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Self-organized criticality in a bead pile

Rachel M. Costello, K. L. Cruz, Christie Egnatuk, D. T. Jacobs,* Matthew C. Krivos, Tim Sir Louis, Rebecca J. Urban,
and Hanna Wagner

Department of Physics, The College of Wooster, Wooster, Ohio 44691
~Received 12 September 2002; published 25 April 2003!

Self-organized criticality has been proposed to explain complex dynamical systems near their critical points.
This experiment examined a monodisperse conical bead pile and how the distribution of avalanches is affected
by the pattern of beads glued on a base, by the size or shape of the base, and by the height at which each bead
was dropped onto the pile. By measuring the number of avalanches for a given size that occurred during the
experiment, the resulting distribution could be compared to a power law description. When the beads were
dropped from a small height, all data were consistent with a simple power law of exponent21.5, which is the
mean-field model value. The data showed that neither the bead pattern on the base nor the base size or shape
significantly affected the power law behavior. However, when the bead is dropped from different heights, then
the power law description breaks down and a power law times an exponential is more appropriate. We found
a scaling relationship in the distribution of avalanches for different heights and relate the data to an energy
dissipation model. We both confirm self-organized criticality and observe deviations from it.

DOI: 10.1103/PhysRevE.67.041304 PACS number~s!: 45.70.2n, 05.65.1b, 45.70.Ht
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INTRODUCTION

Substantial effort has been devoted in recent years to
derstanding a new paradigm for complex, dynamical syste
that are governed by short range interactions. After B
Tang, and Wiesenfeld~BTW! @1# proposed self-organize
criticality ~SOC! in 1987 as a way to explain phenomena
diverse as earthquakes, the stock market, forest fires,
ecology, some experiments and many simulations have b
conducted. In SOC, a composite system whose many p
influence each other with short range forces would natur
evolve to a critical state where a small perturbation co
lead to a minor or major event. The system would se
organize to a critical state without the need for a controll
parameter, such as temperature. The analogy of such a
tem being at its critical point and the implications for unive
sal behavior were proposed by Bak and Tang@2# and further
developed by others@3–6#.

A system exhibiting SOC would have fluctuations on
length and time scales so that the distribution of eve
would follow a power law, perhaps with universal exponen
with many more small events than large ones and with m
taking little time to complete. For example, the probabil
P(s) of an event of sizes would be given by the simple
power law expression

P~s!5Pos2t, ~1!

wheret is the exponent. The system would not obey sim
determinism in the sense that a major event could result f
the same small perturbation as a small event. Moreover, t
would be no way to predict when a major event would occ

The original model system@1# for SOC was a sandpile. A
bucket of dry sand turned upside down will form a conic
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pile near the critical angle of repose. As more sand
sprinkled on the pile, avalanches of all sizes would form b
the vast majority would be small in size and take pla
quickly. However, a few would deplete a significant portio
of the pile. BTW@1# developed a cellular automata simul
tion of a sandpile with ‘‘toppling rules’’ that produced
power law behavior for the distributions of avalanche siz
and duration. Subsequent to their original article, ma
simulations and a few experiments have been conducte
test the robustness of SOC. Several reviews of granular
tems have been written@7,8#. We will overview some of the
more relevant work on the simple sandpile system.

PRIOR WORK AND THEORY

Experiments in avalanche dynamics in granular mate
have been in either ‘‘one-dimensional~1D!’’ piles, in slowly
rotating cylindrical drums, or in conical piles. Altshuleret al.
@9# studied the effect of the bead spacing on the base la
for a 1D pile confined between glass plates, which is a
geometry with flow in one dimension. When dropping 4-m
beads from 10 cm above the top of the pile, they found t
the avalanche dynamics did not follow a power law in t
size distribution, but did find a strong dependence on
base layer’s bead spacing. Christensenet al. @10# studied a
rice pile in a similar 2D geometry and found SOC power la
behavior for a region of avalanche sizes with an exponet
of 2.460.2. Another study of rice in the same geometry@11#
used the energy dissipated between successive profile
measure the size of avalanches and found a dependenc
the pile size~finite-size scaling! and the shape of the ric
grains ~aspect ratio!. They found some shapes to follow
power law, while others did not. They also could descr
their data with a stretched exponential of a form proposed
Feder@12# to explain other experimental data on avalanc
distributions:

P~s!5Po exp@2~s/so!g#, ~2!
d-
©2003 The American Physical Society04-1
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where g is the power that stretches the exponential to
scribe the data andso is the characteristic size. The presen
of a characteristic size would be contrary to the system be
at an SOC critical state. Others@13# also developed simula
tions to explain various aspects of the rice data.

