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Phase behavior and structure of Janus fluids
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The equilibrium phase behavior of Janus fluids is examined based on a model potential for the interaction
between their constituents. Janus fluids consist of axisymmetric particles possessing two different ‘‘faces,’’ e.g.,
one hydrophobic and one hydrophilic surface, and the interaction depends on the relative orientation. Starting
from a short range, isotropic potential we make an ansatz for an anisotropic model interaction potential. Two
types of symmetries of the particles are considered. One leads to a polar phase. The Helmholtz free energy and
the pressure are calculated by the help of an augmented van der Waals approximation. A qualitative phase
diagram is obtained. The appearance of a polar phase and the corresponding transition temperature are exam-
ined adapting a Landau–de Gennes expansion of the orientational part of the free energy. Monte Carlo
simulations are performed and the results are compared with the ones obtained by the analytical description.
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I. INTRODUCTION

A macrofluid composed of particles whose interacti
possesses a particular type of anisotropy was studied
Casagrandeet al. @1#. They chemically treated glass spher
of some micrometers in diameter in such a way that one-
of the spherical surface became hydrophilic whereas
other remained hydrophobic. These amphiphilic solid ‘‘p
ticles’’ were called ‘‘Janus beads’’ due to their spheric
shape but nonspherical properties. Since then there has
great effort to reduce the size of the Janus beads by syn
sizing ‘‘Janus micelles,’’ i.e., amphiphilic spheres with bo
hydrophilic and hydrophobic halves@2,3#. The Janus mi-
celles synthesized so far are built of block copolymers c
taining separated polar and nonpolar compounds, form
the different surfaces of the molecules. They are estimate
have a diameter of about 10–20 nm and a molecular we
of about 23107 g/mol @4#. For a discussion of intermolecu
lar forces, see@5#. Experimentally, the Janus micelles need
be immersed in a suitable liquid solvent for the differe
building blocks, whereas in the model to be described bel
the solvent is not taken into account. The sole componen
the model Janus fluid are Janus particles. In this article
consider them to be effectively axisymmetric particles wi
out head-tail symmetry, and of homogeneous mass den
Substructures and chemical details are therefore disrega
Concerning the analytical description, the Janus fluid
treated as a macrofluid. Concerning applications, the che
cal composition and the properties of amphiphilic molecu
influence the parameters of the model to be described be
Two types of preferred symmetries of the particles are c
sidered, to be denoted as ‘‘ee’’ and ‘‘nn’’ symmetries~see
Fig. 1!. These symmetries are different from the one wh
characterizes the usual dipolar fluids, denoted as ‘‘sn’’ sy
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metry in Fig. 1. The symmetry ee potentially leads to a po
phase, whereas the symmetry nn may possess a nemati
microphase-separated phase. The possible polar phase
Janus fluid is defined such that the particle orientations
preferably alignedparallel rather thanantiparallel to the ori-
ented director of the fluid. Vector properties of the mo
ecules, like electric or magnetic dipole moments, could
transferred to the whole fluid. This is in contrast to the us
nematics, where the particles are oriented along both di
tions of the director with equal probability, due to the tens
rial character of the alignment in the nematic phase, wh
results from the head-tail symmetry of nematic liquid cry
talline molecules and which Janus particles do not posse

This article is organized as follows. In Sec. II the no
spherical model potential for Janus spheres is introduced
approximation for the free energy of the fluid, starting o
from an augmented van der Waals approximation@6# is de-
rived in Sec. III. Results for the pressure of the fluid, t
transition temperature into a polar phase, and the order
rameters in the polar phase are presented in Sec. IV by m
ing use of a high temperature approximation. Here, we a
present a qualitative phase diagram and discuss the rang
validity of—and possible corrections to—the analytical e
pressions. Section V is dedicated to Monte Carlo simulat
of the Janus fluid. Numerical results for the pressure, or
parameters, and transition temperature are compared with

FIG. 1. Schematic representation, including nomenclature
the basic configurations for the Janus spheres.
©2003 The American Physical Society09-1
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analytic results of Sec. IV. Whereas analytically only a po
phase is considered, in the simulations other anisotro
phases were also examined, namely, a nematiclike phas

II. THE MODEL

A. Janus spheres and binary potential function

The fluid considered in this work is composed of Jan
spheres. These are effectively axisymmetric particles
spherical shape, which are composed of two different he
spheres. The energyf for the binary interaction between tw
Janus spheres, characterized by their orientationsu1 ,u2 ~unit
vectors! and the distancer between their centers can be wr
ten as a sum of its isotropicfsph and anisotropicfaniso

contributions, i.e., f(r ,u1 ,u2)[fsph(r )1faniso(r ,u1 ,u2),
wherer[ur u. The radially symmetric partfsph describes the
average interaction between two randomly oriented Ja
spheres, such that the unconditional orientational a
age over all directionsu1 , u2 vanishes for the anisotropi
part faniso, i.e., ^^faniso(r ,u1 ,u2)&&r0

50, where ^^•••&&r

[**•••r(u1)r(u2)d2u1d2u2 stands for an average b
means of the single particle orientational distribution fun
tion r(u), normalized such that 15^^1&&r . The condition
for faniso involves the homogeneous~random! orientational
distribution functionr05(4p)21.

Here, the radially symmetric part of the potentialf is
modeled by the SHRAT~short range attractive! potential in-
troduced in@7# and@8#. It has a repulsive core and an attra
tive well with a smooth cutoff at finite distance and posses
a relatively simple functional form. The SHRAT potential
written as the sum of a positive and a negative part,
fsph5fSHRAT with

fSHRAT~r !5
256

27
f0@~322r * !42~322r * !3# ~1!

for r * [r /r 0<1.5, andf50 otherwise@7#. The parameters
r 0 and f0 set the characteristic length and energy sca
Together with the massm of a Janus sphere, the three qua
tities are used to express all quantities in terms of dimens
less units marked by an asterisk. For any measurable q
tity Q with a dimension specified in SI units kg, m and s o
has Q5Q* Qref and Qref5ma1g/2r 0

b1gf0
2g/2 , for @Q#

5kga mb sg. The reference values for lengthr, number
density n, energy kBT, and pressurep are therefore
r ref5r 0 , nref5r 0

23 , Eref5f05kBTref , and pref5f0r 0
23

5nrefEref . In all figures throughout this article dimensionle
quantitiesQ* are shown. Unlike the often used Lennar
Jones~LJ! potential @9# the SHRAT potential is finite for
vanishing distance. Due to the small value of the Boltzma
factor exp$2bfSHRAT(r 50)%&6310223, with b[1/kBT
for thermal energiesT* 5kBT/f0&10.0 essentially no par
ticle of the fluid has enough energy to reachr 50. Note, that
for convenience in the followingT stands for the dimension
less temperatureT* , whenever it comeswithout Boltz-
mann’s constantkB . In the form~1!, with the special choice
r cut* 51.5 for the cutoff distance, the SHRAT potential r
sembles the LJ potential insofar as the equilibrium~or mini-
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mum! distancer eq* 59/851.125 is almost equal to the L
equilibrium distancer eq

LJ,*521/6'1.122, the potential well
depth isf* (r eq)51 for both functions, and the derivative
(]f/]r )(r 0) of the functions at distancer 0, where they are
at least comparable.

For the anisotropic partfaniso the ansatz

faniso~r ,u1 ,u2!52~256/27!f0~322r * !3c~ r̂ ,u1 ,u2!
~2!

for r * <1.5, andfaniso50 otherwise, is chosen. This mean
that the nonspherical potential functionf can be considered
as a SHRAT potential with a nonspherical negative part. T
anisotropy of this ansatz is described by the anisotropy fu
tion c( r̂ ,u1 ,u2), depending on the unit vectorsu1 , u2 and
r̂5r /r .

The dependence on these unit vectors is taken into
count using symmetric, irreducible~anisotropic! Cartesian
tensors, also referred to as spherical harmonic tensors. S
an anisotropic tensor of rank, constructed from a given uni
vectoru5(u1 ,u2 ,u3) has the form

~3!

where the symbol

indicates the symmetric irreducible part of the,-fold dyadic
product ofu, andm1 ,m2 ,..P$1,2,3% denote Cartesian indi
ces. The normalization coefficients are chosen such that
‘‘square’’ of a tensor of rank, is 2,11, e.g.,wm(u)wm(u)
53. The summation convention for repeated indices is us
The tensors~3! are directly related to the spherical harmon
functionsYl

m @10#. The first and second rank Cartesian te
sors~3! explicitly read

wm~u!5A3um ,

and

The scalar functionc( r̂ ,u1 ,u2) characterizing the anisot
ropy of the energy remains to be specified. We assum
linear combination of terms constructed from these first a
second rank tensors upon contraction which is compat
with ~i! the symmetry of the Janus spheres and their sha
~ii ! the invariance against exchanging particles 1 and 2,
~iii ! the condition^^faniso&&r0

50. According to these as

sumptions the anisotropy functionc5c( r̂ ,u1 ,u2) contains
three independent parameters«1,2,3 and reads
9-2
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PHASE BEHAVIOR AND STRUCTURE OF JANUS FLUIDS PHYSICAL REVIEW E67, 041209 ~2003!
c5«1wm~u1!wm~u2!1«2wm~u1!wmn~ r̂ !wn~u2!

