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The equilibrium phase behavior of Janus fluids is examined based on a model potential for the interaction
between their constituents. Janus fluids consist of axisymmetric particles possessing two different “faces,” e.g.,
one hydrophobic and one hydrophilic surface, and the interaction depends on the relative orientation. Starting
from a short range, isotropic potential we make an ansatz for an anisotropic model interaction potential. Two
types of symmetries of the particles are considered. One leads to a polar phase. The Helmholtz free energy and
the pressure are calculated by the help of an augmented van der Waals approximation. A qualitative phase
diagram is obtained. The appearance of a polar phase and the corresponding transition temperature are exam-
ined adapting a Landau—de Gennes expansion of the orientational part of the free energy. Monte Carlo
simulations are performed and the results are compared with the ones obtained by the analytical description.
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[. INTRODUCTION metry in Fig. 1. The symmetry ee potentially leads to a polar
phase, whereas the symmetry nn may possess a nematic and
A macrofluid composed of particles whose interactionmicrophase-separated phase. The possible polar phase of a
possesses a particular type of anisotropy was studied bjanus fluid is defined such that the particle orientations are
Casagrandet al.[1]. They chemically treated glass spherespreferably alignegbarallel rather tharantiparallel to the ori-
of some micrometers in diameter in such a way that one-halnted director of the fluid. Vector properties of the mol-
of the spherical surface became hydrophilic whereas thecules, like electric or magnetic dipole moments, could be
other remained hydrophobic. These amphiphilic solid “par-transferred to the whole fluid. This is in contrast to the usual
ticles” were called “Janus beads” due to their spherical nematics, where the particles are oriented along both direc-
shape but nonspherical properties. Since then there has bet@ns of the director with equal probability, due to the tenso-
great effort to reduce the size of the Janus beads by synth&al character of the alignment in the nematic phase, which
sizing “Janus micelles,” i.e., amphiphilic spheres with both results from the head-tail symmetry of nematic liquid crys-
hydrophilic and hydrophobic halvel®,3]. The Janus mi- talline molecules and which Janus particles do not possess.
celles synthesized so far are built of block copolymers con- This article is organized as follows. In Sec. Il the non-
taining separated polar and nonpolar compounds, formingphel’icaJ model potential for Janus spheres is introduced. An
the different surfaces of the molecules. They are estimated t@pproximation for the free energy of the fluid, starting out
have a diameter of about 10-20 nm and a molecular weigHfom an augmented van der Waals approximafiéhis de-
of about 2x 10" g/mol [4]. For a discussion of intermolecu- rived in Sec. lll. Results for the pressure of the fluid, the
lar forces, se€5]. Experimentally, the Janus micelles need totransition temperature into a polar phase, and the order pa-
be immersed in a suitable liquid solvent for the differentrameters in the polar phase are presented in Sec. IV by mak-
building blocks, whereas in the model to be described belowing use of a high temperature approximation. Here, we also
the solvent is not taken into account. The sole components diresent a qualitative phase diagram and discuss the range of
the model Janus fluid are Janus particles. In this article w¥alidity of—and possible corrections to—the analytical ex-
consider them to be effectively axisymmetric particles with-pressions. Section V is dedicated to Monte Carlo simulation
out head-tail symmetry, and of homogeneous mass densit9f the Janus fluid. Numerical results for the pressure, order
Substructures and chemical details are therefore disregardgeRrameters, and transition temperature are compared with the
Concerning the analytical description, the Janus fluid is
treated as a macrofluid. Concerning applications, the chem o ee
cal composition and the properties of amphiphilic molecule @@E@M‘ L
influence the parameters of the model to be described belo\
Two types of preferred symmetries of the particles are con
sidered, to be denoted as “ee” and “nn” symmetriesee ~
Fig. 1). These symmetries are different from the one which 4
characterizes the usual dipolar fluids, denoted as “sn” sym

*Corresponding author. Electronic address: FIG. 1. Schematic representation, including nomenclature, of
erdmann@physik.tu-berlin.de the basic configurations for the Janus spheres.
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analytic results of Sec. IV. Whereas analytically only a polarmum) distancer = 9/8=1.125 is almost equal to the LJ

phase is considered, in the simulations other anisotropigqu”ibrium distanceréJ'*zzl’%l.lZZ, the potential well

phases were also examined, namely, a nematiclike phase. depth is¢* (e =1 for both functions, and the derivatives
(d@lar)(ry) of the functions at distance,, where they are

Il. THE MODEL at least comparable. _
. ) . For the anisotropic pa®"s°the ansatz
A. Janus spheres and binary potential function
The fluid considered in this work is composed of Janus . -

spheres. These are effectively axisymme'?ric particles of " \I,U1,U)=—(256/27 bo(3=2r*)%(r Uy, Up)

spherical shape, which are composed of two different hemi-

spheres. The energy for the binary interaction between two .

Janus spheres, characterized by their orientatins, (unit  for r*<1.5, and¢®"*°%=0 otherwise, is chosen. This means

vectorg and the distance between their centers can be writ- that the nonspherical potential functighcan be considered

ten as a sum of its isotropiep*" and anisotropicg®™°  as a SHRAT potential with a nonspherical negative part. The

contributions, i.e., ¢(r,u;,u,)=¢%P(r)+ »2"{r,u;,u,),  anisotropy of this ansatz is described by the anisotropy func-

wherer=|r|. The radially symmetric pa"" describes the tion #(f,uy,u,), depending on the unit vectors, u, and

average interaction between two randomly oriented Janus_ /.

spheres, SUCh. th"’.‘t the unconqmonal or|entat|_onal aver- The dependence on these unit vectors is taken into ac-

age over all directionsly, u, vanishes for the anisotropic coynt ysing symmetric, irreducibléanisotropi¢ Cartesian

part ¢* i.e., (($*°Tr,Uz,Uz))),, =0, Where((---)),  tensors, also referred to as spherical harmonic tensors. Such

=[J---p(uy)p(uy)d®u;d?u, stands for an average by an anisotropic tensor of rarkconstructed from a given unit

means of the single particle orientational distribution func-vectoru=(uy,u,,us) has the form

tion p(u), normalized such that%((1)),. The condition

for ¢2"°involves the homogeneousandom orientational

distribution functionp=(47) L. o (w)= [(2€+1)!!
Here, the radially symmetric part of the potentialis Krthe {!

modeled by the SHRATshort range attractiyepotential in-

troduced in[7] and[8]. It has a repulsive core and an attrac- where the symbol

tive well with a smooth cutoff at finite distance and possesses

a relatively simple functional form. The SHRAT potential is Uy r Uy,

written as the sum of a positive and a negative part, i.e.,

¢Sph: ¢SHRAT with

Py Mg ()

indicates the symmetric irreducible part of thdold dyadic
SHRAT 256 . . product ofu, and uq,u5,..€{1,2,3} denote Cartesian indi-

¢ (N=77 ¢l (3=2r")"=(3-2r")"] (1)  ces. The normalization coefficients are chosen such that the

“square” of a tensor of rank is 2¢+1, e.g.,¢,(U)¢,(u)

. _ , =3. The summation convention for repeated indices is used.

for r*=r/ro=1.5, and$=0 otherwise[7]. The parameters The tensorg3) are directly related to the spherical harmonic

ro and ¢, set the characteristic length and energy scale . i . : |
Together with the masm of a Janus sphere, the three qu(,jm_sfunctlonsYA [10]. The first and second rank Cartesian ten

tities are used to express all quantities in terms of dimensions—ors(3) explicitly read

less units marked by an asterisk. For any measurable quan-

tity Q with a dimension specified in S| units kg, m and s one @ ()= \/§uw
has Q=Q*Qer and Que=m** " 7¢ 7%, for [Q]
=kg®* m? s”. The reference values for length number
density n, energy kgT, and pressurep are therefore
Mef=To, Nret= raS, Erer= ¢o=KgTrer, and pres= ¢0r53
=N In all figures throughout this article dimensionless ~ ¢,,,(w)=(15/2)""au,, = (15/2)"" (u u,— 5,,/3).
guantitiesQ* are shown. Unlike the often used Lennard-

