinism in the sense that a major event could result frormeasure the size of avalanches and found a dependence on
the same small perturbation as a small event. Moreover, thetbe pile size(finite-size scaling and the shape of the rice
would be no way to predict when a major event would occurgrains (aspect ratin They found some shapes to follow a
The original model systerfil] for SOC was a sandpile. A power law, while others did not. They also could describe
bucket of dry sand turned upside down will form a conicaltheir data with a stretched exponential of a form proposed by
Feder[12] to explain other experimental data on avalanche
distributions:
* Author to whom correspondence should be addressed. Email ad-
dress: djacobs@wooster.edu P(s)=P,exd —(s/sy)”], (2
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where y is the power that stretches the exponential to de{11] found in rice piles. Since a characteristic sggwas
scribe the data angl, is the characteristic size. The presencepresent in such a function, Feddr2] argued that SOC does
of a characteristic size would be contrary to the system beingot hold in granular systems. Furthermore, he notes that qua-
at an SOC critical state. Othef$3] also developed simula- siperiodic avalanches are inconsistent with SOC.
tions to explain various aspects of the rice data. In an effort to clarify the experimental situation for the
Jaeger, Liu’ and Nagd]14]' Evesque and co-workers Simp|e Sandpi|§ model of SOC, V\!e haVQ Ca.r.efully investi-
[15]; and Morales-Gamboat al. [16] have investigated 9ated a monodisperse, granular pile that is driven slowly by
granular material in a partially filled, cylindrical drum that @dding one grain at a time. We look at the size, shape, and
would slowly rotate about the cylinder’s axis. The resultingPacking of the base of the pile as well as the reproducibility
avalanches were not consistent with SOC predictions. A rofor the avalanche distribution, something not mentioned in
tating drum advances a whole line of material past the angl@"or experimental work. Finite-size scaling, quasiperiodic
of maximum stability and eventually takes more tightly large avalanches, predictability of major avalanches, and
packed material from the bottom of the pile and places it afvalanche statistics were looked for and measured when ob-
the top, thus routinely rupturing force chains that support th&€rved. In addition, we systematically varied the height from

grains[15]. It is this aspect that makes rotating drum experi-Which the beads were dropped onto the pile. As we will
ments fundamentally different from the 2D geometry de-Show, a simple power law describes the avalanche statistics if

scribed above or the conical piles described below. the beads are dropped from a small height, but a more com-
Held et al. [17] studied sieved “sand” in a conical pile plicated relation is needed when beads are dropped from a

supported by a digital mass balance. Aluminum oxide parlarger height. Moreover, the value we find for the exponent
ticles (average mass of 0.6 mwere slowly added from 7.5 N the power law is much less than reported previously.

to 10 cm above the top of the pile and the mass of the pile

was used to determine if avalanches occurred. By counting THEORY

the number of avalanches that resulted in a particular mass The original work on SOC by BTW1] was a paradigm
loss off the edge .Of the pile, they fqund a power .Ia\./v Ofshift in the approach to large, complex, interacting systems.
expo”ef“ 2.5 for SIzes 3-80 grains with a gharactensﬂc deBy considering such a system as having organized itself to a
crease in the probability for avalanches which were IargerCritical point, then simple power laws should hold over a
They also observed finite-size scaling in the distribution Ofregion wher; the system is near critical. Scaling relations
avalanche sizes for the different diameter bases, which Vaj: e been developed as has the connéction of SOC to a
ied from 10 to 70 grain diameters.

; . critical point[2—6], but most work in the field has relied on
Rosendahl,_Vekm_, and Kelleh 8] qonducted WO exper-  merical simulations to investigate the phenomena for vari-
ments on conical piles that were similar to the Heldal.