1«3@wm~u1!wm~ r̂ !2wm~u2!wm~ r̂ !#

53«1u1•u213«3~u1• r̂2u2• r̂ !1«2~135/2!1/2

3@~u1• r̂ !~u2• r̂ !2u1•u2/3#. ~4!

Tensors of second rank and terms of second order in
axes vectorsu1 and u2, as needed for nematics, are disr
garded in this expression due to the symmetry and shap
the particles. The three coefficients«1,2,3 are referred to as
the anisotropy coefficients and allow one to characterize
particle interaction of Janus type. Similar expansions w
applied in the kinetic theory and the scattering of rotat
molecules~see @11#!. The term involving«2 has an angle
dependence corresponding to that of an electric or magn
dipole-dipole interaction, where«2.0 for identical dipoles.
A specific case with«2,0 had been studied in@12#.
The scalar functions~rotational invariants! in expression
~4! are some of theS functions, namely,S110(u1 ,u2 , r̂ ),
S112(u1 ,u2 , r̂ ) and S101(u1 ,u2 , r̂ )2S011(u1 ,u2 , r̂ ). Stone
@13# used these for a general expansion of functions of th
unit vectors. Expansion~4! is a special case of such a gene
expansion for a nonspherical function, restricted to the lo
est order rotational invariant compatible with the symme
of the Janus spheres.

FIG. 2. The potential functionsfee(r ) ~thick curve!, fnn(r )
~slightly thinner curve!, fsn(r ) ~dash-dotted curve!, feẽ(r ) ~dashed
curve!, together with the isotropic SHRAT potential~thin curve! in
the middle, with«350 and the values«150.01,«2520.03 ~top!
and«150.02,«2520.02 ~bottom! of the two other anisotropy pa
rameters.
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B. Discussion of the potential

To elucidate the physical meaning of the anisotropy of
potential function and the influence of the anisotropy para
eters, it is useful to examine the nonspherical poten
function f for fixed relative position and fixed axes o
the interacting particles in some characteristic ‘‘basic co
figurations.’’ The potential function is then a mere functio
of the distancer of the particles. The basic configuration
considered here are the~i! nn configuration~ss configuration!
with r̂5u152u2, i.e., the particles point with their ‘‘north
poles’’ ~‘‘south poles’’! toward each other;~ii ! sn configura-
tion with u15u256 r̂ , i.e., one particle points with its
‘‘north pole’’ to the ‘‘south pole’’ of the other;~iii ! ee con-
figuration (eẽconfiguration! with r̂'u156u2, i.e., the par-
ticles are parallel~antiparallel! to each other with their
‘‘equators’’ touching each other;~iv! es and en configura
tion with u1'u256 r̂ , i.e., one particle points with its
‘‘north pole’’ ~‘‘south pole’’! toward the ‘‘equator’’ of
the other. These basic configurations are sketched in
1. For the different basic configurations, the anisotro
function c( r̂ ,u1 ,u2) is cnn523«12301/2 «226«3 ,
css523«12301/2 «216«3 , csn53«11301/2 «2 , cee
53«12(15/2)1/2 «2 , ceẽ523«11(15/2)1/2 «2 , ces5
23«3 , cen53«3. The potential curves for some of the bas
configurations are plotted in Fig. 2 for two different sets
anisotropy parameters. For both sets, the ee and nn con
rations are energetically favored, i.e., the potential energ
reduced with respect to the SHRAT potential for all d
tances. This should be the case for amphiphilic particles w
an additional attraction between identical halves. It turns
that not only are the values of the potential curves reduc
but also the minimum distancer eq is shifted according to
r eq* 51/(11c) for c.21, as is the zero of the potentia
function. For a more exhaustive summary on the charac
istics of the potential see Table I.

TABLE I. The table collects the effect of choice of paramete
«1,2,3—positive ~1!, zero ~0!, negative (2)—on the possibly pre-
ferred (d) and unpreferred (s) configurations~cf. Fig. 1!, with
lowest energy. Cases where«1,250 are not tabulated. If more tha
a single phase is possible, the preferred one depends on the ex
values for the parameters. The en phase may be stable fo«2

50, «1,3.0. The case1, 2, 0 is the one mostly considered i
this work. Here, the nn phase is stable for 0,«1<2(5/24)1/2«2;
otherwise the ee phase is preferred.

«1 1 1 1 1 1 1 - - - - - -
«2 1 1 1 - - - 1 1 1 - - -
«3 1 - 0 1 - 0 1 - 0 1 - 0

nn s d s s d d s d s s d d

ss d s s d s d d s s d s d

sn d d d s s s d d d s s s

ee s s s d d d s s s s s s

eẽ s s s s s s d d d s s s

es s s s s s s s s s s s s

en s s s s s s s s s s s s
9-3
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The two sets characterize the two important variations
Janus fluids. The first set corresponds to proper Janus sp
where the nn configuration has the lowest energy~nn Janus
spheres!. The second set, where the ee configuration is
vored, can lead to phases with dipolar symmetry in anal
to phases observed for systems composed of pear sh
molecules, which also give rise to flexoelectric effects@14#.
These particles may be called Janus dipoles~or ee Janus
spheres!. The tendency to prefer the nn configuration w
respect to the ee configuration is stronger for negative va
of «1. Table I gives an overview of the preferred configur
tions for positive and negative values of the different anis
ropy parameters. In the following we refer to both types
particles as Janus spheres. The term involving«2 has an
angle dependence corresponding to that of an electric
magnetic dipole-dipole interaction, where«2.0 for identical
dipoles. A particular case with«2,0 had been elaborated i
@12#. The third parameter«3 appears only inc for the basic
configuration, for which reversing the directions of both p
ticle axes simultaneously yields a different, though rela
configuration, as is the case for ee and ee˜ or nn and ss. Thus
«3 describes a difference in the strength of interaction
tween ‘‘black’’ and ‘‘gray’’ halves—north and south pole
—of the particles. In the following, this difference will usu
ally be neglected and«3 will be set to zero. Only sporadi
cally nonzero values of«3 will be considered to highlight its
influence on certain physical quantities. Figure 3 shows
influence on the potential functions in the basic configu
tions.

III. FREE ENERGY AND PRESSURE OF A JANUS FLUID

A. The different contributions to the free energy

Classically, the free energy per particlef (n,T)
5F(N,V,T)/N of a fluid composed of nonspherical Jan
spheres is written as the sumf (n,T)5 f kin(n,T)1 f pot(n,T)
1 f or(T), of a kinetic, a potential, and an entropic contrib
tion. The latter is associated with the orientation of the p
ticle axes. In the above,N designates the number of particle

FIG. 3. The lower group of lines represents the potential fu
tionsfnn(«1520.01,«2520.03,«350.005)~dash-dotted curve!,
fss (20.01,20.03, 0.005) ~dashed curve!, and fnn(20.01,
20.03, 0.0) ~thick curve!; the uppermost solid curve show
fsn(20.01,20.03). The group of curves in the middle shows t
SHRAT potential fSHRAT ~solid curve!, fen(«350.005) ~dash-
dotted curve!, andfes(0.005)5fen(20.005) ~dashed curve!.
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in the fluid, V its volume, andT its temperature.n5N/V is
the number density of the fluid. From the free energy p
particle, the pressure of the fluid is obtained throu
the derivative with respect to density:p(n,T)
5n2(] f (n,T)/]n)T .

(a) The kinetic contribution fkin also referred to as the
ideal gas contribution, is

f kin~n,T!5kBT@ ln~nl3!21#5 f ideal~n,T!, ~5!

with the thermal de Broglie wavelengthl5(mkBT/\)21/2.
\ is Planck’s constant andm the mass of a particle.