Jones(LJ) potential [9] the SHRAT potential is finite for R

vanishing distance. Due to the small value of the Boltzmann The scalar functions(r,u;,u,) characterizing the anisot-
factor exg—pB¢ " RA(r=0)}=6x10 23, with B=1/kgT  ropy of the energy remains to be specified. We assume a
for thermal energie3* =kgT/,=10.0 essentially no par- linear combination of terms constructed from these first and
ticle of the fluid has enough energy to reach0. Note, that second rank tensors upon contraction which is compatible
for convenience in the following stands for the dimension- With (i) the symmetry of the Janus spheres and their shape,
less temperaturel*, whenever it comeswithout Boltz- (i) the invariance against exchanging particles 1 and 2, and
mann’s constankg . In the form(1), with the special choice (i) the condition({(#%"*}), =0. According to these as-
r¥,=15 for the cutoff distance, the SHRAT potential re- sumptions the anisotropy functiap=(r,u; ,u,) contains
sembles the LJ potential insofar as the equilibrilanmini-  three independent parameters, ; and reads
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1 n TABLE I. The table collects the effect of choice of parameters
W € =001,e =-003,e =00 &1, 5—positive (+), zero(0), negative ()—on the possibly pre-
0.5 B ferred (@) and unpreferred @) configurations(cf. Fig. 1), with
. lowest energy. Cases whete,=0 are not tabulated. If more than
f 0 a single phase is possible, the preferred one depends on the explicit
2 values for the parameters. The en phase may be stable,for
§ -0.5 =0,&,3>0. The caset+, —, 0 is the one mostly considered in
R this work. Here, the nn phase is stable for ;< — (5/24)"%,;
-1 otherwise the ee phase is preferred.
=15 e, + o+ o+ o+ o+ 4+ - oo oo
0.9 1 Lr 12 13 14 15 g, + 4+ 4+ - - -+ o+ o+ - - -
(a) distance r s + - 0 + - 0 4+ - 0 + - 0
! g =0.02,8 = -0.02,& =00 m O € 0 O e 6 O 66 O O e @
0.5 ss @ O O @€ O @@ @€ O O e O e
. sn ®© @€ @€ O O O e e @ O O O
f 0 ee O O O @€ @€ @ O O O O O O
~,§ e O O O O O O @ @@ @@ O O O
£ -05 es O O O O OO O O O O O O
S J en O O O O O O O O O O O O
-15 ) ) .
0.9 7 11 12 13 14 15 B. Discussion of the potential
(b) distance r* To elucidate the physical meaning of the anisotropy of the

FIG. 2. The potential functiongbeq(r) (thick curve, dq(r) potentigl function and the inﬂ'uence of the anisqtropy param-
(slightly thinner curv é.(r) (dash-dotted curyedz«(r) (dashed eters, it is useful to examine the nonspherical potential

curve, together with the isotropic SHRAT potentidhin curve in ~ function ¢ for fixed relative position and fixed axes of
the middle, withe;=0 and the values,=0.01,e,= —0.03(top)  the interacting particles in some characteristic “basic con-

ande;=0.02,e,=—0.02 (bottom of the two other anisotropy pa- figurations." The pOtential function is then a mere function

rameters. of the distance of the particles. The basic configurations
considered here are tlfie nn configuratior(ss configuration
<ﬂ=8190M(U1)QDH(U2)+82¢M(u1)¢w(?)%(u2) with r=u;=—u,, i.e., the particles point with their “north
. . poles” (“south poles”) toward each othexi) sn configura-
FTeale(U)@u(r) =@, (U@, (r)] tion with u;=u,==r, i.e., one particle points with its

“north pole” to the “south pole” of the otheriii) ee con-
figuration (eeconfiguration with r1 u;=*+u,, i.e., the par-
X[ (Uy-F)(Uy-T)— Uy - Up/3]. (4) Elcles are parallel(antiparalle] to each other with their
equators” touching each otheriv) es and en configura-
Tensors of second rank and terms of second order in thgon with u,Lu,= +r, i.e., one particle points with its
axes vectorsi; and u,, as needed for nematics, are disre-“north pole” (“south pole”) toward the “equator” of
garded in this expression due to the symmetry and shape @ie other. These basic configurations are sketched in Fig.
the particles. The three coefficients ; ; are referred to as 1. For the different basic configurations, the anisotropy
thetaTlsptiopy Eoefﬂ(]*:l%nts antd aIIOVé/'or)Ie to charagterlze the, nction lﬁ(F,Ul,Uz) is = —3e,—30"2 5,— Bes,
particle interaction of Janus type. Similar expansions werg, — _ 3. —3012 ¢ 4 6s,,  ho=3e,+30%% 65, oo

:381U1' U2+ 383(U1' F_Uz' F)+82(135/31/2

applied in the kinetic theory and thg scattering of rotating_ 3e,— (15122 &5, o= —3e1+ (15202 &),  thoem
molecules(see[11]). The_ term involvinge, ha; an angle —3s4, thor=3e5. The potential curves for some of the basic
dependence corresponding to that of an electric or magnetiGnfigurations are plotted in Fig. 2 for two different sets of
dipole-dipole interaction, where,>0 for identical dipoles.  5nisoiropy parameters. For both sets, the ee and nn configu-
A specific case withe,<0 had been studied ii12]. | 4iions are energetically favored, i.e., the potential energy is
The scalar functiongrotational invariants in expression  requced with respect to the SHRAT potential for all dis-
(4) are some of theS functions, namely,S;1o(u;,U,,r),  tances. This should be the case for amphiphilic particles with
Sy1AUy, Uy, 1) and Syoy(Us,Us,F)—Spiq(Us,Us,r). Stone  an additional attraction between identical halves. It turns out
[13] used these for a general expansion of functions of thre¢ghat not only are the values of the potential curves reduced,
unit vectors. Expansio) is a special case of such a generalbut also the minimum distance.q is shifted according to
expansion for a nonspherical function, restricted to the Iowﬁ;qz 1/(1+ ) for >—1, as is the zero of the potential
est order rotational invariant compatible with the symmetryfunction. For a more exhaustive summary on the character-
of the Janus spheres. istics of the potential see Table I.
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05 N\ B i in the fluid, V its volume, andT its temperaturen=N/V is
'\\\‘ \ \81 =001, & = -003 the number density of the fluid. From the free energy per
0 F——X particle, the pressure of the fluid is obtained through
o ~05 \ the derivative with respect to density:p(n,T)
3 =n?(9f(n,T)/an)+.
g -I (a) The kinetic contribution |, also referred to as the
=, Is ideal gas contribution, is
_2 fin(N, T)=KgT[IN(NA3) = 1]= figea(N, T), (5
09 1 11 12 13 14 15 with the thermal de Broglie wavelength=(mkgT/%) 2.

distance # is Planck’s constant angh the mass of a particle.

FIG. 3. The lower group of lines represents the potential func-  (b) The entropic contribution 4 stems from an alignment
tions ¢,,(e,= —0.01,e,= — 0.03, £ 3= 0.005) (dash-dotted curye ~ Of the nonspherical particles of the fluid. Here we assume
¢<s (—0.01-0.03, 0.005) (dashed curye and ¢,,(—0.01, thatitis represented by the statistical entropy
—0.03, 0.0) (thick curve; the uppermost solid curve shows
d)sn(f0.0er.(_):%). 'I;{k:&group of curves in the middle shows the fo(T)= kBT<In(p(u)/p0))p, (6)
SHRAT potential ¢ (solid curve, ¢ey(e5=0.005) (dash-

dotted curvé, and ged(0.005)= er( —0.005) (dashed curve where(---) =[---p(u)d?u denotes an orientational aver-
P

The two sets characterize the two important variations ofJ¢ W.ithp . The orientationa_l Iree energy vanishes for isotro-
Janus fluids. The first set corresponds to proper Janus sphefd§ alignment,p=po=(4m)~". It had been used, e.g., by
where the nn configuration has the lowest endigy Janus nsager f(_)r the_ de_scn_pnon of I_ong roib]. The use of the
spheres The second set, where the ee configuration is fa_smgle particle distribution function neglects all correlations
vored, can lead to phase’s with dipolar symmetry in analog)pewv?en two and more particles and is therefore a po_tenyal