Jaeger, Liu, and Nagel@14#; Evesque and co-worker
@15#; and Morales-Gamboaet al. @16# have investigated
granular material in a partially filled, cylindrical drum tha
would slowly rotate about the cylinder’s axis. The resulti
avalanches were not consistent with SOC predictions. A
tating drum advances a whole line of material past the an
of maximum stability and eventually takes more tigh
packed material from the bottom of the pile and places i
the top, thus routinely rupturing force chains that support
grains@15#. It is this aspect that makes rotating drum expe
ments fundamentally different from the 2D geometry d
scribed above or the conical piles described below.

Held et al. @17# studied sieved ‘‘sand’’ in a conical pile
supported by a digital mass balance. Aluminum oxide p
ticles ~average mass of 0.6 mg! were slowly added from 7.5
to 10 cm above the top of the pile and the mass of the
was used to determine if avalanches occurred. By coun
the number of avalanches that resulted in a particular m
loss off the edge of the pile, they found a power law
exponent 2.5 for sizes 3–80 grains with a characteristic
crease in the probability for avalanches which were larg
They also observed finite-size scaling in the distribution
avalanche sizes for the different diameter bases, which
ied from 10 to 70 grain diameters.

Rosendahl, Vekic, and Kelley@18# conducted two experi-
ments on conical piles that were similar to the Heldet al.
experiment: irregular grains dropped~from a small height of
0.5 cm in this work! onto a pile built on a mass balance th
was used to measure the size of any avalanches off the e
In their first experiment, they varied the diameter of t
grains~0.4 and 0.8 mm! as well as the base diameter~25 to
100 grain diameters!. They found a power law over the re
gion of 2–20 grains that had a power of 2.2. In addition, th
reported quasiperiodic large avalanches when the base d
eter was larger than 75 grain diameters, an effect noted
Held et al. in the same regime. Their second paper inve
gated these large avalanches and proposed a scheme t
dict major avalanches that might be useful in earthqu
prediction. Others@19# have criticized their approach and th
certainty with which one can make such a prediction.

Several years ago, our research group studied the rob
ness of avalanche dynamics when different types of be
were added to a conical pile. We measured@20# the mass of
the pile after each bead addition and used the size of
avalanches off the edge of the pile to form the distributio
which was well described by a power law. Since the purp
of that investigation was to illustrate SOC, the small num
of bead additions did not allow good statistics so that diff
ent functional forms could also describe the data.

Feder@12# proposed a stretched exponential@Eq. ~2!# to
describe selected data from all of the experiments don
that point. He found that a stretched exponential withg be-
tween 0.34 and 0.44 would explain the data he analyz
This value ofg is similar to the value 0.43 that Fretteet al.
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@11# found in rice piles. Since a characteristic sizeso was
present in such a function, Feder@12# argued that SOC doe
not hold in granular systems. Furthermore, he notes that q
siperiodic avalanches are inconsistent with SOC.

In an effort to clarify the experimental situation for th
simple sandpile model of SOC, we have carefully inves
gated a monodisperse, granular pile that is driven slowly
adding one grain at a time. We look at the size, shape,
packing of the base of the pile as well as the reproducibi
for the avalanche distribution, something not mentioned
prior experimental work. Finite-size scaling, quasiperiod
large avalanches, predictability of major avalanches,
avalanche statistics were looked for and measured when
served. In addition, we systematically varied the height fr
which the beads were dropped onto the pile. As we w
show, a simple power law describes the avalanche statisti
the beads are dropped from a small height, but a more c
plicated relation is needed when beads are dropped fro
larger height. Moreover, the value we find for the expon
in the power law is much less than reported previously.

THEORY

The original work on SOC by BTW@1# was a paradigm
shift in the approach to large, complex, interacting syste
By considering such a system as having organized itself
critical point, then simple power laws should hold over
region when the system is near critical. Scaling relatio
have been developed as has the connection of SOC
critical point @2–6#, but most work in the field has relied o
numerical simulations to investigate the phenomena for v
ous systems. BTW proposed a sandpile as a model sys
for SOC; one that can be explored experimentally and
merically. However, experiments on sandpiles have show
simple power law description for the avalanche distributi
over only a fairly narrow region of avalanche sizes~one or
two decades!. Numerical simulations have either confirme
SOC or not, depending on the assumptions used; Cernak@21#
reviews several numerical simulation results.