(b) The entropic contribution for stems from an alignmen
of the nonspherical particles of the fluid. Here we assu
that it is represented by the statistical entropy

f or~T!5kBT^ ln~r~u!/r0!&r , ~6!

where^•••&r[*•••r(u)d2u denotes an orientational ave
age withr. The orientational free energy vanishes for isotr
pic alignment,r5r05(4p)21. It had been used, e.g., b
Onsager for the description of long rods@15#. The use of the
single particle distribution function neglects all correlation
between two and more particles and is therefore a poten
candidate for future improvements of the model. The kine
part of the pressurepkin5nkBT is the usual ideal gas pres
sure. There is no entropic contribution because Eq.~6! does
not depend on the density.

(c) The potential contribution fpot is taken into account
by an augmented van der Waals approximation. The a
mented van der Waals approximation was introduced in@6#
and applied to a spherical LJ fluid. The agreement with
merical data for the pressure was fairly good. In@20# it was
also applied to a fluid with nonspherical interaction potent
This approximation decomposes the potential contribut
f pot(n,T) to the free energy into the contributionf rep(n,T) of
a purely repulsive, spherical potentialf rep(r ) and a contri-
bution f dis(n,T) of a distortion potentialfdis( r̂ ,u1 ,u2)
5f( r̂ ,u1 ,u2)2f rep(r ), i.e., f pot5 f rep1 f dis. The nonspheri-
cal or nonrepulsive parts are referred to as the distortion p
because in a dense fluid the radially symmetric repuls
forces usually give the major contribution to the free ene
@16#.

(d) The radially symmetric repulsive contribution.In
analogy to the Weeks-Chandler-Andersen~WCA! potential
@17# which is the repulsive part of the LJ potential, th
SHRAT potential truncated at its minimum and shifted su
that it vanishes continuously is used as the spherical, pu
repulsive potential:f rep(r )5fSHRAT(r )1f0 for r<r eq, and
fSHRAT50 otherwise, withr eq* 59/8. Its contribution to the
free energy is calculated with a modified Carnahan-Star
expression. The Carnahan-Starling expressionf CS for the
free energy—originally derived in@18# for a fluid of hard
spheres—is b f CS(n,T)5nB2

hs/(12nv)1(nv)2/(12nv)2,
whereB2

hs54v is the second virial coefficient for the har
sphere potential,v denotes the volume of a hard sphere, a
b[1/kBT. For the application of this expression to the r
pulsive soft sphere potentialf rep(r ) the second virial coeffi-

-

9-4
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cient Bhs is replaced with the temperature dependent vi
coefficient of the soft potential:

B2
rep~T!5

1

2ER3
12e2bfrep(r )d3r , ~7!

and the volumev is replaced with an effective, temperatu
dependent volumeveff(T)5(p/6)deff

3 (T). As the effective
diameterdeff(T) of a particle we use the distance where t
potential energy equals the thermal energyf rep„deff(T)…
5kBT, or equivalently,f rep* (deff)5T. For the WCA poten-
tial this leads toveff* (T)5(p/6)21/2(11T)21/4. We will
adopt this simple expression for the present purpose, s
both potentials WCA andf rep are very similar, and the ef
fective volume corresponding to the WCA potential is mu
simpler. The modified Carnahan-Starling expression forf rep
then becomes

f rep~n,T!5kBTS nB2
rep~T!

@12nveff~T!#
1

@nveff~T!#2

@12nveff~T!#2D . ~8!

This expression was applied earlier to a WCA fluid@19,8#
and yielded good agreement with results of molecular
namics computer simulations for the corresponding pres
of the fluid.

(e) The distortion contribution

fdis~ r̂ ,u1 ,u2!5f~ r̂ ,u1 ,u2!2f rep~r !

of the potential includes the attractive part of the nonsph
cal interaction as well as the anisotropy of the repulsi
which was not included inf rep. The augmented van de
Waals approximation takes its contributionsf dis to the free
energy into account through the virial expressionf dis(n,T)
5nkBT@B2(T)2B2

rep(T)#, and the distortion contribution to
the pressure ispdis(n,T)5n2kBT@B2(T)2B2

rep(T)#. Here,
B2 is the second virial coefficient of the full nonspheric
potential function f, i.e., B2(T)[^^B(u1•u2)&&r ,
andB(u1•u2)[*R312exp$2bf(r ,u1 ,u2)%d3r . The full ex-
pression for the potential contribution to the free ene
f pot5 f rep1 f dis is thus obtained:

f pot~n,T!5nkBTS B21
nveffB2

rep

~12nveff!
1

nveff
2

~12nveff!
2D . ~9!

For high densities this expression becomes the modi
Carnahan-Starling approximation, which should be a go
approximation, as the repulsive part of the interaction
comes most important. For very low densities on the ot
hand the choice forf dis guarantees that Eq.~9! becomes the
virial expansion of second order and is a good approxima
in this range also.

B. Isotropic and alignment free energy

Having established an expression for the free energy
terms of the orientational distribution function, density, a
temperature, by making use of the augmented van der W
approximation in the previous subsection, we want to der
04120
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conditions for the existence and stability of anisotrop
phases in the Janus fluid. It is therefore necessary to dec
pose the free energy differently. We should denote byf iso
that part of the free energy which does not depend on
alignment of the particles and is the same in the isotropic
anisotropic phases of the fluid. Byf align we should denote
that ~remaining! part of the free energy that vanishes in t
isotropic phase. In view of the foregoing discussion, the
composition is already achieved forf kin and f rep, which are
both independent of an alignment and are thus part
f iso(n,T), and for f or , which vanishes in the isotropic phas
i.e., for r(u)5r0, and is thus part off align(n,T). The distor-
tion part f dis of the free energy contains isotropic as well
alignment contributions and must be further decomposed

To proceed, the orientational distribution function is wr
ten asr(u)5r0@11x(u)#, with the isotropic orientationa
distribution functionr0. The functionx(u) with ^x(u)&50
describes the anisotropy of the distribution functionr(u).
Inserting this representation forr into the expression for the
distortion part of the free energyf dis yields

f dis~n,T!5 f dis
iso~n,T!1 f dis

aniso~n,T!1 f dis
align~n,T!,

f dis
iso~n,T!5nkBT@B2

SHRAT~T!2B2
rep~T!#,

f dis
aniso~n,T!5nkBTB2,0

aniso~T!,

f dis
align~n,T!5nkBTH~T!. ~10!

Here, the virial coefficient of a SHRAT fluidB2
SHRAT(T) is

defined in analogy to Eq.~7!, and the ‘‘virial coefficient’’

B2,0
aniso~T![B2,0~T!2B2

SHRAT~T!

5
1

2ER3
^^12e2bfaniso

&&r0
e2bfSHRAT(r )d3r

~11!

with B2,0(T)[^^B(u1•u2)&&r0
describes the additional con

tribution of theanisotropicpart faniso of the potential to the
free energy~and the pressure! of an isotropic Janus fluid.
These last expressions are both independent ofx(u) and are
thus part of the isotropic partf iso of the free energy. The
contribution to f dis which carries the dependence onx in-
volves the quantityH with

H~T!52
1

2ER3
^caniso~r ,u1 ,u2!x~u1!x~u2!&r0

d3r ~12!

and the ‘‘direct correlation function’’caniso(r ,u1,u2), in the
approximation applied here given by

caniso5~e2bfaniso
2^^e2bfaniso

&&r0
!e2bfSHRAT(r ). ~13!

The contribution f dis
align which carries the direct correlatio

function ~13! is part of the alignment free energy, togeth
with f or .

The complete expression for the free energyf, suitable for
a discussion on stability, now separates as follows:
9-5
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f ~n,T!5 f iso~n,T!1 f align~n,T!,

f iso5 f kin1 f rep1 f dis
iso1 f dis

aniso,

f align5 f dis
align1 f or . ~14!

All contributions are explicitly defined through Eqs.~5!, ~6!,
~8!, and ~10!, together with the definitions for a number o
virial coefficients provided by Eqs.~7!, ~11!, and~12!. These
coefficients involve the model potentials given in Se
II A. The corresponding expression for the pressu
reads p(n,T)5piso(n,T)1palign(n,T), piso5pkin1prep

1pdis
iso1pdis

aniso, palign5pdis
align. At this stage the free energy an

the pressure thus depend on the single particle orientati
distribution functionr(u) ~or x54pr21) and three param
eters«1,2,3 introduced in Eq.~4!. Next, we should simplify
the above expressions by using a multipole expansion fox.
A further simplification invokes the assumption of uniax
alignment in Sec. III D by which the existence of a pol
phase can be investigated analytically,~see Sec. IV!.