! (é@ndldate for future improvements of the model. The kinetic
molecules, which also give rise to flexoelectric effdctd]. part of the pressurpkin=pkBT IS thg usual ideal gas pres-
These particles may be called Janus dipdies ee Janus sure. There is no entropic contribution because (Bgdoes
spheres The tendency to prefer the nn configuration with not deE)r?]nd on th(_e f'ens'th . i taken i
respect to the ee configuration is stronger for negative values (¢) The potential contribution J, is taken into account

of £,. Table | gives an overview of the preferred configura- y an augmented van der Waals approximation. The aug-

tions for positive and negative values of the different anisot-mented van der Waals approximation was introducef5in

ropy parameters. In the following we refer to both types Ofand.applied to a spherical LJ fluid. The agreement with nu-
particles as Janus spheres. The term involinghas an merical data for the pressure was fairly good[20] it was
angle dependence corresponding to that of an electric Iso applied to a fluid with nonspherical interaction potential.
magnetic dipole-dipole interaction, whese>>0 for identical his approximation decom.poses the pptential contribution
dipoles. A particular case with,<0 had been elaborated in fpo{N.T) to the free energy into the c_onetrlbutlcﬁrgp(n,T) Of.
[12]. The third parametet; appears only iny for the basic a purely repulsive, spherical potentiél*(r) an_d a contri-
configuration, for which reversing the directions of both par-bution fq(n,T) of a distortion potential U, Uy, Up)
ticle axes simultaneously yields a different, though related= ¢(r,u;,uy) — ¢™Nr), i.e., fyo= frept fais. The nonspheri-
configuration, as is the case for ee anceen and ss. Thus, ¢al or nonrepulsive parts are referred to as the distortion part,
&4 describes a difference in the strength of interaction bebecause in a dense fluid the radially symmetric repulsive
tween “black” and “gray” halves—north and south poles forces usually give the major contribution to the free energy
—of the particles. In the following, this difference will usu- _ ) _ o

ally be neglected and; will be set to zero. Only sporadi- ~ (d) The radially symmetric repulsive contributiorn
cally nonzero values of; will be considered to highlight its analogy to the Weeks-Chandler-AndersghCA) potential

influence on certain physical quantities. Figure 3 shows ité17] which is the repulsive part of the LJ potential, the
influence on the potential functions in the basic configura-SHRAT potential truncated at its minimum and shifted such

tions. that it vanishes continuously is used as the spherical, purely
repulsive potentiali™?(r) = ¢>"RA(r) + ¢ for r<r,, and
SHRAT _ : : * _ : :
lll. FREE ENERGY AND PRESSURE OF AJANUS FLUID ¢~ — 0 otherwise, withrg,=9/8. Its contribution to the
_ o free energy is calculated with a modified Carnahan-Starling
A. The different contributions to the free energy expression. The Carnahan-Starling expressigg for the

Classically, the free energy per particlé(n,T) free energy—originally derived in18] for a fluid of hard
—F(N,V,T)/N of a fluid composed of nonspherical JanusSpheres—is Bfcg(n,T)=nB5Y(1—nv)+(nv)?/(1-nv)?,
spheres is written as the sufn, T) = fy;,(n,T) +f,o(n, T)  Where BX=4v is the second virial coefficient for the hard
+f,(T), of a kinetic, a potential, and an entropic contribu- sphere potentialy denotes the volume of a hard sphere, and
tion. The latter is associated with the orientation of the par8=1/kgT. For the application of this expression to the re-
ticle axes. In the abové\ designates the number of particles pulsive soft sphere potentigl™®r) the second virial coeffi-
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cient B" is replaced with the temperature dependent virialconditions for the existence and stability of anisotropic
coefficient of the soft potential: phases in the Janus fluid. It is therefore necessary to decom-
pose the free energy differently. We should denotefRy
that part of the free energy which does not depend on the
alignment of the particles and is the same in the isotropic and
anisotropic phases of the fluid. Biyg, we should denote
and the volume is replaced with an effective, temperature that (remaining part of the free energy that vanishes in the
dependent volume)eﬁ(T)=(7T/6)dgff(T). As the effective isotropic phase. In view of the foregoing discussion, the de-
diameterd.x(T) of a particle we use the distance where thecomposition is already achieved fég, andf,, which are
potential energy equals the thermal energy.(deq(T)) both independent of an alignment and are thus part of
=kgT, or equivalently,qﬁﬁ‘ep(deﬁ):T. For the WCA poten- fio(n,T), and forf,,, which vanishes in the isotropic phase,
tial this leads tovX(T)=(=/6)2Y(1+T) ¥4 We will ie., forp(u)=po, and is thus part of,y(n, T). The distor-
adopt this simple expression for the present purpose, sind#on partf s of the free energy contains isotropic as well as
both potentials WCA and)™P are very similar, and the ef- alignment contributions and must be further decomposed.
fective volume Corresponding to the WCA potentia| ismuch To proceed, the orientational distribution function is writ-
simpler. The modified Carnahan-Starling expressionffgy ~ t€n asp(u)=po[1+ x(u)], with the isotropic orientational

1 rej
BEAT)= 5 [ 1-e peOa, ™

then becomes distribution functionpy. The functiony(u) with {x(u))=0
describes the anisotropy of the distribution functiefu).
. T nBZA(T) [Nve(T)]? @® Inserting this representation fprinto the expression for the
nT)= + . istorti Vi
ref M, T) =Kg (1= M0 [1—noog(T)]2 distortion part of the free enerdy;s yields

. — fiso anis align,
This expression was applied earlier to a WCA fljiiB, 8| Fais(n, 1) =fadn. 1) + £, T) + 15i"(n. T),

and yielded good agreement with results of molecular dy- iso _ SHRAT T\ __ fep,
namics computer simulations for the corresponding pressure Fais(n T) =nke T[B;™(T) =B (T)],
of the fluid. anis B anis
(e) The distortion contribution fais (N, T)=nkeTB; 51 T),
align

¢diS(F,u1,u2):¢(F'u1’u2)_¢rep(r) fdis (n,T)=nkBTH(T). (10

of the potential includes the attractive part of the nonspheritere, the virial coefficient of a SHRAT flui@3"*"(T) is
cal interaction as well as the anisotropy of the repulsiondefined in analogy to Edz7), and the “virial coefficient”
which was not included inp™P. The augmented van der
Waals approximation takes its contributiofg to the free
energy into account through the virial expressigg(n,T) 1 e SHRAT
=nkgT[B,(T)—B5T)], and the distortion contribution to =§f 3((1—e‘5¢ L}),Joe‘f‘qS Odsr
the pressure i9g(N,T)=n?kgT[B,(T)—BSAT)]. Here, i
B, is the second virial coefficient of the full nonspherical (11
otential function ¢, i.e., By(T)=((B(u;-u , ) , »
gndB(ul-u2)Efﬂsl—gxp[—,B¢(r,u12,(uzg}dg<r. S|-hle flzj)ll>><apx- with BZVO(T)E(<B(ul~u2)>>pO desc_rlbes the additional con-
pression for the potential contribution to the free energytribution of theanisotropicpart #°"*°of the potential to the

B35 AT) =B, T)~B5"(T)

foor=frepT fais IS thus obtained: free energy(and the pressuyeof an isotropic Janus fluid.
These last expressions are both independentoj and are
NveB5 P nvgff thus part of the isotropic patftg, of the free energy. The

fpoN, T)=nkgT| Bo+ (9 contribution tofys which carries the dependence gnin-

1-n — 2)" . ;
(1=Nvet) -~ (1—nvey) volves the quantityH with

For high densities this expression becomes the modified 1

Carnahan-Starling approximation, which should be a good  H(T)=-— _f (Canisd T, Uz ,Up) x(Up) x(Up)), d3r (12)
approximation, as the repulsive part of the interaction be- 2)p3 0

comes most important. For very low densities on the other o . N .
hand the choice fof 4 guarantees that Eg9) becomes the and the “direct correlation functionCansdr,us,Up), in the

virial expansion of second order and is a good approximatior"f\pproxlmanon applied here given by

in this range also. _ paniso _ panis _ 1 sSHRAT,
g Cariss= (€A™~ (e F4™™™)  )e B0 (13)

B. Isotropic and alignment free energy align

The contributionfgd" which carries the direct correlation
Having established an expression for the free energy ifiunction (13) is part of the alignment free energy, together

terms of the orientational distribution function, density, andwith f,.

temperature, by making use of the augmented van der Waals The complete expression for the free enefigsuitable for

approximation in the previous subsection, we want to derivea discussion on stability, now separates as follows:
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f(n,T)=fiso(n, T)+ falign(an)a falign(n:T)% f;ﬁ;(n,T)
. . kgT
fi50: fkin+ frep+ flcig'f' fggso, = T Alaﬂaﬂ-l- Azawaw
align 6 6 )
faign=fais + for- (14 — gaﬂayaﬂﬁ— g(aﬂaﬂ) . (16

All contributions are explicitly defined through Ed$), (6),
(8), and(10), together with the definitions for a number of
virial coefficients provided by Eq$7), (11), and(12). These
coefficients involve the model potentials given in Sec.
IlA. The corresponding expression for the pressure (Al) <<
=1—nj
]R3

reads p(n,T)= piso(nv_T) + palign(nyT)a Piso= Pkint Prep

The coefficientA;(n,T) andA,(n,T) are functions of tem-
perature and density:

¢.(U1) @, (Up)/3 )C>> &
Po

+Piot PAT, Paign= P3S". At this stage the free energy and 2 in(U) @ (U2)/5
the pressure thus depend on the single particle orientational 17

distribution functionp(u) (or y=4mp— 1) and three param-

eterse; ;3 introduqed in Eq.(é}). Next, we should simplify where the arguments in,(r,U;,U,), cf. Eq.[13], have
the above expressions by using a multipole expansioy for paap skipped. The purely numerical coefficients in &)