: o ) ) ous systems. BTW proposed a sandpile as a model system
experlrn_ent._lrregular gralns_droppe‘dom a small height of for SOC; one that can be explored experimentally and nu-
0.5 cm ":j E{h's work Ontt?] a plle b;ult ona rlnassh balafr;(;ﬁ th%t merically. However, experiments on sandpiles have shown a
was used to measure the size ot any avalanches ot the e mple power law description for the avalanche distribution
In t.helr first experiment, they varied the dllameter of theOver only a fairly narrow region of avalanche sizese or
gra|ns(Q.4 3”0' 0.8 mmas well as the base diamei@5 to two decades Numerical simulations have either confirmed
100 grain diametejs They found a power law over the re-

. . . SOC or not, depending on the assumptions used; Céaidk
gion of 2-20 grains t_hat had a power of 2.2. In addition, th.eyreviews severaFI) nume?ical simulationpresults.
reported quasiperiodic large avalanches when the base diam- Several authors have developed a mean-field model for

eter was Ie_lrger than 75 grain d|amgters, an effect n_oted %OC using various approaches. In all of these, an avalanche
Held et al. in the same regime. Their second paper INVeStisg 3 front of noninteracting particles that can trigger addi-
gated these large avalanches gnd proposed a scheme to Ribnal activity or die out. This is a critical branching process
dict major avalanches that _”."'ght be l.JserI in earthquak 22] that typically involves tuning a parameter to reach the
prediction. Other$19] have criticized their approach and the critical state. As Zapperi, Lauritsen, and Stanjég] point

certainty with which one can make such a preQ|ct|on. ut, this contradicts the assumption in SOC that the system is
Several years ago, our research group studied the rc’bu%ﬁeady at the critical point. They develop a mean-field
ness o;;vglfnche dyn?m]lcs vahen dlﬁergnttrt]ypes of b;ea odel that avoids this paradox by using boundary conditions
were added to a conical pile. We measuf2d] the mass o so that dynamics drive the system to the stationary state. The

the pile after each bead addition and used the size of th - : - -
avalanches off the edge of the pile to form the distribution,FeSUlt[zs] 's a simple power law with an exponential cutoff,

which was well described by a power law. Since the purpose P(s)=P,s~ "exp(—s/S,). 3

of that investigation was to illustrate SOC, the small number

of bead additions did not allow good statistics so that differ-The value of the exponentin the power law is 1.5, the same

ent functional forms could also describe the data. value others have found for mean-field models. The cutoff
Feder[12] proposed a stretched exponenfigh. (2)] to  characteristic sizs, goes to infinity as the probability of a

describe selected data from all of the experiments done tsite relaxing(when stimulated by a neighboring gigoes to

that point. He found that a stretched exponential withe-  1/2 [23]. This equal probability leads to the system being

tween 0.34 and 0.44 would explain the data he analyzectritical where the probability of an avalanche of ské& a

This value ofy is similar to the value 0.43 that Freté¢ al.  simple power law.
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The same equation is developed by Ghaffari, Lise, andpace between beads, another used a fixed gap between
Jenser{23] in a mean-field sandpile model that is noncon-beads measuring 1.25 bead diameté&snter to centgr
servative. Their model is a branched process where an “enwhile the third was a random packing that resulted from
ergy dissipation” moves the system from the critical point. In pouring beads onto the glue on the base. A second investiga-
Eq. (3), they also obtainr= 1.5 but the cutoffs, depends on tion explored the shape of the base on the avalanches using a
an energy dissipation parameteras 15,=(k—a)® where 23 cm diameter circular base and a square base 23 cm on a
(k—a) approaches zero as the system approaches the criticgije. The third set of experiments varied the diameter of the
point and is described by a simple power law. When a renofpase from 13 to 28 cm in 5 cm steps. Heltal. [17] and
malization group analysis is doifig3], then the dependence Rqsendahl, Vekic, and Kellj18] reported both finite-size

of the cutoff changes to effects in similar experiments as well as a crossover to qua-
D2 siperiodic large avalanches when the base diameter became
1lso~(k—a)=1% (4 larger than 70 bead diameters. The range of our base diam-

eters covers a span from 40 to 93 bead diameters. While
whereDy is the “fractal dimension of the avalanch¢23].  finite-size effects may be present, we will show in the fol-
The concept of an energy dissipation that will take a systenfowing section that the distribution of avalanche sizes is not
from the critical point is useful in our experiment. Veespig- affected by any of these three modifications to the base. A
naniet al. [24] argue that in the stationary state, the energysimple power law with a universal exponent describes our
balance requires some critical expond(tsluding 7) to take  avalanche size distributions well.