C. Landau–de Gennes expansion for the alignment free energy

The existence of a stable anisotropic~polar! phase at a
certain densityn and temperatureT requires that the align
ment free energyf align(n,T) has a minimum for an aniso
tropic orientational distribution functionx(u)Þ0 at this state
point. To find these minima an expansion forf align of the
Landau–de Gennes type@15# is established as follows. Firs
the orientational distribution functionr5(11x)r0 is writ-
ten as a multipole expansion up to second order,

x~u!'amwm~u!1amnwmn~u!. ~15!

Here and in the following the summation convention is us
for repeated indices. Second, the logarithm under the inte
in expression~6! is expanded for small values ofx(u), i.e.,
for weak alignment, into a Taylor series of third order: ln
1x)'x21/2x211/3x3 such that the entropic part becom
f or'^x&r0

21/2̂ x2&r0
11/3̂ x3&r0

. Due to the choice of

symmetric, irreducible Cartesian basis tensorswm•••
@Eq.

~3!#, the coefficientsam•••
of the expansion~15!, usually

denoted as alignment tensors, equal the moments of the
tribution, i.e.,am•••

5^wm•••
(u)&r . In a nematic liquid crys-

talline phase@head-tail symmetry,r(u)5r(2u)] the align-
ment tensors of odd rank vanish. For a Janus fluid, howe
alignment tensors of any rank may be nonzero. A nonvan
ing first rank alignment tensoram ~actually it is a vector with
three componentsa1,2,3) indicates the existence of a pola
phase in the fluid.

Inserting the multipole expansion~15! into f align from Eq.
~14! we obtain an expansion for the alignment free ene
f align of a Landau–de Gennes type, if we neglect all ter
including alignment tensors of rank higher than 2, and a
terms containing both alignment tensors of first and sec
rank in at least second order:
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f align~n,T!' f align
LdG~n,T!

[
kBT

2 S A1amam1A2amnamn

2A6

5
amanamn1

6

5
~amam!2D . ~16!

The coefficientsA1(n,T) andA2(n,T) are functions of tem-
perature and density:

S A1

A2
D 512nE

R3K K S wk~u1!wk~u2!/3

wkl~u1!wkl~u2!/5D canisoL L
r0

d3r ,

~17!

where the arguments incaniso(r ,u1 ,u2), cf. Eq. @13#, have
been skipped. The purely numerical coefficients in Eq.~16!
result from the entropic contributionf or . The effect of den-
sity on A1,2 results fromf dis

align.

D. Uniaxial alignment

For the special case of homogeneous uniaxial alignm
of particle axes, the alignment tensors can be expresse
terms of a spatial unit vectorn, the director, and scalar orde
parameters. The Cartesian components of the first and
ond order alignment tensors are

~18!

The order parametersS1 andS2 @21# with Si[^Pi(u•n)&r , a
directorn defined through Eq.~18!, and Legendre polynomi-
als Pi( i 51,2) characterize the polar phase and degree
alignment of the Janus fluid, respectively. Inserting t
uniaxial alignment tensors into Eq.~16!, the free energy as
sociated with the alignment~16! becomes

f align
LdG~n,T!5

kBT

2 S 3~A122S2!S1
21

54

5
S1

415A2S2
2D ,

~19!

and the pressure associated with the distortion part of the
energy,@see Eq.~14!#, is

palign
LdG~n,T!5

nkBT

2
@3~A121!S1

215~A221!S2
2#. ~20!

One notices, that expression~19! is even inS1, and asym-
metric inS2. Positive~negative! values of21/2<S2<1 de-
scribe a preferred alignment parallel~perpendicular! to the
director n, and 0<S1<1 is always positive~or zero! for
convenience.
9-6
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E. Minima of f align and order parameters

Minimizing f align
LdG @Eq. ~19!# yields the equilibrium order

parametersS1,2 in terms of the coefficientsA1,2(n,T) from
Eq. ~17!, as follows:

S1~n,T!5A 25A1A2

6~6A221!
, ~21a!

S2~n,T!52
A1/2

6A221
. ~21b!

These expressions are finite only forA2.1/6 ~for the tem-
perature approaching infinity and vanishing density, one
A251). Therefore,A2.0 and expression~21b! can be real
only for A1,0. For high temperatures and low densitiesA1
is positive, and the transition temperatureTc into a polar
phase is determined by the condition

A1~n,Tc!50→Tc~n!. ~22!

Below this temperature, the approximations~21b! describe
the polar and nematic order parameters in a polar phase
Janus fluid. This approximation is no longer applicable wh
the temperatureT5T0 with A2(n,T0)51/6 is reached. Since
the Landau–de Gennes expansion was used to derive
expressions, and the logarithm inf or was expanded for wea
alignment, the approximations for the order parameters
be valid only in the vicinity of the transition temperatur
where the alignment is small. From their definition, the ord
parameters are limited to values smaller than 1. Their dive
ing is due to the approximations in the Landau–de Gen
expansion forf align. In determining their equilibrium value
~21b! from the minima of f align they had the role of mere
parameters in the alignment free energy.

IV. ANALYTIC RESULTS

Although it is possible to to evaluate the stated expr
sions for the pressure, the order parameters, and the tr
tion temperature numerically, it is desirable to introduce
other approximation which suffices to work out the influen
of the anisotropy parameters«1,2,3 analytically. The aniso-
tropic partfanisoof the full potential containing these param
eters appears in the definitions for the coefficientsA1,2 and
the virial coefficientB2,0

anisothrough exponential functions. Le
us expand the exponential function up to second order~high
temperature approximation!:

e2bfaniso
'12bfaniso1

1

2
~bfaniso!21O~ ubfanisou3!.

~23!

Requiring thatubfanisou&1 holds in the range of the equilib
rium distancer eq* 59/8, where the equilibrium pair correla
tion function has a maximum leads to the conditionubcu
&0.25. In order to use the expansion~23!, the anisotropy of
the potential must be moderate. Considering, e.g., the ee
figuration, the anisotropy parameters«1,2 have to satisfy
«1,2&0.03.
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A. CoefficientsA1,2 and transition temperature Tc

Inserting Eq.~23! into the expressions~13!, ~17! and per-
forming the orientational averages yields the following e
pressions forA1,2:

A1~n,T!512nI1~T!
«1

T
1nI2~T!S «3

T D 2

, ~24!

A2~n,T!512
1

5
nI2~T!S «s

T D 2

, ~25!

where«s
2[3«1

215«2
22A273/10«1«2, and the dimensionles

volumesI 1,2* 5I 1,2r 0
23 are introduced as follows:

I 1* ~T![
1024

27
p E

0

3/2

~322r * !3e2bfSHRAT(r )~r * !2dr* ,

~26!

I 2* ~T![S 512

27 D 2

p E
0

3/2

~322r * !6e2bfSHRAT(r )~r * !2dr* .

~27!

These volumes can be viewed as averages of the first
second powers of the negative part of the spherical SHR
potential. They are always positive and depend rather wea
on the temperature.

The temperature dependence of the coefficientsA1,2(n,T)
is shown in Fig. 4 for the dimensionless densityn* 50.8 and
for two different sets of anisotropy parameters«1 and «2
with «350 representing ee and nn Janus spheres, res
tively ~cf. Fig. 2!. For the ee Janus spheres in the diagram
top, A1 goes through zero at the temperatureT'0.8'Tc .
This is the transition temperature into the polar phase. At
temperature T0'0.5, A251/6. At this temperature, the
uniaxial approximation~18! for the order parameters fails
i.e., a polar phase can be expected in the temperature r
T0'0.5,T,0.8'Tc .

For the nn Janus spheres of the right-hand diagram of
4, we see thatT0.Tc . Therefore a polar phase is not e
pected and it is worth examining this parameter region
Monte Carlo simulation.

The form~24! reveals thatA1 can only have a zero, and
polar phase is predicted@cf. Eq. ~22!#, for «1.0 ~sinceI 1,2
.0). As Fig. 4 reveals, this is even further restricted
systems of ee Janus spheres. Furthermore, expressions~22!,
~24! show that a nonvanishing«3 reducesTc , while Tc is
insensitive to the value of«2. But A2 does depend on«2 and
therefore«2 has an effect onT0. Therefore, the choice of«2
in relation to«1 is essential for the presence of a uniax
polar phase and its range of existence in parameter spa

B. Alignment free energy

With the high temperature expansion~24!, upon inserting
A1,2 from Eqs.~24!,~25! into the free energyf align

LdG(n,T) as-
sociated with the alignment~19!, we obtain
9-7
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f align
LdG5

kBT

2 F12nI1~T!
«1

T
1nI2~T!S «3

T D 2

22S2G3S1
2

1
kBT

2 H 54

5
S1

41F52nI2~T!S «s

T D 2GS2
2J . ~28!