A further simplification invokes the assumption of uniaxial roq it from the entropic contributiofy,. The effect of den-
alignment in Sec. Ill D by which the existence of a polar align

phase can be investigated analyticalsee Sec. IV. Sity on Ay, reslts fromf g™

C. Landau—de Gennes expansion for the alignment free energy D. Uniaxial alignment

For the special case of homogeneous uniaxial alignment
of particle axes, the alignment tensors can be expressed in
terms of a spatial unit vectar, the director, and scalar order
parameters. The Cartesian components of the first and sec-
ond order alignment tensors are

The existence of a stable anisotrogolar phase at a
certain densityn and temperaturd requires that the align-
ment free energy 4g,(n,T) has a minimum for an aniso-
tropic orientational distribution functiog(u) # 0 at this state
point. To find these minima an expansion fiojy, of the

Landau—de Gennes typ&5] is established as follows. First, 15
a,= \/gSlnM, Apy= \/:Szn n

the orientational distribution functiop=(1+ x)pq is writ- (18
ten as a multipole expansion up to second order,
x(uW=a,e,(W)+a,,e,,(u). (15  The order paramete andsS, [21] with S;=(P;(u-n)),, a

directorn defined through Eq18), and Legendre polynomi-

. . . L Is Pi(i=1,2) characterize the polar phase and degree of
Here and in the following the summation convention is use(g ( ) P P 9

for repeated indices. Second, the logarithm under the integr
in expression6) is expanded for small values gf(u), i.e.,

for weak alignment, into a Taylor series of third order: In(1
+x)~x—1/2x?+ 1/3x® such that the entropic part becomes

lignment of the Janus fluid, respectively. Inserting the
niaxial alignment tensors into E¢L6), the free energy as-
sociated with the alignmeriil6) becomes

For=(X)p= VA X?)py+ U x%),,- Due to the choice of LdG _ kgT , 54 5
symmetric, irreducible Cartesian basis tensers . [Eq. Faign( M, 1) ==~ 3(A1_232)51+§S£11+5A252 :
(3)], the coefficientsa,... of the expansion(15), usually (19

denoted as alignment tensors, equal the moments of the dis-

trlb_utlon, "e"aﬂ“'_<."°ﬂ“‘(u)>f" In a_nematlc liquid €YS" and the pressure associated with the distortion part of the free
talline phasdhead-tail symmetryp(u)=p(—u)] the align- energy,[see Eq(14)], is
ment tensors of odd rank vanish. For a Janus fluid, however, ' ' ’
alignment tensors of any rank may be nonzero. A nonvanish-
ing first rank alignment tensa, (actually it is a vector with LdG nkgT ) 5
three components, , 9 indicates the existence of a polar Paig(MT)=——[3(A1=1)S; +5(A2 - 1)S;]. (20)
phase in the fluid.

Inserting the multipole expansidab) into f g, from Eq.
(14) we obtain an expansion for the alignment free energyOne notices, that expressigh9) is even inS;, and asym-
faign Of @ Landau—de Gennes type, if we neglect all termametric inS,. Positive(negative values of—1/2<S,<1 de-
including alignment tensors of rank higher than 2, and alsscribe a preferred alignment paraliglerpendicularto the
terms containing both alignment tensors of first and secondirector n, and 0<S;<1 is always positive(or zerg for
rank in at least second order: convenience.
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E. Minima of f,,, and order parameters

Minimizing 5o, [Eq. (19)] yields the equilibrium order

parametersS, , in terms of the coefficienté\; (n,T) from
Eq. (17), as follows:

B [ —B5AA,
Si(n,T)= 6(6A—2—1)

(219
A2
Sy(n,T)=— 6A21_1. (21b)

These expressions are finite only fag>1/6 (for the tem-

PHYSICAL REVIEW &7, 041209 (2003

A. Coefficients A, ; and transition temperature T

Inserting Eq.(23) into the expression&ld), (17) and per-
forming the orientational averages yields the following ex-
pressions foA; ,:

€1

2
Ay(n,T)=1-n1y(T) 2 +n|2(T)($) (4

1 P
Az(n,T)=1——nI2(T)(?) , (25

5

perature approaching infinity and vanishing density, one hawherez3=3e}+5s5— 273/1G:1¢,, and the dimensionless

A,=1). Therefore A,>0 and expressiof21b) can be real
only for A;<0. For high temperatures and low densitfes
is positive, and the transition temperatufg into a polar
phase is determined by the condition

A1(n,T))=0—Te(n). (22)

Below this temperature, the approximatiof&lb) describe

2
the polar and nematic order parameters in a polar phase of al5(T)=| —5| =
. . T ; 27
Janus fluid. This approximation is no longer applicable when

the temperaturé =T, with A,(n,Ty)=1/6 is reached. Since

volumesl ¥ =1 1,2rg3 are introduced as follows:

1024
27

32
I5(M="n f (3—2r*)3%e A7 O (rx)2gr,

0
(26)

32
(3—2r*)8e ™0 ()2
0

(27)

the Landau—de Gennes expansion was used to derive these

expressionsy and the |Ogar|thmﬁ5} was expanded for weak These volumes can be Viewed as averages of the first and

alignment, the approximations for the order parameters cafecond powers of the negative part of the spherical SHRAT

be valid only in the vicinity of the transition temperature, Potential. They are always positive and depend rather weakly

where the alignment is small. From their definition, the orderon the temperature. o

parameters are limited to values smaller than 1. Their diverg- The temperature dependence of the coefficiéntgn,T)

ing is due to the approximations in the Landau—de Gennel$ shown in Fig. 4 for the dimensionless density=0.8 and

expansion forf 4q,. In determining their equilibrium values for two different sets of anisotropy parameters and ¢

(21b) from the minima off 4, they had the role of mere With e3=0 representing ee and nn Janus spheres, respec-

parameters in the alignment free energy. tively (cf. Fig. 2. For the ee Janus spheres in the diagram on

top, A; goes through zero at the temperatre 0.8~T..

This is the transition temperature into the polar phase. At the

temperature To=~0.5, A,=1/6. At this temperature, the
Although it is possible to to evaluate the stated expresuniaxial approximation18) for the order parameters fails,

sions for the pressure, the order parameters, and the trangie., a polar phase can be expected in the temperature range

tion temperature numerically, it is desirable to introduce anT,~0.5<T<0.8~T,.

other approximation which suffices to work out the influence  For the nn Janus spheres of the right-hand diagram of Fig.

IV. ANALYTIC RESULTS

of the anisotropy parametets , ; analytically. The aniso-

tropic partg3"s°of the full potential containing these param-

eters appears in the definitions for the coefficieAts and
the virial coefficienB57° through exponential functions. Let
us expand the exponential function up to second oflligh

temperature approximatign

aniso : 1 . .
e B¢ %l_ﬂ(i)anlso_'_E(Bd)anlsc)z_'_odlgd)amsf)_
(23

Requiring thai 8¢3"${=<1 holds in the range of the equilib-
rium distancer’e‘q= 9/8, where the equilibrium pair correla-
tion function has a maximum leads to the conditigvy|
=0.25. In order to use the expansi28), the anisotropy of

4, we see thal,>T,.. Therefore a polar phase is not ex-
pected and it is worth examining this parameter region via
Monte Carlo simulation.

The form(24) reveals tha#A; can only have a zero, and a
polar phase is predictddf. Eq. (22)], for £,>0 (sincel, ,
>0). As Fig. 4 reveals, this is even further restricted to
systems of ee Janus spheres. Furthermore, expres&ns
(24) show that a nonvanishing; reducesT., while T; is
insensitive to the value af,. But A, does depend oa, and
therefores, has an effect ofy. Therefore, the choice of,
in relation toeq is essential for the presence of a uniaxial
polar phase and its range of existence in parameter space.

B. Alignment free energy

the potential must be moderate. Considering, e.g., the ee con- With the high temperature expansi@2¥), upon inserting

figuration, the anisotropy parametets, have to satisfy
81’250.03.