Several authors have developed a mean-field model
SOC using various approaches. In all of these, an avalan
is a front of noninteracting particles that can trigger ad
tional activity or die out. This is a critical branching proce
@22# that typically involves tuning a parameter to reach t
critical state. As Zapperi, Lauritsen, and Stanley@22# point
out, this contradicts the assumption in SOC that the syste
already at the critical point. They develop a mean-fie
model that avoids this paradox by using boundary conditi
so that dynamics drive the system to the stationary state.
result@23# is a simple power law with an exponential cuto

P~s!5Pos2t exp~2s/so!. ~3!

The value of the exponentt in the power law is 1.5, the sam
value others have found for mean-field models. The cu
characteristic sizeso goes to infinity as the probability of a
site relaxing~when stimulated by a neighboring site! goes to
1/2 @23#. This equal probability leads to the system bei
critical where the probability of an avalanche of sizes is a
simple power law.
4-2
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The same equation is developed by Ghaffari, Lise, a
Jensen@23# in a mean-field sandpile model that is nonco
servative. Their model is a branched process where an
ergy dissipation’’ moves the system from the critical point.
Eq. ~3!, they also obtaint51.5 but the cutoffso depends on
an energy dissipation parametera as 1/so5(k2a)2, where
(k2a) approaches zero as the system approaches the cr
point and is described by a simple power law. When a ren
malization group analysis is done@23#, then the dependenc
of the cutoff changes to

1/so'~k2a!D f /2, ~4!

whereD f is the ‘‘fractal dimension of the avalanche’’@23#.
The concept of an energy dissipation that will take a sys
from the critical point is useful in our experiment. Vespi
nani et al. @24# argue that in the stationary state, the ene
balance requires some critical exponents~includingt! to take
their mean-field values in any spatial dimension as is
served in simulations@25#.

EXPERIMENT

In an attempt to collect experimental data that can test
fundamental predictions of SOC, we use uniform, spher
glass beads to form a conical, granular pile as an idealiza
of a sandpile. The pile is formed on a base, which we vary
a number of ways, that is attached to a vertical support r
ing on a digital mass balance. We achieve a slowly driv
system by adding one bead to the top of the pile and t
waiting for a stable mass before the next bead is add
Avalanches are measured by the mass loss off the edge o
pile in the same way that Heldet al. @17# and Rosendahl
Vekic, and Kelley @18# did. However, unlike these earlie
studies, we use relatively large beads (3.060.1 mm diam-
eter, 0.03560.001 g) so we can then neglect wetting effe
from room humidity that may cause cohesion in sma
beads@26#.

The bead pile is built on top of a flat metal base where
first layer of beads are glued to prevent the pile from colla
ing under its own weight. The pile is built by pouring 8000
40 000 beads onto the base and then a computer contr
bead dropper adds one bead at a time. The pile starts a
critical angle of repose, although occasionally there is
building period before major avalanches are detected
LabVIEW program controls the experiment using a se
interface and collects the equilibrium mass of the pile a
function of time after each bead addition. A digital balan
~Mettler PJ3000! measures the mass and has a resolution
0.01 g, which allows us to measure individual bead additi
and avalanches. The raw data are the mass of the pile an
time at which the mass is measured.

How the base is formed is reported to affect the distrib
tion of avalanche sizes in 2D geometry piles@9#. We ex-
plored the effect of the base on the avalanche distributio
three ways. The first was the pattern by which the beads w
glued to the base in a manner similar to that used by A
shuler et al. @9#. Using a 23 cm diameter base, three be
packings were constructed: one was close packed with
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space between beads, another used a fixed gap bet
beads measuring 1.25 bead diameters~center to center!,
while the third was a random packing that resulted fro
pouring beads onto the glue on the base. A second inves
tion explored the shape of the base on the avalanches us
23 cm diameter circular base and a square base 23 cm
side. The third set of experiments varied the diameter of
base from 13 to 28 cm in 5 cm steps. Heldet al. @17# and
Rosendahl, Vekic, and Kelly@18# reported both finite-size
effects in similar experiments as well as a crossover to q
siperiodic large avalanches when the base diameter bec
larger than 70 bead diameters. The range of our base d
eters covers a span from 40 to 93 bead diameters. W
finite-size effects may be present, we will show in the fo
lowing section that the distribution of avalanche sizes is
affected by any of these three modifications to the base
simple power law with a universal exponent describes
avalanche size distributions well.