Figure 5 shows a plot of the alignment free energy a
function of the order parametersS1,2 for the reduced density
n* 50.8 and the anisotropy parameters«152«250.02 and
«350 ~ee Janus spheres! at temperatureT50.87. At this
temperature there is a single minimum for vanishing or
parameters. The alignment free energyf align is symmetric in
S1 but asymmetric with respect toS2. The positive value for
the nematic order parameter shows that the particle axes
mostly aligned along the director axis rather than perp
dicular to it. For the temperatureT50.72 below the transi-
tion temperatureTc'0.8 into a polar phase, there are tw
minima for positive ~and unphysical negative, thus irre
evant! values of the polar order parameterS1 and a positive
nematic order parameterS2.

FIG. 4. The coefficientsA1(n,T) andA2(n,T) at a densityn*
50.8 and anisotropy parameters«350.0 and («1 ;«2)5(0.02;
20.02) ~top! @(0.01;20.03) ~bottom!#; the dashed horizontal curv
is at a value of 1/6. The zero ofA1(n,T) marks the transition
temperatureTc , the intersection ofA2(n,T) with the dash-dotted
curve marks that temperature where the order parameters~21b! di-
verge~see Sec. III E!. The dimensionless temperature is denoted
T* in the figure. For convenience,T andT* are used synonymousl
in the text part.
04120
a

r

re
-

C. Order parameters

The positions of the minima off align are given by the
expressions~21b! for the order parameters in terms of th
explicit expressions for the coefficientsA1,2 @Eqs.~24!,~25!#.
As shown above in Sec. IV A, a nonzero order parameterS1
is expected only for ee Janus spheres with«1.0; we mostly
consider ee spheres in the remainder of this section.
order parameters are shown in Fig. 6 as function of the te
perature (n* 50.8). The anisotropy parameters are«15
2«250.02 and«350 ~thinnest curve!. For temperatures jus

s

FIG. 5. The alignment free energyf align from Eq. ~28! as a
function of the order parametersS1,2. The density isn* 50.8, the
anisotropy parameters are«150.02,«2520.02, and«350.0. The
temperature isT50.87, which is above the transition temperatu
~cf. Fig. 4!. The single minimum of the free energy is located in t
center of the diagram; contour lines are drawn in equidistant ene
steps. The expected symmetry off align with respect toS1 and asym-
metry with respect toS2 can be seen clearly. The minimum off align

at vanishing order parameters disappears below the transition
perature and two minima occur~not plotted! with nonvanishing
order parameters.

FIG. 6. Influence of temperature and«3 on the polar and nem-
atic order parametersS1 and S2 at n* 50.8, «150.02,«25
20.02, and«350,0.007,0.01~thinning curves!. By varying the
density~results not shown! we find that the transition temperatur
Tc is slightly increasing with increasing density.
9-8
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PHASE BEHAVIOR AND STRUCTURE OF JANUS FLUIDS PHYSICAL REVIEW E67, 041209 ~2003!
below the transition temperatureTc , the polar order param
eter grows rapidly. At lower temperatures the increase is
most linear. The nematic order parameterS2 remains much
smaller than the polar order parameterS1. For very low tem-
peratures the increase of the order parameters is stro
again. This is where the second coefficientA2 approaches
1/6 and the expression for the order parameter diverges
varying the density~results not shown! we find that the tran-
sition temperatureTc is slightly increasing with increasing
density; see Sec. IV E and Fig. 9 for further discussion. F
ure 6 also shows the influence of the third anisotropy par
eter «3 on the order parameters. The transition tempera
and the order parameters decrease with increasing abs
value for «3 @which appears quadratic in expression E
~24!#.

D. Pressure of a Janus fluid in its isotropic and polar phases

Applying the high temperature approximation~23! to ex-
pression~11! for the virial coefficientB2,0

aniso yields

B2,0
aniso~T!52~3«1

215«2
219«3

2!~2T!22I 2~T!. ~29!

This expression is always negative and the contribut
piso

aniso(n,T)5n2kBTB2,0
aniso(T) originated by the anisotropic

part faniso of the model potential to the pressurepiso in the
isotropic phase of the fluid is also negative. The pressur
the isotropic Janus fluid with its nonspherical interaction
smaller than that of a SHRAT fluid with purely spheric
interaction. The anisotropy enters into Eq.~11! through the
sum (3«1

215«2
219«3

2) of squares of the anisotropy param
eters. Thus, the pressure depends only on the strengt
anisotropy of the potential, but not on the signs of the anis
ropy parameters. Due to this reduction of the pressure
isotropic Janus fluid will also have a critical temperatu
which is below the one for a SHRAT fluid.

The different contributions to the pressure of a Janus fl
in its isotropic phase—pkin , prep, pdis

iso, and piso
aniso, respec-

tively, with the high temperature approximation~29! applied
for the last expression—are displayed graphically in Fig.
The temperature chosen wasT50.6 and the anisotropy pa
rameters for the ee Janus spheres are«152«250.02 and
«350. The linear kinetic and the Carnahan-Starling te
give positive contributions, whereas the virial expressio
quadratic in the density, are negative. The Carnahan-Sta
part is displayed separately, because it grows rapidly
larger densities.

The alignment pressurepalign is displayed in Fig. 7~inset!.
In Eq. ~20! for palign the expressions~18! are inserted for the
order parameters and the high temperature approxima
~24!,~25! is used forA1,2(n,T). The pressure is is zero fo
densities below the ‘‘transition density’’nc . Here,nc* '0.5
for this given temperature. Above this density it is negat
and very small, so that the difference between the press
in the isotropic and the polar phase should be very small.
higher densitiespalign diverges, while the Landau–de Genn
energy approximation in terms of order parameters beco
invalid.

The total pressure of the Janus fluid, i.e., the sum of
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the contributions from Fig. 7, is displayed in Fig. 8 for tw
selected temperatures as function of the density. Anisotr
parameters are chosen as before. For low densities in
gaseous phase, the increase of the pressure is almost l
due to the kinetic contribution. Below the critical temper
ture Tc , the derivative of the pressure with respect ton is
negative for intermediate densities, i.e., in the region of
existence between gas and liquid phases. For high dens
as the repulsion between the particles becomes important
Carnahan-Starling term starts dominating and the pres
increases. The lower diagram in Fig. 8 shows the pressur
a temperature close to the critical temperature of the Ja
fluid and the SHRAT fluid. For the latter it is slightly highe
due to the influence of the anisotropic part of the potentia
the Janus fluid. However, the value of the shift is not ve
reliable, because a mean field theory like the virial expans
cannot correctly describe the critical behavior of a fluid th
is governed by fluctuations.

E. Qualitative phase diagram

Using the above results for the pressure and evalua
conditions for the stability of different phases, we can co
struct a qualitative phase diagram of the Janus fluid mad
ee spheres in the (n,T) plane. Such a phase diagram for
special choice of anisotropy parameters is depicted in Fig
The diagram shows the regions of liquid and gaseous sin

FIG. 7. The contributionspkin , pdis
iso, and pdis

aniso ~top! and prep

~bottom! as well as the alignment contributionpalign(n,T)
5pdis

align(n,T) ~bottom inset! to the pressure of an isotropic Janu
fluid with «150.02,«2520.02, and«350 as a function of density
at a temperature ofT50.6. Forpdis

anisothe high temperature approxi
mation ~29! was applied.
9-9



a
ur

in
c

ai
.

t
bs
th
o

io
pin

th

w
a-
-

only
igh
the
not
l
g-
ally

tion
en-

he
rm,
ion,

t be-
or-

ted

del
art

ra
cl

i-

m-

dal

he

ight
re

ERDMANN, KRÖGER, AND HESS PHYSICAL REVIEW E67, 041209 ~2003!
phase and the two-phase region of coexisting liquid and g
eous phases. The fluid phase is marked for temperat
above the critical temperatureTcrit of the Janus fluid. The
two-phase region is approximately determined by the sp
odal curveTsp(n), which connects the extrema with respe
to the densityn of the pressure curvep(n,T) and is derived
from the condition (]p/]n)@n,Tsp(n)#50. The vertex of the
spinodal at the critical density/critical temperature p
(ncrit* ,Tcrit)'(0.23,0.71) marks the critical point of the fluid
Above the critical temperatureTcrit is the fluid phase withou
distinction between liquid and gaseous phases. In an a
lutely stable phase of a fluid, not only the derivative, but
pressure itself must be positive. For higher densities ab
n* '0.35, the corresponding conditionp@n,T(n)#50 yields
an approximation for the bounds of the two-phase reg
which improves upon the approximation based on the s
odal.