their mean-field values in any spatial dimension as is ob- A fourth set of experiments varied the height from which

served in simulation§25]. beads were dropped onto the pile. The resulting kinetic en-
ergy of the dropped bead had to be dissipated in the pile and
EXPERIMENT a systematic change in the avalanche size distribution was

observed as the height increased. A deviation from a simple

In an attempt to collect experimental data that can test thpower law was observed with the occurrence of fewer large
fundamental predictions of SOC, we use uniform, sphericahvalanches.
glass beads to form a conical, granular pile as an idealization While these investigations have been done by different
of a sandpile. The pile is formed on a base, which we vary irstudents over several years, many aspects have been consis-
a number of ways, that is attached to a vertical support restent. First, the Mettler balance rests on a vibration isolation
ing on a digital mass balance. We achieve a slowly driverplatform. For the suite of experiments investigating the effect
system by adding one bead to the top of the pile and theof the base, an active isolation systé@&ewport optics table
waiting for a stable mass before the next bead is addedvas used. The experiments investigating the effect of the
Avalanches are measured by the mass loss off the edge of thieop height were done with the balance on an optical bench
pile in the same way that Heldt al. [17] and Rosendahl, (a passive isolation system/Nhen the drop height is small,
Vekic, and Kelley[18] did. However, unlike these earlier the avalanche distribution is independent of the isolation sys-
studies, we use relatively large beads (301 mm diam- tem used. In addition to the vibration isolation, all the ex-
eter, 0.035:0.001 g) so we can then neglect wetting effectsperiments had a box over the pile and balance to eliminate
from room humidity that may cause cohesion in smallerdrafts. We wanted to investigate the effect on the pile as a
beadd 26]. result of a bead addition and not from external vibrations.

The bead pile is built on top of a flat metal base where the The humidity where the granular pile formed was not ac-
first layer of beads are glued to prevent the pile from collapstively controlled beyond the performance of the room venti-
ing under its own weight. The pile is built by pouring 8000— lation system, which provides a relative humidity of 45% or
40000 beads onto the base and then a computer controlléglss. Humidity effects have been observed when using small
bead dropper adds one bead at a time. The pile starts at itgass beads because of the surface wetting that can combine
critical angle of repose, although occasionally there is awith glass dust to cause cohesive forces between the beads
building period before major avalanches are detected. A27]. Glass dust forms from tumbling beads in a rotating
LabVIEW program controls the experiment using a serialdrum or in recycled avalanche chutes, yet some would form
interface and collects the equilibrium mass of the pile as dom the type of piles and avalanches reported here. Such
function of time after each bead addition. A digital balancecohesive forces can cause aging in a pile—the pile becomes
(Mettler PJ300D measures the mass and has a resolution oftronger and more resistant to shear forces in time. We have
0.01 g, which allows us to measure individual bead additionsot seen this effect in our bead piles: whether fresh piles are
and avalanches. The raw data are the mass of the pile and theeated or the early versus later portions of a data run are
time at which the mass is measured. analyzed on an established pile, we obtain the same ava-

How the base is formed is reported to affect the distribudanche distribution. This is a result of using larg&r mm)
tion of avalanche sizes in 2D geometry pils. We ex-  beads, which are a factor of 10 larger in diameter and 10 000
plored the effect of the base on the avalanche distribution iin mass than the largest beads in which aging effects were
three ways. The first was the pattern by which the beads werebserved from humidity-induced, cohesive for¢2ag].
glued to the base in a manner similar to that used by Alt- In our slowly driven system, we always waited for ava-
shuleret al. [9]. Using a 23 cm diameter base, three beadanche activity to come to completion before recording a
packings were constructed: one was close packed with nmass of the pile. Our balance updates the mass too infre-
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S S T S S S S W I S FIG. 2. The fluctuation in the mass for the 28 cm diameter base
(b) has a PSD that varies as a power law in “frequency.” The data fall
on a line whose slope iss—2. The lack of a peak indicates a lack
of quasiperiodic large avalanches.