A, from Egs.(24),(25) into the free energy5ic(n,T) as-
sociated with the alignmeriil9), we obtain
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i
04 06 08 1 12 14
(a) temperature T"

-0.05

0.5 ~03 =02 -01 0 01 02 03

Si

0.25
0
-0.25
-0.5

Ay

=)

FIG. 5. The alignment free energl;q, from Eqg. (28) as a
function of the order paramete®; ,. The density in*=0.8, the
anisotropy parameters asg=0.02,e,=—0.02, ande3=0.0. The
temperature iF=0.87, which is above the transition temperature
(cf. Fig. 4). The single minimum of the free energy is located in the

~075 ] &1=001;8,= -0.03; 3= 0.0 center of the diagram; contour lines are drawn in equidistant energy
04 06 08 7 12 14 steps. The expected symmetryfgf,, with respect td5; and asym-
(b) ' ' tempe;"ature T ’ metry with respect t&, can be seen clearly. The minimum &y,

at vanishing order parameters disappears below the transition tem-
FIG. 4. The coefficient#\;(n,T) andA,(n,T) at a densityn* perature and two minima occynot plotted with nonvanishing
=0.8 and anisotropy parametees=0.0 and €4;e,)=(0.02; order parameters.
—0.02) (top) [(0.01;—0.03) (bottom) |; the dashed horizontal curve

is at a value of 1/6. The zero d%;(n,T) marks the transition C. Order parameters
temperaturel ., the intersection ofA,(n,T) with the dash-dotted . o .
curve marks that temperature where the order parametebs di- The positions of the minima of 54, are given by the

verge(see Sec. lll E The dimensionless temperature is denoted a§xpr.e.ssion5121t?) for the order pfirameters in terms of the
T* in the figure. For convenienc,andT* are used synonymously €Xplicit expressions for the coefficierts , [Eqgs.(24),(25)].
in the text part. As shown above in Sec. IV A, a nonzero order paramster

is expected only for ee Janus spheres with-0; we mostly
) consider ee spheres in the remainder of this section. The
£1 3 2 order parameters are shown in Fig. 6 as function of the tem-
1-nly(T)=+nly(T)| =] —2S,|3S .
(M= 2( )( T) SZ} 1 perature (*=0.8). The anisotropy parameters atg=
—&5,=0.02 ande ;=0 (thinnest curvi For temperatures just

Lo _keT
align 2

keT 54 es\?]
+—1{—5/+|5—- = .
> [58‘1‘ 5 n'z(T)(T) S (28)
0.3

Figure 5 shows a plot of the alignment free energy as a % 0.25
function of the order paramete$; , for the reduced density S o2
n* =0.8 and the anisotropy parameters= —,=0.02 and §0 15
e3=0 (ee Janus sphenest temperaturel =0.87. At this % '
temperature there is a single minimum for vanishing order 5 0.1
parameters. The. alignment free enefgy,, is §ymmetric in 0.05
S, but asymmetric with respect 8,. The positive value for
the nematic order parameter shows that the particle axes are 0675 07 0725 075 0775 08
mostly aligned along the director axis rather than perpen- temperature T

dicular to it. For the temperaturé=0.72 below the transi-
tion temperaturel ;~0.8 into a polar phase, there are two
minima for positive (and unphysical negative, thus_ @rrel- 0,02, ande,=0,0.007,0.01(thinning curves By varying the
evany yalues of the polar order paramety and a positive density (results not shownwe find that the transition temperature
nematic order paramet&. T, is slightly increasing with increasing density.

FIG. 6. Influence of temperature ard on the polar and nem-
atic order parameterss; and S, at n*=0.8,£,=0.02,&,=
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below the transition temperatufi,, the polar order param- 1
eter grows rapidly. At lower temperatures the increase is al-
most linear. The nematic order parame®grremains much
smaller than the polar order parame$gr For very low tem-
peratures the increase of the order parameters is stronger
again. This is where the second coefficiéat approaches

1/6 and the expression for the order parameter diverges. By
varying the densityresults not shownwe find that the tran-
sition temperaturd .. is slightly increasing with increasing
density; see Sec. IV E and Fig. 9 for further discussion. Fig-
ure 6 also shows the influence of the third anisotropy param- 0.2 04 0.6 0.8 ]
etere; on the order parameters. The transition temperature  (a) density n*

and the order parameters decrease with increasing absolute
value for 5 [which appears quadratic in expression Eg.
(24)]. 0}’
-1 Dalign

*

pressure p

*

D. Pressure of a Janus fluid in its isotropic and polar phases

Applying the high temperature approximati¢28) to ex-

pression(11) for the virial coefficientB3° yields

pressure p

B35 AT)=—(3e5+5e5+9e3)(2T) 2I,(T). (29

This expression is always negative and the contribution 0.2 0.4 0.6 0.8 7

Pae AN, T)=n?kgTB3H*{T) originated by the anisotropic (b) density n*

part $2"° of the model potential to the pressupg, in the , ,

isotropic phase of the fluid is also negative. The pressure of FIG. 7. The contributiongyi, Pgs, and pgis™ (top) and prep
the isotropic Janus fluid with its nonspherical interaction isPottom as well as the alignment contributioajgy(n,T)
smaller than that of a SHRAT fluid with purely spherical =P (n,T) (bottom inset to the pressure of an isotropic Janus
interaction. The anisotropy enters into E@1) through the fluid with £,=0.02,,=-0.02, ;2;"53:0_ as a function of density

sum (&%+58§+98§) of squares of the anisotropy param- at a temperature o'lf:_0.6. Forpgs~ the high temperature approxi-

eters. Thus, the pressure depends only on the strength g}at|on(29) was applied.

anisotropy of the potential, but not on the signs of the anisot-

ropy parameters. Due to this reduction of the pressure, aWe contributions from Fig. 7, is displayed in Fig. 8 for two

isotropic Janus fluid will also have a critical temperatureseleCtEd temperatures as function of the density. Anisotropy
which is below the one for a SHRAT fluid. parameters are chosen as before. For low densities in the

The different contributions to the pressure of a Janus qui(gﬁzet% utshghl?iﬁg,ti(t:h(?olr?t(r:irbel?tissnOthehIgver;SeSLcj:rriié;latlgqmosgrlgear
in its isotropic phase-pyi,, Prep: Pais: and pio-’, respec- L ' i P
ively, with the high temperature approximati2o) applied ture T, the _denvatwg of the pressure V\_nth respectntds
]E'c\)/ft%’e last expregssion—pare displgped raphicall PP Ei 7negatlve for intermediate densities, i.e., in the region of co-

yed grapnically In FI9. 7. ictence between gas and liquid phases. For high densities

The temperature chosen wiis=0.6 and the anisotropy pa- as the repulsion between the particles becomes important, the
rameters for .the ee.Jaf.‘“S spheres e _82:0'02. and Carnahan-Starling term starts dominating and the pressure
8.3:0' T_h_e linear _kme_:tlc and the Carnah_a_n-StarImg terM; creases. The lower diagram in Fig. 8 shows the pressure at
give positive contributions, whereas the virial expressions,, temperature close to the critical temperature of the Janus
quadratic in the density, are negative. The Carnahan-Starling;iy 5 the SHRAT fluid. For the latter it is slightly higher
part is d'SP'?yed separately, because it grows rapidly fOHue to the influence of the anisotropic part of the potential in
larger de_nsmes. . o the Janus fluid. However, the value of the shift is not very

The alignment pressufg,q, is displayed in Fig. Tinse). reliable, because a mean field theory like the virial expansion

In qu' (20) for Paign th%eﬁpressir?nél& are inserted for'the . cannot correctly describe the critical behavior of a fluid that
order parameters and the high temperature apprOX|mat|0|g governed by fluctuations.

(24),(25) is used forA; ,(n,T). The pressure is is zero for
densities below the “transition densityi.. Here,n}~0.5
for this given temperature. Above this density it is negative
and very small, so that the difference between the pressures Using the above results for the pressure and evaluating
in the isotropic and the polar phase should be very small. Foconditions for the stability of different phases, we can con-
higher densitiep,4, diverges, while the Landau—de Gennesstruct a qualitative phase diagram of the Janus fluid made of
energy approximation in terms of order parameters becomese spheres in then(T) plane. Such a phase diagram for a
invalid. special choice of anisotropy parameters is depicted in Fig. 9.
The total pressure of the Janus fluid, i.e., the sum of allThe diagram shows the regions of liquid and gaseous single

E. Qualitative phase diagram
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0.8 0.8
0.6 fluid
-KQ.‘ 0.4 0.7 1~ ~d
as 1qul
§ 0.2 8 isotropic d
: 0 :
A -02 &~ 06
®
-04 g
-0.6 g 0.5 two phase region
0.2 04 0.6 0.8 =
(a) density n”
04
It =066
. 08 0.3
= 02 04 0.6 08 1
§ 0.6 density n*
>
«
§ 04 FIG. 9. Phase diagram for a Janus fluid with anisotropy param-
0.2 eterse;= —&,=0.02 ande;=0. Below the densityh* =0.35 the
) ) extension of the two-phase region is determined from the spinodal
0 Ul Tsps above this density from the zeq(n,T) =0 of the pressure.
The kink in the thin bent curve results from these conditions. The
(b) 01 02 0“138 " sig;4 n* 05 06 07 horizontal straight line marks the critical temperatligg, and sepa-

rates the fluid from the gaseous and liquid phases. The thick straight
FIG. 8. The total pressure of a SHRAT fluidash-dotted curye  line increasing linearly with density is the transition temperature
and an isotropic Janus fluid with, = —e,=0.02 ande;=0 (solid  T«(n) from isotropic to polar liquid according to Sec. IV E.
curve as a function of the particle density at two selected tempera-

tures. The lower diagram shows the pressure at a temperature close F. Range of validity and possible correction

to the critical temperatur@ ;= 0.66 of the SHRAT fluid and o For low temperatures, the equation of st¢ltd) describes
=0.71 of the Janus fluid. Fqu§y*°the high temperature approxi- the numerical results to be discussed in the next section only
mation (11) was applied. for very low densities in the gaseous phase and for high

densities in the liquid phase. At intermediate densities in the

phase and the two-phase region of coexisting liquid and gag@dion of coexistence of gas and liquid the pressure is not

eous phases. The fluid phase is marked for temperatur&@scribed correctly. In Ref22] the pressure of a spherical
above the critical temperaturB,; of the Janus fluid. The SHRAT fluid was calculated analytically employing an aug-

two-phase region is approximately determined by the SIOin[nented van der Waals approximation as well as numerically