Isotropic and polar liquid phases are separated by
curveTc(n) with Tc5nI(Tc)«1. This equation follows from
condition ~22!, A1@n,Tc(n)#50, with A1 from Eq. ~24!,
when«350 ~which is the case for the phase diagram sho
in Fig. 9!. SinceI 1(T) is weakly dependent on the temper
ture in the vicinity ofT50.8 we estimated the critical tem
perature shown in Fig. 9 from the conditionTc(n)5nI1(T
50.8f0 /kB)«1, where«150.02.

FIG. 8. The total pressure of a SHRAT fluid~dash-dotted curve!
and an isotropic Janus fluid with«152«250.02 and«350 ~solid
curve! as a function of the particle density at two selected tempe
tures. The lower diagram shows the pressure at a temperature
to the critical temperatureTcrit50.66 of the SHRAT fluid andTcrit

50.71 of the Janus fluid. Forpdis
aniso the high temperature approx

mation ~11! was applied.
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F. Range of validity and possible correction

For low temperatures, the equation of state~14! describes
the numerical results to be discussed in the next section
for very low densities in the gaseous phase and for h
densities in the liquid phase. At intermediate densities in
region of coexistence of gas and liquid the pressure is
described correctly. In Ref.@22# the pressure of a spherica
SHRAT fluid was calculated analytically employing an au
mented van der Waals approximation as well as numeric
via molecular dynamics~MD! simulation. Compared with
the MD results, the augmented van der Waals approxima
yielded a too high pressure. Applying a temperature and d
sity dependent ‘‘correction term’’c(n,T) to the distortion
pressurepdis, i.e., replacingpdis by pdis@11c(n,T)# in the
equation of state, with a particular simple correction t
simulation results are well described. The correction te
motivated by increased fluctuations in the two-phase reg
keeps the limiting correct behaviors,c(0,T)50, c(n,01)
50, and a dimensionless density appears as a produc
tweenn and the effective volume introduced above. The c
rection term employed first used in@22#, reads c(n,T)
5@3nveff(T)16n2veff

2 (T)#e2bf0. Simulation results to be
presented next will be compared with both the uncorrec
and the corrected expressions discussed in this section.

V. NUMERICAL RESULTS

A. NVT Monte Carlo simulation setup

In the following, we report results of Monte Carlo~MC!
simulations for configurational properties of the same mo
for Janus fluids without referring to any approximation ap

-
ose

FIG. 9. Phase diagram for a Janus fluid with anisotropy para
eters«152«250.02 and«350. Below the densityn* 50.35 the
extension of the two-phase region is determined from the spino
Tsp; above this density from the zerop(n,T)50 of the pressure.
The kink in the thin bent curve results from these conditions. T
horizontal straight line marks the critical temperatureTcrit and sepa-
rates the fluid from the gaseous and liquid phases. The thick stra
line increasing linearly with density is the transition temperatu
Tc(n) from isotropic to polar liquid according to Sec. IV E.
9-10
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PHASE BEHAVIOR AND STRUCTURE OF JANUS FLUIDS PHYSICAL REVIEW E67, 041209 ~2003!
from possible finite size effects. The MC simulations we
carried out in anNVT or canonical ensemble with consta
number of particlesN, constant volumeV, and temperature
T. The particles~Janus spheres! of the Janus fluid were en
closed in a cubic central simulation box with volumeV. Pe-
riodic boundary conditions were applied to reduce the effe
of finite system size, and the minimum image convent
was used@23#. A Janus sphere is described by the spa
coordinates of the center of mass and the direction of the
axis vectoru. If it is attempted to move a particle in th
simulation, with equal probability the center of mass
shifted in space or the axis vector is rotated around one of
three spatial coordinate axes. The axis of rotation is cho
with probability 1/3, and we used the Metropolis algorith
@24#, i.e., an attempted move of a particle is accepted w
the probability Wmn}min(1,exp$2bDEmn

pot%), where DEmn
pot

5En
pot2Em

pot is the difference of potential energy of the ne
configurationEn

pot ~after the particle was moved! and the pre-
vious configurationEm

pot ~before the particle was moved!. A
full Monte Carlo step includes an attempted move of
particles of the fluid. Our systems relaxed for several th
sand MC steps, before averages of configurational prope
were extracted during several thousand further MC ste
The configurations after every tenth MC step are used for
sample set to calculate the MC averages. This was don
reduce correlations between subsequent configurations
improve the accuracy of the averages@25#. Averages are ac
cumulated as mean values over MC realizations as follo

The potential part of the symmetric part of the press
tensor ppot is calculated with the virial expressionppotV
5^( i 51

N ( j 5 i 11
N r i j F(r i j ,ui ,uj )&, where F52¹r i j

f is the
force acting between two Janus spheres, resulting from
gradient of the binary interaction potentialf, and r i j 5r i
2r j is the distance vector of two particles. To receive the f
symmetric pressure tensor, the kinetic~isotropic! pressure
pkin5nkBT1 is added:p5ppot1pkin . The scalar pressure i
obtained asp5(1/3)Trp, since the existing torques do no
contribute to the trace of the full pressure tensor. From
MC results, the average for the potential energy per part
upot is obtained asupot5^( i8( j . if(r i j ,ui ,uj )&, where the
symbol ( i8 denotes the normalized sum( i8[(1/N) ( i 51

N

with N being the number of particles, and^•••& stands for
the ensemble average. The polar order parameterS1 is cal-
culated by taking the norm of the mean axis vectoru
[( i8ui , i.e., S15^uuu&, i.e., S151 ; i ui5u, sinceuui u51.
Similarly, the amplitude of the order parameterS2 is ob-
tained from the relation

The sign of the nematic order parameter is obtained using
relation S2}^(n•( i8ui)

221/3&, where (8u is the average
axis vector in a single configuration.

Simulation results to be presented in the following a
obtained as follows. In the pressure calculations in Secs.
and V C,singlesimulations with a given number of particle
N ~typically N51024), fixed overall particle number densi
n, and fixed temperatureT, were carried out with random
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start configurations~initial positions of the particles on a fc
lattice when mentioned explicitly!. The duration of a simu-
lation was usuallyM523104 MC steps. In obtaining the
results of Sec. V D, for a given densityn a seriesof NVT
MC simulations was initiated with random start configur
tions at a relatively high temperature. The temperature w
then successively reduced~if not otherwise mentioned! at a
rateDT50.02 perM523104 MC steps. At a low tempera
ture this process was reversed and the temperature wa
creased again. The results for the different branches of
simulation may differ. The hysteresis effects should mai
be due to the finite rate. In the transition regimes isotrop
nematic and isotropic-polar, where the hysteresis effects
most pronounced, the duration of the simulation was
creased (M543104).

The first 104 MC steps at a new temperature were alwa
disregarded for taking averages. The anisotropy parame
are set such that the potentialf models amphiphilic Janus
spheres; corresponding estimates were discussed above
thermore, in order to potentially observe a polar phase,«1
.0 is chosen.

B. The pressure of the SHRAT and Janus fluid

Figure 10 shows MC results for the pressure of the Ja
fluid ~with «152«250.02,«350) as well as for the
SHRAT fluid as a function of density for different temper
tures. We compare with the analytical results derived in
foregoing sections, earlier results for the SHRAT fluid o
tained via molecular dynamics simulation, approximated
the corrected equation of state described in Sec. IV F.
diagrams of Fig. 10 confirm that the augmented van
Waals approximation tends to overestimate the value for
pressure. For the temperaturesT50.8, 1.0, and 2.0, which
are above the critical temperatures for the SHRAT and Ja
fluids ~not all results plotted!, the corrected equation of stat
agrees well with the MC results for the full range of densit
shown, for both types of fluids. The MC results for th
SHRAT fluid are identical to the ones obtained via M
within the range of accuracy of@22#. Also, for temperatures
below the critical temperature, e.g.,T50.5, the corrected
equation of state generally describes the pressure of the
correctly in the single phase regions with very high and v
low densities. Only the fluctuation dominated behavior of t
two-phase region cannot be described with a mean fi
theory such as the one employed here. In these regions
local particle density becomes inhomogeneous. ‘‘Holes,’’
gions with very low density, are formed, as can be seen in
snapshot of the fluid shown in Fig. 11. Therefore, the M
results are not accurate in the two-phase region, becaus
virial expression for the pressure requires a homogene
system.

C. The liquid phase of the Janus fluid

The realm of the liquid phase of a fluid composed
particles with a very short range of interaction can be v
narrow; for a fluid of C60 fullerenes, Hagenet. al. in @26#
suppose that there exists no liquid phase at all. As an ind
9-11
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ERDMANN, KRÖGER, AND HESS PHYSICAL REVIEW E67, 041209 ~2003!
tion of where the liquid phase and therefore anisotropic,
uid crystalline phases of a Janus fluid could be found,
pressure in systems of Janus spheres with unordered in
configuration was compared to the pressure of a system
fcc crystalline initial configuration. The results are display
in Fig. 12 for two different temperatures.