A fourth set of experiments varied the height from whi
beads were dropped onto the pile. The resulting kinetic
ergy of the dropped bead had to be dissipated in the pile
a systematic change in the avalanche size distribution
observed as the height increased. A deviation from a sim
power law was observed with the occurrence of fewer la
avalanches.

While these investigations have been done by differ
students over several years, many aspects have been co
tent. First, the Mettler balance rests on a vibration isolat
platform. For the suite of experiments investigating the eff
of the base, an active isolation system~Newport optics table!
was used. The experiments investigating the effect of
drop height were done with the balance on an optical be
~a passive isolation system!. When the drop height is smal
the avalanche distribution is independent of the isolation s
tem used. In addition to the vibration isolation, all the e
periments had a box over the pile and balance to elimin
drafts. We wanted to investigate the effect on the pile a
result of a bead addition and not from external vibrations

The humidity where the granular pile formed was not a
tively controlled beyond the performance of the room ven
lation system, which provides a relative humidity of 45%
less. Humidity effects have been observed when using sm
glass beads because of the surface wetting that can com
with glass dust to cause cohesive forces between the b
@27#. Glass dust forms from tumbling beads in a rotati
drum or in recycled avalanche chutes, yet some would fo
from the type of piles and avalanches reported here. S
cohesive forces can cause aging in a pile—the pile beco
stronger and more resistant to shear forces in time. We h
not seen this effect in our bead piles: whether fresh piles
created or the early versus later portions of a data run
analyzed on an established pile, we obtain the same
lanche distribution. This is a result of using larger~3 mm!
beads, which are a factor of 10 larger in diameter and 10
in mass than the largest beads in which aging effects w
observed from humidity-induced, cohesive forces@27#.

In our slowly driven system, we always waited for av
lanche activity to come to completion before recording
mass of the pile. Our balance updates the mass too in
4-3
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COSTELLOet al. PHYSICAL REVIEW E 67, 041304 ~2003!
quently to monitor an avalanche in progress, which usu
takes less than a second to complete. However, larger
lanches sometimes take several seconds to finish. Our c
puter program waits for an equilibrium mass, which is
least 8 s for small avalanches and at least 30 s for lar
ones. It is interesting that the largest drops in mass that
visible in the raw mass versus time data are almost alw
comprised of several smaller avalanches interspersed by
riods of pile building.

A typical data run consists of building a pile on a bas
then dropping one bead at a time while measuring the e
librium mass of the pile. Subsequent data runs tested
reproducibility. From 15 000 to 50 000 beads were dropp
onto the pile in runs that lasted from 54 to 95 h with 600
2000 avalanches occurring. Some piles were built fre

FIG. 1. The mass of the bead pile after each bead is droppe
the top of the conical pile shows periods of pile building inte
spersed with avalanches of all sizes. The ‘‘time’’ axis is the num
of bead drops since the mass is recorded after the pile come
equilibrium as a result of dropping a bead. Only part of each ru
displayed with~a! from a pile with a 18 cm~60 bead diameters!
base, while~b! is from a pile with an 28 cm~93 bead diameters!
base. Neither shows quasiperiodic large avalanches.
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while others were used from previous data runs. While
did not systematically investigate the packing of, and res
ing force chains among, the beads on top of the base, we
not observe the appearance of the raw data nor the distr
tion of avalanche sizes to be affected by the pile histo
While investigating the effect of the bases on the avalan
distribution, two data runs were typically used and averag
When the height from which beads were dropped onto
pile was varied, three runs were taken with the same b
drop height. The data from the four drop heights were th
used to estimate the error in our calculated probabiliti
which we found to be typically 8%, but sometimes twice th
for the larger, but far less frequent, avalanches. Similar e
estimates have not been stated in other experimental wor
the avalanche statistics of bead piles.