. . via molecular dynamic§MD) simulation. Compared with
odal curveTgn), which connects the extrema with respect S
. . ) the MD results, the augmented van der Waals approximation
to the densityn of the pressure curve(n,T) and is derived

. yielded a too high pressure. Applying a temperature and den-
from the condition ¢p/dn)[n, Ts(n)]=0. The vertex of the G enendent “correction termt(n,T) to the distortion
splnodal at the critical densny/cnyeal temperature pa'rpressurepdis, i.e., replacingpgs by pgd 1+c(n,T)] in the
(Nerit» Terir) = (0.28,0.71) marks the critical point of the fluid. equation of state, with a particular simple correction the
Above the critical temperaturE; is the fluid phase without simulation results are well described. The correction term,
distinction between liquid and gaseous phases. In an absenotivated by increased fluctuations in the two-phase region,
lutely stable phase of a fluid, not only the derivative, but thekeeps the limiting correct behaviors(0,T)=0, c(n,0+)
pressure itself must be positive. For higher densities above-0, and a dimensionless density appears as a product be-
n*~0.35, the corresponding conditigin,T(n)]=0 yields  tweenn and the effective volume introduced above. The cor-
an approximation for the bounds of the two-phase regiomection term employed first used if22], readsc(n,T)
which improves upon the approximation based on the spin=[3nv«(T)+6n%v2(T)]e #%0. Simulation results to be
odal. presented next will be compared with both the uncorrected

Isotropic and polar liquid phases are separated by thand the corrected expressions discussed in this section.
curveT.(n) with T.=nl(T.)e;. This equation follows from
condition (22), A;[n,T¢(n)]=0, with A; from Eg. (24), V. NUMERICAL RESULTS
whene;=0 (which is the case for the phase diagram shown

in Fig. 9). Sincel ,(T) is weakly dependent on the tempera- A. NVT Monte Carlo simulation setup

ture in the vicinity of T=0.8 we estimated the critical tem- In the following, we report results of Monte Car{IC)
perature shown in Fig. 9 from the conditidn(n)=nl(T  simulations for configurational properties of the same model
=0.8¢g/kg) e, wheree;=0.02. for Janus fluids without referring to any approximation apart
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from possible finite size effects. The MC simulations werestart configurationsinitial positions of the particles on a fcc
carried out in arNVT or canonical ensemble with constant lattice when mentioned explicitfly The duration of a simu-
number of particles\, constant volume/, and temperature |ation was usuallyM =2x 10* MC steps. In obtaining the

T. The particlegJanus sphergof the Janus fluid were en- results of Sec. V D, for a given densitya seriesof NVT
closed in a cubic central simulation box with voludePe-  MC simulations was initiated with random start configura-
riodic boundary conditions were applied to reduce the effectgions at a relatively high temperature. The temperature was
of finite system size, and the minimum image conventionhen successively reducéi not otherwise mentionedat a

was used23]. A Janus sphere is described by the spatiakgie AT=0.02 perM =2x 10 MC steps. At a low tempera-
coordinates of the center of mass and the direction of the uni{;re this process was reversed and the temperature was in-
axis vectoru. If it is attempted to move a particle in the creased again. The results for the different branches of the
simulation, with equal probability the center of mass isgimylation may differ. The hysteresis effects should mainly
shifted in space or the axis vector is rotated around one of thge gye to the finite rate. In the transition regimes isotropic-
three spatial coordinate axes. The axis of rotation is choseRematic and isotropic-polar, where the hysteresis effects are
with probability 1/3, and we used the Metropolis algorithm y,ost pronounced, the duration of the simulation was in-
[24], i.e., an attempted move of a particle is accepted withy easeq M =4x10%.

the probability W,,«min(1,exg—BAE}}), where AEP The first 1¢ MC steps at a new temperature were always
=EN'—Elis the difference of potential energy of the new disregarded for taking averages. The anisotropy parameters
configurationE?® (after the particle was movednd the pre-  are set such that the potential models amphiphilic Janus
vious com‘iguratiorEZOt (before the particle was moveddA  spheres; corresponding estimates were discussed above. Fur-
full Monte Carlo step includes an attempted move of allthermore, in order to potentially observe a polar phase,
particles of the fluid. Our systems relaxed for several thou=>0 is chosen.

sand MC steps, before averages of configurational properties

were extracted during several thousand further MC steps.

The configurations after every tenth MC step are used for the B. The pressure of the SHRAT and Janus fluid

sample set to calculate the MC averages. This was done 10 Figyre 10 shows MC results for the pressure of the Janus
reduce correlations between subsequent configurations ag;q (With &,=—¢£,=0.02,65=0) as well as for the

improve the accuracy of the averad@s]. Averages are ac-  gyRAT fluid as a function of density for different tempera-
cumulated as mean values over MC _reallzatlons as follows;ras We compare with the analytical results derived in the
The potential part of the symmetric part of the pressurgqyreqoing sections, earlier results for the SHRAT fluid ob-
teNSOr Ppot 1S calculated with the virial expressioppV  tained via molecular dynamics simulation, approximated by
=(2j21 2yl F(rij ui,up)), where F:_Vrij¢ is the  the corrected equation of state described in Sec. IVF. The
force acting between two Janus spheres, resulting from thdiagrams of Fig. 10 confirm that the augmented van der
gradient of the binary interaction potentigl, andr;=r; Waals approximation tends to overestimate the value for the
—r; is the distance vector of two particles. To receive the fullpressure. For the temperaturés-0.8, 1.0, and 2.0, which
symmetric pressure tensor, the kinetisotropig pressure are above the critical temperatures for the SHRAT and Janus
Prin=NKkgT1 is added:p=ppot+ Pyin- The scalar pressure is fluids (not all results plottel the corrected equation of state
obtained agp=(1/3)Tip, since the existing torques do not agrees well with the MC results for the full range of densities
contribute to the trace of the full pressure tensor. From thahown, for both types of fluids. The MC results for the
MC results, the average for the potential energy per particl SHRAT fluid are identical to the ones obtained via MD
Upot iS Obtained asi,o=(Z/=;~;¢(rjj,u;,u;)), where the within the range of accuracy ¢22]. Also, for temperatures
symbol =/ denotes the normalized sui=(1/N) zi'\‘zl below the critical temperature, e.g[,=0.5, the corrected
with N being the number of particles, arfd- - ) stands for equation of state generally describes the pressure of the fluid
the ensemble average. The polar order paranttés cal- ~ correctly in the single phase regions with very high and very
culated by taking the norm of the mean axis vector low densities. Only the fluctuation dominated behavior of the
=3/u;, i.e.,$;=(u|), i.e, $;=1V, u=u, since|u]=1. two-phase region cannot be described with a mean field
Similarly, the amplitude of the order paramet®s is ob- theory such as the one employed here. In these regions, the

tained from the relation local particle density becomes inhomogeneous. “Holes,” re-
gions with very low density, are formed, as can be seen in the
S3=32)(S] -3 ") %) snapshot of the fluid shown in Fig. 11. Therefore, the MC

results are not accurate in the two-phase region, because the

The sign of the nematic order parameter is obtained using th\éIrlal expression for the pressure requires a homogeneous

relation S,o<((n-=/u;)?—1/3), where2'u is the average System.
axis vector in a single configuration.