2980

2975 while others were used from previous data runs. While we

did not systematically investigate the packing of, and result-
ing force chains among, the beads on top of the base, we did
not observe the appearance of the raw data nor the distribu-
tion of avalanche sizes to be affected by the pile history.
While investigating the effect of the bases on the avalanche
. distribution, two data runs were typically used and averaged.
£ When the height from which beads were dropped onto the
pile was varied, three runs were taken with the same bead
v rr 7T rrrr drop height. The data from the four drop heights were then
2000 3000 4000 used to estimate the error in our calculated probabilities,
number of bead drops which we found to be typically 8%, but sometimes twice that
for the larger, but far less frequent, avalanches. Similar error
FIG. 1. The mass of the bead pile after each bead is dropped ogstimates have not been stated in other experimental work on
the top of the conical pile shows periods of pile building inter- the avalanche statistics of bead piles.
spersed with avalanches of all sizes. The “time” axis is the number Before presenting the analysis of our data, it is interesting
of bead drops since the mass is recorded after the pile comes i |ook at the appearance of the raw data for two different
equilibrium as a result of dropping a bead. Only part of each run ispile sizes. Figure (B) shows a portion of the mass of an
displayed with(a) from a pile with a 18 cm(60 bead diameteys 18 cm hasd60 bead diametersile as a function of time. A
base, while(b) is from a pile with an 28 cm93 bead diamete)s 4o is shown since the data run is so long that the entire
base. Neither shows quasiperiodic large avalanches. run will exhibit a digitization artifact when compressed for
publication. The time axis is in bead drops since the time
quently to monitor an avalanche in progress, which usualljbetween bead drops varies. Large drops in mass correspond
takes less than a second to complete. However, larger avép large avalanches, but many small avalanches occur which
lanches sometimes take several seconds to finish. Our corgannot be observed at this scale. The mass on the vertical
puter program waits for an equilibrium mass, which is ataxis is not the total mass of the pile since only mass differ-
leag 8 s for small avalanches and at least 30 s for largeences determine avalanches; thus, the balance was routinely
ones. It is interesting that the largest drops in mass that anared when the pile was initially built, but before any data
visible in the raw mass versus time data are almost alway@ere collected. Figure () shows the same time portion as
comprised of several smaller avalanches interspersed by pEig. 1(a), but for our largest pile with a 28-cm baé®3 bead
riods of pile building. diameters The range of the vertical scale is larger for the
A typical data run consists of building a pile on a base,larger pile, but the overall appearance is the same as in the
then dropping one bead at a time while measuring the equsmaller pile. In particular, the quasiperiodic large avalanche
librium mass of the pile. Subsequent data runs tested fosehavior, which other§17,18 have reported for bead piles
reproducibility. From 15000 to 50 000 beads were droppedvith a base larger than 50—70 bead diameters, is absent in
onto the pile in runs that lasted from 54 to 95 h with 600 toour data. In addition, large avalanches happened in our data
2000 avalanches occurring. Some piles were built freshwithout precursor events, thus preventing their prediction.
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the average avalanche size for that bin shows no dependence on the
way in which beads were glued to the base. The circles are from an
even gap spacing between beads, the triangles are close packed, and
the square symbols are randomly packed. The line has a slope of
—1.5 and indicates that a simple power law describes the data.

RESULTS AND ANALYSIS

From the raw data of the pile mass after each bead drop,
one can easily obtain the change in mass, which corresponds
to either a positive bead addition to the pile or to a negative
mass change corresponding to an avalanche of beads off the
edge of the pile. When comparing our results to theory, the
size of the avalanche on the pile is assumed to be propor-
tional to the size of the avalanche off the edge of the pile,
which we can measure. Typically, the added bead stays on

the pile, but an avalanche of any size can occur at any time. giG. 5. when different diameter bases are used then the piles
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are different sizes but the avalanche distribution does not change
significantly. For both plots, th& are for 13 cm, the circles are 18
cm, squares are 23 cm, addl are 28 cm diameter base. P&
shows the avalanche distributions unscaled, wkileshows the
data on a scaled plot.