FIG. 10. The pressure as a function of the density: the das
and the dash-dotted curves represent the augmented van der
approximation from Eq.~14! and the corrected equation of state~cf.
Sec. IV F!, respectively, for the SHRAT fluid. The thin and thic
solid lines give the according expressions for a Janus fluid w
anisotropy parameters«152«250.02 and«350. For the contri-
bution pdis

aniso in the equations of state of the Janus fluid the h
temperature approximation~11! was applied. The gray dots are th
results of the MC simulations in the SHRAT fluid; the black do
are those for the Janus fluid. The number of particles used in
simulation wasN51024. In a simulation, the start configuratio
was chosen randomly, the system was relaxed for 104 MC steps,
and averages were extracted over 104 MC steps.
04120
-
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Along with the numerical results, Fig. 12 shows the an
lytic results for the pressure of the isotropic fluid accordi
to the augmented van der Waals equation of state~14! and
the corrected equation of state~cf. Sec. IV F!, again with the
high temperature expansion applied topiso

aniso. Comparison of
the corrected equation of state and the MC results for
pressure of the unordered, fluid system reveals good ag
ment outside the two-phase region. For high densities a w
alignment of the particles’ axes, withS1&0.3, is observed in
the MC simulations. Since the alignment partpalign of the
pressure is not considered for correction in Sec. IV F,
good agreement between the pressure curves confirms
finding of Sec. IV D that the alignment pressure is negligib
for small order parameters.

For given density, the pressure in the crystalline system
smaller—and the increase of the pressure with the densi
larger—than in the unordered, fluid system. The pressur
the fcc phase becomes negative for densities belown*
'0.95 and this phase cannot be absolutely stable for sm
values. Forn* '0.85, the pressure reaches the value
tained for the fluid system. At this density, the crystalli
order disappears and a transition to the fluid phase occ
The pressure in the fluid phase is positive aboven* '0.8 and
thus, a liquid phase of the system might be located in
density range of 0.8&n* &0.9.

D. Anisotropic phases in Janus fluids

Via Monte Carlo simulations, anisotropic phases with p
lar and nematiclike order are found with different sets
order parameters.

ed
aals

h

e

FIG. 11. The perspective view of this snapshot from the Ja
fluid in the two-phase region atT50.5 andn* 50.5 shows the
formation of areas with high and low densities in the fluid. T
Janus spheres are represented as cones; the frames mark the
of the central simulation box.
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PHASE BEHAVIOR AND STRUCTURE OF JANUS FLUIDS PHYSICAL REVIEW E67, 041209 ~2003!
1. Polar phases for ee Janus spheres

A polar alignment of the particle axes, as predicted
Secs. III and IV, is found from our MC simulation for th
case of ee Janus spheres.

(a) Janus fluid with«152«250.03,«350. Results for
the order parameters, the pressure, and the potential en
of the particular Janus fluid are displayed as functions of
density in Fig. 13. The upper left diagram in this figu
shows the behavior of the order parametersS1,2 vs tempera-
ture. Above the transition temperatureTc'0.62, the order
parameters are small, withS1,2&0.1. Below the transition
temperature the polar order parameter increases rapidly u
a value ofS1'0.6 atT50.56, and then continues increasin
with decreasing temperature up to a value ofS1'0.8 at T
50.3, which describes an almost total alignment of the p
ticles. The nematic order parameterS2 is much smaller than
S1. The system is in a polar phase. The alignment of
particles is shown in the snapshot from the fluid in Fig. 1
This snapshot also reveals the existence of a hole in the fl
The contraction of the fluid that leaves regions with very lo
density is also reflected in the pressure diagram in the mid

FIG. 12. The pressure of a fluid and a fcc crystal of Jan
spheres with anisotropy parameters«152«250.02 and«350 for
two selected temperatures; the black dots give the results o
unordered start configuration, the gray dots those with fcc s
configuration. The dash-dotted curves represent the pressure o
fluid, calculated with the equation of state@cf. Eq. ~14!#. The solid
line is the pressure according to the corrected equation of state~cf.
Sec. IV F!. The number of particles in the simulations with th
unordered start configuration wasN51024; in the fcc start configu
ration it wasN5864. The system was relaxed for 104 MC steps and
averages were extracted over 104 MC steps in both cases.
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of Fig. 13. For higher densities, the pressure falls alm
linearly with decreasing temperature, and vice versa. T
pressure is negative for temperatures belowT'0.7. That
means that the polar phase in the fluid can only be m
stable. ForT&0.62 the pressure remains constant~apart from
some fluctuations! while reducing temperature. It is thi
range where the fluid contracts and inhomogeneities app
This contraction is finished atT'0.34 where the pressur
starts decreasing with the temperature again. The temp
ture T50.62 equals the transition temperature. This coin
dence may be accidental, although a contraction of the fl
might enforce the alignment of the particles, or vice versa,
alignment of the particles might induce the contraction, b

s

an
rt
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FIG. 13. Order parametersS1 andS2, the pressure and the po
tential energy per particle of in system of Janus spheres with
isotropy parameters«152«250.03 and«350 as functions of tem-
perature. The number of Janus spheres isN52048 and the average
density isn* 50.8. The vertical line marks the transition temper
ture; the arrows indicate the heating/cooling branches.
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cause the average equilibrium distance between two part
is reduced. The contraction of the fluid and the reduction
the average distance between the particles is also reflect
the behavior of the potential energy. Its decrease is stron
in the range of the contraction with approximately const
pressure than in the other regions. For the quantities pres
and potential energy a hysteresis between heating/coo
branches of the MC run~with M543104) is present only
for low temperatures, while we do not detect any hystere
for the order parameters.

(b) Janus fluid with«150.02,«2520.02,«350. Figure
15 shows results of MC simulations for order paramete
pressure, and potential energy per particle of a Janus
with the anisotropy parameters«152«250.02,«350.0.
The results are quite similar to those in Fig. 13. The tran
tion temperature from the isotropic to the polar phase isT
'0.49 is smaller than before. The order parameters
smaller as well, with a maximum value ofS1'0.7 for the
polar order parameter atT50.3. The values for the aniso
ropy parameters have been used to display analytical re
in Sec. IV ~cf. Fig. 6!. Compared with those, the transitio
temperature is considerably smaller here (Tc'0.49 for the
MC results compared toTc'0.8 for the analytic results!. The
order parameters calculated in the simulations on the o
hand are much larger compared with their analytically cal
lated counterparts. In the transition region were the appr
mate expressions~21b! hold, the calculations giveS1&0.2,
whereas the simulations give values ofS1&0.5 for the polar
order parameter.

The number of particlesN, the average densityn* , and
the duration of the simulations were chosen as before. In
range of the transition into the polar phase, again simulati
with longer duration were carried out to improve the acc

FIG. 14. The snapshot from the polar phase of a Janus fluid
anisotropy parameters«152«250.03 and«350 consisting ofN
52048 particles at an average density ofn* 50.8 shows the orien-
tational order of the system with a preferred direction of the part
axes pointing from the upper right to the lower left.
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racy. This was done in the cooled as well as in the hea
branch. The hysteresis, however, did not disappear as wa
case before. Especially for the potential energy per part
there is a large difference between the two branches, with
energy being almost constant when the temperature is
creased fromT50.46 toT50.52. In this range the system
starts to crystallize, before it becomes fluid again atT
50.54, where the values for the energy reach those of
cooled fluid. The solidification begins at increasing tempe
ture. This indicates that he relaxation time allowed to t
fluid was not sufficient. This is confirmed by selected sim
lations with relaxation times of 43105 MC steps at tempera
tures ofT50.44, 0.56, and 0.58 shown in the diagrams. T

th

e

FIG. 15. Order parametersS1 and S2, the pressure, and th
potential energy per particle of a system of Janus spheres
anisotropy parameters«152«250.02 and«350 as function of
temperature. The number of Janus particles isN52048 and the
average density isn* 50.8. The vertical line marks the transitio
temperature; the arrows indicate the heating/cooling branch.
single gray dots in the pressure and potential energy diagrams s
results of simulations with enlarged duration of the simulation.
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PHASE BEHAVIOR AND STRUCTURE OF JANUS FLUIDS PHYSICAL REVIEW E67, 041209 ~2003!
polar phase for this Janus fluid is not liquid anymore a
should be glasslike. In the simulation described in the pa
graph before, no signs of crystallization were observed, e
for a simulation with 53105 MC steps atT50.54. For that
particular Janus fluid, a liquid polar phase might exist,
least in the transition region nearTc .