Simulation results to be presented in the following are
obtained as follows. In the pressure calculations in Secs. VB The realm of the liquid phase of a fluid composed of
and V C,singlesimulations with a given number of particles particles with a very short range of interaction can be very
N (typically N=1024), fixed overall particle number density narrow; for a fluid of G, fullerenes, Hagert. al. in [26]

n, and fixed temperatur&, were carried out with random suppose that there exists no liquid phase at all. As an indica-

C. The liquid phase of the Janus fluid
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4 FIG. 11. The perspective view of this snapshot from the Janus
7 A® fluid in the two-phase region af=0.5 andn*=0.5 shows the

=2 formation of areas with high and low densities in the fluid. The

. Janus spheres are represented as cones; the frames mark the edges

0.2 04 . 0;6 0.8 1 of the central simulation box.
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Along with the numerical results, Fig. 12 shows the ana-
lytic results for the pressure of the isotropic fluid according
to the augmented van der Waals equation of stafe and
the corrected equation of staief. Sec. IV B, again with the
high temperature expansion appliedofy)*°. Comparison of
the corrected equation of state and the MC results for the
pressure of the unordered, fluid system reveals good agree-
ment outside the two-phase region. For high densities a weak
alignment of the particles’ axes, with <0.3, is observed in

© 02 Oéltnsity 2;6 08 1 the MC simulations. Since the alignment pag;g, of the
pressure is not considered for correction in Sec. IV F, the

FIG. 10. The pressure as a function of the density: the dasheg00d agreement between the pressure curves confirms the
and the dash-dotted curves represent the augmented van der Wafisgding of Sec. IV D that the alignment pressure is negligible
approximation from Eq(14) and the corrected equation of stété  for small order parameters.

Sec. IV B, respectively, for the SHRAT fluid. The thin and thick For given density, the pressure in the crystalline system is
solid lines give the according expressions for a Janus fluid witrsmaller—and the increase of the pressure with the density is
anisotropy parameters;=—e,=0.02 ande;=0. For the contri- larger—than in the unordered, fluid system. The pressure in
bution p3ia*° in the equations of state of the Janus fluid the highthe fcc phase becomes negative for densities behdw
temperature approximatiafil) was applied. The gray dots are the ~(.95 and this phase cannot be absolutely stable for smaller
results of the MC simulations in the SHRAT fluid; the black dots yg]yes. Forn* ~0.85, the pressure reaches the value ob-
are those for the Janus fluid. The number of particles used in thgyineqd for the fluid system. At this density, the crystalline
simulation wasN=1024. In a simulation, the start configuration order disappears and a transition to the fluid phase occurs.
was chosen randomly, the system was relaxed f6rMC steps, 11,0 pressure in the fluid phase is positive abote-0.8 and

and averages were extracted ovef MC steps. thus, a liquid phase of the system might be located in the
density range of 08n* <0.9.

*
N~
S N

pressure p

S N AN QA

tion of where the liquid phase and therefore anisotropic, lig-

uid crystalline phases of a Janus fluid could be found, the D. Anisotropic phases in Janus fluids

pressure in systems of Janus spheres with unordered initial

configuration was compared to the pressure of a system with Via Monte Carlo simulations, anisotropic phases with po-
fcc crystalline initial configuration. The results are displayedlar and nematiclike order are found with different sets of
in Fig. 12 for two different temperatures. order parameters.
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FIG. 12. The pressure of a fluid and a fcc crystal of Janus =33
spheres with anisotropy parameters= —&,=0.02 ande;=0 for -4
two selected temperatures; the black dots give the results of an > 45
unordered start configuration, the gray dots those with fcc start %” ’
configuration. The dash-dotted curves represent the pressure of the § -5
fluid, calculated with the equation of stdief. Eq. (14)]. The solid 2 55
line is the pressure according to the corrected equation of &fate S
Sec. IV H. The number of particles in the simulations with the ] -6
unordered start configuration whis= 1024, in the fcc start configu- 6.5
ration it wasN=864. The system was relaxed for*1}C steps and
averages were extracted over*MC steps in both cases. 03 0.4 0.5 0.6 0.7 0.8

(c) temperature T”

1. Polar phases for ee Janus spheres

A polar alignment of the particle axes, as predicted in FIG. 13. Order parametef$; andS,, the pressure and the po-

Secs. Il and 1V, is found from our MC simulation for the tential energy per particle of in system of Janus spheres with an-
case of ee Janus spheres. isotropy parameters, = —e,=0.03 ande ;=0 as functions of tem-

(a) Janus fluid withe,=—£,=0.03,e5=0. Results for perature. The number of Janus spherdd4s2048 and the average

the order parameters, the pressure, and the potential enerf§?S1ty isn* =0.8. The vertical line marks the transition tempera-
of the particular Janus fluid are displayed as functions of th&"®: the arrows indicate the heating/cooling branches.

density in Fig. 13. The upper left diagram in this figure

shows the behavior of the order paramet®ys vs tempera- of Fig. 13. For higher densities, the pressure falls almost
ture. Above the transition temperatufe~0.62, the order linearly with decreasing temperature, and vice versa. The
parameters are small, witB; ,<0.1. Below the transition pressure is negative for temperatures bel®w0.7. That
temperature the polar order parameter increases rapidly up toeans that the polar phase in the fluid can only be meta-
a value ofS;~0.6 atT=0.56, and then continues increasing stable. FoiT<0.62 the pressure remains consta@mart from

with decreasing temperature up to a valueSg&=0.8 atT  some fluctuations while reducing temperature. It is this
=0.3, which describes an almost total alignment of the parrange where the fluid contracts and inhomogeneities appear.
ticles. The nematic order parame®yis much smaller than This contraction is finished al~0.34 where the pressure
S;. The system is in a polar phase. The alignment of thestarts decreasing with the temperature again. The tempera-
particles is shown in the snapshot from the fluid in Fig. 14.ture T=0.62 equals the transition temperature. This coinci-
This snapshot also reveals the existence of a hole in the fluiglence may be accidental, although a contraction of the fluid
The contraction of the fluid that leaves regions with very lowmight enforce the alignment of the particles, or vice versa, an
density is also reflected in the pressure diagram in the middlglignment of the particles might induce the contraction, be-
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FIG. 14. The snapshot from the polar phase of a Janus fluid with 0s ﬁgﬁ,

anisotropy parameters, = —¢,=0.03 ande3=0 consisting ofN

=2048 particles at an average densityndf=0.8 shows the orien- -0.75
tational order of the system with a preferred direction of the particle 0.3 04 0.5 06 07 0.8
axes pointing from the upper right to the lower left. () temperature T

pressure p
S

cause the average equilibrium distance between two particles

is reduced. The contraction of the fluid and the reduction of

the average distance between the patrticles is also reflected in

the behavior of the potential energy. Its decrease is stronger

in the range of the contraction with approximately constant 45

pressure than in the other regions. For the quantities pressure _5 /‘

and potential energy a hysteresis between heating/cooling

branches of the MC ruwith M=4x10% is present only =55

for low temperatures, while we do not detect any hysteresis

for the order parameters. 0.3 04 0.5 0.6 0.7 0.8
(b) Janus fluid withe;=0.02,e,= —0.02,£5=0. Figure © temperature T~

15 shows results of MC simulations for order parameters,

pressure, and potential energy per particle of a Janus fIuigotglnct_;iél1;(3%31512?;2}(2% anyzér;h%fpgzsnsuusreép?]r;?etshsvith
with the anisotropy parameters,=—¢e,=0.02,3=0.0.

.anisotropy parameters;=—¢,=0.02 ande;=0 as function of

The results are quite similar to those in Fig. 13. The transrtemperature The number of Janus particlesNis 2048 and the

tion tem_perature from the isotropic to the polar phas# is average density is* =0.8. The vertical line marks the transition
~0.49 is smaller than before. The order parameters argmperature; the arrows indicate the heating/cooling branch. The
smaller as well, with a maximum value &~0.7 for the  single gray dots in the pressure and potential energy diagrams show
polar order parameter at=0.3. The values for the anisot- results of simulations with enlarged duration of the simulation.
ropy parameters have been used to display analytical results
in Sec. IV (cf. Fig. 6. Compared with those, the transition racy. This was done in the cooled as well as in the heated
temperature is considerably smaller hefie£0.49 for the branch. The hysteresis, however, did not disappear as was the
MC results compared t6.~ 0.8 for the analytic resulisThe  case before. Especially for the potential energy per particle
order parameters calculated in the simulations on the othehere is a large difference between the two branches, with the
hand are much larger compared with their analytically calcuenergy being almost constant when the temperature is in-
lated counterparts. In the transition region were the approxiereased froml'=0.46 toT=0.52. In this range the system
mate expression@1b) hold, the calculations giv&,;<0.2, starts to crystallize, before it becomes fluid again Tat
whereas the simulations give valuesj<0.5 for the polar =0.54, where the values for the energy reach those of the
order parameter. cooled fluid. The solidification begins at increasing tempera-
The number of particle®l, the average density*, and ture. This indicates that he relaxation time allowed to the
the duration of the simulations were chosen as before. In thBuid was not sufficient. This is confirmed by selected simu-
range of the transition into the polar phase, again simulationktions with relaxation times of 4 10° MC steps at tempera-
with longer duration were carried out to improve the accu-tures ofT=0.44, 0.56, and 0.58 shown in the diagrams. The

potential energy
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to those with positives;. The sign ofe; does not seem to
matter as predicted in Sec. IV.