The lack of any characteristic time in the fluctuations of the
mass of the pile is illustrated in Fig. 2 by taking the power
spectral densityPSD of the equilibrium mass of the 28-cm
pile as a function of the number of bead drgpise) onto

the pile. Since we cannot monitor the mass of the pile while
avalanches are in progress, the resulting PSD reflects any
periodicity in the equilibrium mass and not the time scale of
the avalanches themselves. Figure 2 shows the PSD data as a
function of “frequency” to approximate a power law de-
crease with an exponent ef—2. In particular, there is not a
characteristic frequency that would indicate quasiperiodic
large avalanches as obsenfdd,18 in piles even smaller
than this one. The slope we observe is similar to the92

FIG. 4. The avalanche distribution does not depend of the shape 0-05 predicted from a lattice gas mod&B] for a 2D ge-
of the base. The square symbols are from a square base 23 cm oPEetry.

side, while the triangles are for circular bases 18 cm or 23 cm in

The raw mass of the pile is converted into a distribution

diameter(V and A, respectively. The line guides the eye and has a of avalanche sizes by counting the number of avalanches

slope of—1.5.

within a size range or bin. Since the balance has a resolution
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URALLL BN LR ALY B ALY | (close, fix gap, and random packjngere used on a 23 cm
- diameter base. Figure 3 shows that the resulting avalanche
Eﬂé distributions for the three packings are consistent with each
41 (@) other and with a simple power layq. (1)]. The line in the
102 F ] - figure corresponds to an exponenof 1.5.
A ; Y
In the second investigation, the shape of the base was also
varied. A square base 23 cm on a side was used as well as an
18 and 23 cm diameter circular bases. Figure 4 shows that
the distribution of avalanche sizes are consistent with each
other and with a simple power law of exponent1.5.
These piles are evidently large enough that the avalanches
o along the surface do not know how the base is constructed.
o Even though the area of the bases is different, the avalanche
10 ol 4ol st distribution remains consistent as is shown in the following
2 46 2 48 2 48 (third) investigation.
10 LIV 10 The size of the pile was varied by using circular bases of
s different diameters. We investigated piles whose base diam-
eters were 13, 18, 23, and 28 cm, which correspond to 40—93
bead diameters. Indeed, the smaller piles did not have ava-
lanches as large as the large piles. However, as shown in Fig.
5(a), all four sizes are consistent with a simple power law
with exponent 1.5. A finite-size scaling analyg&8] can be
done and is shown in Fig.(B), whereP(s)=L"“g(s/L").
For the functiorg we use the power law given in E(), and
L is the diameter of the pile. Since the average mass of the
pile is constantw and v are related tor by 7= a/v. Finite-
size scaling does help align the smallest pile with the other
sizes, but still with a simple power law description with
=1.5. Since a systematic variation of the distribution with
% pile size outside its error bars was not observed, finite-size
- scaling does not make a significant difference.
10 wANINETI | sl N INE NI o . i X
2 46 2 46 2 46 The surprising result is that neither the base shape, pack-
10’ 10° 10° ing, nor even size significantly affected the distribution of
s avalanche sizes. Moreover, a simple power law adequately
FIG. 6. The avalanche distribution when beads are droppedjescribes all this data over three decades in avalanche size.
from 1.5 cm above the apex of a 18 cm diameter pile(dnthe The value ofr in the power law is the same for all the data:
three data runs show the reproducibility, whil® shows the aver- 1.5. This value is what mean-field theory predicts for the
age probability with its error. The line is a weighted fit to the datadistribution of avalanche sizes. For these relatively large
by a simple power law and has a slope-of.47+0.03. spherical beads, the size of the mass flow over the edge
seems to be proportional to the size of the avalanche and to
less than a single bead, we can measure small avalancheg well described by mean-field theory. This result is in
accurately. However, the smallest avalanche that can be deharp contrast to what has been observed in prior experi-
tected is two beads falling off the pile, which is a result of ments where a simple power law would hold only over a
adding one bead to the pile and observing a mass loss of o@rrow range of avalanche sizes and then with an exponent
bead. Since there are so few large avalanches, binning ®ftween 2.2 and 2.5.
some kind is essential. The bin sizes are chosen to be evenly
spaced on a logarithmic scale, but the precise choice of bin
width does not change the shape of the distribution. The