Before presenting the analysis of our data, it is interest
to look at the appearance of the raw data for two differ
pile sizes. Figure 1~a! shows a portion of the mass of a
18-cm base~60 bead diameters! pile as a function of time. A
portion is shown since the data run is so long that the en
run will exhibit a digitization artifact when compressed f
publication. The time axis is in bead drops since the ti
between bead drops varies. Large drops in mass corres
to large avalanches, but many small avalanches occur w
cannot be observed at this scale. The mass on the ver
axis is not the total mass of the pile since only mass diff
ences determine avalanches; thus, the balance was rout
tared when the pile was initially built, but before any da
were collected. Figure 1~b! shows the same time portion a
Fig. 1~a!, but for our largest pile with a 28-cm base~93 bead
diameters!. The range of the vertical scale is larger for th
larger pile, but the overall appearance is the same as in
smaller pile. In particular, the quasiperiodic large avalanc
behavior, which others@17,18# have reported for bead pile
with a base larger than 50–70 bead diameters, is abse
our data. In addition, large avalanches happened in our
without precursor events, thus preventing their prediction

on

r
to

is

FIG. 2. The fluctuation in the mass for the 28 cm diameter b
has a PSD that varies as a power law in ‘‘frequency.’’ The data
on a line whose slope is'22. The lack of a peak indicates a lac
of quasiperiodic large avalanches.
4-4
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RESULTS AND ANALYSIS

From the raw data of the pile mass after each bead d
one can easily obtain the change in mass, which corresp
to either a positive bead addition to the pile or to a nega
mass change corresponding to an avalanche of beads o
edge of the pile. When comparing our results to theory,
size of the avalanche on the pile is assumed to be pro
tional to the size of the avalanche off the edge of the p
which we can measure. Typically, the added bead stays
the pile, but an avalanche of any size can occur at any ti

FIG. 3. The probability of an avalanche of sizes as a function of
the average avalanche size for that bin shows no dependence o
way in which beads were glued to the base. The circles are from
even gap spacing between beads, the triangles are close packe
the square symbols are randomly packed. The line has a slop
21.5 and indicates that a simple power law describes the data

FIG. 4. The avalanche distribution does not depend of the sh
of the base. The square symbols are from a square base 23 cm
side, while the triangles are for circular bases 18 cm or 23 cm
diameter~, andn, respectively!. The line guides the eye and has
slope of21.5.
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The lack of any characteristic time in the fluctuations of t
mass of the pile is illustrated in Fig. 2 by taking the pow
spectral density~PSD! of the equilibrium mass of the 28-cm
pile as a function of the number of bead drops~time! onto
the pile. Since we cannot monitor the mass of the pile wh
avalanches are in progress, the resulting PSD reflects
periodicity in the equilibrium mass and not the time scale
the avalanches themselves. Figure 2 shows the PSD data
function of ‘‘frequency’’ to approximate a power law de
crease with an exponent of'22. In particular, there is not a
characteristic frequency that would indicate quasiperio
large avalanches as observed@17,18# in piles even smaller
than this one. The slope we observe is similar to the21.92
60.05 predicted from a lattice gas model@28# for a 2D ge-
ometry.

The raw mass of the pile is converted into a distributi
of avalanche sizes by counting the number of avalanc
within a size range or bin. Since the balance has a resolu

the
an
and
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pe
n a
n

FIG. 5. When different diameter bases are used then the p
are different sizes but the avalanche distribution does not cha
significantly. For both plots, the, are for 13 cm, the circles are 1
cm, squares are 23 cm, andn are 28 cm diameter base. Part~a!
shows the avalanche distributions unscaled, while~b! shows the
data on a scaled plot.
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COSTELLOet al. PHYSICAL REVIEW E 67, 041304 ~2003!
less than a single bead, we can measure small avalan
accurately. However, the smallest avalanche that can be
tected is two beads falling off the pile, which is a result
adding one bead to the pile and observing a mass loss of
bead. Since there are so few large avalanches, binnin
some kind is essential. The bin sizes are chosen to be ev
spaced on a logarithmic scale, but the precise choice of
width does not change the shape of the distribution. T
probability P(s) for an avalanche of sizes is the number of
avalanches within the bin centered ons divided by the width
of the bin and the total number of avalanches.

MODIFYING THE BASE

The packing of beads on the base has affected the
lanche character and distribution in 2D geometries@9#, as has
the shape and size@17,18# of the base. These earlier obse
vations were tested in our research through three inves
tions. In the first investigation, three packing geometr

FIG. 6. The avalanche distribution when beads are drop
from 1.5 cm above the apex of a 18 cm diameter pile. In~a! the
three data runs show the reproducibility, while~b! shows the aver-
age probability with its error. The line is a weighted fit to the da
by a simple power law and has a slope of21.4760.03.
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~close, fix gap, and random packing! were used on a 23 cm
diameter base. Figure 3 shows that the resulting avalan
distributions for the three packings are consistent with e
other and with a simple power law@Eq. ~1!#. The line in the
figure corresponds to an exponentt of 1.5.