08

2. Pseudonematic phases in nn Janus fluids

The discussions of the analytic results in Sec. IV have
revealed that for certain sets of anisotropy parameters repre-
senting proper(nn) Janus spheres with positive values for
€41, No polar phase can be described with the analytic expres-
sions(21b) for the order parameter&f. Fig. 4). Results of
03 035 04 045 05 055 0.6 0.65 MC simulation in a Janus fluid with anisotropy parameters
temperature T £,=0.01,8,=—0.03,65=0 are displayed in Fig. 17. They
show that the system can enter an anisotropic phase with a
nematiclike order characterized by a vanishing polar order
parametelS; and nonvanishing nematic order paramegr
This phase will be referred to as a pseudonematic phase.

The upperleft diagram in Fig. 17 shows that the polar
order parametelS,; vanishes for all temperatures. In the
cooled branch of the simulation, the nematic order parameter
S, starts to increase below the temperatlire0.4 up to a
value of S,=0.7 at T=0.3. Simultaneously a strong posi-

' tional order in the fluid is induced and the system crystal-
03 035 04 045 0.5 055 06 065 lizes. The particles form planes with a common preferred
temperature T" direction of the particle axes, which is reversed in the neigh-
boring plane, and thus exhibit a smechg phase(experi-
mentally observed in mixtures of polar compoundss the

—£,=0.03,65=0 (black dot3, £5=0.01 (dark gray dots andes system .is reheaFedSz is reduced slowly; the alignment of
—0.014(light gray dot$.The particle number in the simulation was the particles is finally resolved at the temperatlire0.68.
N=2048 and the average densitynis=0.8. The relaxation time in 1 e behavior of the pressure of the cooled fluid is similar to
the additional simulations with nonzetg was 5<10* MC steps  that observed in the previous simulations. It is negative be-
and the averages were extracted overi®*. The single black dots low T~0.66 and is hardly reduced with reduced tempera-
represent results far;= —0.014. tures when the system contracts and forms holes in the simu-
lation box. As the system crystallizes, the pressure is strongly

polar phase for this Janus fluid is not liquid anymore and€duced. In the reheated system, the crystalline order is
should be glasslike. In the simulation described in the paramMaintained and the pressure rises approximately linearly. The
graph before, no signs of crystallization were observed, eversteps” in the pressure curves with discontinuously reduced

for a simulation with 5<10° MC steps aff =0.54. For that Pressure are probably due to rearrangements in the crystal

particular Janus fluid, a liquid polar phase might exist, gStructure and partial clpsure of the holes in the system. At
least in the transition region nea. T=0.68 the pressure jumps to the pressure of the cooled

(©) Influence ofe;. The discussions in Sec. IV have fluid system and the crystalline order is fully resolved. At the
3. .

shown that a nonvanishing third anisotro arametere- same point the orientational order vanishes. This happens in
9 Py P sere two distinct steps, reflecting the discontinuous behavior of

o : | §e pressure. The orientational order can be mostly main-
the transition temperature into a polar phase. This result WaSiined as long as there is a strong positional order of the
qualitatively confirmed with MC simulations for which re- 35,5 spheres present in the system. Like the order param-
sults are displayed in Fig. 16 for a Janus fluid with basiCgters, the potential energy shows a pronounced hysteresis.
anisotropy parametets, = —&,=0.03, and the three differ- The potential energy in the crystal is remarkably smaller than
ent valuess3=0,0.01,0.014. The ratio af; to &1 > is there-  jn the fluid phase. Unlike the pressure, the energy of the
fore comparable to that in Fig. 6. Feg=0 the results from heated system shows no discontinuities apart from the step
Fig. 13 were used; the final configurations of these simulatoward the fluid phase &t=0.68.

tions served as new initial configurations witg=0.01 and
these final configurations were then used for the simulations
with £3=0.014. The results show that the order parameters
S1 andS; are reduced through the influenceegf, although The anisotropic, polar, and nematiclike phases discussed
the effect seems to be stronger than analytically forecast. A§o far were obtained for systems made of ee Janus spheres
some selected temperatures, simulations with negative  and nn spheres with positivg respectively(cf. Table I. The
—0.014 were carried out. The results are qualitatively equadliscussion of Sec. IV has shown that no polar phase should

FIG. 16. Influence o3 on the polar and nematic order param-
eterS, (top) andS, (bottom). The anisotropy parameters arg=

3. Simulations at negative values af;
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begun to crystallize and the final system was also crystalline,

0.8
n =08 with a strong positional order.
o6l
N 5 UL
g 04 TN VI. SUMMARY AND CONCLUSION
a. e
3 \\ Y In this article we introduced a nonspherical model poten-
S oo N (. tial for Janus sphere&Sec. 1), where two types of Janus
\ ! spheres(nn and eg with qualitatively different properties,
S, oo o 2 A et were identified. A yet unobserved phase is prgdlctgd for the
0.3 04 0.5 0.6 0.7 0.8 case of ee Janus spheres through an approximation for the
(@) temperature T free energy of the fluid, starting out from an augmented van
der Waals approximation in Sec. Ill. All results presented in
. this article are expressed in dimensionless u@its (see
0.5 n =08 . )
Sec. I). In order to predict the experimentally measurable
. / analogQ based on our predictions, one needs an estimate for
? 0 the diameter, mass, and LJ-type interaction strength between
§ the Janus particles at hand, denoted in this articleghym,
§ 705 g -— 4 and ¢, respectively. Sample values were given in the Intro-
i duction.
-1 An expression for the free enerdyof the Janus fluid,
suitable for a discussion on stability, was separated as fol-
0.3 0.4 0.5 06 07 038 lows: f="figo+ faign With figo="fyin+ frept ot fis, and
(b) temperature T align O .. .
faign=Tfais + for- All contributions are explicitly defined
-35 through Egs(5), (6),(8), and(10), together with the defini-
4 tions for a number of virial coefficients provided by E¢#),
N (11), and (12). These coefficients involve the model poten-
¥ -45 tials given in Sec. Il A. The corresponding expression for the
s -5 pressure is given after E¢L4). At this stage the free energy
§ _55 and the pressure depend on the single particle orientational
3 distribution functionp(u) (or x=4mp—1) and three param-
8 6 eterse , 3 introduced in Eq(4). The expressions were sim-
-6.5 plified by using a multipole expansion far. A further sim-
plification invoked the assumption of uniaxial alignment
03 04 05 06 07 08 (Sec. 1l D). Although it is possible to to evaluate the stated
(c) temperature T

final expressions for the pressure, the order parameters, and
FIG. 17. Order paramete@l and SZ’ the pressure, and the the transition temperatudall in Sec. |||) numerically, it is
potential energy per particle of a Janus system with anisotropy padesirable to introduce another approximation which suffices
rameterse; =0.01, e,=—0.03 ande3=0 as function of tempera- to work out the influence of the anisotropy parametsys 3
ture. The number of Janus spheresNis-1024 and the average analytically. Results for the pressure of the fluid, the transi-
density isn*=0.8. In each simulation the system was relaxed fortion temperature into a polar phase and the order parameters
10° MC steps and the averages were extracted forle MC i the polar phase were presented in Sec. IV by making use
steps. In the range of the transition from the pseudonematic to th8f a high temperature approximation. We presented a quali-

isotropic phase, the simulation time was increased afterward to 'mfative phase diagram and discussed the range of validity of

prove the accuracy of the results and additional simulations were d il " ¢ th tical .
inserted at intermediate temperatures. The arrows mark the and possible corrections to — the analy I(,:a expressmns.
branches of the cooled and heated systems, respectively. For the same model system Monte Carlo simulations were

performed(Sec. ). Numerical results for the pressure, order

parameters, and transition temperature were compared with
exist for e,<0. The MC simulations seem to confirm this the analytic results. The discussitBec. IV) has shown that
finding. In simulations with nn Janus spheres with negativé0 polar phase could exist far; <0. The MC simulations
values fore; and various choices faf,, no anisotropic be- seem to confirm this finding that actually fiquid aniso-
havior was observed above temperature3 sf0.3, when a  tropic phase could be found in a system of Janus spheres
simulation run was carried out as described above with avith negatives,. Whereas analytically only a homogeneous
random initial configuration. However, in a simulation with a polar phase is considered, in the simulations other aniso-
start configuration taken from the simulations of Fig. 17 at atropic phases were also examined, namely, a nematiclike
temperature off =0.32 of the cooled fluid, the alignment phase. Inhomogeneities and metastafaiystalling states
was maintained. But in this instance the system had alreadgre observed in the simulation. These findings did not yet
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