él
10° - o

P(s)
[
a

L lllllll 1 IIIIIII LI 4 Illllll

(b)

VARYING THE DROP HEIGHT

probability P(s) for an avalanche of sizeis the number of The final set of experiments involved dropping the glass
avalanches within the bin centered sdivided by the width  peads from different heights above the apex of the pile built
of the bin and the total number of avalanches. on a 18-cm circular base. Four drop heights were used: 1.5

cm, 2.5 cm, 5.0 cm, and 10 cm. At each height, three data
runs of 54 h each were collected, analyzed, and compared.
One-fourth of the runs were on disturbed piles with the re-
The packing of beads on the base has affected the avamainder on piles already at the critical angle of repose. Ex-
lanche character and distribution in 2D geometi§sas has cept for a building period for the disturbed piles, no differ-
the shape and siZd.7,18 of the base. These earlier obser- ence in the avalanche statistics were observed which
vations were tested in our research through three investigandicates that aging was not significant in the avalanche sta-
tions. In the first investigation, three packing geometriedistics for these piles. The three runs for the 1.5 cm drop

MODIFYING THE BASE
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FIG. 7. The avalanche distribution systemati-
cally deviates from a power law as the height
increases from which beads are dropped onto the
+ pile. The circles are the average avalanche prob-
ability for beads dropped from 1.5 cm, the
squares from 2.5 cn) from 5 cm, andV from
10 cm. The lines are weighted fits to the data for
each drop height using E¢B) when is fixed at
1 1.47. The resultings, values have a systematic
dependence oh as shown in the inset. The equa-
tion to the line is 1¢,=—(0.0015+0.0007)

T +(0.0023+0.0002) h.
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height is shown in Fig. @) and illustrates the reproducibility avalanches of size around 100 beads is roughly constant, but
in the experiment. At each drop height, the probability ismany more small avalanches occur as the drop height in-
then averaged and an error is assigned that represents tbeases. Thus, the probability for an approximate avalanche
reproducibility. The resulting distribution for the 1.5 cm drop size of 100 decreases as the drop height increases. However,
height is shown in Fig. ®) along with a weighted fit to the the probability of small avalanches remains consistent for
data by a simple power law function given by H@). The  about one decade in avalanche size for all the drop heights.
resulting exponent value and one standard deviation errdrhe kinetic energy of the dropped bead triggers more small
estimate isr=1.47+0.03, a value consistent with the mean- avalanches so that the system is unable to reach a state where
field theory prediction of 1.5 and with data presented in thevery large avalanches occur.
preceding section. The energy that is dissipated in the pile can be likened to
As the drop height increases, then the avalanche distribuhe energy dissipation parameter introduced in numerical
tion deviates from a simple power law in a systematic waysimulations by Ghaffari23]. The energy dissipation will be
Figure 7 shows the average avalanche distributions for thassumed to be proportional to the energy with which the
four drop heights and Table | provides the probabilities anchead impacts the pile, which is also proportional to the drop
error for each avalanche size and drop height. As the dropeighth. The mean-field prediction is E¢g), which can be
height increases, then the probability of large avalanches detsed in a weighted fit to the data. Holdimg: 1.47, the value
creases with no avalanches in the largest bin. The number @6und for the 1.5-cm data, the amplitué®, and the char-
acteristic sizes, were free in the fit and, was found to vary