In the second investigation, the shape of the base was
varied. A square base 23 cm on a side was used as well a
18 and 23 cm diameter circular bases. Figure 4 shows
the distribution of avalanche sizes are consistent with e
other and with a simple power law of exponentt51.5.
These piles are evidently large enough that the avalanc
along the surface do not know how the base is construc
Even though the area of the bases is different, the avalan
distribution remains consistent as is shown in the followi
~third! investigation.

The size of the pile was varied by using circular bases
different diameters. We investigated piles whose base di
eters were 13, 18, 23, and 28 cm, which correspond to 40
bead diameters. Indeed, the smaller piles did not have
lanches as large as the large piles. However, as shown in
5~a!, all four sizes are consistent with a simple power la
with exponent 1.5. A finite-size scaling analysis@29# can be
done and is shown in Fig. 5~b!, whereP(s)5L2ag(s/Ln).
For the functiong we use the power law given in Eq.~1!, and
L is the diameter of the pile. Since the average mass of
pile is constant,a andn are related tot by t5a/n. Finite-
size scaling does help align the smallest pile with the ot
sizes, but still with a simple power law description witht
51.5. Since a systematic variation of the distribution w
pile size outside its error bars was not observed, finite-s
scaling does not make a significant difference.

The surprising result is that neither the base shape, p
ing, nor even size significantly affected the distribution
avalanche sizes. Moreover, a simple power law adequa
describes all this data over three decades in avalanche
The value oft in the power law is the same for all the dat
1.5. This value is what mean-field theory predicts for t
distribution of avalanche sizes. For these relatively la
spherical beads, the size of the mass flow over the e
seems to be proportional to the size of the avalanche an
be well described by mean-field theory. This result is
sharp contrast to what has been observed in prior exp
ments where a simple power law would hold only over
narrow range of avalanche sizes and then with an expo
between 2.2 and 2.5.

VARYING THE DROP HEIGHT

The final set of experiments involved dropping the gla
beads from different heights above the apex of the pile b
on a 18-cm circular base. Four drop heights were used:
cm, 2.5 cm, 5.0 cm, and 10 cm. At each height, three d
runs of 54 h each were collected, analyzed, and compa
One-fourth of the runs were on disturbed piles with the
mainder on piles already at the critical angle of repose.
cept for a building period for the disturbed piles, no diffe
ence in the avalanche statistics were observed wh
indicates that aging was not significant in the avalanche
tistics for these piles. The three runs for the 1.5 cm d

d
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FIG. 7. The avalanche distribution systema
cally deviates from a power law as the heig
increases from which beads are dropped onto
pile. The circles are the average avalanche pr
ability for beads dropped from 1.5 cm, th
squares from 2.5 cm,n from 5 cm, and, from
10 cm. The lines are weighted fits to the data f
each drop height using Eq.~3! whent is fixed at
1.47. The resultingso values have a systemati
dependence onh as shown in the inset. The equa
tion to the line is 1/so52(0.001560.0007)
1(0.002360.0002) h.
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height is shown in Fig. 6~a! and illustrates the reproducibility
in the experiment. At each drop height, the probability
then averaged and an error is assigned that represent
reproducibility. The resulting distribution for the 1.5 cm dro
height is shown in Fig. 6~b! along with a weighted fit to the
data by a simple power law function given by Eq.~1!. The
resulting exponent value and one standard deviation e
estimate ist51.4760.03, a value consistent with the mea
field theory prediction of 1.5 and with data presented in
preceding section.

As the drop height increases, then the avalanche distr
tion deviates from a simple power law in a systematic w
Figure 7 shows the average avalanche distributions for
four drop heights and Table I provides the probabilities a
error for each avalanche size and drop height. As the d
height increases, then the probability of large avalanches
creases with no avalanches in the largest bin. The numbe

FIG. 8. All the avalanche distributions shown in Fig. 7 collap
onto a common curve when scaled. The symbols are the same
Fig. 7. The line is a weighted fit to the scaled data us
P(s)h21.475Po(s h)21.47exp(2bsh), where Po50.72860.015
andb50.002060.0001.
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avalanches of size around 100 beads is roughly constant
many more small avalanches occur as the drop height
creases. Thus, the probability for an approximate avalan
size of 100 decreases as the drop height increases. How
the probability of small avalanches remains consistent
about one decade in avalanche size for all the drop heig
The kinetic energy of the dropped bead triggers more sm
avalanches so that the system is unable to reach a state w
very large avalanches occur.