(c) Influence of«3. The discussions in Sec. IV hav
shown that a nonvanishing third anisotropy parameter«3 re-
duces the amount of order in the Janus fluid and also red
the transition temperature into a polar phase. This result
qualitatively confirmed with MC simulations for which re
sults are displayed in Fig. 16 for a Janus fluid with ba
anisotropy parameters«152«250.03, and the three differ
ent values«350,0.01,0.014. The ratio of«3 to «1,2 is there-
fore comparable to that in Fig. 6. For«350 the results from
Fig. 13 were used; the final configurations of these simu
tions served as new initial configurations with«350.01 and
these final configurations were then used for the simulati
with «350.014. The results show that the order parame
S1 andS2 are reduced through the influence of«3, although
the effect seems to be stronger than analytically forecast
some selected temperatures, simulations with negative«35
20.014 were carried out. The results are qualitatively eq

FIG. 16. Influence of«3 on the polar and nematic order param
eterS1 ~top! andS2 ~bottom!. The anisotropy parameters are«15
2«250.03,«350 ~black dots!, «350.01 ~dark gray dots!, and«3

50.014~light gray dots!.The particle number in the simulation wa
N52048 and the average density isn* 50.8. The relaxation time in
the additional simulations with nonzero«3 was 53104 MC steps
and the averages were extracted over 23104. The single black dots
represent results for«3520.014.
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to those with positive«3. The sign of«3 does not seem to
matter as predicted in Sec. IV.

2. Pseudonematic phases in nn Janus fluids

The discussions of the analytic results in Sec. IV ha
revealed that for certain sets of anisotropy parameters re
senting proper~nn! Janus spheres with positive values f
«1, no polar phase can be described with the analytic exp
sions~21b! for the order parameters~cf. Fig. 4!. Results of
MC simulation in a Janus fluid with anisotropy paramete
«150.01,«2520.03,«350 are displayed in Fig. 17. The
show that the system can enter an anisotropic phase w
nematiclike order characterized by a vanishing polar or
parameterS1 and nonvanishing nematic order parameterS2.
This phase will be referred to as a pseudonematic phase

The upperleft diagram in Fig. 17 shows that the po
order parameterS1 vanishes for all temperatures. In th
cooled branch of the simulation, the nematic order param
S2 starts to increase below the temperatureT50.4 up to a
value of S250.7 at T50.3. Simultaneously a strong pos
tional order in the fluid is induced and the system cryst
lizes. The particles form planes with a common preferr
direction of the particle axes, which is reversed in the nei
boring plane, and thus exhibit a smecticAd phase~experi-
mentally observed in mixtures of polar compounds!. As the
system is reheated,S2 is reduced slowly; the alignment o
the particles is finally resolved at the temperatureT50.68.
The behavior of the pressure of the cooled fluid is similar
that observed in the previous simulations. It is negative
low T'0.66 and is hardly reduced with reduced tempe
tures when the system contracts and forms holes in the s
lation box. As the system crystallizes, the pressure is stron
reduced. In the reheated system, the crystalline orde
maintained and the pressure rises approximately linearly.
‘‘steps’’ in the pressure curves with discontinuously reduc
pressure are probably due to rearrangements in the cr
structure and partial closure of the holes in the system.
T50.68 the pressure jumps to the pressure of the coo
fluid system and the crystalline order is fully resolved. At t
same point the orientational order vanishes. This happen
two distinct steps, reflecting the discontinuous behavior
the pressure. The orientational order can be mostly m
tained as long as there is a strong positional order of
Janus spheres present in the system. Like the order pa
eters, the potential energy shows a pronounced hyster
The potential energy in the crystal is remarkably smaller th
in the fluid phase. Unlike the pressure, the energy of
heated system shows no discontinuities apart from the
toward the fluid phase atT50.68.

3. Simulations at negative values of«3

The anisotropic, polar, and nematiclike phases discus
so far were obtained for systems made of ee Janus sph
and nn spheres with positive«1 respectively~cf. Table I. The
discussion of Sec. IV has shown that no polar phase sho
9-15
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ERDMANN, KRÖGER, AND HESS PHYSICAL REVIEW E67, 041209 ~2003!
exist for «1,0. The MC simulations seem to confirm th
finding. In simulations with nn Janus spheres with negat
values for«1 and various choices for«2, no anisotropic be-
havior was observed above temperatures ofT50.3, when a
simulation run was carried out as described above wit
random initial configuration. However, in a simulation with
start configuration taken from the simulations of Fig. 17 a
temperature ofT50.32 of the cooled fluid, the alignmen
was maintained. But in this instance the system had alre

FIG. 17. Order parametersS1 and S2, the pressure, and th
potential energy per particle of a Janus system with anisotropy
rameters«150.01, «2520.03 and«350 as function of tempera
ture. The number of Janus spheres isN51024 and the averag
density isn* 50.8. In each simulation the system was relaxed
104 MC steps and the averages were extracted for 23104 MC
steps. In the range of the transition from the pseudonematic to
isotropic phase, the simulation time was increased afterward to
prove the accuracy of the results and additional simulations w
inserted at intermediate temperatures. The arrows mark
branches of the cooled and heated systems, respectively.
04120
e

a

a

dy

begun to crystallize and the final system was also crystall
with a strong positional order.

VI. SUMMARY AND CONCLUSION

In this article we introduced a nonspherical model pote
tial for Janus spheres~Sec. II!, where two types of Janu
spheres~nn and ee!, with qualitatively different properties
were identified. A yet unobserved phase is predicted for
case of ee Janus spheres through an approximation fo
free energy of the fluid, starting out from an augmented v
der Waals approximation in Sec. III. All results presented
this article are expressed in dimensionless unitsQ* , ~see
Sec. II!. In order to predict the experimentally measurab
analogQ based on our predictions, one needs an estimate
the diameter, mass, and LJ-type interaction strength betw
the Janus particles at hand, denoted in this article byr 0 , m,
andf0, respectively. Sample values were given in the Int
duction.

An expression for the free energyf of the Janus fluid,
suitable for a discussion on stability, was separated as
lows: f 5 f iso1 f align with f iso5 f kin1 f rep1 f dis

iso1 f dis
aniso, and

f align5 f dis
align1 f or . All contributions are explicitly defined

through Eqs.~5!, ~6!,~8!, and ~10!, together with the defini-
tions for a number of virial coefficients provided by Eqs.~7!,
~11!, and ~12!. These coefficients involve the model pote
tials given in Sec. II A. The corresponding expression for
pressure is given after Eq.~14!. At this stage the free energ
and the pressure depend on the single particle orientati
distribution functionr(u) ~or x54pr21) and three param
eters«1,2,3 introduced in Eq.~4!. The expressions were sim
plified by using a multipole expansion forx. A further sim-
plification invoked the assumption of uniaxial alignme
~Sec. III D!. Although it is possible to to evaluate the stat
final expressions for the pressure, the order parameters,
the transition temperature~all in Sec. III! numerically, it is
desirable to introduce another approximation which suffi
to work out the influence of the anisotropy parameters«1,2,3

analytically. Results for the pressure of the fluid, the tran
tion temperature into a polar phase and the order parame
in the polar phase were presented in Sec. IV by making
of a high temperature approximation. We presented a qu
tative phase diagram and discussed the range of validit
— and possible corrections to — the analytical expressio
For the same model system Monte Carlo simulations w
performed~Sec. V!. Numerical results for the pressure, ord
parameters, and transition temperature were compared
the analytic results. The discussion~Sec. IV! has shown that
no polar phase could exist for«1,0. The MC simulations
seem to confirm this finding that actually noliquid aniso-
tropic phase could be found in a system of Janus sph
with negative«1. Whereas analytically only a homogeneo
polar phase is considered, in the simulations other an
tropic phases were also examined, namely, a nematic
phase. Inhomogeneities and metastable~crystalline! states
are observed in the simulation. These findings did not
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PHASE BEHAVIOR AND STRUCTURE OF JANUS FLUIDS PHYSICAL REVIEW E67, 041209 ~2003!
enter the approximate analytical description of Janus flu
but should motivate further studies. Furthermore, it is de
able to expand the anisotropic model potential from the
scription of spherical Janus particles to particles of n
spherical shape, e.g., ellipsoids. This can be achieved
insertion of higher order terms in the expansion~4! for the
anisotropy function, in analogy with the description of ne
atic liquid crystals in Ref.@20#.
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