10" G DAL ALL BRI RLLLL IR systematically with drop height as would be expected. Figure
7 shows the fitted lines to each drop height with the inset in
102 F the figure showing the dependencesgfon drop heighh. A
linear dependence of4/onhis consistent with the data and
10° would indicate from Eq(4) a fractal dimensiorD; for the
5 “ avalanches of 2, which is reasonable for avalanches on the
= W0 surface of the pile. The intercept ofs}/versush is effec-
- 5 tively zero, which would correspond in Ghaffari's model
g 10 [23] to the bead pile being at the critical point when beads
10° F are added with no kinetic energy.
To illustrate the consistency of the data and the analysis
107 |- using the mean-field model which gave E8), all the drop
height data can be scaled. If E®) describes the data and if
10° bl 0 vl 0yl 1/s, is just proportional to the drop height then all the data

10" 102 102 will fall on a common curve if a scaled plot is done. The
scaling is done to eliminate thliedependence ig, and gives
sh P(s)h~14’=P (s h)"**7exp(—Bs h), whereg is the slope
FIG. 8. All the avalanche distributions shown in Fig. 7 collapse Of 1/S, versush. Figure 8 shows all the data from different
onto a common curve when scaled. The symbols are the same as@0Pp heights falling on a common curve when scaled in this
Fig. 7. The line is a weighted fit to the scaled data usingfashion. The line is a weighted fit to the data and giyes
P(s)h~1*7=P(s h)"1*"exp(~Bst), where P,=0.728+0.015 =0.002Qt 0.0001, which is within the experimental error of
and 8=0.0020+ 0.0001. the slope found in inset of Fig. 7.
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TABLE |. The probabilitiesP of having an avalanche of a size centeredsgm bead$. Four different bead drop heights are presented
(1.5 cm, 2.5 cm, 5.0 cm, and 10 ¢nThe errorSP in the probabilities is from the typical standard deviation for avalanche probabilities in
that size region. These data are plotted in Fig. 7. Numbers in square brackets denote powers of 10.

s (bead$ P (s,1.5cm) 6P (1.5) P (s,2.5cm) SP (2.5) P (s,5cm) 6P (5) P (s,10 cm) 6P (10)

1.9 2.00[—1] 1.1[-2] 2.09[—1] 8.7[-3]  232[-1] 1.0[-2] 2.48[—1] 1.0[-2]
3.0 1.26[—1] 1.1[-2] 1.24[-1] 95[-3]  1.53[-1] 15[-2] 1.55[—1] 1.2[-2]
4.0 9.00[—2] 8.4[-3] 9.98[-2] 76[-3]  1.04[-1]  8.1[-3] 1.13[-1] 8.6[—3]
5.0 5.55[—2] 5.8[—3] 7.07[-2] 6.1[-3]  7.32[-2]  7.7[-3] 7.96[-2] 6.1[—3]
6.4 4.07[-2] 9.3[-3] 5.04[ 2] 51[-3] 5.38[-2]  4.1[-3] 5.65[—2] 4.3[-3]
9.3 2.75[-2] 2.2[-3] 2.69[—2] 25[-3] 281[-2]  2.1[-3] 2.91[-2] 2.2[-3]
14.2 1.31[—2] 1.0[-3] 1.39[-2] 1.1[-3]  1.32[-2] 1.0[-3] 1.21[-2] 9.2[-4]
215 7.85[—3] 6.5[—4] 5.70[—3] 85[-4]  6.01[-3]  7.0[—4] 5.30[—3] 4.0[—4]
33.2 3.43[—3] 5.4[—4] 3.50[—3] 7.2[-4]  2.18[-3]  3.4[-4] 1.61[-3] 3.9[-4]
51.7 1.75[—3] 6.2[—4] 1.39[-3] 22[-4]  1.06[-3]  2.0[-4] 7.05[—4] 1.3[-4]
80.9 9.65[—4] 1.9[-4] 6.76[—4] 1.1[-4]  3.71[-4]  7.9[-5] 2.39[-4] 3.7[-5]
128 3.81[—4] 5.9[-5] 3.04[—4] 47[-5]  156[-4] 2.4[-5] 8.0 [-5] 2.0[-5]
202 1.84[—4] 6.6[—5] 1.90[—4] 55[-5]  3.77[-5]  4.9[—6] 1.00[-5] 6.9[—6]
318 1.09[—4] 5.7[-5] 4.9 [-5] 25[-5] 9.7 [-6]  9.5[—6] 1.3 [-6] 2.3[-6]
504 2.0 [-5] 2.0[-5] 6.7 [—6] 3.1[-6]