The energy that is dissipated in the pile can be likened
the energy dissipation parameter introduced in numer
simulations by Ghaffari@23#. The energy dissipation will be
assumed to be proportional to the energy with which
bead impacts the pile, which is also proportional to the d
heighth. The mean-field prediction is Eq.~3!, which can be
used in a weighted fit to the data. Holdingt51.47, the value
found for the 1.5-cm data, the amplitudePo , and the char-
acteristic sizeso were free in the fit andso was found to vary
systematically with drop height as would be expected. Fig
7 shows the fitted lines to each drop height with the inse
the figure showing the dependence ofso on drop heighth. A
linear dependence of 1/so on h is consistent with the data an
would indicate from Eq.~4! a fractal dimensionD f for the
avalanches of 2, which is reasonable for avalanches on
surface of the pile. The intercept of 1/so versush is effec-
tively zero, which would correspond in Ghaffari’s mod
@23# to the bead pile being at the critical point when bea
are added with no kinetic energy.

To illustrate the consistency of the data and the analy
using the mean-field model which gave Eq.~3!, all the drop
height data can be scaled. If Eq.~3! describes the data and
1/so is just proportional to the drop heighth, then all the data
will fall on a common curve if a scaled plot is done. Th
scaling is done to eliminate theh dependence inso and gives
P(s)h21.475Po(s h)21.47exp(2bs h), whereb is the slope
of 1/so versush. Figure 8 shows all the data from differen
drop heights falling on a common curve when scaled in t
fashion. The line is a weighted fit to the data and givesb
50.002060.0001, which is within the experimental error o
the slope found in inset of Fig. 7.

in
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TABLE I. The probabilitiesP of having an avalanche of a size centered ons ~in beads!. Four different bead drop heights are presen
~1.5 cm, 2.5 cm, 5.0 cm, and 10 cm!. The errordP in the probabilities is from the typical standard deviation for avalanche probabilitie
that size region. These data are plotted in Fig. 7. Numbers in square brackets denote powers of 10.

s ~beads! P (s,1.5 cm) dP (1.5) P (s,2.5 cm) dP (2.5) P (s,5 cm) dP (5) P (s,10 cm) dP (10)

1.9 2.00@21# 1.1 @22# 2.09 @21# 8.7 @23# 2.32 @21# 1.0 @22# 2.48 @21# 1.0 @22#
3.0 1.26@21# 1.1 @22# 1.24 @21# 9.5 @23# 1.53 @21# 1.5 @22# 1.55 @21# 1.2 @22#
4.0 9.00@22# 8.4 @23# 9.98 @22# 7.6 @23# 1.04 @21# 8.1 @23# 1.13 @21# 8.6 @23#
5.0 5.55@22# 5.8 @23# 7.07 @22# 6.1 @23# 7.32 @22# 7.7 @23# 7.96 @22# 6.1 @23#
6.4 4.07@22# 9.3 @23# 5.04 @22# 5.1 @23# 5.38 @22# 4.1 @23# 5.65 @22# 4.3 @23#
9.3 2.75@22# 2.2 @23# 2.69 @22# 2.5 @23# 2.81 @22# 2.1 @23# 2.91 @22# 2.2 @23#

14.2 1.31@22# 1.0 @23# 1.39 @22# 1.1 @23# 1.32 @22# 1.0 @23# 1.21 @22# 9.2 @24#
21.5 7.85@23# 6.5 @24# 5.70 @23# 8.5 @24# 6.01 @23# 7.0 @24# 5.30 @23# 4.0 @24#
33.2 3.43@23# 5.4 @24# 3.50 @23# 7.2 @24# 2.18 @23# 3.4 @24# 1.61 @23# 3.9 @24#
51.7 1.75@23# 6.2 @24# 1.39 @23# 2.2 @24# 1.06 @23# 2.0 @24# 7.05 @24# 1.3 @24#
80.9 9.65@24# 1.9 @24# 6.76 @24# 1.1 @24# 3.71 @24# 7.9 @25# 2.39 @24# 3.7 @25#