A stretched exponentidEq. (2)] has been proposed by and suggests that the avalanches on the surface of the pile are
Feder[12] and used to describe selected experimental datavell removed from the details of the base. The assumption
on avalanche distributions. It was found that earlier datahat the size of avalanches off the edge of the pile are pro-
could be explained with a value gfbetween 0.34 and 0.44. portional to the size of avalanches on the pile is supported by
We attempted to fit both our 1.5-cm datig. 5 and the the lack of a pile size dependence in the avalanche distribu-
scaled dataFig. 8 with a stretched exponential function tjon [30]. The robustness of the power law description over
[Eq. (2)]. Neither dataset could be adequately described Ushree decades of avalanche sizes is the strongest experimen-
ing a value ofy in this range. The fit to the 1.5-cm data (5 confirmation yet for SOC. Moreover, the value of the

would not converge and the value of approached zero. oy nonentr is the same in all the data and is the value 1.5
Wheny becomes small, the effective range for the exponen- redicted by mean-field theory

tial function also becomes small. Thus, while the size of thép The 3-mm beads used are sufficiently large that we can

f;(r?e:?fiﬂflefvgi]ﬁﬁgﬁuxi{;gg v]:/rr?mszo? fi?%xt;?d;’ thﬁeglect cohesive forces that result from glass dust and hu-
9 b ons 9.2, p'e, midity. Aging of piles and cohesive forces are the result of

becomes only a factor of@.15-3.47. The effect of a small glass dust and humidity that cause larger angles of repose

value of y is to collapse the data into a point, which an q d b ible for th ineriodic |
exponential function can pass through by varying the othefnd cou e responsible for the quasiperiodic large ava-

parameters. Since none of the parameters inEchave any lanches others have obser\,{dﬂ,.lzﬂ. Sufficiently large vol-
physical significance and hence no limitation on possibld/Mmes of water added to bead piles has caused clunipitjg
values, a stretched exponential could always be found thakhe lack of such effects in our piles implies negligible cohe-
describes the kind of distribution data presented here. sive forces compared to gravity.

Indeed, the scaled data shown in Fig. 8 could be fitted as As more energy is added to the dropped bead, the ava-
well by Eq.(2) as by Eq(3). The values of the parameters in lanche distribution deviates from a simple power law. The
the weighted fit to Eq(2) were y=0.186+0.010, P,h'*)  energy dissipation in the pile seems to gradually drive the
=12.2+6.3, and s,=(5.0+4.8)x10 4 where the error system from the critical point. The mean-field model predicts
bars are one standard deviation estimates from the fit and aeecombination of a power law and an exponential that de-
large because of the strong coupling of the other parametescribes the avalanche distributions as the bead drop height
to the value ofy. Unlike the parameters in E@l) or (3), we  was varied and provides physical insight into the system. The
do not know of a physical interpretation for the parametercharacteristic sizs, in the exponential is expected to depend
values that described our scaled data using the stretched e3n how far the system is from critical with it approaching
ponential of Eq.(2). infinity at the critical point. We finds, to vary as the recip-

rocal of the drop height, or equivalently, the kinetic energy of
CONCLUSION the bead. This simple model describes our drop height data

Monodisperse glass beads dropped onto a conical pile disvell, but we have too few heights to determine the precise
play avalanches that are consistent with self-organized critidependencésee inset in Fig. )i We suspect that dropping a
cality. A simple power law describes the avalanche distribubead from any height begins to move a system from the
tion for a wide range of pile sizes and base configurationscritical point, but our data are equally compatible with a
The base made no difference in the avalanche distributiothreshold drop height of about 1-2 cm before the system
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