128 3.81@24# 5.9 @25# 3.04 @24# 4.7 @25# 1.56 @24# 2.4 @25# 8.0 @25# 2.0 @25#
202 1.84@24# 6.6 @25# 1.90 @24# 5.5 @25# 3.77 @25# 4.9 @26# 1.00 @25# 6.9 @26#
318 1.09@24# 5.7 @25# 4.9 @25# 2.5 @25# 9.7 @26# 9.5 @26# 1.3 @26# 2.3 @26#
504 2.0 @25# 2.0 @25# 6.7 @26# 3.1 @26#
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A stretched exponential@Eq. ~2!# has been proposed b
Feder@12# and used to describe selected experimental d
on avalanche distributions. It was found that earlier d
could be explained with a value ofg between 0.34 and 0.44
We attempted to fit both our 1.5-cm data~Fig. 5! and the
scaled data~Fig. 8! with a stretched exponential functio
@Eq. ~2!#. Neither dataset could be adequately described
ing a value ofg in this range. The fit to the 1.5-cm da
would not converge and the value ofg approached zero
Wheng becomes small, the effective range for the expon
tial function also becomes small. Thus, while the size of
experimental avalanches varied from 2 to 500 beads,
range of the exponential function wheng is 0.2, for example,
becomes only a factor of 3~1.15–3.47!. The effect of a small
value of g is to collapse the data into a point, which a
exponential function can pass through by varying the ot
parameters. Since none of the parameters in Eq.~2! have any
physical significance and hence no limitation on possi
values, a stretched exponential could always be found
describes the kind of distribution data presented here.

Indeed, the scaled data shown in Fig. 8 could be fitted
well by Eq.~2! as by Eq.~3!. The values of the parameters
the weighted fit to Eq.~2! wereg50.18660.010, (Poh1.47)
512.266.3, and so5(5.064.8)31024, where the error
bars are one standard deviation estimates from the fit and
large because of the strong coupling of the other parame
to the value ofg. Unlike the parameters in Eq.~1! or ~3!, we
do not know of a physical interpretation for the parame
values that described our scaled data using the stretche
ponential of Eq.~2!.

CONCLUSION

Monodisperse glass beads dropped onto a conical pile
play avalanches that are consistent with self-organized c
cality. A simple power law describes the avalanche distri
tion for a wide range of pile sizes and base configuratio
The base made no difference in the avalanche distribu
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and suggests that the avalanches on the surface of the pil
well removed from the details of the base. The assump
that the size of avalanches off the edge of the pile are p
portional to the size of avalanches on the pile is supported
the lack of a pile size dependence in the avalanche distr
tion @30#. The robustness of the power law description ov
three decades of avalanche sizes is the strongest experi
tal confirmation yet for SOC. Moreover, the value of th
exponentt is the same in all the data and is the value 1
predicted by mean-field theory.

The 3-mm beads used are sufficiently large that we
neglect cohesive forces that result from glass dust and
midity. Aging of piles and cohesive forces are the result
glass dust and humidity that cause larger angles of rep
and could be responsible for the quasiperiodic large a
lanches others have observed@17,18#. Sufficiently large vol-
umes of water added to bead piles has caused clumping@31#.
The lack of such effects in our piles implies negligible coh
sive forces compared to gravity.

As more energy is added to the dropped bead, the a
lanche distribution deviates from a simple power law. T
energy dissipation in the pile seems to gradually drive
system from the critical point. The mean-field model predi
a combination of a power law and an exponential that
scribes the avalanche distributions as the bead drop he
was varied and provides physical insight into the system. T
characteristic sizeso in the exponential is expected to depe
on how far the system is from critical with it approachin
infinity at the critical point. We findso to vary as the recip-
rocal of the drop height, or equivalently, the kinetic energy
the bead. This simple model describes our drop height d
well, but we have too few heights to determine the prec
dependence~see inset in Fig. 7!. We suspect that dropping
bead from any height begins to move a system from
critical point, but our data are equally compatible with
threshold drop height of about 1–2 cm before the syst
4-8
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moves from criticality. We also suspect thatso will be a
function of cohesive forces as well as the frictional forc
resulting from surface features on the granular material. T
may explain the different experimental observations in
literature. In particular, a smaller probability of larger av
lanches could give a larger experimental slope as the valu
t.
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